

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

Python Documentation contents

	What’s New in Python
	What’s New in Python 2.7
	The Future for Python 2.x

	Changes to the Handling of Deprecation Warnings

	Python 3.1 Features

	PEP 372: Adding an Ordered Dictionary to collections

	PEP 378: Format Specifier for Thousands Separator

	PEP 389: The argparse Module for Parsing Command Lines

	PEP 391: Dictionary-Based Configuration For Logging

	PEP 3106: Dictionary Views

	PEP 3137: The memoryview Object

	Other Language Changes
	Interpreter Changes

	Optimizations

	New and Improved Modules
	New module: importlib

	New module: sysconfig

	ttk: Themed Widgets for Tk

	Updated module: unittest

	Updated module: ElementTree 1.3

	Build and C API Changes
	Capsules

	Port-Specific Changes: Windows

	Port-Specific Changes: Mac OS X

	Port-Specific Changes: FreeBSD

	Other Changes and Fixes

	Porting to Python 2.7

	New Features Added to Python 2.7 Maintenance Releases
	PEP 434: IDLE Enhancement Exception for All Branches

	PEP 466: Network Security Enhancements for Python 2.7

	PEP 477: Backport ensurepip (PEP 453) to Python 2.7
	Bootstrapping pip By Default

	Documentation Changes

	PEP 476: Enabling certificate verification by default for stdlib http clients

	PEP 493: HTTPS verification migration tools for Python 2.7

	Acknowledgements

	What’s New in Python 2.6
	Python 3.0

	Changes to the Development Process
	New Issue Tracker: Roundup

	New Documentation Format: reStructuredText Using Sphinx

	PEP 343: The ‘with’ statement
	Writing Context Managers

	The contextlib module

	PEP 366: Explicit Relative Imports From a Main Module

	PEP 370: Per-user site-packages Directory

	PEP 371: The multiprocessing Package

	PEP 3101: Advanced String Formatting

	PEP 3105: print As a Function

	PEP 3110: Exception-Handling Changes

	PEP 3112: Byte Literals

	PEP 3116: New I/O Library

	PEP 3118: Revised Buffer Protocol

	PEP 3119: Abstract Base Classes

	PEP 3127: Integer Literal Support and Syntax

	PEP 3129: Class Decorators

	PEP 3141: A Type Hierarchy for Numbers
	The fractions Module

	Other Language Changes
	Optimizations

	Interpreter Changes

	New and Improved Modules
	The ast module

	The future_builtins module

	The json module: JavaScript Object Notation

	The plistlib module: A Property-List Parser

	ctypes Enhancements

	Improved SSL Support

	Deprecations and Removals

	Build and C API Changes
	Port-Specific Changes: Windows

	Port-Specific Changes: Mac OS X

	Port-Specific Changes: IRIX

	Porting to Python 2.6

	Acknowledgements

	What’s New in Python 2.5
	PEP 308: Conditional Expressions

	PEP 309: Partial Function Application

	PEP 314: Metadata for Python Software Packages v1.1

	PEP 328: Absolute and Relative Imports

	PEP 338: Executing Modules as Scripts

	PEP 341: Unified try/except/finally

	PEP 342: New Generator Features

	PEP 343: The ‘with’ statement
	Writing Context Managers

	The contextlib module

	PEP 352: Exceptions as New-Style Classes

	PEP 353: Using ssize_t as the index type

	PEP 357: The ‘__index__’ method

	Other Language Changes
	Interactive Interpreter Changes

	Optimizations

	New, Improved, and Removed Modules
	The ctypes package

	The ElementTree package

	The hashlib package

	The sqlite3 package

	The wsgiref package

	Build and C API Changes
	Port-Specific Changes

	Porting to Python 2.5

	Acknowledgements

	What’s New in Python 2.4
	PEP 218: Built-In Set Objects

	PEP 237: Unifying Long Integers and Integers

	PEP 289: Generator Expressions

	PEP 292: Simpler String Substitutions

	PEP 318: Decorators for Functions and Methods

	PEP 322: Reverse Iteration

	PEP 324: New subprocess Module

	PEP 327: Decimal Data Type
	Why is Decimal needed?

	The Decimal type

	The Context type

	PEP 328: Multi-line Imports

	PEP 331: Locale-Independent Float/String Conversions

	Other Language Changes
	Optimizations

	New, Improved, and Deprecated Modules
	cookielib

	doctest

	Build and C API Changes
	Port-Specific Changes

	Porting to Python 2.4

	Acknowledgements

	What’s New in Python 2.3
	PEP 218: A Standard Set Datatype

	PEP 255: Simple Generators

	PEP 263: Source Code Encodings

	PEP 273: Importing Modules from ZIP Archives

	PEP 277: Unicode file name support for Windows NT

	PEP 278: Universal Newline Support

	PEP 279: enumerate()

	PEP 282: The logging Package

	PEP 285: A Boolean Type

	PEP 293: Codec Error Handling Callbacks

	PEP 301: Package Index and Metadata for Distutils

	PEP 302: New Import Hooks

	PEP 305: Comma-separated Files

	PEP 307: Pickle Enhancements

	Extended Slices

	Other Language Changes
	String Changes

	Optimizations

	New, Improved, and Deprecated Modules
	Date/Time Type

	The optparse Module

	Pymalloc: A Specialized Object Allocator

	Build and C API Changes
	Port-Specific Changes

	Other Changes and Fixes

	Porting to Python 2.3

	Acknowledgements

	What’s New in Python 2.2
	Introduction

	PEPs 252 and 253: Type and Class Changes
	Old and New Classes

	Descriptors

	Multiple Inheritance: The Diamond Rule

	Attribute Access

	Related Links

	PEP 234: Iterators

	PEP 255: Simple Generators

	PEP 237: Unifying Long Integers and Integers

	PEP 238: Changing the Division Operator

	Unicode Changes

	PEP 227: Nested Scopes

	New and Improved Modules

	Interpreter Changes and Fixes

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.1
	Introduction

	PEP 227: Nested Scopes

	PEP 236: __future__ Directives

	PEP 207: Rich Comparisons

	PEP 230: Warning Framework

	PEP 229: New Build System

	PEP 205: Weak References

	PEP 232: Function Attributes

	PEP 235: Importing Modules on Case-Insensitive Platforms

	PEP 217: Interactive Display Hook

	PEP 208: New Coercion Model

	PEP 241: Metadata in Python Packages

	New and Improved Modules

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.0
	Introduction

	What About Python 1.6?

	New Development Process

	Unicode

	List Comprehensions

	Augmented Assignment

	String Methods

	Garbage Collection of Cycles

	Other Core Changes
	Minor Language Changes

	Changes to Built-in Functions

	Porting to 2.0

	Extending/Embedding Changes

	Distutils: Making Modules Easy to Install

	XML Modules
	SAX2 Support

	DOM Support

	Relationship to PyXML

	Module changes

	New modules

	IDLE Improvements

	Deleted and Deprecated Modules

	Acknowledgements

	The Python Tutorial
	1. Whetting Your Appetite

	2. Using the Python Interpreter
	2.1. Invoking the Interpreter
	2.1.1. Argument Passing

	2.1.2. Interactive Mode

	2.2. The Interpreter and Its Environment
	2.2.1. Source Code Encoding

	3. An Informal Introduction to Python
	3.1. Using Python as a Calculator
	3.1.1. Numbers

	3.1.2. Strings

	3.1.3. Unicode Strings

	3.1.4. Lists

	3.2. First Steps Towards Programming

	4. More Control Flow Tools
	4.1. if Statements

	4.2. for Statements

	4.3. The range() Function

	4.4. break and continue Statements, and else Clauses on Loops

	4.5. pass Statements

	4.6. Defining Functions

	4.7. More on Defining Functions
	4.7.1. Default Argument Values

	4.7.2. Keyword Arguments

	4.7.3. Arbitrary Argument Lists

	4.7.4. Unpacking Argument Lists

	4.7.5. Lambda Expressions

	4.7.6. Documentation Strings

	4.8. Intermezzo: Coding Style

	5. Data Structures
	5.1. More on Lists
	5.1.1. Using Lists as Stacks

	5.1.2. Using Lists as Queues

	5.1.3. Functional Programming Tools

	5.1.4. List Comprehensions
	5.1.4.1. Nested List Comprehensions

	5.2. The del statement

	5.3. Tuples and Sequences

	5.4. Sets

	5.5. Dictionaries

	5.6. Looping Techniques

	5.7. More on Conditions

	5.8. Comparing Sequences and Other Types

	6. Modules
	6.1. More on Modules
	6.1.1. Executing modules as scripts

	6.1.2. The Module Search Path

	6.1.3. “Compiled” Python files

	6.2. Standard Modules

	6.3. The dir() Function

	6.4. Packages
	6.4.1. Importing * From a Package

	6.4.2. Intra-package References

	6.4.3. Packages in Multiple Directories

	7. Input and Output
	7.1. Fancier Output Formatting
	7.1.1. Old string formatting

	7.2. Reading and Writing Files
	7.2.1. Methods of File Objects

	7.2.2. Saving structured data with json

	8. Errors and Exceptions
	8.1. Syntax Errors

	8.2. Exceptions

	8.3. Handling Exceptions

	8.4. Raising Exceptions

	8.5. User-defined Exceptions

	8.6. Defining Clean-up Actions

	8.7. Predefined Clean-up Actions

	9. Classes
	9.1. A Word About Names and Objects

	9.2. Python Scopes and Namespaces

	9.3. A First Look at Classes
	9.3.1. Class Definition Syntax

	9.3.2. Class Objects

	9.3.3. Instance Objects

	9.3.4. Method Objects

	9.3.5. Class and Instance Variables

	9.4. Random Remarks

	9.5. Inheritance
	9.5.1. Multiple Inheritance

	9.6. Private Variables and Class-local References

	9.7. Odds and Ends

	9.8. Exceptions Are Classes Too

	9.9. Iterators

	9.10. Generators

	9.11. Generator Expressions

	10. Brief Tour of the Standard Library
	10.1. Operating System Interface

	10.2. File Wildcards

	10.3. Command Line Arguments

	10.4. Error Output Redirection and Program Termination

	10.5. String Pattern Matching

	10.6. Mathematics

	10.7. Internet Access

	10.8. Dates and Times

	10.9. Data Compression

	10.10. Performance Measurement

	10.11. Quality Control

	10.12. Batteries Included

	11. Brief Tour of the Standard Library – Part II
	11.1. Output Formatting

	11.2. Templating

	11.3. Working with Binary Data Record Layouts

	11.4. Multi-threading

	11.5. Logging

	11.6. Weak References

	11.7. Tools for Working with Lists

	11.8. Decimal Floating Point Arithmetic

	12. What Now?

	13. Interactive Input Editing and History Substitution
	13.1. Line Editing

	13.2. History Substitution

	13.3. Key Bindings

	13.4. Alternatives to the Interactive Interpreter

	14. Floating Point Arithmetic: Issues and Limitations
	14.1. Representation Error

	15. Appendix
	15.1. Interactive Mode
	15.1.1. Error Handling

	15.1.2. Executable Python Scripts

	15.1.3. The Interactive Startup File

	15.1.4. The Customization Modules

	Python Setup and Usage
	1. Command line and environment
	1.1. Command line
	1.1.1. Interface options

	1.1.2. Generic options

	1.1.3. Miscellaneous options

	1.1.4. Options you shouldn’t use

	1.2. Environment variables
	1.2.1. Debug-mode variables

	2. Using Python on Unix platforms
	2.1. Getting and installing the latest version of Python
	2.1.1. On Linux

	2.1.2. On FreeBSD and OpenBSD

	2.1.3. On OpenSolaris

	2.2. Building Python

	2.3. Python-related paths and files

	2.4. Miscellaneous

	2.5. Editors

	3. Using Python on Windows
	3.1. Installing Python

	3.2. Alternative bundles

	3.3. Configuring Python
	3.3.1. Excursus: Setting environment variables

	3.3.2. Finding the Python executable

	3.3.3. Finding modules

	3.3.4. Executing scripts

	3.4. Additional modules
	3.4.1. PyWin32

	3.4.2. Py2exe

	3.4.3. WConio

	3.5. Compiling Python on Windows

	3.6. Other resources

	4. Using Python on a Macintosh
	4.1. Getting and Installing MacPython
	4.1.1. How to run a Python script

	4.1.2. Running scripts with a GUI

	4.1.3. Configuration

	4.2. The IDE

	4.3. Installing Additional Python Packages

	4.4. GUI Programming on the Mac

	4.5. Distributing Python Applications on the Mac

	4.6. Other Resources

	The Python Language Reference
	1. Introduction
	1.1. Alternate Implementations

	1.2. Notation

	2. Lexical analysis
	2.1. Line structure
	2.1.1. Logical lines

	2.1.2. Physical lines

	2.1.3. Comments

	2.1.4. Encoding declarations

	2.1.5. Explicit line joining

	2.1.6. Implicit line joining

	2.1.7. Blank lines

	2.1.8. Indentation

	2.1.9. Whitespace between tokens

	2.2. Other tokens

	2.3. Identifiers and keywords
	2.3.1. Keywords

	2.3.2. Reserved classes of identifiers

	2.4. Literals
	2.4.1. String literals

	2.4.2. String literal concatenation

	2.4.3. Numeric literals

	2.4.4. Integer and long integer literals

	2.4.5. Floating point literals

	2.4.6. Imaginary literals

	2.5. Operators

	2.6. Delimiters

	3. Data model
	3.1. Objects, values and types

	3.2. The standard type hierarchy

	3.3. New-style and classic classes

	3.4. Special method names
	3.4.1. Basic customization

	3.4.2. Customizing attribute access
	3.4.2.1. More attribute access for new-style classes

	3.4.2.2. Implementing Descriptors

	3.4.2.3. Invoking Descriptors

	3.4.2.4. __slots__

	3.4.3. Customizing class creation

	3.4.4. Customizing instance and subclass checks

	3.4.5. Emulating callable objects

	3.4.6. Emulating container types

	3.4.7. Additional methods for emulation of sequence types

	3.4.8. Emulating numeric types

	3.4.9. Coercion rules

	3.4.10. With Statement Context Managers

	3.4.11. Special method lookup for old-style classes

	3.4.12. Special method lookup for new-style classes

	4. Execution model
	4.1. Naming and binding
	4.1.1. Interaction with dynamic features

	4.2. Exceptions

	5. Expressions
	5.1. Arithmetic conversions

	5.2. Atoms
	5.2.1. Identifiers (Names)

	5.2.2. Literals

	5.2.3. Parenthesized forms

	5.2.4. List displays

	5.2.5. Displays for sets and dictionaries

	5.2.6. Generator expressions

	5.2.7. Dictionary displays

	5.2.8. Set displays

	5.2.9. String conversions

	5.2.10. Yield expressions
	5.2.10.1. Generator-iterator methods

	5.3. Primaries
	5.3.1. Attribute references

	5.3.2. Subscriptions

	5.3.3. Slicings

	5.3.4. Calls

	5.4. The power operator

	5.5. Unary arithmetic and bitwise operations

	5.6. Binary arithmetic operations

	5.7. Shifting operations

	5.8. Binary bitwise operations

	5.9. Comparisons

	5.10. Boolean operations

	5.11. Conditional Expressions

	5.12. Lambdas

	5.13. Expression lists

	5.14. Evaluation order

	5.15. Operator precedence

	6. Simple statements
	6.1. Expression statements

	6.2. Assignment statements
	6.2.1. Augmented assignment statements

	6.3. The assert statement

	6.4. The pass statement

	6.5. The del statement

	6.6. The print statement

	6.7. The return statement

	6.8. The yield statement

	6.9. The raise statement

	6.10. The break statement

	6.11. The continue statement

	6.12. The import statement
	6.12.1. Future statements

	6.13. The global statement

	6.14. The exec statement

	7. Compound statements
	7.1. The if statement

	7.2. The while statement

	7.3. The for statement

	7.4. The try statement

	7.5. The with statement

	7.6. Function definitions

	7.7. Class definitions

	8. Top-level components
	8.1. Complete Python programs

	8.2. File input

	8.3. Interactive input

	8.4. Expression input

	9. Full Grammar specification

	The Python Standard Library
	1. Introduction

	2. Built-in Functions

	3. Non-essential Built-in Functions

	4. Built-in Constants
	4.1. Constants added by the site module

	5. Built-in Types
	5.1. Truth Value Testing

	5.2. Boolean Operations — and, or, not

	5.3. Comparisons

	5.4. Numeric Types — int, float, long, complex
	5.4.1. Bitwise Operations on Integer Types

	5.4.2. Additional Methods on Integer Types

	5.4.3. Additional Methods on Float

	5.5. Iterator Types
	5.5.1. Generator Types

	5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange
	5.6.1. String Methods

	5.6.2. String Formatting Operations

	5.6.3. XRange Type

	5.6.4. Mutable Sequence Types

	5.7. Set Types — set, frozenset

	5.8. Mapping Types — dict
	5.8.1. Dictionary view objects

	5.9. File Objects

	5.10. memoryview type

	5.11. Context Manager Types

	5.12. Other Built-in Types
	5.12.1. Modules

	5.12.2. Classes and Class Instances

	5.12.3. Functions

	5.12.4. Methods

	5.12.5. Code Objects

	5.12.6. Type Objects

	5.12.7. The Null Object

	5.12.8. The Ellipsis Object

	5.12.9. The NotImplemented Object

	5.12.10. Boolean Values

	5.12.11. Internal Objects

	5.13. Special Attributes

	6. Built-in Exceptions
	6.1. Exception hierarchy

	7. String Services
	7.1. string — Common string operations
	7.1.1. String constants

	7.1.2. Custom String Formatting

	7.1.3. Format String Syntax
	7.1.3.1. Format Specification Mini-Language

	7.1.3.2. Format examples

	7.1.4. Template strings

	7.1.5. String functions

	7.1.6. Deprecated string functions

	7.2. re — Regular expression operations
	7.2.1. Regular Expression Syntax

	7.2.2. Module Contents

	7.2.3. Regular Expression Objects

	7.2.4. Match Objects

	7.2.5. Examples
	7.2.5.1. Checking For a Pair

	7.2.5.2. Simulating scanf()

	7.2.5.3. search() vs. match()

	7.2.5.4. Making a Phonebook

	7.2.5.5. Text Munging

	7.2.5.6. Finding all Adverbs

	7.2.5.7. Finding all Adverbs and their Positions

	7.2.5.8. Raw String Notation

	7.3. struct — Interpret strings as packed binary data
	7.3.1. Functions and Exceptions

	7.3.2. Format Strings
	7.3.2.1. Byte Order, Size, and Alignment

	7.3.2.2. Format Characters

	7.3.2.3. Examples

	7.3.3. Classes

	7.4. difflib — Helpers for computing deltas
	7.4.1. SequenceMatcher Objects

	7.4.2. SequenceMatcher Examples

	7.4.3. Differ Objects

	7.4.4. Differ Example

	7.4.5. A command-line interface to difflib

	7.5. StringIO — Read and write strings as files

	7.6. cStringIO — Faster version of StringIO

	7.7. textwrap — Text wrapping and filling

	7.8. codecs — Codec registry and base classes
	7.8.1. Codec Base Classes
	7.8.1.1. Codec Objects

	7.8.1.2. IncrementalEncoder Objects

	7.8.1.3. IncrementalDecoder Objects

	7.8.1.4. StreamWriter Objects

	7.8.1.5. StreamReader Objects

	7.8.1.6. StreamReaderWriter Objects

	7.8.1.7. StreamRecoder Objects

	7.8.2. Encodings and Unicode

	7.8.3. Standard Encodings

	7.8.4. Python Specific Encodings

	7.8.5. encodings.idna — Internationalized Domain Names in Applications

	7.8.6. encodings.utf_8_sig — UTF-8 codec with BOM signature

	7.9. unicodedata — Unicode Database

	7.10. stringprep — Internet String Preparation

	7.11. fpformat — Floating point conversions

	8. Data Types
	8.1. datetime — Basic date and time types
	8.1.1. Available Types

	8.1.2. timedelta Objects

	8.1.3. date Objects

	8.1.4. datetime Objects

	8.1.5. time Objects

	8.1.6. tzinfo Objects

	8.1.7. strftime() and strptime() Behavior

	8.2. calendar — General calendar-related functions

	8.3. collections — High-performance container datatypes
	8.3.1. Counter objects

	8.3.2. deque objects
	8.3.2.1. deque Recipes

	8.3.3. defaultdict objects
	8.3.3.1. defaultdict Examples

	8.3.4. namedtuple() Factory Function for Tuples with Named Fields

	8.3.5. OrderedDict objects
	8.3.5.1. OrderedDict Examples and Recipes

	8.3.6. Collections Abstract Base Classes

	8.4. heapq — Heap queue algorithm
	8.4.1. Basic Examples

	8.4.2. Priority Queue Implementation Notes

	8.4.3. Theory

	8.5. bisect — Array bisection algorithm
	8.5.1. Searching Sorted Lists

	8.5.2. Other Examples

	8.6. array — Efficient arrays of numeric values

	8.7. sets — Unordered collections of unique elements
	8.7.1. Set Objects

	8.7.2. Example

	8.7.3. Protocol for automatic conversion to immutable

	8.7.4. Comparison to the built-in set types

	8.8. sched — Event scheduler
	8.8.1. Scheduler Objects

	8.9. mutex — Mutual exclusion support
	8.9.1. Mutex Objects

	8.10. Queue — A synchronized queue class
	8.10.1. Queue Objects

	8.11. weakref — Weak references
	8.11.1. Weak Reference Objects

	8.11.2. Example

	8.12. UserDict — Class wrapper for dictionary objects

	8.13. UserList — Class wrapper for list objects

	8.14. UserString — Class wrapper for string objects

	8.15. types — Names for built-in types

	8.16. new — Creation of runtime internal objects

	8.17. copy — Shallow and deep copy operations

	8.18. pprint — Data pretty printer
	8.18.1. PrettyPrinter Objects

	8.18.2. pprint Example

	8.19. repr — Alternate repr() implementation
	8.19.1. Repr Objects

	8.19.2. Subclassing Repr Objects

	9. Numeric and Mathematical Modules
	9.1. numbers — Numeric abstract base classes
	9.1.1. The numeric tower

	9.1.2. Notes for type implementors
	9.1.2.1. Adding More Numeric ABCs

	9.1.2.2. Implementing the arithmetic operations

	9.2. math — Mathematical functions
	9.2.1. Number-theoretic and representation functions

	9.2.2. Power and logarithmic functions

	9.2.3. Trigonometric functions

	9.2.4. Angular conversion

	9.2.5. Hyperbolic functions

	9.2.6. Special functions

	9.2.7. Constants

	9.3. cmath — Mathematical functions for complex numbers
	9.3.1. Conversions to and from polar coordinates

	9.3.2. Power and logarithmic functions

	9.3.3. Trigonometric functions

	9.3.4. Hyperbolic functions

	9.3.5. Classification functions

	9.3.6. Constants

	9.4. decimal — Decimal fixed point and floating point arithmetic
	9.4.1. Quick-start Tutorial

	9.4.2. Decimal objects
	9.4.2.1. Logical operands

	9.4.3. Context objects

	9.4.4. Signals

	9.4.5. Floating Point Notes
	9.4.5.1. Mitigating round-off error with increased precision

	9.4.5.2. Special values

	9.4.6. Working with threads

	9.4.7. Recipes

	9.4.8. Decimal FAQ

	9.5. fractions — Rational numbers

	9.6. random — Generate pseudo-random numbers

	9.7. itertools — Functions creating iterators for efficient looping
	9.7.1. Itertool functions

	9.7.2. Recipes

	9.8. functools — Higher-order functions and operations on callable objects
	9.8.1. partial Objects

	9.9. operator — Standard operators as functions
	9.9.1. Mapping Operators to Functions

	10. File and Directory Access
	10.1. os.path — Common pathname manipulations

	10.2. fileinput — Iterate over lines from multiple input streams

	10.3. stat — Interpreting stat() results

	10.4. statvfs — Constants used with os.statvfs()

	10.5. filecmp — File and Directory Comparisons
	10.5.1. The dircmp class

	10.6. tempfile — Generate temporary files and directories

	10.7. glob — Unix style pathname pattern expansion

	10.8. fnmatch — Unix filename pattern matching

	10.9. linecache — Random access to text lines

	10.10. shutil — High-level file operations
	10.10.1. Directory and files operations
	10.10.1.1. copytree example

	10.10.2. Archiving operations
	10.10.2.1. Archiving example

	10.11. dircache — Cached directory listings

	10.12. macpath — Mac OS 9 path manipulation functions

	11. Data Persistence
	11.1. pickle — Python object serialization
	11.1.1. Relationship to other Python modules

	11.1.2. Data stream format

	11.1.3. Usage

	11.1.4. What can be pickled and unpickled?

	11.1.5. The pickle protocol
	11.1.5.1. Pickling and unpickling normal class instances

	11.1.5.2. Pickling and unpickling extension types

	11.1.5.3. Pickling and unpickling external objects

	11.1.6. Subclassing Unpicklers

	11.1.7. Example

	11.2. cPickle — A faster pickle

	11.3. copy_reg — Register pickle support functions
	11.3.1. Example

	11.4. shelve — Python object persistence
	11.4.1. Restrictions

	11.4.2. Example

	11.5. marshal — Internal Python object serialization

	11.6. anydbm — Generic access to DBM-style databases

	11.7. whichdb — Guess which DBM module created a database

	11.8. dbm — Simple “database” interface

	11.9. gdbm — GNU’s reinterpretation of dbm

	11.10. dbhash — DBM-style interface to the BSD database library
	11.10.1. Database Objects

	11.11. bsddb — Interface to Berkeley DB library
	11.11.1. Hash, BTree and Record Objects

	11.12. dumbdbm — Portable DBM implementation
	11.12.1. Dumbdbm Objects

	11.13. sqlite3 — DB-API 2.0 interface for SQLite databases
	11.13.1. Module functions and constants

	11.13.2. Connection Objects

	11.13.3. Cursor Objects

	11.13.4. Row Objects

	11.13.5. SQLite and Python types
	11.13.5.1. Introduction

	11.13.5.2. Using adapters to store additional Python types in SQLite databases
	11.13.5.2.1. Letting your object adapt itself

	11.13.5.2.2. Registering an adapter callable

	11.13.5.3. Converting SQLite values to custom Python types

	11.13.5.4. Default adapters and converters

	11.13.6. Controlling Transactions

	11.13.7. Using sqlite3 efficiently
	11.13.7.1. Using shortcut methods

	11.13.7.2. Accessing columns by name instead of by index

	11.13.7.3. Using the connection as a context manager

	11.13.8. Common issues
	11.13.8.1. Multithreading

	12. Data Compression and Archiving
	12.1. zlib — Compression compatible with gzip

	12.2. gzip — Support for gzip files
	12.2.1. Examples of usage

	12.3. bz2 — Compression compatible with bzip2
	12.3.1. (De)compression of files

	12.3.2. Sequential (de)compression

	12.3.3. One-shot (de)compression

	12.4. zipfile — Work with ZIP archives
	12.4.1. ZipFile Objects

	12.4.2. PyZipFile Objects

	12.4.3. ZipInfo Objects

	12.5. tarfile — Read and write tar archive files
	12.5.1. TarFile Objects

	12.5.2. TarInfo Objects

	12.5.3. Examples

	12.5.4. Supported tar formats

	12.5.5. Unicode issues

	13. File Formats
	13.1. csv — CSV File Reading and Writing
	13.1.1. Module Contents

	13.1.2. Dialects and Formatting Parameters

	13.1.3. Reader Objects

	13.1.4. Writer Objects

	13.1.5. Examples

	13.2. ConfigParser — Configuration file parser
	13.2.1. RawConfigParser Objects

	13.2.2. ConfigParser Objects

	13.2.3. SafeConfigParser Objects

	13.2.4. Examples

	13.3. robotparser — Parser for robots.txt

	13.4. netrc — netrc file processing
	13.4.1. netrc Objects

	13.5. xdrlib — Encode and decode XDR data
	13.5.1. Packer Objects

	13.5.2. Unpacker Objects

	13.5.3. Exceptions

	13.6. plistlib — Generate and parse Mac OS X .plist files
	13.6.1. Examples

	14. Cryptographic Services
	14.1. hashlib — Secure hashes and message digests
	14.1.1. Key derivation

	14.2. hmac — Keyed-Hashing for Message Authentication

	14.3. md5 — MD5 message digest algorithm

	14.4. sha — SHA-1 message digest algorithm

	15. Generic Operating System Services
	15.1. os — Miscellaneous operating system interfaces
	15.1.1. Process Parameters

	15.1.2. File Object Creation

	15.1.3. File Descriptor Operations
	15.1.3.1. open() flag constants

	15.1.4. Files and Directories

	15.1.5. Process Management

	15.1.6. Miscellaneous System Information

	15.1.7. Miscellaneous Functions

	15.2. io — Core tools for working with streams
	15.2.1. Module Interface

	15.2.2. I/O Base Classes

	15.2.3. Raw File I/O

	15.2.4. Buffered Streams

	15.2.5. Text I/O

	15.2.6. Advanced topics
	15.2.6.1. Performance
	15.2.6.1.1. Binary I/O

	15.2.6.1.2. Text I/O

	15.2.6.2. Multi-threading

	15.2.6.3. Reentrancy

	15.3. time — Time access and conversions

	15.4. argparse — Parser for command-line options, arguments and sub-commands
	15.4.1. Example
	15.4.1.1. Creating a parser

	15.4.1.2. Adding arguments

	15.4.1.3. Parsing arguments

	15.4.2. ArgumentParser objects
	15.4.2.1. prog

	15.4.2.2. usage

	15.4.2.3. description

	15.4.2.4. epilog

	15.4.2.5. parents

	15.4.2.6. formatter_class

	15.4.2.7. prefix_chars

	15.4.2.8. fromfile_prefix_chars

	15.4.2.9. argument_default

	15.4.2.10. conflict_handler

	15.4.2.11. add_help

	15.4.3. The add_argument() method
	15.4.3.1. name or flags

	15.4.3.2. action

	15.4.3.3. nargs

	15.4.3.4. const

	15.4.3.5. default

	15.4.3.6. type

	15.4.3.7. choices

	15.4.3.8. required

	15.4.3.9. help

	15.4.3.10. metavar

	15.4.3.11. dest

	15.4.3.12. Action classes

	15.4.4. The parse_args() method
	15.4.4.1. Option value syntax

	15.4.4.2. Invalid arguments

	15.4.4.3. Arguments containing -

	15.4.4.4. Argument abbreviations (prefix matching)

	15.4.4.5. Beyond sys.argv

	15.4.4.6. The Namespace object

	15.4.5. Other utilities
	15.4.5.1. Sub-commands

	15.4.5.2. FileType objects

	15.4.5.3. Argument groups

	15.4.5.4. Mutual exclusion

	15.4.5.5. Parser defaults

	15.4.5.6. Printing help

	15.4.5.7. Partial parsing

	15.4.5.8. Customizing file parsing

	15.4.5.9. Exiting methods

	15.4.6. Upgrading optparse code

	15.5. optparse — Parser for command line options
	15.5.1. Background
	15.5.1.1. Terminology

	15.5.1.2. What are options for?

	15.5.1.3. What are positional arguments for?

	15.5.2. Tutorial
	15.5.2.1. Understanding option actions

	15.5.2.2. The store action

	15.5.2.3. Handling boolean (flag) options

	15.5.2.4. Other actions

	15.5.2.5. Default values

	15.5.2.6. Generating help
	15.5.2.6.1. Grouping Options

	15.5.2.7. Printing a version string

	15.5.2.8. How optparse handles errors

	15.5.2.9. Putting it all together

	15.5.3. Reference Guide
	15.5.3.1. Creating the parser

	15.5.3.2. Populating the parser

	15.5.3.3. Defining options

	15.5.3.4. Option attributes

	15.5.3.5. Standard option actions

	15.5.3.6. Standard option types

	15.5.3.7. Parsing arguments

	15.5.3.8. Querying and manipulating your option parser

	15.5.3.9. Conflicts between options

	15.5.3.10. Cleanup

	15.5.3.11. Other methods

	15.5.4. Option Callbacks
	15.5.4.1. Defining a callback option

	15.5.4.2. How callbacks are called

	15.5.4.3. Raising errors in a callback

	15.5.4.4. Callback example 1: trivial callback

	15.5.4.5. Callback example 2: check option order

	15.5.4.6. Callback example 3: check option order (generalized)

	15.5.4.7. Callback example 4: check arbitrary condition

	15.5.4.8. Callback example 5: fixed arguments

	15.5.4.9. Callback example 6: variable arguments

	15.5.5. Extending optparse
	15.5.5.1. Adding new types

	15.5.5.2. Adding new actions

	15.6. getopt — C-style parser for command line options

	15.7. logging — Logging facility for Python
	15.7.1. Logger Objects

	15.7.2. Logging Levels

	15.7.3. Handler Objects

	15.7.4. Formatter Objects

	15.7.5. Filter Objects

	15.7.6. LogRecord Objects

	15.7.7. LogRecord attributes

	15.7.8. LoggerAdapter Objects

	15.7.9. Thread Safety

	15.7.10. Module-Level Functions

	15.7.11. Integration with the warnings module

	15.8. logging.config — Logging configuration
	15.8.1. Configuration functions

	15.8.2. Configuration dictionary schema
	15.8.2.1. Dictionary Schema Details

	15.8.2.2. Incremental Configuration

	15.8.2.3. Object connections

	15.8.2.4. User-defined objects

	15.8.2.5. Access to external objects

	15.8.2.6. Access to internal objects

	15.8.2.7. Import resolution and custom importers

	15.8.3. Configuration file format

	15.9. logging.handlers — Logging handlers
	15.9.1. StreamHandler

	15.9.2. FileHandler

	15.9.3. NullHandler

	15.9.4. WatchedFileHandler

	15.9.5. RotatingFileHandler

	15.9.6. TimedRotatingFileHandler

	15.9.7. SocketHandler

	15.9.8. DatagramHandler

	15.9.9. SysLogHandler

	15.9.10. NTEventLogHandler

	15.9.11. SMTPHandler

	15.9.12. MemoryHandler

	15.9.13. HTTPHandler

	15.10. getpass — Portable password input

	15.11. curses — Terminal handling for character-cell displays
	15.11.1. Functions

	15.11.2. Window Objects

	15.11.3. Constants

	15.12. curses.textpad — Text input widget for curses programs
	15.12.1. Textbox objects

	15.13. curses.ascii — Utilities for ASCII characters

	15.14. curses.panel — A panel stack extension for curses
	15.14.1. Functions

	15.14.2. Panel Objects

	15.15. platform — Access to underlying platform’s identifying data
	15.15.1. Cross Platform

	15.15.2. Java Platform

	15.15.3. Windows Platform
	15.15.3.1. Win95/98 specific

	15.15.4. Mac OS Platform

	15.15.5. Unix Platforms

	15.16. errno — Standard errno system symbols

	15.17. ctypes — A foreign function library for Python
	15.17.1. ctypes tutorial
	15.17.1.1. Loading dynamic link libraries

	15.17.1.2. Accessing functions from loaded dlls

	15.17.1.3. Calling functions

	15.17.1.4. Fundamental data types

	15.17.1.5. Calling functions, continued

	15.17.1.6. Calling functions with your own custom data types

	15.17.1.7. Specifying the required argument types (function prototypes)

	15.17.1.8. Return types

	15.17.1.9. Passing pointers (or: passing parameters by reference)

	15.17.1.10. Structures and unions

	15.17.1.11. Structure/union alignment and byte order

	15.17.1.12. Bit fields in structures and unions

	15.17.1.13. Arrays

	15.17.1.14. Pointers

	15.17.1.15. Type conversions

	15.17.1.16. Incomplete Types

	15.17.1.17. Callback functions

	15.17.1.18. Accessing values exported from dlls

	15.17.1.19. Surprises

	15.17.1.20. Variable-sized data types

	15.17.2. ctypes reference
	15.17.2.1. Finding shared libraries

	15.17.2.2. Loading shared libraries

	15.17.2.3. Foreign functions

	15.17.2.4. Function prototypes

	15.17.2.5. Utility functions

	15.17.2.6. Data types

	15.17.2.7. Fundamental data types

	15.17.2.8. Structured data types

	15.17.2.9. Arrays and pointers

	16. Optional Operating System Services
	16.1. select — Waiting for I/O completion
	16.1.1. Edge and Level Trigger Polling (epoll) Objects

	16.1.2. Polling Objects

	16.1.3. Kqueue Objects

	16.1.4. Kevent Objects

	16.2. threading — Higher-level threading interface
	16.2.1. Thread Objects

	16.2.2. Lock Objects

	16.2.3. RLock Objects

	16.2.4. Condition Objects

	16.2.5. Semaphore Objects
	16.2.5.1. Semaphore Example

	16.2.6. Event Objects

	16.2.7. Timer Objects

	16.2.8. Using locks, conditions, and semaphores in the with statement

	16.2.9. Importing in threaded code

	16.3. thread — Multiple threads of control

	16.4. dummy_threading — Drop-in replacement for the threading module

	16.5. dummy_thread — Drop-in replacement for the thread module

	16.6. multiprocessing — Process-based “threading” interface
	16.6.1. Introduction
	16.6.1.1. The Process class

	16.6.1.2. Exchanging objects between processes

	16.6.1.3. Synchronization between processes

	16.6.1.4. Sharing state between processes

	16.6.1.5. Using a pool of workers

	16.6.2. Reference
	16.6.2.1. Process and exceptions

	16.6.2.2. Pipes and Queues

	16.6.2.3. Miscellaneous

	16.6.2.4. Connection Objects

	16.6.2.5. Synchronization primitives

	16.6.2.6. Shared ctypes Objects
	16.6.2.6.1. The multiprocessing.sharedctypes module

	16.6.2.7. Managers
	16.6.2.7.1. Customized managers

	16.6.2.7.2. Using a remote manager

	16.6.2.8. Proxy Objects
	16.6.2.8.1. Cleanup

	16.6.2.9. Process Pools

	16.6.2.10. Listeners and Clients
	16.6.2.10.1. Address Formats

	16.6.2.11. Authentication keys

	16.6.2.12. Logging

	16.6.2.13. The multiprocessing.dummy module

	16.6.3. Programming guidelines
	16.6.3.1. All platforms

	16.6.3.2. Windows

	16.6.4. Examples

	16.7. mmap — Memory-mapped file support

	16.8. readline — GNU readline interface
	16.8.1. Init file

	16.8.2. Line buffer

	16.8.3. History file

	16.8.4. History list

	16.8.5. Startup hooks

	16.8.6. Completion

	16.8.7. Example

	16.9. rlcompleter — Completion function for GNU readline
	16.9.1. Completer Objects

	17. Interprocess Communication and Networking
	17.1. subprocess — Subprocess management
	17.1.1. Using the subprocess Module
	17.1.1.1. Frequently Used Arguments

	17.1.1.2. Popen Constructor

	17.1.1.3. Exceptions

	17.1.1.4. Security

	17.1.2. Popen Objects

	17.1.3. Windows Popen Helpers
	17.1.3.1. Constants

	17.1.4. Replacing Older Functions with the subprocess Module
	17.1.4.1. Replacing /bin/sh shell backquote

	17.1.4.2. Replacing shell pipeline

	17.1.4.3. Replacing os.system()

	17.1.4.4. Replacing the os.spawn family

	17.1.4.5. Replacing os.popen(), os.popen2(), os.popen3()

	17.1.4.6. Replacing functions from the popen2 module

	17.1.5. Notes
	17.1.5.1. Converting an argument sequence to a string on Windows

	17.2. socket — Low-level networking interface
	17.2.1. Socket Objects

	17.2.2. Example

	17.3. ssl — TLS/SSL wrapper for socket objects
	17.3.1. Functions, Constants, and Exceptions
	17.3.1.1. Socket creation

	17.3.1.2. Context creation

	17.3.1.3. Random generation

	17.3.1.4. Certificate handling

	17.3.1.5. Constants

	17.3.2. SSL Sockets

	17.3.3. SSL Contexts

	17.3.4. Certificates
	17.3.4.1. Certificate chains

	17.3.4.2. CA certificates

	17.3.4.3. Combined key and certificate

	17.3.4.4. Self-signed certificates

	17.3.5. Examples
	17.3.5.1. Testing for SSL support

	17.3.5.2. Client-side operation

	17.3.5.3. Server-side operation

	17.3.6. Notes on non-blocking sockets

	17.3.7. Security considerations
	17.3.7.1. Best defaults

	17.3.7.2. Manual settings
	17.3.7.2.1. Verifying certificates

	17.3.7.2.2. Protocol versions

	17.3.7.2.3. Cipher selection

	17.3.7.3. Multi-processing

	17.4. signal — Set handlers for asynchronous events
	17.4.1. Example

	17.5. popen2 — Subprocesses with accessible I/O streams
	17.5.1. Popen3 and Popen4 Objects

	17.5.2. Flow Control Issues

	17.6. asyncore — Asynchronous socket handler
	17.6.1. asyncore Example basic HTTP client

	17.6.2. asyncore Example basic echo server

	17.7. asynchat — Asynchronous socket command/response handler
	17.7.1. asynchat - Auxiliary Classes

	17.7.2. asynchat Example

	18. Internet Data Handling
	18.1. email — An email and MIME handling package
	18.1.1. email.message: Representing an email message

	18.1.2. email.parser: Parsing email messages
	18.1.2.1. FeedParser API

	18.1.2.2. Parser class API

	18.1.2.3. Additional notes

	18.1.3. email.generator: Generating MIME documents

	18.1.4. email.mime: Creating email and MIME objects from scratch

	18.1.5. email.header: Internationalized headers

	18.1.6. email.charset: Representing character sets

	18.1.7. email.encoders: Encoders

	18.1.8. email.errors: Exception and Defect classes

	18.1.9. email.utils: Miscellaneous utilities

	18.1.10. email.iterators: Iterators

	18.1.11. email: Examples

	18.1.12. Package History

	18.1.13. Differences from mimelib

	18.2. json — JSON encoder and decoder
	18.2.1. Basic Usage

	18.2.2. Encoders and Decoders

	18.2.3. Standard Compliance and Interoperability
	18.2.3.1. Character Encodings

	18.2.3.2. Infinite and NaN Number Values

	18.2.3.3. Repeated Names Within an Object

	18.2.3.4. Top-level Non-Object, Non-Array Values

	18.2.3.5. Implementation Limitations

	18.3. mailcap — Mailcap file handling

	18.4. mailbox — Manipulate mailboxes in various formats
	18.4.1. Mailbox objects
	18.4.1.1. Maildir

	18.4.1.2. mbox

	18.4.1.3. MH

	18.4.1.4. Babyl

	18.4.1.5. MMDF

	18.4.2. Message objects
	18.4.2.1. MaildirMessage

	18.4.2.2. mboxMessage

	18.4.2.3. MHMessage

	18.4.2.4. BabylMessage

	18.4.2.5. MMDFMessage

	18.4.3. Exceptions

	18.4.4. Deprecated classes and methods

	18.4.5. Examples

	18.5. mhlib — Access to MH mailboxes
	18.5.1. MH Objects

	18.5.2. Folder Objects

	18.5.3. Message Objects

	18.6. mimetools — Tools for parsing MIME messages
	18.6.1. Additional Methods of Message Objects

	18.7. mimetypes — Map filenames to MIME types
	18.7.1. MimeTypes Objects

	18.8. MimeWriter — Generic MIME file writer
	18.8.1. MimeWriter Objects

	18.9. mimify — MIME processing of mail messages

	18.10. multifile — Support for files containing distinct parts
	18.10.1. MultiFile Objects

	18.10.2. MultiFile Example

	18.11. rfc822 — Parse RFC 2822 mail headers
	18.11.1. Message Objects

	18.11.2. AddressList Objects

	18.12. base64 — RFC 3548: Base16, Base32, Base64 Data Encodings

	18.13. binhex — Encode and decode binhex4 files
	18.13.1. Notes

	18.14. binascii — Convert between binary and ASCII

	18.15. quopri — Encode and decode MIME quoted-printable data

	18.16. uu — Encode and decode uuencode files

	19. Structured Markup Processing Tools
	19.1. HTMLParser — Simple HTML and XHTML parser
	19.1.1. Example HTML Parser Application

	19.1.2. HTMLParser Methods

	19.1.3. Examples

	19.2. sgmllib — Simple SGML parser

	19.3. htmllib — A parser for HTML documents
	19.3.1. HTMLParser Objects

	19.4. htmlentitydefs — Definitions of HTML general entities

	19.5. XML Processing Modules

	19.6. XML vulnerabilities
	19.6.1. defused packages

	19.7. xml.etree.ElementTree — The ElementTree XML API
	19.7.1. Tutorial
	19.7.1.1. XML tree and elements

	19.7.1.2. Parsing XML

	19.7.1.3. Finding interesting elements

	19.7.1.4. Modifying an XML File

	19.7.1.5. Building XML documents

	19.7.1.6. Parsing XML with Namespaces

	19.7.1.7. Additional resources

	19.7.2. XPath support
	19.7.2.1. Example

	19.7.2.2. Supported XPath syntax

	19.7.3. Reference
	19.7.3.1. Functions

	19.7.3.2. Element Objects

	19.7.3.3. ElementTree Objects

	19.7.3.4. QName Objects

	19.7.3.5. TreeBuilder Objects

	19.7.3.6. XMLParser Objects

	19.8. xml.dom — The Document Object Model API
	19.8.1. Module Contents

	19.8.2. Objects in the DOM
	19.8.2.1. DOMImplementation Objects

	19.8.2.2. Node Objects

	19.8.2.3. NodeList Objects

	19.8.2.4. DocumentType Objects

	19.8.2.5. Document Objects

	19.8.2.6. Element Objects

	19.8.2.7. Attr Objects

	19.8.2.8. NamedNodeMap Objects

	19.8.2.9. Comment Objects

	19.8.2.10. Text and CDATASection Objects

	19.8.2.11. ProcessingInstruction Objects

	19.8.2.12. Exceptions

	19.8.3. Conformance
	19.8.3.1. Type Mapping

	19.8.3.2. Accessor Methods

	19.9. xml.dom.minidom — Minimal DOM implementation
	19.9.1. DOM Objects

	19.9.2. DOM Example

	19.9.3. minidom and the DOM standard

	19.10. xml.dom.pulldom — Support for building partial DOM trees
	19.10.1. DOMEventStream Objects

	19.11. xml.sax — Support for SAX2 parsers
	19.11.1. SAXException Objects

	19.12. xml.sax.handler — Base classes for SAX handlers
	19.12.1. ContentHandler Objects

	19.12.2. DTDHandler Objects

	19.12.3. EntityResolver Objects

	19.12.4. ErrorHandler Objects

	19.13. xml.sax.saxutils — SAX Utilities

	19.14. xml.sax.xmlreader — Interface for XML parsers
	19.14.1. XMLReader Objects

	19.14.2. IncrementalParser Objects

	19.14.3. Locator Objects

	19.14.4. InputSource Objects

	19.14.5. The Attributes Interface

	19.14.6. The AttributesNS Interface

	19.15. xml.parsers.expat — Fast XML parsing using Expat
	19.15.1. XMLParser Objects

	19.15.2. ExpatError Exceptions

	19.15.3. Example

	19.15.4. Content Model Descriptions

	19.15.5. Expat error constants

	20. Internet Protocols and Support
	20.1. webbrowser — Convenient Web-browser controller
	20.1.1. Browser Controller Objects

	20.2. cgi — Common Gateway Interface support
	20.2.1. Introduction

	20.2.2. Using the cgi module

	20.2.3. Higher Level Interface

	20.2.4. Old classes

	20.2.5. Functions

	20.2.6. Caring about security

	20.2.7. Installing your CGI script on a Unix system

	20.2.8. Testing your CGI script

	20.2.9. Debugging CGI scripts

	20.2.10. Common problems and solutions

	20.3. cgitb — Traceback manager for CGI scripts

	20.4. wsgiref — WSGI Utilities and Reference Implementation
	20.4.1. wsgiref.util – WSGI environment utilities

	20.4.2. wsgiref.headers – WSGI response header tools

	20.4.3. wsgiref.simple_server – a simple WSGI HTTP server

	20.4.4. wsgiref.validate — WSGI conformance checker

	20.4.5. wsgiref.handlers – server/gateway base classes

	20.4.6. Examples

	20.5. urllib — Open arbitrary resources by URL
	20.5.1. High-level interface

	20.5.2. Utility functions

	20.5.3. URL Opener objects

	20.5.4. urllib Restrictions

	20.5.5. Examples

	20.6. urllib2 — extensible library for opening URLs
	20.6.1. Request Objects

	20.6.2. OpenerDirector Objects

	20.6.3. BaseHandler Objects

	20.6.4. HTTPRedirectHandler Objects

	20.6.5. HTTPCookieProcessor Objects

	20.6.6. ProxyHandler Objects

	20.6.7. HTTPPasswordMgr Objects

	20.6.8. AbstractBasicAuthHandler Objects

	20.6.9. HTTPBasicAuthHandler Objects

	20.6.10. ProxyBasicAuthHandler Objects

	20.6.11. AbstractDigestAuthHandler Objects

	20.6.12. HTTPDigestAuthHandler Objects

	20.6.13. ProxyDigestAuthHandler Objects

	20.6.14. HTTPHandler Objects

	20.6.15. HTTPSHandler Objects

	20.6.16. FileHandler Objects

	20.6.17. FTPHandler Objects

	20.6.18. CacheFTPHandler Objects

	20.6.19. UnknownHandler Objects

	20.6.20. HTTPErrorProcessor Objects

	20.6.21. Examples

	20.7. httplib — HTTP protocol client
	20.7.1. HTTPConnection Objects

	20.7.2. HTTPResponse Objects

	20.7.3. Examples

	20.8. ftplib — FTP protocol client
	20.8.1. FTP Objects

	20.8.2. FTP_TLS Objects

	20.9. poplib — POP3 protocol client
	20.9.1. POP3 Objects

	20.9.2. POP3 Example

	20.10. imaplib — IMAP4 protocol client
	20.10.1. IMAP4 Objects

	20.10.2. IMAP4 Example

	20.11. nntplib — NNTP protocol client
	20.11.1. NNTP Objects

	20.12. smtplib — SMTP protocol client
	20.12.1. SMTP Objects

	20.12.2. SMTP Example

	20.13. smtpd — SMTP Server
	20.13.1. SMTPServer Objects

	20.13.2. DebuggingServer Objects

	20.13.3. PureProxy Objects

	20.13.4. MailmanProxy Objects

	20.14. telnetlib — Telnet client
	20.14.1. Telnet Objects

	20.14.2. Telnet Example

	20.15. uuid — UUID objects according to RFC 4122
	20.15.1. Example

	20.16. urlparse — Parse URLs into components
	20.16.1. Results of urlparse() and urlsplit()

	20.17. SocketServer — A framework for network servers
	20.17.1. Server Creation Notes

	20.17.2. Server Objects

	20.17.3. Request Handler Objects

	20.17.4. Examples
	20.17.4.1. SocketServer.TCPServer Example

	20.17.4.2. SocketServer.UDPServer Example

	20.17.4.3. Asynchronous Mixins

	20.18. BaseHTTPServer — Basic HTTP server
	20.18.1. More examples

	20.19. SimpleHTTPServer — Simple HTTP request handler

	20.20. CGIHTTPServer — CGI-capable HTTP request handler

	20.21. cookielib — Cookie handling for HTTP clients
	20.21.1. CookieJar and FileCookieJar Objects

	20.21.2. FileCookieJar subclasses and co-operation with web browsers

	20.21.3. CookiePolicy Objects

	20.21.4. DefaultCookiePolicy Objects

	20.21.5. Cookie Objects

	20.21.6. Examples

	20.22. Cookie — HTTP state management
	20.22.1. Cookie Objects

	20.22.2. Morsel Objects

	20.22.3. Example

	20.23. xmlrpclib — XML-RPC client access
	20.23.1. ServerProxy Objects

	20.23.2. Boolean Objects

	20.23.3. DateTime Objects

	20.23.4. Binary Objects

	20.23.5. Fault Objects

	20.23.6. ProtocolError Objects

	20.23.7. MultiCall Objects

	20.23.8. Convenience Functions

	20.23.9. Example of Client Usage

	20.23.10. Example of Client and Server Usage

	20.24. SimpleXMLRPCServer — Basic XML-RPC server
	20.24.1. SimpleXMLRPCServer Objects
	20.24.1.1. SimpleXMLRPCServer Example

	20.24.2. CGIXMLRPCRequestHandler

	20.25. DocXMLRPCServer — Self-documenting XML-RPC server
	20.25.1. DocXMLRPCServer Objects

	20.25.2. DocCGIXMLRPCRequestHandler

	21. Multimedia Services
	21.1. audioop — Manipulate raw audio data

	21.2. imageop — Manipulate raw image data

	21.3. aifc — Read and write AIFF and AIFC files

	21.4. sunau — Read and write Sun AU files
	21.4.1. AU_read Objects

	21.4.2. AU_write Objects

	21.5. wave — Read and write WAV files
	21.5.1. Wave_read Objects

	21.5.2. Wave_write Objects

	21.6. chunk — Read IFF chunked data

	21.7. colorsys — Conversions between color systems

	21.8. imghdr — Determine the type of an image

	21.9. sndhdr — Determine type of sound file

	21.10. ossaudiodev — Access to OSS-compatible audio devices
	21.10.1. Audio Device Objects

	21.10.2. Mixer Device Objects

	22. Internationalization
	22.1. gettext — Multilingual internationalization services
	22.1.1. GNU gettext API

	22.1.2. Class-based API
	22.1.2.1. The NullTranslations class

	22.1.2.2. The GNUTranslations class

	22.1.2.3. Solaris message catalog support

	22.1.2.4. The Catalog constructor

	22.1.3. Internationalizing your programs and modules
	22.1.3.1. Localizing your module

	22.1.3.2. Localizing your application

	22.1.3.3. Changing languages on the fly

	22.1.3.4. Deferred translations

	22.1.3.5. gettext() vs. lgettext()

	22.1.4. Acknowledgements

	22.2. locale — Internationalization services
	22.2.1. Background, details, hints, tips and caveats

	22.2.2. For extension writers and programs that embed Python

	22.2.3. Access to message catalogs

	23. Program Frameworks
	23.1. cmd — Support for line-oriented command interpreters
	23.1.1. Cmd Objects

	23.2. shlex — Simple lexical analysis
	23.2.1. shlex Objects

	23.2.2. Parsing Rules

	24. Graphical User Interfaces with Tk
	24.1. Tkinter — Python interface to Tcl/Tk
	24.1.1. Tkinter Modules

	24.1.2. Tkinter Life Preserver
	24.1.2.1. How To Use This Section

	24.1.2.2. A Simple Hello World Program

	24.1.3. A (Very) Quick Look at Tcl/Tk

	24.1.4. Mapping Basic Tk into Tkinter

	24.1.5. How Tk and Tkinter are Related

	24.1.6. Handy Reference
	24.1.6.1. Setting Options

	24.1.6.2. The Packer

	24.1.6.3. Packer Options

	24.1.6.4. Coupling Widget Variables

	24.1.6.5. The Window Manager

	24.1.6.6. Tk Option Data Types

	24.1.6.7. Bindings and Events

	24.1.6.8. The index Parameter

	24.1.6.9. Images

	24.1.7. File Handlers

	24.2. ttk — Tk themed widgets
	24.2.1. Using Ttk

	24.2.2. Ttk Widgets

	24.2.3. Widget
	24.2.3.1. Standard Options

	24.2.3.2. Scrollable Widget Options

	24.2.3.3. Label Options

	24.2.3.4. Compatibility Options

	24.2.3.5. Widget States

	24.2.3.6. ttk.Widget

	24.2.4. Combobox
	24.2.4.1. Options

	24.2.4.2. Virtual events

	24.2.4.3. ttk.Combobox

	24.2.5. Notebook
	24.2.5.1. Options

	24.2.5.2. Tab Options

	24.2.5.3. Tab Identifiers

	24.2.5.4. Virtual Events

	24.2.5.5. ttk.Notebook

	24.2.6. Progressbar
	24.2.6.1. Options

	24.2.6.2. ttk.Progressbar

	24.2.7. Separator
	24.2.7.1. Options

	24.2.8. Sizegrip
	24.2.8.1. Platform-specific notes

	24.2.8.2. Bugs

	24.2.9. Treeview
	24.2.9.1. Options

	24.2.9.2. Item Options

	24.2.9.3. Tag Options

	24.2.9.4. Column Identifiers

	24.2.9.5. Virtual Events

	24.2.9.6. ttk.Treeview

	24.2.10. Ttk Styling
	24.2.10.1. Layouts

	24.3. Tix — Extension widgets for Tk
	24.3.1. Using Tix

	24.3.2. Tix Widgets
	24.3.2.1. Basic Widgets

	24.3.2.2. File Selectors

	24.3.2.3. Hierarchical ListBox

	24.3.2.4. Tabular ListBox

	24.3.2.5. Manager Widgets

	24.3.2.6. Image Types

	24.3.2.7. Miscellaneous Widgets

	24.3.2.8. Form Geometry Manager

	24.3.3. Tix Commands

	24.4. ScrolledText — Scrolled Text Widget

	24.5. turtle — Turtle graphics for Tk
	24.5.1. Introduction

	24.5.2. Overview over available Turtle and Screen methods
	24.5.2.1. Turtle methods

	24.5.2.2. Methods of TurtleScreen/Screen

	24.5.3. Methods of RawTurtle/Turtle and corresponding functions
	24.5.3.1. Turtle motion

	24.5.3.2. Tell Turtle’s state

	24.5.3.3. Settings for measurement

	24.5.3.4. Pen control
	24.5.3.4.1. Drawing state

	24.5.3.4.2. Color control

	24.5.3.4.3. Filling

	24.5.3.4.4. More drawing control

	24.5.3.5. Turtle state
	24.5.3.5.1. Visibility

	24.5.3.5.2. Appearance

	24.5.3.6. Using events

	24.5.3.7. Special Turtle methods

	24.5.3.8. Excursus about the use of compound shapes

	24.5.4. Methods of TurtleScreen/Screen and corresponding functions
	24.5.4.1. Window control

	24.5.4.2. Animation control

	24.5.4.3. Using screen events

	24.5.4.4. Settings and special methods

	24.5.4.5. Methods specific to Screen, not inherited from TurtleScreen

	24.5.5. The public classes of the module turtle

	24.5.6. Help and configuration
	24.5.6.1. How to use help

	24.5.6.2. Translation of docstrings into different languages

	24.5.6.3. How to configure Screen and Turtles

	24.5.7. Demo scripts

	24.6. IDLE
	24.6.1. Menus
	24.6.1.1. File menu (Shell and Editor)

	24.6.1.2. Edit menu (Shell and Editor)

	24.6.1.3. Format menu (Editor window only)

	24.6.1.4. Run menu (Editor window only)

	24.6.1.5. Shell menu (Shell window only)

	24.6.1.6. Debug menu (Shell window only)

	24.6.1.7. Options menu (Shell and Editor)

	24.6.1.8. Window menu (Shell and Editor)

	24.6.1.9. Help menu (Shell and Editor)

	24.6.1.10. Context Menus

	24.6.2. Editing and navigation
	24.6.2.1. Automatic indentation

	24.6.2.2. Completions

	24.6.2.3. Calltips

	24.6.2.4. Python Shell window

	24.6.2.5. Text colors

	24.6.3. Startup and code execution
	24.6.3.1. Command line usage

	24.6.3.2. IDLE-console differences

	24.6.3.3. Running without a subprocess

	24.6.4. Help and preferences
	24.6.4.1. Additional help sources

	24.6.4.2. Setting preferences

	24.6.4.3. Extensions

	24.7. Other Graphical User Interface Packages

	25. Development Tools
	25.1. pydoc — Documentation generator and online help system

	25.2. doctest — Test interactive Python examples
	25.2.1. Simple Usage: Checking Examples in Docstrings

	25.2.2. Simple Usage: Checking Examples in a Text File

	25.2.3. How It Works
	25.2.3.1. Which Docstrings Are Examined?

	25.2.3.2. How are Docstring Examples Recognized?

	25.2.3.3. What’s the Execution Context?

	25.2.3.4. What About Exceptions?

	25.2.3.5. Option Flags

	25.2.3.6. Directives

	25.2.3.7. Warnings

	25.2.4. Basic API

	25.2.5. Unittest API

	25.2.6. Advanced API
	25.2.6.1. DocTest Objects

	25.2.6.2. Example Objects

	25.2.6.3. DocTestFinder objects

	25.2.6.4. DocTestParser objects

	25.2.6.5. DocTestRunner objects

	25.2.6.6. OutputChecker objects

	25.2.7. Debugging

	25.2.8. Soapbox

	25.3. unittest — Unit testing framework
	25.3.1. Basic example

	25.3.2. Command-Line Interface
	25.3.2.1. Command-line options

	25.3.3. Test Discovery

	25.3.4. Organizing test code

	25.3.5. Re-using old test code

	25.3.6. Skipping tests and expected failures

	25.3.7. Classes and functions
	25.3.7.1. Test cases
	25.3.7.1.1. Deprecated aliases

	25.3.7.2. Grouping tests

	25.3.7.3. Loading and running tests
	25.3.7.3.1. load_tests Protocol

	25.3.8. Class and Module Fixtures
	25.3.8.1. setUpClass and tearDownClass

	25.3.8.2. setUpModule and tearDownModule

	25.3.9. Signal Handling

	25.4. 2to3 - Automated Python 2 to 3 code translation
	25.4.1. Using 2to3

	25.4.2. Fixers

	25.4.3. lib2to3 - 2to3’s library

	25.5. test — Regression tests package for Python
	25.5.1. Writing Unit Tests for the test package

	25.5.2. Running tests using the command-line interface

	25.6. test.test_support — Utility functions for tests

	26. Debugging and Profiling
	26.1. bdb — Debugger framework

	26.2. pdb — The Python Debugger

	26.3. Debugger Commands

	26.4. The Python Profilers
	26.4.1. Introduction to the profilers

	26.4.2. Instant User’s Manual

	26.4.3. profile and cProfile Module Reference

	26.4.4. The Stats Class

	26.4.5. What Is Deterministic Profiling?

	26.4.6. Limitations

	26.4.7. Calibration

	26.4.8. Using a custom timer

	26.5. hotshot — High performance logging profiler
	26.5.1. Profile Objects

	26.5.2. Using hotshot data

	26.5.3. Example Usage

	26.6. timeit — Measure execution time of small code snippets
	26.6.1. Basic Examples

	26.6.2. Python Interface

	26.6.3. Command-Line Interface

	26.6.4. Examples

	26.7. trace — Trace or track Python statement execution
	26.7.1. Command-Line Usage
	26.7.1.1. Main options

	26.7.1.2. Modifiers

	26.7.1.3. Filters

	26.7.2. Programmatic Interface

	27. Software Packaging and Distribution
	27.1. distutils — Building and installing Python modules

	27.2. ensurepip — Bootstrapping the pip installer
	27.2.1. Command line interface

	27.2.2. Module API

	28. Python Runtime Services
	28.1. sys — System-specific parameters and functions

	28.2. sysconfig — Provide access to Python’s configuration information
	28.2.1. Configuration variables

	28.2.2. Installation paths

	28.2.3. Other functions

	28.3. __builtin__ — Built-in objects

	28.4. future_builtins — Python 3 builtins

	28.5. __main__ — Top-level script environment

	28.6. warnings — Warning control
	28.6.1. Warning Categories

	28.6.2. The Warnings Filter
	28.6.2.1. Default Warning Filters

	28.6.3. Temporarily Suppressing Warnings

	28.6.4. Testing Warnings

	28.6.5. Updating Code For New Versions of Python

	28.6.6. Available Functions

	28.6.7. Available Context Managers

	28.7. contextlib — Utilities for with-statement contexts

	28.8. abc — Abstract Base Classes

	28.9. atexit — Exit handlers
	28.9.1. atexit Example

	28.10. traceback — Print or retrieve a stack traceback
	28.10.1. Traceback Examples

	28.11. __future__ — Future statement definitions

	28.12. gc — Garbage Collector interface

	28.13. inspect — Inspect live objects
	28.13.1. Types and members

	28.13.2. Retrieving source code

	28.13.3. Classes and functions

	28.13.4. The interpreter stack

	28.14. site — Site-specific configuration hook

	28.15. user — User-specific configuration hook

	28.16. fpectl — Floating point exception control
	28.16.1. Example

	28.16.2. Limitations and other considerations

	29. Custom Python Interpreters
	29.1. code — Interpreter base classes
	29.1.1. Interactive Interpreter Objects

	29.1.2. Interactive Console Objects

	29.2. codeop — Compile Python code

	30. Restricted Execution
	30.1. rexec — Restricted execution framework
	30.1.1. RExec Objects

	30.1.2. Defining restricted environments

	30.1.3. An example

	30.2. Bastion — Restricting access to objects

	31. Importing Modules
	31.1. imp — Access the import internals
	31.1.1. Examples

	31.2. importlib – Convenience wrappers for __import__()

	31.3. imputil — Import utilities
	31.3.1. Examples

	31.4. zipimport — Import modules from Zip archives
	31.4.1. zipimporter Objects

	31.4.2. Examples

	31.5. pkgutil — Package extension utility

	31.6. modulefinder — Find modules used by a script
	31.6.1. Example usage of ModuleFinder

	31.7. runpy — Locating and executing Python modules

	32. Python Language Services
	32.1. parser — Access Python parse trees
	32.1.1. Creating ST Objects

	32.1.2. Converting ST Objects

	32.1.3. Queries on ST Objects

	32.1.4. Exceptions and Error Handling

	32.1.5. ST Objects

	32.1.6. Example: Emulation of compile()

	32.2. ast — Abstract Syntax Trees
	32.2.1. Node classes

	32.2.2. Abstract Grammar

	32.2.3. ast Helpers

	32.3. symtable — Access to the compiler’s symbol tables
	32.3.1. Generating Symbol Tables

	32.3.2. Examining Symbol Tables

	32.4. symbol — Constants used with Python parse trees

	32.5. token — Constants used with Python parse trees

	32.6. keyword — Testing for Python keywords

	32.7. tokenize — Tokenizer for Python source

	32.8. tabnanny — Detection of ambiguous indentation

	32.9. pyclbr — Python class browser support
	32.9.1. Class Objects

	32.9.2. Function Objects

	32.10. py_compile — Compile Python source files

	32.11. compileall — Byte-compile Python libraries
	32.11.1. Command-line use

	32.11.2. Public functions

	32.12. dis — Disassembler for Python bytecode
	32.12.1. Python Bytecode Instructions

	32.13. pickletools — Tools for pickle developers

	33. Python compiler package
	33.1. The basic interface

	33.2. Limitations

	33.3. Python Abstract Syntax
	33.3.1. AST Nodes

	33.3.2. Assignment nodes

	33.3.3. Examples

	33.4. Using Visitors to Walk ASTs

	33.5. Bytecode Generation

	34. Miscellaneous Services
	34.1. formatter — Generic output formatting
	34.1.1. The Formatter Interface

	34.1.2. Formatter Implementations

	34.1.3. The Writer Interface

	34.1.4. Writer Implementations

	35. MS Windows Specific Services
	35.1. msilib — Read and write Microsoft Installer files
	35.1.1. Database Objects

	35.1.2. View Objects

	35.1.3. Summary Information Objects

	35.1.4. Record Objects

	35.1.5. Errors

	35.1.6. CAB Objects

	35.1.7. Directory Objects

	35.1.8. Features

	35.1.9. GUI classes

	35.1.10. Precomputed tables

	35.2. msvcrt – Useful routines from the MS VC++ runtime
	35.2.1. File Operations

	35.2.2. Console I/O

	35.2.3. Other Functions

	35.3. _winreg – Windows registry access
	35.3.1. Constants
	35.3.1.1. HKEY_* Constants

	35.3.1.2. Access Rights
	35.3.1.2.1. 64-bit Specific

	35.3.1.3. Value Types

	35.3.2. Registry Handle Objects

	35.4. winsound — Sound-playing interface for Windows

	36. Unix Specific Services
	36.1. posix — The most common POSIX system calls
	36.1.1. Large File Support

	36.1.2. Notable Module Contents

	36.2. pwd — The password database

	36.3. spwd — The shadow password database

	36.4. grp — The group database

	36.5. crypt — Function to check Unix passwords

	36.6. dl — Call C functions in shared objects
	36.6.1. Dl Objects

	36.7. termios — POSIX style tty control
	36.7.1. Example

	36.8. tty — Terminal control functions

	36.9. pty — Pseudo-terminal utilities

	36.10. fcntl — The fcntl and ioctl system calls

	36.11. pipes — Interface to shell pipelines
	36.11.1. Template Objects

	36.12. posixfile — File-like objects with locking support

	36.13. resource — Resource usage information
	36.13.1. Resource Limits

	36.13.2. Resource Usage

	36.14. nis — Interface to Sun’s NIS (Yellow Pages)

	36.15. syslog — Unix syslog library routines
	36.15.1. Examples
	36.15.1.1. Simple example

	36.16. commands — Utilities for running commands

	37. Mac OS X specific services
	37.1. ic — Access to the Mac OS X Internet Config
	37.1.1. IC Objects

	37.2. MacOS — Access to Mac OS interpreter features

	37.3. macostools — Convenience routines for file manipulation

	37.4. findertools — The finder‘s Apple Events interface

	37.5. EasyDialogs — Basic Macintosh dialogs
	37.5.1. ProgressBar Objects

	37.6. FrameWork — Interactive application framework
	37.6.1. Application Objects

	37.6.2. Window Objects

	37.6.3. ControlsWindow Object

	37.6.4. ScrolledWindow Object

	37.6.5. DialogWindow Objects

	37.7. autoGIL — Global Interpreter Lock handling in event loops

	37.8. Mac OS Toolbox Modules
	37.8.1. Carbon.AE — Apple Events

	37.8.2. Carbon.AH — Apple Help

	37.8.3. Carbon.App — Appearance Manager

	37.8.4. Carbon.Appearance — Appearance Manager constants

	37.8.5. Carbon.CF — Core Foundation

	37.8.6. Carbon.CG — Core Graphics

	37.8.7. Carbon.CarbonEvt — Carbon Event Manager

	37.8.8. Carbon.CarbonEvents — Carbon Event Manager constants

	37.8.9. Carbon.Cm — Component Manager

	37.8.10. Carbon.Components — Component Manager constants

	37.8.11. Carbon.ControlAccessor — Control Manager accssors

	37.8.12. Carbon.Controls — Control Manager constants

	37.8.13. Carbon.CoreFounation — CoreFounation constants

	37.8.14. Carbon.CoreGraphics — CoreGraphics constants

	37.8.15. Carbon.Ctl — Control Manager

	37.8.16. Carbon.Dialogs — Dialog Manager constants

	37.8.17. Carbon.Dlg — Dialog Manager

	37.8.18. Carbon.Drag — Drag and Drop Manager

	37.8.19. Carbon.Dragconst — Drag and Drop Manager constants

	37.8.20. Carbon.Events — Event Manager constants

	37.8.21. Carbon.Evt — Event Manager

	37.8.22. Carbon.File — File Manager

	37.8.23. Carbon.Files — File Manager constants

	37.8.24. Carbon.Fm — Font Manager

	37.8.25. Carbon.Folder — Folder Manager

	37.8.26. Carbon.Folders — Folder Manager constants

	37.8.27. Carbon.Fonts — Font Manager constants

	37.8.28. Carbon.Help — Help Manager

	37.8.29. Carbon.IBCarbon — Carbon InterfaceBuilder

	37.8.30. Carbon.IBCarbonRuntime — Carbon InterfaceBuilder constants

	37.8.31. Carbon.Icn — Carbon Icon Manager

	37.8.32. Carbon.Icons — Carbon Icon Manager constants

	37.8.33. Carbon.Launch — Carbon Launch Services

	37.8.34. Carbon.LaunchServices — Carbon Launch Services constants

	37.8.35. Carbon.List — List Manager

	37.8.36. Carbon.Lists — List Manager constants

	37.8.37. Carbon.MacHelp — Help Manager constants

	37.8.38. Carbon.MediaDescr — Parsers and generators for Quicktime Media descriptors

	37.8.39. Carbon.Menu — Menu Manager

	37.8.40. Carbon.Menus — Menu Manager constants

	37.8.41. Carbon.Mlte — MultiLingual Text Editor

	37.8.42. Carbon.OSA — Carbon OSA Interface

	37.8.43. Carbon.OSAconst — Carbon OSA Interface constants

	37.8.44. Carbon.QDOffscreen — QuickDraw Offscreen constants

	37.8.45. Carbon.Qd — QuickDraw

	37.8.46. Carbon.Qdoffs — QuickDraw Offscreen

	37.8.47. Carbon.Qt — QuickTime

	37.8.48. Carbon.QuickDraw — QuickDraw constants

	37.8.49. Carbon.QuickTime — QuickTime constants

	37.8.50. Carbon.Res — Resource Manager and Handles

	37.8.51. Carbon.Resources — Resource Manager and Handles constants

	37.8.52. Carbon.Scrap — Scrap Manager

	37.8.53. Carbon.Snd — Sound Manager

	37.8.54. Carbon.Sound — Sound Manager constants

	37.8.55. Carbon.TE — TextEdit

	37.8.56. Carbon.TextEdit — TextEdit constants

	37.8.57. Carbon.Win — Window Manager

	37.8.58. Carbon.Windows — Window Manager constants

	37.9. ColorPicker — Color selection dialog

	38. MacPython OSA Modules
	38.1. gensuitemodule — Generate OSA stub packages

	38.2. aetools — OSA client support

	38.3. aepack — Conversion between Python variables and AppleEvent data containers

	38.4. aetypes — AppleEvent objects

	38.5. MiniAEFrame — Open Scripting Architecture server support
	38.5.1. AEServer Objects

	39. SGI IRIX Specific Services
	39.1. al — Audio functions on the SGI
	39.1.1. Configuration Objects

	39.1.2. Port Objects

	39.2. AL — Constants used with the al module

	39.3. cd — CD-ROM access on SGI systems
	39.3.1. Player Objects

	39.3.2. Parser Objects

	39.4. fl — FORMS library for graphical user interfaces
	39.4.1. Functions Defined in Module fl

	39.4.2. Form Objects

	39.4.3. FORMS Objects

	39.5. FL — Constants used with the fl module

	39.6. flp — Functions for loading stored FORMS designs

	39.7. fm — Font Manager interface

	39.8. gl — Graphics Library interface

	39.9. DEVICE — Constants used with the gl module

	39.10. GL — Constants used with the gl module

	39.11. imgfile — Support for SGI imglib files

	39.12. jpeg — Read and write JPEG files

	40. SunOS Specific Services
	40.1. sunaudiodev — Access to Sun audio hardware
	40.1.1. Audio Device Objects

	40.2. SUNAUDIODEV — Constants used with sunaudiodev

	41. Undocumented Modules
	41.1. Miscellaneous useful utilities

	41.2. Platform specific modules

	41.3. Multimedia

	41.4. Undocumented Mac OS modules
	41.4.1. applesingle — AppleSingle decoder

	41.4.2. buildtools — Helper module for BuildApplet and Friends

	41.4.3. cfmfile — Code Fragment Resource module

	41.4.4. icopen — Internet Config replacement for open()

	41.4.5. macerrors — Mac OS Errors

	41.4.6. macresource — Locate script resources

	41.4.7. Nav — NavServices calls

	41.4.8. PixMapWrapper — Wrapper for PixMap objects

	41.4.9. videoreader — Read QuickTime movies

	41.4.10. W — Widgets built on FrameWork

	41.5. Obsolete

	41.6. SGI-specific Extension modules

	Extending and Embedding the Python Interpreter
	1. Extending Python with C or C++
	1.1. A Simple Example

	1.2. Intermezzo: Errors and Exceptions

	1.3. Back to the Example

	1.4. The Module’s Method Table and Initialization Function

	1.5. Compilation and Linkage

	1.6. Calling Python Functions from C

	1.7. Extracting Parameters in Extension Functions

	1.8. Keyword Parameters for Extension Functions

	1.9. Building Arbitrary Values

	1.10. Reference Counts
	1.10.1. Reference Counting in Python

	1.10.2. Ownership Rules

	1.10.3. Thin Ice

	1.10.4. NULL Pointers

	1.11. Writing Extensions in C++

	1.12. Providing a C API for an Extension Module

	2. Defining New Types
	2.1. The Basics
	2.1.1. Adding data and methods to the Basic example

	2.1.2. Providing finer control over data attributes

	2.1.3. Supporting cyclic garbage collection

	2.1.4. Subclassing other types

	2.2. Type Methods
	2.2.1. Finalization and De-allocation

	2.2.2. Object Presentation

	2.2.3. Attribute Management
	2.2.3.1. Generic Attribute Management

	2.2.3.2. Type-specific Attribute Management

	2.2.4. Object Comparison

	2.2.5. Abstract Protocol Support

	2.2.6. Weak Reference Support

	2.2.7. More Suggestions

	3. Building C and C++ Extensions with distutils
	3.1. Distributing your extension modules

	4. Building C and C++ Extensions on Windows
	4.1. A Cookbook Approach

	4.2. Differences Between Unix and Windows

	4.3. Using DLLs in Practice

	5. Embedding Python in Another Application
	5.1. Very High Level Embedding

	5.2. Beyond Very High Level Embedding: An overview

	5.3. Pure Embedding

	5.4. Extending Embedded Python

	5.5. Embedding Python in C++

	5.6. Compiling and Linking under Unix-like systems

	Python/C API Reference Manual
	Introduction
	Include Files

	Objects, Types and Reference Counts
	Reference Counts
	Reference Count Details

	Types

	Exceptions

	Embedding Python

	Debugging Builds

	The Very High Level Layer

	Reference Counting

	Exception Handling
	Unicode Exception Objects

	Recursion Control

	Standard Exceptions

	String Exceptions

	Utilities
	Operating System Utilities

	System Functions

	Process Control

	Importing Modules

	Data marshalling support

	Parsing arguments and building values

	String conversion and formatting

	Reflection

	Codec registry and support functions
	Codec lookup API

	Registry API for Unicode encoding error handlers

	Abstract Objects Layer
	Object Protocol

	Number Protocol

	Sequence Protocol

	Mapping Protocol

	Iterator Protocol

	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Type Objects

	The None Object

	Numeric Objects
	Plain Integer Objects

	Boolean Objects

	Long Integer Objects

	Floating Point Objects

	Complex Number Objects
	Complex Numbers as C Structures

	Complex Numbers as Python Objects

	Sequence Objects
	Byte Array Objects
	Type check macros

	Direct API functions

	Macros

	String/Bytes Objects

	Unicode Objects and Codecs
	Unicode Objects
	Unicode Type

	Unicode Character Properties

	Plain Py_UNICODE

	wchar_t Support

	Built-in Codecs
	Generic Codecs

	UTF-8 Codecs

	UTF-32 Codecs

	UTF-16 Codecs

	UTF-7 Codecs

	Unicode-Escape Codecs

	Raw-Unicode-Escape Codecs

	Latin-1 Codecs

	ASCII Codecs

	Character Map Codecs

	MBCS codecs for Windows

	Methods & Slots

	Methods and Slot Functions

	Buffers and Memoryview Objects
	The new-style Py_buffer struct

	Buffer related functions

	MemoryView objects

	Old-style buffer objects

	Tuple Objects

	List Objects

	Mapping Objects
	Dictionary Objects

	Other Objects
	Class and Instance Objects

	Function Objects

	Method Objects

	File Objects

	Module Objects

	Iterator Objects

	Descriptor Objects

	Slice Objects

	Weak Reference Objects

	Capsules

	CObjects

	Cell Objects

	Generator Objects

	DateTime Objects

	Set Objects

	Code Objects

	Initialization, Finalization, and Threads
	Initializing and finalizing the interpreter

	Process-wide parameters

	Thread State and the Global Interpreter Lock
	Releasing the GIL from extension code

	Non-Python created threads

	High-level API

	Low-level API

	Sub-interpreter support
	Bugs and caveats

	Asynchronous Notifications

	Profiling and Tracing

	Advanced Debugger Support

	Memory Management
	Overview

	Memory Interface

	Examples

	Object Implementation Support
	Allocating Objects on the Heap

	Common Object Structures

	Type Objects

	Number Object Structures

	Mapping Object Structures

	Sequence Object Structures

	Buffer Object Structures

	Supporting Cyclic Garbage Collection

	Distributing Python Modules
	Key terms

	Open source licensing and collaboration

	Installing the tools

	Reading the guide

	How do I...?
	... choose a name for my project?

	... create and distribute binary extensions?

	Installing Python Modules
	Key terms

	Basic usage

	How do I ...?
	... install pip in versions of Python prior to Python 2.7.9?

	... install packages just for the current user?

	... install scientific Python packages?

	... work with multiple versions of Python installed in parallel?

	Common installation issues
	Installing into the system Python on Linux

	Installing binary extensions

	Python HOWTOs
	Porting Python 2 Code to Python 3
	The Short Explanation

	Details
	Drop support for Python 2.5 and older (at least)

	Make sure you specify the proper version support in your setup.py file

	Have good test coverage

	Learn the differences between Python 2 & 3

	Update your code
	Division

	Text versus binary data

	Prevent compatibility regressions

	Check which dependencies block your transition

	Update your setup.py file to denote Python 3 compatibility

	Use continuous integration to stay compatible

	Dropping Python 2 support completely

	Porting Extension Modules to Python 3
	Conditional compilation

	Changes to Object APIs
	str/unicode Unification

	long/int Unification

	Module initialization and state

	CObject replaced with Capsule

	Other options

	Curses Programming with Python
	What is curses?
	The Python curses module

	Starting and ending a curses application

	Windows and Pads

	Displaying Text
	Attributes and Color

	User Input

	For More Information

	Descriptor HowTo Guide
	Abstract

	Definition and Introduction

	Descriptor Protocol

	Invoking Descriptors

	Descriptor Example

	Properties

	Functions and Methods

	Static Methods and Class Methods

	Idioms and Anti-Idioms in Python
	Language Constructs You Should Not Use
	from module import *
	Inside Function Definitions

	At Module Level

	When It Is Just Fine

	Unadorned exec, execfile() and friends

	from module import name1, name2

	except:

	Exceptions

	Using the Batteries

	Using Backslash to Continue Statements

	Functional Programming HOWTO
	Introduction
	Formal provability

	Modularity

	Ease of debugging and testing

	Composability

	Iterators
	Data Types That Support Iterators

	Generator expressions and list comprehensions

	Generators
	Passing values into a generator

	Built-in functions

	Small functions and the lambda expression

	The itertools module
	Creating new iterators

	Calling functions on elements

	Selecting elements

	Grouping elements

	The functools module
	The operator module

	Revision History and Acknowledgements

	References
	General

	Python-specific

	Python documentation

	Logging HOWTO
	Basic Logging Tutorial
	When to use logging

	A simple example

	Logging to a file

	Logging from multiple modules

	Logging variable data

	Changing the format of displayed messages

	Displaying the date/time in messages

	Next Steps

	Advanced Logging Tutorial
	Logging Flow

	Loggers

	Handlers

	Formatters

	Configuring Logging

	What happens if no configuration is provided

	Configuring Logging for a Library

	Logging Levels
	Custom Levels

	Useful Handlers

	Exceptions raised during logging

	Using arbitrary objects as messages

	Optimization

	Logging Cookbook
	Using logging in multiple modules

	Logging from multiple threads

	Multiple handlers and formatters

	Logging to multiple destinations

	Configuration server example

	Sending and receiving logging events across a network

	Adding contextual information to your logging output
	Using LoggerAdapters to impart contextual information
	Using objects other than dicts to pass contextual information

	Using Filters to impart contextual information

	Logging to a single file from multiple processes

	Using file rotation

	An example dictionary-based configuration

	Inserting a BOM into messages sent to a SysLogHandler

	Implementing structured logging

	Customizing handlers with dictConfig()

	Configuring filters with dictConfig()

	Customized exception formatting

	Speaking logging messages

	Buffering logging messages and outputting them conditionally

	Formatting times using UTC (GMT) via configuration

	Using a context manager for selective logging

	Regular Expression HOWTO
	Introduction

	Simple Patterns
	Matching Characters

	Repeating Things

	Using Regular Expressions
	Compiling Regular Expressions

	The Backslash Plague

	Performing Matches

	Module-Level Functions

	Compilation Flags

	More Pattern Power
	More Metacharacters

	Grouping

	Non-capturing and Named Groups

	Lookahead Assertions

	Modifying Strings
	Splitting Strings

	Search and Replace

	Common Problems
	Use String Methods

	match() versus search()

	Greedy versus Non-Greedy

	Using re.VERBOSE

	Feedback

	Socket Programming HOWTO
	Sockets
	History

	Creating a Socket
	IPC

	Using a Socket
	Binary Data

	Disconnecting
	When Sockets Die

	Non-blocking Sockets
	Performance

	Sorting HOW TO
	Sorting Basics

	Key Functions

	Operator Module Functions

	Ascending and Descending

	Sort Stability and Complex Sorts

	The Old Way Using Decorate-Sort-Undecorate

	The Old Way Using the cmp Parameter

	Odd and Ends

	Unicode HOWTO
	Introduction to Unicode
	History of Character Codes

	Definitions

	Encodings

	References

	Python 2.x’s Unicode Support
	The Unicode Type

	Unicode Literals in Python Source Code

	Unicode Properties

	References

	Reading and Writing Unicode Data
	Unicode filenames

	Tips for Writing Unicode-aware Programs

	References

	Revision History and Acknowledgements

	HOWTO Fetch Internet Resources Using urllib2
	Introduction

	Fetching URLs
	Data

	Headers

	Handling Exceptions
	URLError

	HTTPError
	Error Codes

	Wrapping it Up
	Number 1

	Number 2

	info and geturl

	Openers and Handlers

	Basic Authentication

	Proxies

	Sockets and Layers

	Footnotes

	HOWTO Use Python in the web
	The Low-Level View
	Common Gateway Interface
	Simple script for testing CGI

	Setting up CGI on your own server

	Common problems with CGI scripts

	mod_python

	FastCGI and SCGI
	Setting up FastCGI

	mod_wsgi

	Step back: WSGI
	WSGI Servers

	Case study: MoinMoin

	Model-View-Controller

	Ingredients for Websites
	Templates

	Data persistence

	Frameworks
	Some notable frameworks
	Django

	TurboGears

	Zope

	Other notable frameworks

	Argparse Tutorial
	Concepts

	The basics

	Introducing Positional arguments

	Introducing Optional arguments
	Short options

	Combining Positional and Optional arguments

	Getting a little more advanced
	Conflicting options

	Conclusion

	Python Frequently Asked Questions
	General Python FAQ
	General Information

	Python in the real world

	Upgrading Python

	Programming FAQ
	General Questions

	Core Language

	Numbers and strings

	Sequences (Tuples/Lists)

	Dictionaries

	Objects

	Modules

	Design and History FAQ
	Why does Python use indentation for grouping of statements?

	Why am I getting strange results with simple arithmetic operations?

	Why are floating point calculations so inaccurate?

	Why are Python strings immutable?

	Why must ‘self’ be used explicitly in method definitions and calls?

	Why can’t I use an assignment in an expression?

	Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g. len(list))?

	Why is join() a string method instead of a list or tuple method?

	How fast are exceptions?

	Why isn’t there a switch or case statement in Python?

	Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?

	Why can’t lambda expressions contain statements?

	Can Python be compiled to machine code, C or some other language?

	How does Python manage memory?

	Why isn’t all memory freed when Python exits?

	Why are there separate tuple and list data types?

	How are lists implemented?

	How are dictionaries implemented?

	Why must dictionary keys be immutable?

	Why doesn’t list.sort() return the sorted list?

	How do you specify and enforce an interface spec in Python?

	Why is there no goto?

	Why can’t raw strings (r-strings) end with a backslash?

	Why doesn’t Python have a “with” statement for attribute assignments?

	Why are colons required for the if/while/def/class statements?

	Why does Python allow commas at the end of lists and tuples?

	Library and Extension FAQ
	General Library Questions

	Common tasks

	Threads

	Input and Output

	Network/Internet Programming

	Databases

	Mathematics and Numerics

	Extending/Embedding FAQ
	Can I create my own functions in C?

	Can I create my own functions in C++?

	Writing C is hard; are there any alternatives?

	How can I execute arbitrary Python statements from C?

	How can I evaluate an arbitrary Python expression from C?

	How do I extract C values from a Python object?

	How do I use Py_BuildValue() to create a tuple of arbitrary length?

	How do I call an object’s method from C?

	How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)?

	How do I access a module written in Python from C?

	How do I interface to C++ objects from Python?

	I added a module using the Setup file and the make fails; why?

	How do I debug an extension?

	I want to compile a Python module on my Linux system, but some files are missing. Why?

	What does “SystemError: _PyImport_FixupExtension: module yourmodule not loaded” mean?

	How do I tell “incomplete input” from “invalid input”?

	How do I find undefined g++ symbols __builtin_new or __pure_virtual?

	Can I create an object class with some methods implemented in C and others in Python (e.g. through inheritance)?

	When importing module X, why do I get “undefined symbol: PyUnicodeUCS2*”?

	Python on Windows FAQ
	How do I run a Python program under Windows?

	How do I make Python scripts executable?

	Why does Python sometimes take so long to start?

	How do I make an executable from a Python script?

	Is a *.pyd file the same as a DLL?

	How can I embed Python into a Windows application?

	How do I keep editors from inserting tabs into my Python source?

	How do I check for a keypress without blocking?

	How do I emulate os.kill() in Windows?

	How do I extract the downloaded documentation on Windows?

	Graphic User Interface FAQ
	What platform-independent GUI toolkits exist for Python?

	What platform-specific GUI toolkits exist for Python?

	Tkinter questions

	“Why is Python Installed on my Computer?” FAQ
	What is Python?

	Why is Python installed on my machine?

	Can I delete Python?

	Glossary

	About these documents
	Contributors to the Python Documentation

	Reporting Bugs
	Documentation bugs

	Using the Python issue tracker

	Getting started contributing to Python yourself

	Copyright

	History and License
	History of the software

	Terms and conditions for accessing or otherwise using Python
	PSF LICENSE AGREEMENT FOR PYTHON 2.7.12

	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister

	Sockets

	Floating point exception control

	MD5 message digest algorithm

	Asynchronous socket services

	Cookie management

	Execution tracing

	UUencode and UUdecode functions

	XML Remote Procedure Calls

	test_epoll

	Select kqueue

	strtod and dtoa

	OpenSSL

	expat

	libffi

	zlib

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

What’s New in Python

The “What’s New in Python” series of essays takes tours through the most
important changes between major Python versions. They are a “must read” for
anyone wishing to stay up-to-date after a new release.

	What’s New in Python 2.7
	The Future for Python 2.x

	Changes to the Handling of Deprecation Warnings

	Python 3.1 Features

	PEP 372: Adding an Ordered Dictionary to collections

	PEP 378: Format Specifier for Thousands Separator

	PEP 389: The argparse Module for Parsing Command Lines

	PEP 391: Dictionary-Based Configuration For Logging

	PEP 3106: Dictionary Views

	PEP 3137: The memoryview Object

	Other Language Changes

	New and Improved Modules

	Build and C API Changes

	Other Changes and Fixes

	Porting to Python 2.7

	New Features Added to Python 2.7 Maintenance Releases

	Acknowledgements

	What’s New in Python 2.6
	Python 3.0

	Changes to the Development Process

	PEP 343: The ‘with’ statement

	PEP 366: Explicit Relative Imports From a Main Module

	PEP 370: Per-user site-packages Directory

	PEP 371: The multiprocessing Package

	PEP 3101: Advanced String Formatting

	PEP 3105: print As a Function

	PEP 3110: Exception-Handling Changes

	PEP 3112: Byte Literals

	PEP 3116: New I/O Library

	PEP 3118: Revised Buffer Protocol

	PEP 3119: Abstract Base Classes

	PEP 3127: Integer Literal Support and Syntax

	PEP 3129: Class Decorators

	PEP 3141: A Type Hierarchy for Numbers

	Other Language Changes

	New and Improved Modules

	Deprecations and Removals

	Build and C API Changes

	Porting to Python 2.6

	Acknowledgements

	What’s New in Python 2.5
	PEP 308: Conditional Expressions

	PEP 309: Partial Function Application

	PEP 314: Metadata for Python Software Packages v1.1

	PEP 328: Absolute and Relative Imports

	PEP 338: Executing Modules as Scripts

	PEP 341: Unified try/except/finally

	PEP 342: New Generator Features

	PEP 343: The ‘with’ statement

	PEP 352: Exceptions as New-Style Classes

	PEP 353: Using ssize_t as the index type

	PEP 357: The ‘__index__’ method

	Other Language Changes

	New, Improved, and Removed Modules

	Build and C API Changes

	Porting to Python 2.5

	Acknowledgements

	What’s New in Python 2.4
	PEP 218: Built-In Set Objects

	PEP 237: Unifying Long Integers and Integers

	PEP 289: Generator Expressions

	PEP 292: Simpler String Substitutions

	PEP 318: Decorators for Functions and Methods

	PEP 322: Reverse Iteration

	PEP 324: New subprocess Module

	PEP 327: Decimal Data Type

	PEP 328: Multi-line Imports

	PEP 331: Locale-Independent Float/String Conversions

	Other Language Changes

	New, Improved, and Deprecated Modules

	Build and C API Changes

	Porting to Python 2.4

	Acknowledgements

	What’s New in Python 2.3
	PEP 218: A Standard Set Datatype

	PEP 255: Simple Generators

	PEP 263: Source Code Encodings

	PEP 273: Importing Modules from ZIP Archives

	PEP 277: Unicode file name support for Windows NT

	PEP 278: Universal Newline Support

	PEP 279: enumerate()

	PEP 282: The logging Package

	PEP 285: A Boolean Type

	PEP 293: Codec Error Handling Callbacks

	PEP 301: Package Index and Metadata for Distutils

	PEP 302: New Import Hooks

	PEP 305: Comma-separated Files

	PEP 307: Pickle Enhancements

	Extended Slices

	Other Language Changes

	New, Improved, and Deprecated Modules

	Pymalloc: A Specialized Object Allocator

	Build and C API Changes

	Other Changes and Fixes

	Porting to Python 2.3

	Acknowledgements

	What’s New in Python 2.2
	Introduction

	PEPs 252 and 253: Type and Class Changes

	PEP 234: Iterators

	PEP 255: Simple Generators

	PEP 237: Unifying Long Integers and Integers

	PEP 238: Changing the Division Operator

	Unicode Changes

	PEP 227: Nested Scopes

	New and Improved Modules

	Interpreter Changes and Fixes

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.1
	Introduction

	PEP 227: Nested Scopes

	PEP 236: __future__ Directives

	PEP 207: Rich Comparisons

	PEP 230: Warning Framework

	PEP 229: New Build System

	PEP 205: Weak References

	PEP 232: Function Attributes

	PEP 235: Importing Modules on Case-Insensitive Platforms

	PEP 217: Interactive Display Hook

	PEP 208: New Coercion Model

	PEP 241: Metadata in Python Packages

	New and Improved Modules

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.0
	Introduction

	What About Python 1.6?

	New Development Process

	Unicode

	List Comprehensions

	Augmented Assignment

	String Methods

	Garbage Collection of Cycles

	Other Core Changes

	Porting to 2.0

	Extending/Embedding Changes

	Distutils: Making Modules Easy to Install

	XML Modules

	Module changes

	New modules

	IDLE Improvements

	Deleted and Deprecated Modules

	Acknowledgements

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

What’s New in Python 2.7

	Author:	A.M. Kuchling (amk at amk.ca)

This article explains the new features in Python 2.7. Python 2.7 was released
on July 3, 2010.

Numeric handling has been improved in many ways, for both
floating-point numbers and for the Decimal class.
There are some useful additions to the standard library, such as a
greatly enhanced unittest module, the argparse module
for parsing command-line options, convenient OrderedDict
and Counter classes in the collections module,
and many other improvements.

Python 2.7 is planned to be the last of the 2.x releases, so we worked
on making it a good release for the long term. To help with porting
to Python 3, several new features from the Python 3.x series have been
included in 2.7.

This article doesn’t attempt to provide a complete specification of
the new features, but instead provides a convenient overview. For
full details, you should refer to the documentation for Python 2.7 at
https://docs.python.org. If you want to understand the rationale for
the design and implementation, refer to the PEP for a particular new
feature or the issue on https://bugs.python.org in which a change was
discussed. Whenever possible, “What’s New in Python” links to the
bug/patch item for each change.

The Future for Python 2.x

Python 2.7 is the last major release in the 2.x series, as the Python
maintainers have shifted the focus of their new feature development efforts
to the Python 3.x series. This means that while Python 2 continues to
receive bug fixes, and to be updated to build correctly on new hardware and
versions of supported operated systems, there will be no new full feature
releases for the language or standard library.

However, while there is a large common subset between Python 2.7 and Python
3, and many of the changes involved in migrating to that common subset, or
directly to Python 3, can be safely automated, some other changes (notably
those associated with Unicode handling) may require careful consideration,
and preferably robust automated regression test suites, to migrate
effectively.

This means that Python 2.7 will remain in place for a long time, providing a
stable and supported base platform for production systems that have not yet
been ported to Python 3. The full expected lifecycle of the Python 2.7
series is detailed in PEP 373 [https://www.python.org/dev/peps/pep-0373].

Some key consequences of the long-term significance of 2.7 are:

	As noted above, the 2.7 release has a much longer period of maintenance
when compared to earlier 2.x versions. Python 2.7 is currently expected to
remain supported by the core development team (receiving security updates
and other bug fixes) until at least 2020 (10 years after its initial
release, compared to the more typical support period of 18-24 months).

	As the Python 2.7 standard library ages, making effective use of the
Python Package Index (either directly or via a redistributor) becomes
more important for Python 2 users. In addition to a wide variety of third
party packages for various tasks, the available packages include backports
of new modules and features from the Python 3 standard library that are
compatible with Python 2, as well as various tools and libraries that can
make it easier to migrate to Python 3. The Python Packaging User Guide [https://packaging.python.org] provides guidance on downloading and
installing software from the Python Package Index.

	While the preferred approach to enhancing Python 2 is now the publication
of new packages on the Python Package Index, this approach doesn’t
necessarily work in all cases, especially those related to network
security. In exceptional cases that cannot be handled adequately by
publishing new or updated packages on PyPI, the Python Enhancement
Proposal process may be used to make the case for adding new features
directly to the Python 2 standard library. Any such additions, and the
maintenance releases where they were added, will be noted in the
New Features Added to Python 2.7 Maintenance Releases section below.

For projects wishing to migrate from Python 2 to Python 3, or for library
and framework developers wishing to support users on both Python 2 and
Python 3, there are a variety of tools and guides available to help decide
on a suitable approach and manage some of the technical details involved.
The recommended starting point is the Porting Python 2 Code to Python 3 HOWTO guide.

Changes to the Handling of Deprecation Warnings

For Python 2.7, a policy decision was made to silence warnings only of
interest to developers by default. DeprecationWarning and its
descendants are now ignored unless otherwise requested, preventing
users from seeing warnings triggered by an application. This change
was also made in the branch that became Python 3.2. (Discussed
on stdlib-sig and carried out in issue 7319 [https://bugs.python.org/issue7319].)

In previous releases, DeprecationWarning messages were
enabled by default, providing Python developers with a clear
indication of where their code may break in a future major version
of Python.

However, there are increasingly many users of Python-based
applications who are not directly involved in the development of
those applications. DeprecationWarning messages are
irrelevant to such users, making them worry about an application
that’s actually working correctly and burdening application developers
with responding to these concerns.

You can re-enable display of DeprecationWarning messages by
running Python with the -Wdefault (short form:
-Wd) switch, or by setting the PYTHONWARNINGS
environment variable to "default" (or "d") before running
Python. Python code can also re-enable them
by calling warnings.simplefilter('default').

The unittest module also automatically reenables deprecation warnings
when running tests.

Python 3.1 Features

Much as Python 2.6 incorporated features from Python 3.0,
version 2.7 incorporates some of the new features
in Python 3.1. The 2.x series continues to provide tools
for migrating to the 3.x series.

A partial list of 3.1 features that were backported to 2.7:

	The syntax for set literals ({1,2,3} is a mutable set).

	Dictionary and set comprehensions ({i: i*2 for i in range(3)}).

	Multiple context managers in a single with statement.

	A new version of the io library, rewritten in C for performance.

	The ordered-dictionary type described in PEP 372: Adding an Ordered Dictionary to collections.

	The new "," format specifier described in PEP 378: Format Specifier for Thousands Separator.

	The memoryview object.

	A small subset of the importlib module,
described below.

	The repr() of a float x is shorter in many cases: it’s now
based on the shortest decimal string that’s guaranteed to round back
to x. As in previous versions of Python, it’s guaranteed that
float(repr(x)) recovers x.

	Float-to-string and string-to-float conversions are correctly rounded.
The round() function is also now correctly rounded.

	The PyCapsule type, used to provide a C API for extension modules.

	The PyLong_AsLongAndOverflow() C API function.

Other new Python3-mode warnings include:

	operator.isCallable() and operator.sequenceIncludes(),
which are not supported in 3.x, now trigger warnings.

	The -3 switch now automatically
enables the -Qwarn switch that causes warnings
about using classic division with integers and long integers.

PEP 372: Adding an Ordered Dictionary to collections

Regular Python dictionaries iterate over key/value pairs in arbitrary order.
Over the years, a number of authors have written alternative implementations
that remember the order that the keys were originally inserted. Based on
the experiences from those implementations, 2.7 introduces a new
OrderedDict class in the collections module.

The OrderedDict API provides the same interface as regular
dictionaries but iterates over keys and values in a guaranteed order
depending on when a key was first inserted:

>>> from collections import OrderedDict
>>> d = OrderedDict([('first', 1),
... ('second', 2),
... ('third', 3)])
>>> d.items()
[('first', 1), ('second', 2), ('third', 3)]

If a new entry overwrites an existing entry, the original insertion
position is left unchanged:

>>> d['second'] = 4
>>> d.items()
[('first', 1), ('second', 4), ('third', 3)]

Deleting an entry and reinserting it will move it to the end:

>>> del d['second']
>>> d['second'] = 5
>>> d.items()
[('first', 1), ('third', 3), ('second', 5)]

The popitem() method has an optional last
argument that defaults to True. If last is True, the most recently
added key is returned and removed; if it’s False, the
oldest key is selected:

>>> od = OrderedDict([(x,0) for x in range(20)])
>>> od.popitem()
(19, 0)
>>> od.popitem()
(18, 0)
>>> od.popitem(last=False)
(0, 0)
>>> od.popitem(last=False)
(1, 0)

Comparing two ordered dictionaries checks both the keys and values,
and requires that the insertion order was the same:

>>> od1 = OrderedDict([('first', 1),
... ('second', 2),
... ('third', 3)])
>>> od2 = OrderedDict([('third', 3),
... ('first', 1),
... ('second', 2)])
>>> od1 == od2
False
>>> # Move 'third' key to the end
>>> del od2['third']; od2['third'] = 3
>>> od1 == od2
True

Comparing an OrderedDict with a regular dictionary
ignores the insertion order and just compares the keys and values.

How does the OrderedDict work? It maintains a
doubly-linked list of keys, appending new keys to the list as they’re inserted.
A secondary dictionary maps keys to their corresponding list node, so
deletion doesn’t have to traverse the entire linked list and therefore
remains O(1).

The standard library now supports use of ordered dictionaries in several
modules.

	The ConfigParser module uses them by default, meaning that
configuration files can now be read, modified, and then written back
in their original order.

	The _asdict() method for
collections.namedtuple() now returns an ordered dictionary with the
values appearing in the same order as the underlying tuple indices.

	The json module’s JSONDecoder class
constructor was extended with an object_pairs_hook parameter to
allow OrderedDict instances to be built by the decoder.
Support was also added for third-party tools like
PyYAML [http://pyyaml.org/].

See also

	PEP 372 [https://www.python.org/dev/peps/pep-0372] - Adding an ordered dictionary to collections

	PEP written by Armin Ronacher and Raymond Hettinger;
implemented by Raymond Hettinger.

PEP 378: Format Specifier for Thousands Separator

To make program output more readable, it can be useful to add
separators to large numbers, rendering them as
18,446,744,073,709,551,616 instead of 18446744073709551616.

The fully general solution for doing this is the locale module,
which can use different separators (”,” in North America, ”.” in
Europe) and different grouping sizes, but locale is complicated
to use and unsuitable for multi-threaded applications where different
threads are producing output for different locales.

Therefore, a simple comma-grouping mechanism has been added to the
mini-language used by the str.format() method. When
formatting a floating-point number, simply include a comma between the
width and the precision:

>>> '{:20,.2f}'.format(18446744073709551616.0)
'18,446,744,073,709,551,616.00'

When formatting an integer, include the comma after the width:

>>> '{:20,d}'.format(18446744073709551616)
'18,446,744,073,709,551,616'

This mechanism is not adaptable at all; commas are always used as the
separator and the grouping is always into three-digit groups. The
comma-formatting mechanism isn’t as general as the locale
module, but it’s easier to use.

See also

	PEP 378 [https://www.python.org/dev/peps/pep-0378] - Format Specifier for Thousands Separator

	PEP written by Raymond Hettinger; implemented by Eric Smith.

PEP 389: The argparse Module for Parsing Command Lines

The argparse module for parsing command-line arguments was
added as a more powerful replacement for the
optparse module.

This means Python now supports three different modules for parsing
command-line arguments: getopt, optparse, and
argparse. The getopt module closely resembles the C
library’s getopt() function, so it remains useful if you’re writing a
Python prototype that will eventually be rewritten in C.
optparse becomes redundant, but there are no plans to remove it
because there are many scripts still using it, and there’s no
automated way to update these scripts. (Making the argparse
API consistent with optparse‘s interface was discussed but
rejected as too messy and difficult.)

In short, if you’re writing a new script and don’t need to worry
about compatibility with earlier versions of Python, use
argparse instead of optparse.

Here’s an example:

import argparse

parser = argparse.ArgumentParser(description='Command-line example.')

Add optional switches
parser.add_argument('-v', action='store_true', dest='is_verbose',
 help='produce verbose output')
parser.add_argument('-o', action='store', dest='output',
 metavar='FILE',
 help='direct output to FILE instead of stdout')
parser.add_argument('-C', action='store', type=int, dest='context',
 metavar='NUM', default=0,
 help='display NUM lines of added context')

Allow any number of additional arguments.
parser.add_argument(nargs='*', action='store', dest='inputs',
 help='input filenames (default is stdin)')

args = parser.parse_args()
print args.__dict__

Unless you override it, -h and --help switches
are automatically added, and produce neatly formatted output:

-> ./python.exe argparse-example.py --help
usage: argparse-example.py [-h] [-v] [-o FILE] [-C NUM] [inputs [inputs ...]]

Command-line example.

positional arguments:
 inputs input filenames (default is stdin)

optional arguments:
 -h, --help show this help message and exit
 -v produce verbose output
 -o FILE direct output to FILE instead of stdout
 -C NUM display NUM lines of added context

As with optparse, the command-line switches and arguments
are returned as an object with attributes named by the dest parameters:

-> ./python.exe argparse-example.py -v
{'output': None,
 'is_verbose': True,
 'context': 0,
 'inputs': []}

-> ./python.exe argparse-example.py -v -o /tmp/output -C 4 file1 file2
{'output': '/tmp/output',
 'is_verbose': True,
 'context': 4,
 'inputs': ['file1', 'file2']}

argparse has much fancier validation than optparse; you
can specify an exact number of arguments as an integer, 0 or more
arguments by passing '*', 1 or more by passing '+', or an
optional argument with '?'. A top-level parser can contain
sub-parsers to define subcommands that have different sets of
switches, as in svn commit, svn checkout, etc. You can
specify an argument’s type as FileType, which will
automatically open files for you and understands that '-' means
standard input or output.

See also

	argparse documentation

	The documentation page of the argparse module.

	Upgrading optparse code

	Part of the Python documentation, describing how to convert
code that uses optparse.

	PEP 389 [https://www.python.org/dev/peps/pep-0389] - argparse - New Command Line Parsing Module

	PEP written and implemented by Steven Bethard.

PEP 391: Dictionary-Based Configuration For Logging

The logging module is very flexible; applications can define
a tree of logging subsystems, and each logger in this tree can filter
out certain messages, format them differently, and direct messages to
a varying number of handlers.

All this flexibility can require a lot of configuration. You can
write Python statements to create objects and set their properties,
but a complex set-up requires verbose but boring code.
logging also supports a fileConfig()
function that parses a file, but the file format doesn’t support
configuring filters, and it’s messier to generate programmatically.

Python 2.7 adds a dictConfig() function that
uses a dictionary to configure logging. There are many ways to
produce a dictionary from different sources: construct one with code;
parse a file containing JSON; or use a YAML parsing library if one is
installed. For more information see Configuration functions.

The following example configures two loggers, the root logger and a
logger named “network”. Messages sent to the root logger will be
sent to the system log using the syslog protocol, and messages
to the “network” logger will be written to a network.log file
that will be rotated once the log reaches 1MB.

import logging
import logging.config

configdict = {
 'version': 1, # Configuration schema in use; must be 1 for now
 'formatters': {
 'standard': {
 'format': ('%(asctime)s %(name)-15s '
 '%(levelname)-8s %(message)s')}},

 'handlers': {'netlog': {'backupCount': 10,
 'class': 'logging.handlers.RotatingFileHandler',
 'filename': '/logs/network.log',
 'formatter': 'standard',
 'level': 'INFO',
 'maxBytes': 1000000},
 'syslog': {'class': 'logging.handlers.SysLogHandler',
 'formatter': 'standard',
 'level': 'ERROR'}},

 # Specify all the subordinate loggers
 'loggers': {
 'network': {
 'handlers': ['netlog']
 }
 },
 # Specify properties of the root logger
 'root': {
 'handlers': ['syslog']
 },
}

Set up configuration
logging.config.dictConfig(configdict)

As an example, log two error messages
logger = logging.getLogger('/')
logger.error('Database not found')

netlogger = logging.getLogger('network')
netlogger.error('Connection failed')

Three smaller enhancements to the logging module, all
implemented by Vinay Sajip, are:

	The SysLogHandler class now supports
syslogging over TCP. The constructor has a socktype parameter
giving the type of socket to use, either socket.SOCK_DGRAM
for UDP or socket.SOCK_STREAM for TCP. The default
protocol remains UDP.

	Logger instances gained a getChild()
method that retrieves a descendant logger using a relative path.
For example, once you retrieve a logger by doing log = getLogger('app'),
calling log.getChild('network.listen') is equivalent to
getLogger('app.network.listen').

	The LoggerAdapter class gained a
isEnabledFor() method that takes a
level and returns whether the underlying logger would
process a message of that level of importance.

See also

	PEP 391 [https://www.python.org/dev/peps/pep-0391] - Dictionary-Based Configuration For Logging

	PEP written and implemented by Vinay Sajip.

PEP 3106: Dictionary Views

The dictionary methods keys(), values(), and
items() are different in Python 3.x. They return an object
called a view instead of a fully materialized list.

It’s not possible to change the return values of keys(),
values(), and items() in Python 2.7 because
too much code would break. Instead the 3.x versions were added
under the new names viewkeys(), viewvalues(),
and viewitems().

>>> d = dict((i*10, chr(65+i)) for i in range(26))
>>> d
{0: 'A', 130: 'N', 10: 'B', 140: 'O', 20: ..., 250: 'Z'}
>>> d.viewkeys()
dict_keys([0, 130, 10, 140, 20, 150, 30, ..., 250])

Views can be iterated over, but the key and item views also behave
like sets. The & operator performs intersection, and |
performs a union:

>>> d1 = dict((i*10, chr(65+i)) for i in range(26))
>>> d2 = dict((i**.5, i) for i in range(1000))
>>> d1.viewkeys() & d2.viewkeys()
set([0.0, 10.0, 20.0, 30.0])
>>> d1.viewkeys() | range(0, 30)
set([0, 1, 130, 3, 4, 5, 6, ..., 120, 250])

The view keeps track of the dictionary and its contents change as the
dictionary is modified:

>>> vk = d.viewkeys()
>>> vk
dict_keys([0, 130, 10, ..., 250])
>>> d[260] = '&'
>>> vk
dict_keys([0, 130, 260, 10, ..., 250])

However, note that you can’t add or remove keys while you’re iterating
over the view:

>>> for k in vk:
... d[k*2] = k
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

You can use the view methods in Python 2.x code, and the 2to3
converter will change them to the standard keys(),
values(), and items() methods.

See also

	PEP 3106 [https://www.python.org/dev/peps/pep-3106] - Revamping dict.keys(), .values() and .items()

	PEP written by Guido van Rossum.
Backported to 2.7 by Alexandre Vassalotti; issue 1967 [https://bugs.python.org/issue1967].

PEP 3137: The memoryview Object

The memoryview object provides a view of another object’s
memory content that matches the bytes type’s interface.

>>> import string
>>> m = memoryview(string.letters)
>>> m
<memory at 0x37f850>
>>> len(m) # Returns length of underlying object
52
>>> m[0], m[25], m[26] # Indexing returns one byte
('a', 'z', 'A')
>>> m2 = m[0:26] # Slicing returns another memoryview
>>> m2
<memory at 0x37f080>

The content of the view can be converted to a string of bytes or
a list of integers:

>>> m2.tobytes()
'abcdefghijklmnopqrstuvwxyz'
>>> m2.tolist()
[97, 98, 99, 100, 101, 102, 103, ... 121, 122]
>>>

memoryview objects allow modifying the underlying object if
it’s a mutable object.

>>> m2[0] = 75
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot modify read-only memory
>>> b = bytearray(string.letters) # Creating a mutable object
>>> b
bytearray(b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ')
>>> mb = memoryview(b)
>>> mb[0] = '*' # Assign to view, changing the bytearray.
>>> b[0:5] # The bytearray has been changed.
bytearray(b'*bcde')
>>>

See also

	PEP 3137 [https://www.python.org/dev/peps/pep-3137] - Immutable Bytes and Mutable Buffer

	PEP written by Guido van Rossum.
Implemented by Travis Oliphant, Antoine Pitrou and others.
Backported to 2.7 by Antoine Pitrou; issue 2396 [https://bugs.python.org/issue2396].

Other Language Changes

Some smaller changes made to the core Python language are:

	The syntax for set literals has been backported from Python 3.x.
Curly brackets are used to surround the contents of the resulting
mutable set; set literals are
distinguished from dictionaries by not containing colons and values.
{} continues to represent an empty dictionary; use
set() for an empty set.

>>> {1, 2, 3, 4, 5}
set([1, 2, 3, 4, 5])
>>> set() # empty set
set([])
>>> {} # empty dict
{}

Backported by Alexandre Vassalotti; issue 2335 [https://bugs.python.org/issue2335].

	Dictionary and set comprehensions are another feature backported from
3.x, generalizing list/generator comprehensions to use
the literal syntax for sets and dictionaries.

>>> {x: x*x for x in range(6)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
>>> {('a'*x) for x in range(6)}
set(['', 'a', 'aa', 'aaa', 'aaaa', 'aaaaa'])

Backported by Alexandre Vassalotti; issue 2333 [https://bugs.python.org/issue2333].

	The with statement can now use multiple context managers
in one statement. Context managers are processed from left to right
and each one is treated as beginning a new with statement.
This means that:

with A() as a, B() as b:
 ... suite of statements ...

is equivalent to:

with A() as a:
 with B() as b:
 ... suite of statements ...

The contextlib.nested() function provides a very similar
function, so it’s no longer necessary and has been deprecated.

(Proposed in https://codereview.appspot.com/53094; implemented by
Georg Brandl.)

	Conversions between floating-point numbers and strings are
now correctly rounded on most platforms. These conversions occur
in many different places: str() on
floats and complex numbers; the float and complex
constructors;
numeric formatting; serializing and
deserializing floats and complex numbers using the
marshal, pickle
and json modules;
parsing of float and imaginary literals in Python code;
and Decimal-to-float conversion.

Related to this, the repr() of a floating-point number x
now returns a result based on the shortest decimal string that’s
guaranteed to round back to x under correct rounding (with
round-half-to-even rounding mode). Previously it gave a string
based on rounding x to 17 decimal digits.

The rounding library responsible for this improvement works on
Windows and on Unix platforms using the gcc, icc, or suncc
compilers. There may be a small number of platforms where correct
operation of this code cannot be guaranteed, so the code is not
used on such systems. You can find out which code is being used
by checking sys.float_repr_style, which will be short
if the new code is in use and legacy if it isn’t.

Implemented by Eric Smith and Mark Dickinson, using David Gay’s
dtoa.c library; issue 7117 [https://bugs.python.org/issue7117].

	Conversions from long integers and regular integers to floating
point now round differently, returning the floating-point number
closest to the number. This doesn’t matter for small integers that
can be converted exactly, but for large numbers that will
unavoidably lose precision, Python 2.7 now approximates more
closely. For example, Python 2.6 computed the following:

>>> n = 295147905179352891391
>>> float(n)
2.9514790517935283e+20
>>> n - long(float(n))
65535L

Python 2.7’s floating-point result is larger, but much closer to the
true value:

>>> n = 295147905179352891391
>>> float(n)
2.9514790517935289e+20
>>> n - long(float(n))
-1L

(Implemented by Mark Dickinson; issue 3166 [https://bugs.python.org/issue3166].)

Integer division is also more accurate in its rounding behaviours. (Also
implemented by Mark Dickinson; issue 1811 [https://bugs.python.org/issue1811].)

	Implicit coercion for complex numbers has been removed; the interpreter
will no longer ever attempt to call a __coerce__() method on complex
objects. (Removed by Meador Inge and Mark Dickinson; issue 5211 [https://bugs.python.org/issue5211].)

	The str.format() method now supports automatic numbering of the replacement
fields. This makes using str.format() more closely resemble using
%s formatting:

>>> '{}:{}:{}'.format(2009, 04, 'Sunday')
'2009:4:Sunday'
>>> '{}:{}:{day}'.format(2009, 4, day='Sunday')
'2009:4:Sunday'

The auto-numbering takes the fields from left to right, so the first {...}
specifier will use the first argument to str.format(), the next
specifier will use the next argument, and so on. You can’t mix auto-numbering
and explicit numbering – either number all of your specifier fields or none
of them – but you can mix auto-numbering and named fields, as in the second
example above. (Contributed by Eric Smith; issue 5237 [https://bugs.python.org/issue5237].)

Complex numbers now correctly support usage with format(),
and default to being right-aligned.
Specifying a precision or comma-separation applies to both the real
and imaginary parts of the number, but a specified field width and
alignment is applied to the whole of the resulting 1.5+3j
output. (Contributed by Eric Smith; issue 1588 [https://bugs.python.org/issue1588] and issue 7988 [https://bugs.python.org/issue7988].)

The ‘F’ format code now always formats its output using uppercase characters,
so it will now produce ‘INF’ and ‘NAN’.
(Contributed by Eric Smith; issue 3382 [https://bugs.python.org/issue3382].)

A low-level change: the object.__format__() method now triggers
a PendingDeprecationWarning if it’s passed a format string,
because the __format__() method for object converts
the object to a string representation and formats that. Previously
the method silently applied the format string to the string
representation, but that could hide mistakes in Python code. If
you’re supplying formatting information such as an alignment or
precision, presumably you’re expecting the formatting to be applied
in some object-specific way. (Fixed by Eric Smith; issue 7994 [https://bugs.python.org/issue7994].)

	The int() and long() types gained a bit_length
method that returns the number of bits necessary to represent
its argument in binary:

>>> n = 37
>>> bin(n)
'0b100101'
>>> n.bit_length()
6
>>> n = 2**123-1
>>> n.bit_length()
123
>>> (n+1).bit_length()
124

(Contributed by Fredrik Johansson and Victor Stinner; issue 3439 [https://bugs.python.org/issue3439].)

	The import statement will no longer try an absolute import
if a relative import (e.g. from .os import sep) fails. This
fixes a bug, but could possibly break certain import
statements that were only working by accident. (Fixed by Meador Inge;
issue 7902 [https://bugs.python.org/issue7902].)

	It’s now possible for a subclass of the built-in unicode type
to override the __unicode__() method. (Implemented by
Victor Stinner; issue 1583863 [https://bugs.python.org/issue1583863].)

	The bytearray type’s translate() method now accepts
None as its first argument. (Fixed by Georg Brandl;
issue 4759 [https://bugs.python.org/issue4759].)

	When using @classmethod and @staticmethod to wrap
methods as class or static methods, the wrapper object now
exposes the wrapped function as their __func__ attribute.
(Contributed by Amaury Forgeot d’Arc, after a suggestion by
George Sakkis; issue 5982 [https://bugs.python.org/issue5982].)

	When a restricted set of attributes were set using __slots__,
deleting an unset attribute would not raise AttributeError
as you would expect. Fixed by Benjamin Peterson; issue 7604 [https://bugs.python.org/issue7604].)

	Two new encodings are now supported: “cp720”, used primarily for
Arabic text; and “cp858”, a variant of CP 850 that adds the euro
symbol. (CP720 contributed by Alexander Belchenko and Amaury
Forgeot d’Arc in issue 1616979 [https://bugs.python.org/issue1616979]; CP858 contributed by Tim Hatch in
issue 8016 [https://bugs.python.org/issue8016].)

	The file object will now set the filename attribute
on the IOError exception when trying to open a directory
on POSIX platforms (noted by Jan Kaliszewski; issue 4764 [https://bugs.python.org/issue4764]), and
now explicitly checks for and forbids writing to read-only file objects
instead of trusting the C library to catch and report the error
(fixed by Stefan Krah; issue 5677 [https://bugs.python.org/issue5677]).

	The Python tokenizer now translates line endings itself, so the
compile() built-in function now accepts code using any
line-ending convention. Additionally, it no longer requires that the
code end in a newline.

	Extra parentheses in function definitions are illegal in Python 3.x,
meaning that you get a syntax error from def f((x)): pass. In
Python3-warning mode, Python 2.7 will now warn about this odd usage.
(Noted by James Lingard; issue 7362 [https://bugs.python.org/issue7362].)

	It’s now possible to create weak references to old-style class
objects. New-style classes were always weak-referenceable. (Fixed
by Antoine Pitrou; issue 8268 [https://bugs.python.org/issue8268].)

	When a module object is garbage-collected, the module’s dictionary is
now only cleared if no one else is holding a reference to the
dictionary (issue 7140 [https://bugs.python.org/issue7140]).

Interpreter Changes

A new environment variable, PYTHONWARNINGS,
allows controlling warnings. It should be set to a string
containing warning settings, equivalent to those
used with the -W switch, separated by commas.
(Contributed by Brian Curtin; issue 7301 [https://bugs.python.org/issue7301].)

For example, the following setting will print warnings every time
they occur, but turn warnings from the Cookie module into an
error. (The exact syntax for setting an environment variable varies
across operating systems and shells.)

export PYTHONWARNINGS=all,error:::Cookie:0

Optimizations

Several performance enhancements have been added:

	A new opcode was added to perform the initial setup for
with statements, looking up the __enter__() and
__exit__() methods. (Contributed by Benjamin Peterson.)

	The garbage collector now performs better for one common usage
pattern: when many objects are being allocated without deallocating
any of them. This would previously take quadratic
time for garbage collection, but now the number of full garbage collections
is reduced as the number of objects on the heap grows.
The new logic only performs a full garbage collection pass when
the middle generation has been collected 10 times and when the
number of survivor objects from the middle generation exceeds 10% of
the number of objects in the oldest generation. (Suggested by Martin
von Löwis and implemented by Antoine Pitrou; issue 4074 [https://bugs.python.org/issue4074].)

	The garbage collector tries to avoid tracking simple containers
which can’t be part of a cycle. In Python 2.7, this is now true for
tuples and dicts containing atomic types (such as ints, strings,
etc.). Transitively, a dict containing tuples of atomic types won’t
be tracked either. This helps reduce the cost of each
garbage collection by decreasing the number of objects to be
considered and traversed by the collector.
(Contributed by Antoine Pitrou; issue 4688 [https://bugs.python.org/issue4688].)

	Long integers are now stored internally either in base 2**15 or in base
2**30, the base being determined at build time. Previously, they
were always stored in base 2**15. Using base 2**30 gives
significant performance improvements on 64-bit machines, but
benchmark results on 32-bit machines have been mixed. Therefore,
the default is to use base 2**30 on 64-bit machines and base 2**15
on 32-bit machines; on Unix, there’s a new configure option
--enable-big-digits that can be used to override this default.

Apart from the performance improvements this change should be
invisible to end users, with one exception: for testing and
debugging purposes there’s a new structseq sys.long_info that
provides information about the internal format, giving the number of
bits per digit and the size in bytes of the C type used to store
each digit:

>>> import sys
>>> sys.long_info
sys.long_info(bits_per_digit=30, sizeof_digit=4)

(Contributed by Mark Dickinson; issue 4258 [https://bugs.python.org/issue4258].)

Another set of changes made long objects a few bytes smaller: 2 bytes
smaller on 32-bit systems and 6 bytes on 64-bit.
(Contributed by Mark Dickinson; issue 5260 [https://bugs.python.org/issue5260].)

	The division algorithm for long integers has been made faster
by tightening the inner loop, doing shifts instead of multiplications,
and fixing an unnecessary extra iteration.
Various benchmarks show speedups of between 50% and 150% for long
integer divisions and modulo operations.
(Contributed by Mark Dickinson; issue 5512 [https://bugs.python.org/issue5512].)
Bitwise operations are also significantly faster (initial patch by
Gregory Smith; issue 1087418 [https://bugs.python.org/issue1087418]).

	The implementation of % checks for the left-side operand being
a Python string and special-cases it; this results in a 1-3%
performance increase for applications that frequently use %
with strings, such as templating libraries.
(Implemented by Collin Winter; issue 5176 [https://bugs.python.org/issue5176].)

	List comprehensions with an if condition are compiled into
faster bytecode. (Patch by Antoine Pitrou, back-ported to 2.7
by Jeffrey Yasskin; issue 4715 [https://bugs.python.org/issue4715].)

	Converting an integer or long integer to a decimal string was made
faster by special-casing base 10 instead of using a generalized
conversion function that supports arbitrary bases.
(Patch by Gawain Bolton; issue 6713 [https://bugs.python.org/issue6713].)

	The split(), replace(), rindex(),
rpartition(), and rsplit() methods of string-like types
(strings, Unicode strings, and bytearray objects) now use a
fast reverse-search algorithm instead of a character-by-character
scan. This is sometimes faster by a factor of 10. (Added by
Florent Xicluna; issue 7462 [https://bugs.python.org/issue7462] and issue 7622 [https://bugs.python.org/issue7622].)

	The pickle and cPickle modules now automatically
intern the strings used for attribute names, reducing memory usage
of the objects resulting from unpickling. (Contributed by Jake
McGuire; issue 5084 [https://bugs.python.org/issue5084].)

	The cPickle module now special-cases dictionaries,
nearly halving the time required to pickle them.
(Contributed by Collin Winter; issue 5670 [https://bugs.python.org/issue5670].)

New and Improved Modules

As in every release, Python’s standard library received a number of
enhancements and bug fixes. Here’s a partial list of the most notable
changes, sorted alphabetically by module name. Consult the
Misc/NEWS file in the source tree for a more complete list of
changes, or look through the Subversion logs for all the details.

	The bdb module’s base debugging class Bdb
gained a feature for skipping modules. The constructor
now takes an iterable containing glob-style patterns such as
django.*; the debugger will not step into stack frames
from a module that matches one of these patterns.
(Contributed by Maru Newby after a suggestion by
Senthil Kumaran; issue 5142 [https://bugs.python.org/issue5142].)

	The binascii module now supports the buffer API, so it can be
used with memoryview instances and other similar buffer objects.
(Backported from 3.x by Florent Xicluna; issue 7703 [https://bugs.python.org/issue7703].)

	Updated module: the bsddb module has been updated from 4.7.2devel9
to version 4.8.4 of
the pybsddb package [https://www.jcea.es/programacion/pybsddb.htm].
The new version features better Python 3.x compatibility, various bug fixes,
and adds several new BerkeleyDB flags and methods.
(Updated by Jesús Cea Avión; issue 8156 [https://bugs.python.org/issue8156]. The pybsddb
changelog can be read at http://hg.jcea.es/pybsddb/file/tip/ChangeLog.)

	The bz2 module’s BZ2File now supports the context
management protocol, so you can write with bz2.BZ2File(...) as f:.
(Contributed by Hagen Fürstenau; issue 3860 [https://bugs.python.org/issue3860].)

	New class: the Counter class in the collections
module is useful for tallying data. Counter instances
behave mostly like dictionaries but return zero for missing keys instead of
raising a KeyError:

>>> from collections import Counter
>>> c = Counter()
>>> for letter in 'here is a sample of english text':
... c[letter] += 1
...
>>> c
Counter({' ': 6, 'e': 5, 's': 3, 'a': 2, 'i': 2, 'h': 2,
'l': 2, 't': 2, 'g': 1, 'f': 1, 'm': 1, 'o': 1, 'n': 1,
'p': 1, 'r': 1, 'x': 1})
>>> c['e']
5
>>> c['z']
0

There are three additional Counter methods.
most_common() returns the N most common
elements and their counts. elements()
returns an iterator over the contained elements, repeating each
element as many times as its count.
subtract() takes an iterable and
subtracts one for each element instead of adding; if the argument is
a dictionary or another Counter, the counts are
subtracted.

>>> c.most_common(5)
[(' ', 6), ('e', 5), ('s', 3), ('a', 2), ('i', 2)]
>>> c.elements() ->
 'a', 'a', ' ', ' ', ' ', ' ', ' ', ' ',
 'e', 'e', 'e', 'e', 'e', 'g', 'f', 'i', 'i',
 'h', 'h', 'm', 'l', 'l', 'o', 'n', 'p', 's',
 's', 's', 'r', 't', 't', 'x'
>>> c['e']
5
>>> c.subtract('very heavy on the letter e')
>>> c['e'] # Count is now lower
-1

Contributed by Raymond Hettinger; issue 1696199 [https://bugs.python.org/issue1696199].

New class: OrderedDict is described in the earlier
section PEP 372: Adding an Ordered Dictionary to collections.

New method: The deque data type now has a
count() method that returns the number of
contained elements equal to the supplied argument x, and a
reverse() method that reverses the elements
of the deque in-place. deque also exposes its maximum
length as the read-only maxlen attribute.
(Both features added by Raymond Hettinger.)

The namedtuple class now has an optional rename parameter.
If rename is true, field names that are invalid because they’ve
been repeated or aren’t legal Python identifiers will be
renamed to legal names that are derived from the field’s
position within the list of fields:

>>> from collections import namedtuple
>>> T = namedtuple('T', ['field1', '$illegal', 'for', 'field2'], rename=True)
>>> T._fields
('field1', '_1', '_2', 'field2')

(Added by Raymond Hettinger; issue 1818 [https://bugs.python.org/issue1818].)

Finally, the Mapping abstract base class now
returns NotImplemented if a mapping is compared to
another type that isn’t a Mapping.
(Fixed by Daniel Stutzbach; issue 8729 [https://bugs.python.org/issue8729].)

	Constructors for the parsing classes in the ConfigParser module now
take an allow_no_value parameter, defaulting to false; if true,
options without values will be allowed. For example:

>>> import ConfigParser, StringIO
>>> sample_config = """
... [mysqld]
... user = mysql
... pid-file = /var/run/mysqld/mysqld.pid
... skip-bdb
... """
>>> config = ConfigParser.RawConfigParser(allow_no_value=True)
>>> config.readfp(StringIO.StringIO(sample_config))
>>> config.get('mysqld', 'user')
'mysql'
>>> print config.get('mysqld', 'skip-bdb')
None
>>> print config.get('mysqld', 'unknown')
Traceback (most recent call last):
 ...
NoOptionError: No option 'unknown' in section: 'mysqld'

(Contributed by Mats Kindahl; issue 7005 [https://bugs.python.org/issue7005].)

	Deprecated function: contextlib.nested(), which allows
handling more than one context manager with a single with
statement, has been deprecated, because the with statement
now supports multiple context managers.

	The cookielib module now ignores cookies that have an invalid
version field, one that doesn’t contain an integer value. (Fixed by
John J. Lee; issue 3924 [https://bugs.python.org/issue3924].)

	The copy module’s deepcopy() function will now
correctly copy bound instance methods. (Implemented by
Robert Collins; issue 1515 [https://bugs.python.org/issue1515].)

	The ctypes module now always converts None to a C NULL
pointer for arguments declared as pointers. (Changed by Thomas
Heller; issue 4606 [https://bugs.python.org/issue4606].) The underlying libffi library [https://sourceware.org/libffi/] has been updated to version
3.0.9, containing various fixes for different platforms. (Updated
by Matthias Klose; issue 8142 [https://bugs.python.org/issue8142].)

	New method: the datetime module’s timedelta class
gained a total_seconds() method that returns the
number of seconds in the duration. (Contributed by Brian Quinlan; issue 5788 [https://bugs.python.org/issue5788].)

	New method: the Decimal class gained a
from_float() class method that performs an exact
conversion of a floating-point number to a Decimal.
This exact conversion strives for the
closest decimal approximation to the floating-point representation’s value;
the resulting decimal value will therefore still include the inaccuracy,
if any.
For example, Decimal.from_float(0.1) returns
Decimal('0.1000000000000000055511151231257827021181583404541015625').
(Implemented by Raymond Hettinger; issue 4796 [https://bugs.python.org/issue4796].)

Comparing instances of Decimal with floating-point
numbers now produces sensible results based on the numeric values
of the operands. Previously such comparisons would fall back to
Python’s default rules for comparing objects, which produced arbitrary
results based on their type. Note that you still cannot combine
Decimal and floating-point in other operations such as addition,
since you should be explicitly choosing how to convert between float and
Decimal. (Fixed by Mark Dickinson; issue 2531 [https://bugs.python.org/issue2531].)

The constructor for Decimal now accepts
floating-point numbers (added by Raymond Hettinger; issue 8257 [https://bugs.python.org/issue8257])
and non-European Unicode characters such as Arabic-Indic digits
(contributed by Mark Dickinson; issue 6595 [https://bugs.python.org/issue6595]).

Most of the methods of the Context class now accept integers
as well as Decimal instances; the only exceptions are the
canonical() and is_canonical()
methods. (Patch by Juan José Conti; issue 7633 [https://bugs.python.org/issue7633].)

When using Decimal instances with a string’s
format() method, the default alignment was previously
left-alignment. This has been changed to right-alignment, which is
more sensible for numeric types. (Changed by Mark Dickinson; issue 6857 [https://bugs.python.org/issue6857].)

Comparisons involving a signaling NaN value (or sNAN) now signal
InvalidOperation instead of silently returning a true or
false value depending on the comparison operator. Quiet NaN values
(or NaN) are now hashable. (Fixed by Mark Dickinson;
issue 7279 [https://bugs.python.org/issue7279].)

	The difflib module now produces output that is more
compatible with modern diff/patch tools
through one small change, using a tab character instead of spaces as
a separator in the header giving the filename. (Fixed by Anatoly
Techtonik; issue 7585 [https://bugs.python.org/issue7585].)

	The Distutils sdist command now always regenerates the
MANIFEST file, since even if the MANIFEST.in or
setup.py files haven’t been modified, the user might have
created some new files that should be included.
(Fixed by Tarek Ziadé; issue 8688 [https://bugs.python.org/issue8688].)

	The doctest module’s IGNORE_EXCEPTION_DETAIL flag
will now ignore the name of the module containing the exception
being tested. (Patch by Lennart Regebro; issue 7490 [https://bugs.python.org/issue7490].)

	The email module’s Message class will
now accept a Unicode-valued payload, automatically converting the
payload to the encoding specified by output_charset.
(Added by R. David Murray; issue 1368247 [https://bugs.python.org/issue1368247].)

	The Fraction class now accepts a single float or
Decimal instance, or two rational numbers, as
arguments to its constructor. (Implemented by Mark Dickinson;
rationals added in issue 5812 [https://bugs.python.org/issue5812], and float/decimal in
issue 8294 [https://bugs.python.org/issue8294].)

Ordering comparisons (<, <=, >, >=) between
fractions and complex numbers now raise a TypeError.
This fixes an oversight, making the Fraction
match the other numeric types.

	New class: FTP_TLS in
the ftplib module provides secure FTP
connections using TLS encapsulation of authentication as well as
subsequent control and data transfers.
(Contributed by Giampaolo Rodola; issue 2054 [https://bugs.python.org/issue2054].)

The storbinary() method for binary uploads can now restart
uploads thanks to an added rest parameter (patch by Pablo Mouzo;
issue 6845 [https://bugs.python.org/issue6845].)

	New class decorator: total_ordering() in the functools
module takes a class that defines an __eq__() method and one of
__lt__(), __le__(), __gt__(), or __ge__(),
and generates the missing comparison methods. Since the
__cmp__() method is being deprecated in Python 3.x,
this decorator makes it easier to define ordered classes.
(Added by Raymond Hettinger; issue 5479 [https://bugs.python.org/issue5479].)

New function: cmp_to_key() will take an old-style comparison
function that expects two arguments and return a new callable that
can be used as the key parameter to functions such as
sorted(), min() and max(), etc. The primary
intended use is to help with making code compatible with Python 3.x.
(Added by Raymond Hettinger.)

	New function: the gc module’s is_tracked() returns
true if a given instance is tracked by the garbage collector, false
otherwise. (Contributed by Antoine Pitrou; issue 4688 [https://bugs.python.org/issue4688].)

	The gzip module’s GzipFile now supports the context
management protocol, so you can write with gzip.GzipFile(...) as f:
(contributed by Hagen Fürstenau; issue 3860 [https://bugs.python.org/issue3860]), and it now implements
the io.BufferedIOBase ABC, so you can wrap it with
io.BufferedReader for faster processing
(contributed by Nir Aides; issue 7471 [https://bugs.python.org/issue7471]).
It’s also now possible to override the modification time
recorded in a gzipped file by providing an optional timestamp to
the constructor. (Contributed by Jacques Frechet; issue 4272 [https://bugs.python.org/issue4272].)

Files in gzip format can be padded with trailing zero bytes; the
gzip module will now consume these trailing bytes. (Fixed by
Tadek Pietraszek and Brian Curtin; issue 2846 [https://bugs.python.org/issue2846].)

	New attribute: the hashlib module now has an algorithms
attribute containing a tuple naming the supported algorithms.
In Python 2.7, hashlib.algorithms contains
('md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512').
(Contributed by Carl Chenet; issue 7418 [https://bugs.python.org/issue7418].)

	The default HTTPResponse class used by the httplib module now
supports buffering, resulting in much faster reading of HTTP responses.
(Contributed by Kristján Valur Jónsson; issue 4879 [https://bugs.python.org/issue4879].)

The HTTPConnection and HTTPSConnection classes
now support a source_address parameter, a (host, port) 2-tuple
giving the source address that will be used for the connection.
(Contributed by Eldon Ziegler; issue 3972 [https://bugs.python.org/issue3972].)

	The ihooks module now supports relative imports. Note that
ihooks is an older module for customizing imports,
superseded by the imputil module added in Python 2.0.
(Relative import support added by Neil Schemenauer.)

	The imaplib module now supports IPv6 addresses.
(Contributed by Derek Morr; issue 1655 [https://bugs.python.org/issue1655].)

	New function: the inspect module’s getcallargs()
takes a callable and its positional and keyword arguments,
and figures out which of the callable’s parameters will receive each argument,
returning a dictionary mapping argument names to their values. For example:

>>> from inspect import getcallargs
>>> def f(a, b=1, *pos, **named):
... pass
>>> getcallargs(f, 1, 2, 3)
{'a': 1, 'b': 2, 'pos': (3,), 'named': {}}
>>> getcallargs(f, a=2, x=4)
{'a': 2, 'b': 1, 'pos': (), 'named': {'x': 4}}
>>> getcallargs(f)
Traceback (most recent call last):
...
TypeError: f() takes at least 1 argument (0 given)

Contributed by George Sakkis; issue 3135 [https://bugs.python.org/issue3135].

	Updated module: The io library has been upgraded to the version shipped with
Python 3.1. For 3.1, the I/O library was entirely rewritten in C
and is 2 to 20 times faster depending on the task being performed. The
original Python version was renamed to the _pyio module.

One minor resulting change: the io.TextIOBase class now
has an errors attribute giving the error setting
used for encoding and decoding errors (one of 'strict', 'replace',
'ignore').

The io.FileIO class now raises an OSError when passed
an invalid file descriptor. (Implemented by Benjamin Peterson;
issue 4991 [https://bugs.python.org/issue4991].) The truncate() method now preserves the
file position; previously it would change the file position to the
end of the new file. (Fixed by Pascal Chambon; issue 6939 [https://bugs.python.org/issue6939].)

	New function: itertools.compress(data, selectors) takes two
iterators. Elements of data are returned if the corresponding
value in selectors is true:

itertools.compress('ABCDEF', [1,0,1,0,1,1]) =>
 A, C, E, F

New function: itertools.combinations_with_replacement(iter, r)
returns all the possible r-length combinations of elements from the
iterable iter. Unlike combinations(), individual elements
can be repeated in the generated combinations:

itertools.combinations_with_replacement('abc', 2) =>
 ('a', 'a'), ('a', 'b'), ('a', 'c'),
 ('b', 'b'), ('b', 'c'), ('c', 'c')

Note that elements are treated as unique depending on their position
in the input, not their actual values.

The itertools.count() function now has a step argument that
allows incrementing by values other than 1. count() also
now allows keyword arguments, and using non-integer values such as
floats or Decimal instances. (Implemented by Raymond
Hettinger; issue 5032 [https://bugs.python.org/issue5032].)

itertools.combinations() and itertools.product()
previously raised ValueError for values of r larger than
the input iterable. This was deemed a specification error, so they
now return an empty iterator. (Fixed by Raymond Hettinger; issue 4816 [https://bugs.python.org/issue4816].)

	Updated module: The json module was upgraded to version 2.0.9 of the
simplejson package, which includes a C extension that makes
encoding and decoding faster.
(Contributed by Bob Ippolito; issue 4136 [https://bugs.python.org/issue4136].)

To support the new collections.OrderedDict type, json.load()
now has an optional object_pairs_hook parameter that will be called
with any object literal that decodes to a list of pairs.
(Contributed by Raymond Hettinger; issue 5381 [https://bugs.python.org/issue5381].)

	The mailbox module’s Maildir class now records the
timestamp on the directories it reads, and only re-reads them if the
modification time has subsequently changed. This improves
performance by avoiding unneeded directory scans. (Fixed by
A.M. Kuchling and Antoine Pitrou; issue 1607951 [https://bugs.python.org/issue1607951], issue 6896 [https://bugs.python.org/issue6896].)

	New functions: the math module gained
erf() and erfc() for the error function and the complementary error function,
expm1() which computes e**x - 1 with more precision than
using exp() and subtracting 1,
gamma() for the Gamma function, and
lgamma() for the natural log of the Gamma function.
(Contributed by Mark Dickinson and nirinA raseliarison; issue 3366 [https://bugs.python.org/issue3366].)

	The multiprocessing module’s Manager* classes
can now be passed a callable that will be called whenever
a subprocess is started, along with a set of arguments that will be
passed to the callable.
(Contributed by lekma; issue 5585 [https://bugs.python.org/issue5585].)

The Pool class, which controls a pool of worker processes,
now has an optional maxtasksperchild parameter. Worker processes
will perform the specified number of tasks and then exit, causing the
Pool to start a new worker. This is useful if tasks may leak
memory or other resources, or if some tasks will cause the worker to
become very large.
(Contributed by Charles Cazabon; issue 6963 [https://bugs.python.org/issue6963].)

	The nntplib module now supports IPv6 addresses.
(Contributed by Derek Morr; issue 1664 [https://bugs.python.org/issue1664].)

	New functions: the os module wraps the following POSIX system
calls: getresgid() and getresuid(), which return the
real, effective, and saved GIDs and UIDs;
setresgid() and setresuid(), which set
real, effective, and saved GIDs and UIDs to new values;
initgroups(), which initialize the group access list
for the current process. (GID/UID functions
contributed by Travis H.; issue 6508 [https://bugs.python.org/issue6508]. Support for initgroups added
by Jean-Paul Calderone; issue 7333 [https://bugs.python.org/issue7333].)

The os.fork() function now re-initializes the import lock in
the child process; this fixes problems on Solaris when fork()
is called from a thread. (Fixed by Zsolt Cserna; issue 7242 [https://bugs.python.org/issue7242].)

	In the os.path module, the normpath() and
abspath() functions now preserve Unicode; if their input path
is a Unicode string, the return value is also a Unicode string.
(normpath() fixed by Matt Giuca in issue 5827 [https://bugs.python.org/issue5827];
abspath() fixed by Ezio Melotti in issue 3426 [https://bugs.python.org/issue3426].)

	The pydoc module now has help for the various symbols that Python
uses. You can now do help('<<') or help('@'), for example.
(Contributed by David Laban; issue 4739 [https://bugs.python.org/issue4739].)

	The re module’s split(), sub(), and subn()
now accept an optional flags argument, for consistency with the
other functions in the module. (Added by Gregory P. Smith.)

	New function: run_path() in the runpy module
will execute the code at a provided path argument. path can be
the path of a Python source file (example.py), a compiled
bytecode file (example.pyc), a directory
(./package/), or a zip archive (example.zip). If a
directory or zip path is provided, it will be added to the front of
sys.path and the module __main__ will be imported. It’s
expected that the directory or zip contains a __main__.py;
if it doesn’t, some other __main__.py might be imported from
a location later in sys.path. This makes more of the machinery
of runpy available to scripts that want to mimic the way
Python’s command line processes an explicit path name.
(Added by Nick Coghlan; issue 6816 [https://bugs.python.org/issue6816].)

	New function: in the shutil module, make_archive()
takes a filename, archive type (zip or tar-format), and a directory
path, and creates an archive containing the directory’s contents.
(Added by Tarek Ziadé.)

shutil‘s copyfile() and copytree()
functions now raise a SpecialFileError exception when
asked to copy a named pipe. Previously the code would treat
named pipes like a regular file by opening them for reading, and
this would block indefinitely. (Fixed by Antoine Pitrou; issue 3002 [https://bugs.python.org/issue3002].)

	The signal module no longer re-installs the signal handler
unless this is truly necessary, which fixes a bug that could make it
impossible to catch the EINTR signal robustly. (Fixed by
Charles-Francois Natali; issue 8354 [https://bugs.python.org/issue8354].)

	New functions: in the site module, three new functions
return various site- and user-specific paths.
getsitepackages() returns a list containing all
global site-packages directories,
getusersitepackages() returns the path of the user’s
site-packages directory, and
getuserbase() returns the value of the USER_BASE
environment variable, giving the path to a directory that can be used
to store data.
(Contributed by Tarek Ziadé; issue 6693 [https://bugs.python.org/issue6693].)

The site module now reports exceptions occurring
when the sitecustomize module is imported, and will no longer
catch and swallow the KeyboardInterrupt exception. (Fixed by
Victor Stinner; issue 3137 [https://bugs.python.org/issue3137].)

	The create_connection() function
gained a source_address parameter, a (host, port) 2-tuple
giving the source address that will be used for the connection.
(Contributed by Eldon Ziegler; issue 3972 [https://bugs.python.org/issue3972].)

The recv_into() and recvfrom_into()
methods will now write into objects that support the buffer API, most usefully
the bytearray and memoryview objects. (Implemented by
Antoine Pitrou; issue 8104 [https://bugs.python.org/issue8104].)

	The SocketServer module’s TCPServer class now
supports socket timeouts and disabling the Nagle algorithm.
The disable_nagle_algorithm class attribute
defaults to False; if overridden to be True,
new request connections will have the TCP_NODELAY option set to
prevent buffering many small sends into a single TCP packet.
The timeout class attribute can hold
a timeout in seconds that will be applied to the request socket; if
no request is received within that time, handle_timeout()
will be called and handle_request() will return.
(Contributed by Kristján Valur Jónsson; issue 6192 [https://bugs.python.org/issue6192] and issue 6267 [https://bugs.python.org/issue6267].)

	Updated module: the sqlite3 module has been updated to
version 2.6.0 of the pysqlite package [https://github.com/ghaering/pysqlite]. Version 2.6.0 includes a number of bugfixes, and adds
the ability to load SQLite extensions from shared libraries.
Call the enable_load_extension(True) method to enable extensions,
and then call load_extension() to load a particular shared library.
(Updated by Gerhard Häring.)

	The ssl module’s SSLSocket objects now support the
buffer API, which fixed a test suite failure (fix by Antoine Pitrou;
issue 7133 [https://bugs.python.org/issue7133]) and automatically set
OpenSSL’s SSL_MODE_AUTO_RETRY, which will prevent an error
code being returned from recv() operations that trigger an SSL
renegotiation (fix by Antoine Pitrou; issue 8222 [https://bugs.python.org/issue8222]).

The ssl.wrap_socket() constructor function now takes a
ciphers argument that’s a string listing the encryption algorithms
to be allowed; the format of the string is described
in the OpenSSL documentation [https://www.openssl.org/docs/apps/ciphers.html#CIPHER-LIST-FORMAT].
(Added by Antoine Pitrou; issue 8322 [https://bugs.python.org/issue8322].)

Another change makes the extension load all of OpenSSL’s ciphers and
digest algorithms so that they’re all available. Some SSL
certificates couldn’t be verified, reporting an “unknown algorithm”
error. (Reported by Beda Kosata, and fixed by Antoine Pitrou;
issue 8484 [https://bugs.python.org/issue8484].)

The version of OpenSSL being used is now available as the module
attributes ssl.OPENSSL_VERSION (a string),
ssl.OPENSSL_VERSION_INFO (a 5-tuple), and
ssl.OPENSSL_VERSION_NUMBER (an integer). (Added by Antoine
Pitrou; issue 8321 [https://bugs.python.org/issue8321].)

	The struct module will no longer silently ignore overflow
errors when a value is too large for a particular integer format
code (one of bBhHiIlLqQ); it now always raises a
struct.error exception. (Changed by Mark Dickinson;
issue 1523 [https://bugs.python.org/issue1523].) The pack() function will also
attempt to use __index__() to convert and pack non-integers
before trying the __int__() method or reporting an error.
(Changed by Mark Dickinson; issue 8300 [https://bugs.python.org/issue8300].)

	New function: the subprocess module’s
check_output() runs a command with a specified set of arguments
and returns the command’s output as a string when the command runs without
error, or raises a CalledProcessError exception otherwise.

>>> subprocess.check_output(['df', '-h', '.'])
'Filesystem Size Used Avail Capacity Mounted on\n
/dev/disk0s2 52G 49G 3.0G 94% /\n'

>>> subprocess.check_output(['df', '-h', '/bogus'])
 ...
subprocess.CalledProcessError: Command '['df', '-h', '/bogus']' returned non-zero exit status 1

(Contributed by Gregory P. Smith.)

The subprocess module will now retry its internal system calls
on receiving an EINTR signal. (Reported by several people; final
patch by Gregory P. Smith in issue 1068268 [https://bugs.python.org/issue1068268].)

	New function: is_declared_global() in the symtable module
returns true for variables that are explicitly declared to be global,
false for ones that are implicitly global.
(Contributed by Jeremy Hylton.)

	The syslog module will now use the value of sys.argv[0] as the
identifier instead of the previous default value of 'python'.
(Changed by Sean Reifschneider; issue 8451 [https://bugs.python.org/issue8451].)

	The sys.version_info value is now a named tuple, with attributes
named major, minor, micro,
releaselevel, and serial. (Contributed by Ross
Light; issue 4285 [https://bugs.python.org/issue4285].)

sys.getwindowsversion() also returns a named tuple,
with attributes named major, minor, build,
platform, service_pack, service_pack_major,
service_pack_minor, suite_mask, and
product_type. (Contributed by Brian Curtin; issue 7766 [https://bugs.python.org/issue7766].)

	The tarfile module’s default error handling has changed, to
no longer suppress fatal errors. The default error level was previously 0,
which meant that errors would only result in a message being written to the
debug log, but because the debug log is not activated by default,
these errors go unnoticed. The default error level is now 1,
which raises an exception if there’s an error.
(Changed by Lars Gustäbel; issue 7357 [https://bugs.python.org/issue7357].)

tarfile now supports filtering the TarInfo
objects being added to a tar file. When you call add(),
you may supply an optional filter argument
that’s a callable. The filter callable will be passed the
TarInfo for every file being added, and can modify and return it.
If the callable returns None, the file will be excluded from the
resulting archive. This is more powerful than the existing
exclude argument, which has therefore been deprecated.
(Added by Lars Gustäbel; issue 6856 [https://bugs.python.org/issue6856].)
The TarFile class also now supports the context management protocol.
(Added by Lars Gustäbel; issue 7232 [https://bugs.python.org/issue7232].)

	The wait() method of the threading.Event class
now returns the internal flag on exit. This means the method will usually
return true because wait() is supposed to block until the
internal flag becomes true. The return value will only be false if
a timeout was provided and the operation timed out.
(Contributed by Tim Lesher; issue 1674032 [https://bugs.python.org/issue1674032].)

	The Unicode database provided by the unicodedata module is
now used internally to determine which characters are numeric,
whitespace, or represent line breaks. The database also
includes information from the Unihan.txt data file (patch
by Anders Chrigström and Amaury Forgeot d’Arc; issue 1571184 [https://bugs.python.org/issue1571184])
and has been updated to version 5.2.0 (updated by
Florent Xicluna; issue 8024 [https://bugs.python.org/issue8024]).

	The urlparse module’s urlsplit() now handles
unknown URL schemes in a fashion compliant with RFC 3986 [https://tools.ietf.org/html/rfc3986.html]: if the
URL is of the form "<something>://...", the text before the
:// is treated as the scheme, even if it’s a made-up scheme that
the module doesn’t know about. This change may break code that
worked around the old behaviour. For example, Python 2.6.4 or 2.5
will return the following:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', '', '//host/filename?query', '', '')

Python 2.7 (and Python 2.6.5) will return:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', 'host', '/filename?query', '', '')

(Python 2.7 actually produces slightly different output, since it
returns a named tuple instead of a standard tuple.)

The urlparse module also supports IPv6 literal addresses as defined by
RFC 2732 [https://tools.ietf.org/html/rfc2732.html] (contributed by Senthil Kumaran; issue 2987 [https://bugs.python.org/issue2987]).

>>> urlparse.urlparse('http://[1080::8:800:200C:417A]/foo')
ParseResult(scheme='http', netloc='[1080::8:800:200C:417A]',
 path='/foo', params='', query='', fragment='')

	New class: the WeakSet class in the weakref
module is a set that only holds weak references to its elements; elements
will be removed once there are no references pointing to them.
(Originally implemented in Python 3.x by Raymond Hettinger, and backported
to 2.7 by Michael Foord.)

	The ElementTree library, xml.etree, no longer escapes
ampersands and angle brackets when outputting an XML processing
instruction (which looks like <?xml-stylesheet href="#style1"?>)
or comment (which looks like <!-- comment -->).
(Patch by Neil Muller; issue 2746 [https://bugs.python.org/issue2746].)

	The XML-RPC client and server, provided by the xmlrpclib and
SimpleXMLRPCServer modules, have improved performance by
supporting HTTP/1.1 keep-alive and by optionally using gzip encoding
to compress the XML being exchanged. The gzip compression is
controlled by the encode_threshold attribute of
SimpleXMLRPCRequestHandler, which contains a size in bytes;
responses larger than this will be compressed.
(Contributed by Kristján Valur Jónsson; issue 6267 [https://bugs.python.org/issue6267].)

	The zipfile module’s ZipFile now supports the context
management protocol, so you can write with zipfile.ZipFile(...) as f:.
(Contributed by Brian Curtin; issue 5511 [https://bugs.python.org/issue5511].)

zipfile now also supports archiving empty directories and
extracts them correctly. (Fixed by Kuba Wieczorek; issue 4710 [https://bugs.python.org/issue4710].)
Reading files out of an archive is faster, and interleaving
read() and readline() now works correctly.
(Contributed by Nir Aides; issue 7610 [https://bugs.python.org/issue7610].)

The is_zipfile() function now
accepts a file object, in addition to the path names accepted in earlier
versions. (Contributed by Gabriel Genellina; issue 4756 [https://bugs.python.org/issue4756].)

The writestr() method now has an optional compress_type parameter
that lets you override the default compression method specified in the
ZipFile constructor. (Contributed by Ronald Oussoren;
issue 6003 [https://bugs.python.org/issue6003].)

New module: importlib

Python 3.1 includes the importlib package, a re-implementation
of the logic underlying Python’s import statement.
importlib is useful for implementors of Python interpreters and
to users who wish to write new importers that can participate in the
import process. Python 2.7 doesn’t contain the complete
importlib package, but instead has a tiny subset that contains
a single function, import_module().

import_module(name, package=None) imports a module. name is
a string containing the module or package’s name. It’s possible to do
relative imports by providing a string that begins with a .
character, such as ..utils.errors. For relative imports, the
package argument must be provided and is the name of the package that
will be used as the anchor for
the relative import. import_module() both inserts the imported
module into sys.modules and returns the module object.

Here are some examples:

>>> from importlib import import_module
>>> anydbm = import_module('anydbm') # Standard absolute import
>>> anydbm
<module 'anydbm' from '/p/python/Lib/anydbm.py'>
>>> # Relative import
>>> file_util = import_module('..file_util', 'distutils.command')
>>> file_util
<module 'distutils.file_util' from '/python/Lib/distutils/file_util.pyc'>

importlib was implemented by Brett Cannon and introduced in
Python 3.1.

New module: sysconfig

The sysconfig module has been pulled out of the Distutils
package, becoming a new top-level module in its own right.
sysconfig provides functions for getting information about
Python’s build process: compiler switches, installation paths, the
platform name, and whether Python is running from its source
directory.

Some of the functions in the module are:

	get_config_var() returns variables from Python’s
Makefile and the pyconfig.h file.

	get_config_vars() returns a dictionary containing
all of the configuration variables.

	get_path() returns the configured path for
a particular type of module: the standard library,
site-specific modules, platform-specific modules, etc.

	is_python_build() returns true if you’re running a
binary from a Python source tree, and false otherwise.

Consult the sysconfig documentation for more details and for
a complete list of functions.

The Distutils package and sysconfig are now maintained by Tarek
Ziadé, who has also started a Distutils2 package (source repository at
https://hg.python.org/distutils2/) for developing a next-generation
version of Distutils.

ttk: Themed Widgets for Tk

Tcl/Tk 8.5 includes a set of themed widgets that re-implement basic Tk
widgets but have a more customizable appearance and can therefore more
closely resemble the native platform’s widgets. This widget
set was originally called Tile, but was renamed to Ttk (for “themed Tk”)
on being added to Tcl/Tck release 8.5.

To learn more, read the ttk module documentation. You may also
wish to read the Tcl/Tk manual page describing the
Ttk theme engine, available at
https://www.tcl.tk/man/tcl8.5/TkCmd/ttk_intro.htm. Some
screenshots of the Python/Ttk code in use are at
http://code.google.com/p/python-ttk/wiki/Screenshots.

The ttk module was written by Guilherme Polo and added in
issue 2983 [https://bugs.python.org/issue2983]. An alternate version called Tile.py, written by
Martin Franklin and maintained by Kevin Walzer, was proposed for
inclusion in issue 2618 [https://bugs.python.org/issue2618], but the authors argued that Guilherme
Polo’s work was more comprehensive.

Updated module: unittest

The unittest module was greatly enhanced; many
new features were added. Most of these features were implemented
by Michael Foord, unless otherwise noted. The enhanced version of
the module is downloadable separately for use with Python versions 2.4 to 2.6,
packaged as the unittest2 package, from
https://pypi.python.org/pypi/unittest2.

When used from the command line, the module can automatically discover
tests. It’s not as fancy as py.test [http://pytest.org] or
nose [http://code.google.com/p/python-nose/], but provides a simple way
to run tests kept within a set of package directories. For example,
the following command will search the test/ subdirectory for
any importable test files named test*.py:

python -m unittest discover -s test

Consult the unittest module documentation for more details.
(Developed in issue 6001 [https://bugs.python.org/issue6001].)

The main() function supports some other new options:

	-b or --buffer will buffer the standard output
and standard error streams during each test. If the test passes,
any resulting output will be discarded; on failure, the buffered
output will be displayed.

	-c or --catch will cause the control-C interrupt
to be handled more gracefully. Instead of interrupting the test
process immediately, the currently running test will be completed
and then the partial results up to the interruption will be reported.
If you’re impatient, a second press of control-C will cause an immediate
interruption.

This control-C handler tries to avoid causing problems when the code
being tested or the tests being run have defined a signal handler of
their own, by noticing that a signal handler was already set and
calling it. If this doesn’t work for you, there’s a
removeHandler() decorator that can be used to mark tests that
should have the control-C handling disabled.

	-f or --failfast makes
test execution stop immediately when a test fails instead of
continuing to execute further tests. (Suggested by Cliff Dyer and
implemented by Michael Foord; issue 8074 [https://bugs.python.org/issue8074].)

The progress messages now show ‘x’ for expected failures
and ‘u’ for unexpected successes when run in verbose mode.
(Contributed by Benjamin Peterson.)

Test cases can raise the SkipTest exception to skip a
test (issue 1034053 [https://bugs.python.org/issue1034053]).

The error messages for assertEqual(),
assertTrue(), and assertFalse()
failures now provide more information. If you set the
longMessage attribute of your TestCase classes to
True, both the standard error message and any additional message you
provide will be printed for failures. (Added by Michael Foord; issue 5663 [https://bugs.python.org/issue5663].)

The assertRaises() method now
returns a context handler when called without providing a callable
object to run. For example, you can write this:

with self.assertRaises(KeyError):
 {}['foo']

(Implemented by Antoine Pitrou; issue 4444 [https://bugs.python.org/issue4444].)

Module- and class-level setup and teardown fixtures are now supported.
Modules can contain setUpModule() and tearDownModule()
functions. Classes can have setUpClass() and
tearDownClass() methods that must be defined as class methods
(using @classmethod or equivalent). These functions and
methods are invoked when the test runner switches to a test case in a
different module or class.

The methods addCleanup() and
doCleanups() were added.
addCleanup() lets you add cleanup functions that
will be called unconditionally (after setUp() if
setUp() fails, otherwise after tearDown()). This allows
for much simpler resource allocation and deallocation during tests
(issue 5679 [https://bugs.python.org/issue5679]).

A number of new methods were added that provide more specialized
tests. Many of these methods were written by Google engineers
for use in their test suites; Gregory P. Smith, Michael Foord, and
GvR worked on merging them into Python’s version of unittest.

	assertIsNone() and assertIsNotNone() take one
expression and verify that the result is or is not None.

	assertIs() and assertIsNot()
take two values and check whether the two values evaluate to the same object or not.
(Added by Michael Foord; issue 2578 [https://bugs.python.org/issue2578].)

	assertIsInstance() and
assertNotIsInstance() check whether
the resulting object is an instance of a particular class, or of
one of a tuple of classes. (Added by Georg Brandl; issue 7031 [https://bugs.python.org/issue7031].)

	assertGreater(), assertGreaterEqual(),
assertLess(), and assertLessEqual() compare
two quantities.

	assertMultiLineEqual() compares two strings, and if they’re
not equal, displays a helpful comparison that highlights the
differences in the two strings. This comparison is now used by
default when Unicode strings are compared with assertEqual().

	assertRegexpMatches() and
assertNotRegexpMatches() checks whether the
first argument is a string matching or not matching the regular
expression provided as the second argument (issue 8038 [https://bugs.python.org/issue8038]).

	assertRaisesRegexp() checks whether a particular exception
is raised, and then also checks that the string representation of
the exception matches the provided regular expression.

	assertIn() and assertNotIn()
tests whether first is or is not in second.

	assertItemsEqual() tests whether two provided sequences
contain the same elements.

	assertSetEqual() compares whether two sets are equal, and
only reports the differences between the sets in case of error.

	Similarly, assertListEqual() and assertTupleEqual()
compare the specified types and explain any differences without necessarily
printing their full values; these methods are now used by default
when comparing lists and tuples using assertEqual().
More generally, assertSequenceEqual() compares two sequences
and can optionally check whether both sequences are of a
particular type.

	assertDictEqual() compares two dictionaries and reports the
differences; it’s now used by default when you compare two dictionaries
using assertEqual(). assertDictContainsSubset() checks whether
all of the key/value pairs in first are found in second.

	assertAlmostEqual() and assertNotAlmostEqual() test
whether first and second are approximately equal. This method
can either round their difference to an optionally-specified number
of places (the default is 7) and compare it to zero, or require
the difference to be smaller than a supplied delta value.

	loadTestsFromName() properly honors the
suiteClass attribute of
the TestLoader. (Fixed by Mark Roddy; issue 6866 [https://bugs.python.org/issue6866].)

	A new hook lets you extend the assertEqual() method to handle
new data types. The addTypeEqualityFunc() method takes a type
object and a function. The function will be used when both of the
objects being compared are of the specified type. This function
should compare the two objects and raise an exception if they don’t
match; it’s a good idea for the function to provide additional
information about why the two objects aren’t matching, much as the new
sequence comparison methods do.

unittest.main() now takes an optional exit argument. If
False, main() doesn’t call sys.exit(), allowing
main() to be used from the interactive interpreter.
(Contributed by J. Pablo Fernández; issue 3379 [https://bugs.python.org/issue3379].)

TestResult has new startTestRun() and
stopTestRun() methods that are called immediately before
and after a test run. (Contributed by Robert Collins; issue 5728 [https://bugs.python.org/issue5728].)

With all these changes, the unittest.py was becoming awkwardly
large, so the module was turned into a package and the code split into
several files (by Benjamin Peterson). This doesn’t affect how the
module is imported or used.

See also

	http://www.voidspace.org.uk/python/articles/unittest2.shtml

	Describes the new features, how to use them, and the
rationale for various design decisions. (By Michael Foord.)

Updated module: ElementTree 1.3

The version of the ElementTree library included with Python was updated to
version 1.3. Some of the new features are:

	The various parsing functions now take a parser keyword argument
giving an XMLParser instance that will
be used. This makes it possible to override the file’s internal encoding:

p = ET.XMLParser(encoding='utf-8')
t = ET.XML("""<root/>""", parser=p)

Errors in parsing XML now raise a ParseError exception, whose
instances have a position attribute
containing a (line, column) tuple giving the location of the problem.

	ElementTree’s code for converting trees to a string has been
significantly reworked, making it roughly twice as fast in many
cases. The ElementTree.write()
and Element.write() methods now have a method parameter that can be
“xml” (the default), “html”, or “text”. HTML mode will output empty
elements as <empty></empty> instead of <empty/>, and text
mode will skip over elements and only output the text chunks. If
you set the tag attribute of an element to None but
leave its children in place, the element will be omitted when the
tree is written out, so you don’t need to do more extensive rearrangement
to remove a single element.

Namespace handling has also been improved. All xmlns:<whatever>
declarations are now output on the root element, not scattered throughout
the resulting XML. You can set the default namespace for a tree
by setting the default_namespace attribute and can
register new prefixes with register_namespace(). In XML mode,
you can use the true/false xml_declaration parameter to suppress the
XML declaration.

	New Element method:
extend() appends the items from a
sequence to the element’s children. Elements themselves behave like
sequences, so it’s easy to move children from one element to
another:

from xml.etree import ElementTree as ET

t = ET.XML("""<list>
 <item>1</item> <item>2</item> <item>3</item>
</list>""")
new = ET.XML('<root/>')
new.extend(t)

Outputs <root><item>1</item>...</root>
print ET.tostring(new)

	New Element method:
iter() yields the children of the
element as a generator. It’s also possible to write for child in
elem: to loop over an element’s children. The existing method
getiterator() is now deprecated, as is getchildren()
which constructs and returns a list of children.

	New Element method:
itertext() yields all chunks of
text that are descendants of the element. For example:

t = ET.XML("""<list>
 <item>1</item> <item>2</item> <item>3</item>
</list>""")

Outputs ['\n ', '1', ' ', '2', ' ', '3', '\n']
print list(t.itertext())

	Deprecated: using an element as a Boolean (i.e., if elem:) would
return true if the element had any children, or false if there were
no children. This behaviour is confusing – None is false, but
so is a childless element? – so it will now trigger a
FutureWarning. In your code, you should be explicit: write
len(elem) != 0 if you’re interested in the number of children,
or elem is not None.

Fredrik Lundh develops ElementTree and produced the 1.3 version;
you can read his article describing 1.3 at
http://effbot.org/zone/elementtree-13-intro.htm.
Florent Xicluna updated the version included with
Python, after discussions on python-dev and in issue 6472 [https://bugs.python.org/issue6472].)

Build and C API Changes

Changes to Python’s build process and to the C API include:

	The latest release of the GNU Debugger, GDB 7, can be scripted
using Python [https://sourceware.org/gdb/current/onlinedocs/gdb/Python.html].
When you begin debugging an executable program P, GDB will look for
a file named P-gdb.py and automatically read it. Dave Malcolm
contributed a python-gdb.py that adds a number of
commands useful when debugging Python itself. For example,
py-up and py-down go up or down one Python stack frame,
which usually corresponds to several C stack frames. py-print
prints the value of a Python variable, and py-bt prints the
Python stack trace. (Added as a result of issue 8032 [https://bugs.python.org/issue8032].)

	If you use the .gdbinit file provided with Python,
the “pyo” macro in the 2.7 version now works correctly when the thread being
debugged doesn’t hold the GIL; the macro now acquires it before printing.
(Contributed by Victor Stinner; issue 3632 [https://bugs.python.org/issue3632].)

	Py_AddPendingCall() is now thread-safe, letting any
worker thread submit notifications to the main Python thread. This
is particularly useful for asynchronous IO operations.
(Contributed by Kristján Valur Jónsson; issue 4293 [https://bugs.python.org/issue4293].)

	New function: PyCode_NewEmpty() creates an empty code object;
only the filename, function name, and first line number are required.
This is useful for extension modules that are attempting to
construct a more useful traceback stack. Previously such
extensions needed to call PyCode_New(), which had many
more arguments. (Added by Jeffrey Yasskin.)

	New function: PyErr_NewExceptionWithDoc() creates a new
exception class, just as the existing PyErr_NewException() does,
but takes an extra char * argument containing the docstring for the
new exception class. (Added by ‘lekma’ on the Python bug tracker;
issue 7033 [https://bugs.python.org/issue7033].)

	New function: PyFrame_GetLineNumber() takes a frame object
and returns the line number that the frame is currently executing.
Previously code would need to get the index of the bytecode
instruction currently executing, and then look up the line number
corresponding to that address. (Added by Jeffrey Yasskin.)

	New functions: PyLong_AsLongAndOverflow() and
PyLong_AsLongLongAndOverflow() approximates a Python long
integer as a C long or long long.
If the number is too large to fit into
the output type, an overflow flag is set and returned to the caller.
(Contributed by Case Van Horsen; issue 7528 [https://bugs.python.org/issue7528] and issue 7767 [https://bugs.python.org/issue7767].)

	New function: stemming from the rewrite of string-to-float conversion,
a new PyOS_string_to_double() function was added. The old
PyOS_ascii_strtod() and PyOS_ascii_atof() functions
are now deprecated.

	New function: PySys_SetArgvEx() sets the value of
sys.argv and can optionally update sys.path to include the
directory containing the script named by sys.argv[0] depending
on the value of an updatepath parameter.

This function was added to close a security hole for applications
that embed Python. The old function, PySys_SetArgv(), would
always update sys.path, and sometimes it would add the current
directory. This meant that, if you ran an application embedding
Python in a directory controlled by someone else, attackers could
put a Trojan-horse module in the directory (say, a file named
os.py) that your application would then import and run.

If you maintain a C/C++ application that embeds Python, check
whether you’re calling PySys_SetArgv() and carefully consider
whether the application should be using PySys_SetArgvEx()
with updatepath set to false.

Security issue reported as CVE-2008-5983 [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983];
discussed in issue 5753 [https://bugs.python.org/issue5753], and fixed by Antoine Pitrou.

	New macros: the Python header files now define the following macros:
Py_ISALNUM,
Py_ISALPHA,
Py_ISDIGIT,
Py_ISLOWER,
Py_ISSPACE,
Py_ISUPPER,
Py_ISXDIGIT,
Py_TOLOWER, and Py_TOUPPER.
All of these functions are analogous to the C
standard macros for classifying characters, but ignore the current
locale setting, because in
several places Python needs to analyze characters in a
locale-independent way. (Added by Eric Smith;
issue 5793 [https://bugs.python.org/issue5793].)

	Removed function: PyEval_CallObject is now only available
as a macro. A function version was being kept around to preserve
ABI linking compatibility, but that was in 1997; it can certainly be
deleted by now. (Removed by Antoine Pitrou; issue 8276 [https://bugs.python.org/issue8276].)

	New format codes: the PyFormat_FromString(),
PyFormat_FromStringV(), and PyErr_Format() functions now
accept %lld and %llu format codes for displaying
C’s long long types.
(Contributed by Mark Dickinson; issue 7228 [https://bugs.python.org/issue7228].)

	The complicated interaction between threads and process forking has
been changed. Previously, the child process created by
os.fork() might fail because the child is created with only a
single thread running, the thread performing the os.fork().
If other threads were holding a lock, such as Python’s import lock,
when the fork was performed, the lock would still be marked as
“held” in the new process. But in the child process nothing would
ever release the lock, since the other threads weren’t replicated,
and the child process would no longer be able to perform imports.

Python 2.7 acquires the import lock before performing an
os.fork(), and will also clean up any locks created using the
threading module. C extension modules that have internal
locks, or that call fork() themselves, will not benefit
from this clean-up.

(Fixed by Thomas Wouters; issue 1590864 [https://bugs.python.org/issue1590864].)

	The Py_Finalize() function now calls the internal
threading._shutdown() function; this prevents some exceptions from
being raised when an interpreter shuts down.
(Patch by Adam Olsen; issue 1722344 [https://bugs.python.org/issue1722344].)

	When using the PyMemberDef structure to define attributes
of a type, Python will no longer let you try to delete or set a
T_STRING_INPLACE attribute.

	Global symbols defined by the ctypes module are now prefixed
with Py, or with _ctypes. (Implemented by Thomas
Heller; issue 3102 [https://bugs.python.org/issue3102].)

	New configure option: the --with-system-expat switch allows
building the pyexpat module to use the system Expat library.
(Contributed by Arfrever Frehtes Taifersar Arahesis; issue 7609 [https://bugs.python.org/issue7609].)

	New configure option: the
--with-valgrind option will now disable the pymalloc
allocator, which is difficult for the Valgrind memory-error detector
to analyze correctly.
Valgrind will therefore be better at detecting memory leaks and
overruns. (Contributed by James Henstridge; issue 2422 [https://bugs.python.org/issue2422].)

	New configure option: you can now supply an empty string to
--with-dbmliborder= in order to disable all of the various
DBM modules. (Added by Arfrever Frehtes Taifersar Arahesis;
issue 6491 [https://bugs.python.org/issue6491].)

	The configure script now checks for floating-point rounding bugs
on certain 32-bit Intel chips and defines a X87_DOUBLE_ROUNDING
preprocessor definition. No code currently uses this definition,
but it’s available if anyone wishes to use it.
(Added by Mark Dickinson; issue 2937 [https://bugs.python.org/issue2937].)

configure also now sets a LDCXXSHARED Makefile
variable for supporting C++ linking. (Contributed by Arfrever
Frehtes Taifersar Arahesis; issue 1222585 [https://bugs.python.org/issue1222585].)

	The build process now creates the necessary files for pkg-config
support. (Contributed by Clinton Roy; issue 3585 [https://bugs.python.org/issue3585].)

	The build process now supports Subversion 1.7. (Contributed by
Arfrever Frehtes Taifersar Arahesis; issue 6094 [https://bugs.python.org/issue6094].)

Capsules

Python 3.1 adds a new C datatype, PyCapsule, for providing a
C API to an extension module. A capsule is essentially the holder of
a C void * pointer, and is made available as a module attribute; for
example, the socket module’s API is exposed as socket.CAPI,
and unicodedata exposes ucnhash_CAPI. Other extensions
can import the module, access its dictionary to get the capsule
object, and then get the void * pointer, which will usually point
to an array of pointers to the module’s various API functions.

There is an existing data type already used for this,
PyCObject, but it doesn’t provide type safety. Evil code
written in pure Python could cause a segmentation fault by taking a
PyCObject from module A and somehow substituting it for the
PyCObject in module B. Capsules know their own name,
and getting the pointer requires providing the name:

void *vtable;

if (!PyCapsule_IsValid(capsule, "mymodule.CAPI") {
 PyErr_SetString(PyExc_ValueError, "argument type invalid");
 return NULL;
}

vtable = PyCapsule_GetPointer(capsule, "mymodule.CAPI");

You are assured that vtable points to whatever you’re expecting.
If a different capsule was passed in, PyCapsule_IsValid() would
detect the mismatched name and return false. Refer to
Providing a C API for an Extension Module for more information on using these objects.

Python 2.7 now uses capsules internally to provide various
extension-module APIs, but the PyCObject_AsVoidPtr() was
modified to handle capsules, preserving compile-time compatibility
with the CObject interface. Use of
PyCObject_AsVoidPtr() will signal a
PendingDeprecationWarning, which is silent by default.

Implemented in Python 3.1 and backported to 2.7 by Larry Hastings;
discussed in issue 5630 [https://bugs.python.org/issue5630].

Port-Specific Changes: Windows

	The msvcrt module now contains some constants from
the crtassem.h header file:
CRT_ASSEMBLY_VERSION,
VC_ASSEMBLY_PUBLICKEYTOKEN,
and LIBRARIES_ASSEMBLY_NAME_PREFIX.
(Contributed by David Cournapeau; issue 4365 [https://bugs.python.org/issue4365].)

	The _winreg module for accessing the registry now implements
the CreateKeyEx() and DeleteKeyEx()
functions, extended versions of previously-supported functions that
take several extra arguments. The DisableReflectionKey(),
EnableReflectionKey(), and QueryReflectionKey()
were also tested and documented.
(Implemented by Brian Curtin: issue 7347 [https://bugs.python.org/issue7347].)

	The new _beginthreadex() API is used to start threads, and
the native thread-local storage functions are now used.
(Contributed by Kristján Valur Jónsson; issue 3582 [https://bugs.python.org/issue3582].)

	The os.kill() function now works on Windows. The signal value
can be the constants CTRL_C_EVENT,
CTRL_BREAK_EVENT, or any integer. The first two constants
will send Control-C and Control-Break keystroke events to
subprocesses; any other value will use the TerminateProcess()
API. (Contributed by Miki Tebeka; issue 1220212 [https://bugs.python.org/issue1220212].)

	The os.listdir() function now correctly fails
for an empty path. (Fixed by Hirokazu Yamamoto; issue 5913 [https://bugs.python.org/issue5913].)

	The mimelib module will now read the MIME database from
the Windows registry when initializing.
(Patch by Gabriel Genellina; issue 4969 [https://bugs.python.org/issue4969].)

Port-Specific Changes: Mac OS X

	The path /Library/Python/2.7/site-packages is now appended to
sys.path, in order to share added packages between the system
installation and a user-installed copy of the same version.
(Changed by Ronald Oussoren; issue 4865 [https://bugs.python.org/issue4865].)

Port-Specific Changes: FreeBSD

	FreeBSD 7.1’s SO_SETFIB constant, used with
getsockopt()/setsockopt() to select an
alternate routing table, is now available in the socket
module. (Added by Kyle VanderBeek; issue 8235 [https://bugs.python.org/issue8235].)

Other Changes and Fixes

	Two benchmark scripts, iobench and ccbench, were
added to the Tools directory. iobench measures the
speed of the built-in file I/O objects returned by open()
while performing various operations, and ccbench is a
concurrency benchmark that tries to measure computing throughput,
thread switching latency, and IO processing bandwidth when
performing several tasks using a varying number of threads.

	The Tools/i18n/msgfmt.py script now understands plural
forms in .po files. (Fixed by Martin von Löwis;
issue 5464 [https://bugs.python.org/issue5464].)

	When importing a module from a .pyc or .pyo file
with an existing .py counterpart, the co_filename
attributes of the resulting code objects are overwritten when the
original filename is obsolete. This can happen if the file has been
renamed, moved, or is accessed through different paths. (Patch by
Ziga Seilnacht and Jean-Paul Calderone; issue 1180193 [https://bugs.python.org/issue1180193].)

	The regrtest.py script now takes a --randseed=
switch that takes an integer that will be used as the random seed
for the -r option that executes tests in random order.
The -r option also reports the seed that was used
(Added by Collin Winter.)

	Another regrtest.py switch is -j, which
takes an integer specifying how many tests run in parallel. This
allows reducing the total runtime on multi-core machines.
This option is compatible with several other options, including the
-R switch which is known to produce long runtimes.
(Added by Antoine Pitrou, issue 6152 [https://bugs.python.org/issue6152].) This can also be used
with a new -F switch that runs selected tests in a loop
until they fail. (Added by Antoine Pitrou; issue 7312 [https://bugs.python.org/issue7312].)

	When executed as a script, the py_compile.py module now
accepts '-' as an argument, which will read standard input for
the list of filenames to be compiled. (Contributed by Piotr
Ożarowski; issue 8233 [https://bugs.python.org/issue8233].)

Porting to Python 2.7

This section lists previously described changes and other bugfixes
that may require changes to your code:

	The range() function processes its arguments more
consistently; it will now call __int__() on non-float,
non-integer arguments that are supplied to it. (Fixed by Alexander
Belopolsky; issue 1533 [https://bugs.python.org/issue1533].)

	The string format() method changed the default precision used
for floating-point and complex numbers from 6 decimal
places to 12, which matches the precision used by str().
(Changed by Eric Smith; issue 5920 [https://bugs.python.org/issue5920].)

	Because of an optimization for the with statement, the special
methods __enter__() and __exit__() must belong to the object’s
type, and cannot be directly attached to the object’s instance. This
affects new-style classes (derived from object) and C extension
types. (issue 6101 [https://bugs.python.org/issue6101].)

	Due to a bug in Python 2.6, the exc_value parameter to
__exit__() methods was often the string representation of the
exception, not an instance. This was fixed in 2.7, so exc_value
will be an instance as expected. (Fixed by Florent Xicluna;
issue 7853 [https://bugs.python.org/issue7853].)

	When a restricted set of attributes were set using __slots__,
deleting an unset attribute would not raise AttributeError
as you would expect. Fixed by Benjamin Peterson; issue 7604 [https://bugs.python.org/issue7604].)

In the standard library:

	Operations with datetime instances that resulted in a year
falling outside the supported range didn’t always raise
OverflowError. Such errors are now checked more carefully
and will now raise the exception. (Reported by Mark Leander, patch
by Anand B. Pillai and Alexander Belopolsky; issue 7150 [https://bugs.python.org/issue7150].)

	When using Decimal instances with a string’s
format() method, the default alignment was previously
left-alignment. This has been changed to right-alignment, which might
change the output of your programs.
(Changed by Mark Dickinson; issue 6857 [https://bugs.python.org/issue6857].)

Comparisons involving a signaling NaN value (or sNAN) now signal
InvalidOperation instead of silently returning a true or
false value depending on the comparison operator. Quiet NaN values
(or NaN) are now hashable. (Fixed by Mark Dickinson;
issue 7279 [https://bugs.python.org/issue7279].)

	The ElementTree library, xml.etree, no longer escapes
ampersands and angle brackets when outputting an XML processing
instruction (which looks like <?xml-stylesheet href=”#style1”?>)
or comment (which looks like <!– comment –>).
(Patch by Neil Muller; issue 2746 [https://bugs.python.org/issue2746].)

	The readline() method of StringIO objects now does
nothing when a negative length is requested, as other file-like
objects do. (issue 7348 [https://bugs.python.org/issue7348]).

	The syslog module will now use the value of sys.argv[0] as the
identifier instead of the previous default value of 'python'.
(Changed by Sean Reifschneider; issue 8451 [https://bugs.python.org/issue8451].)

	The tarfile module’s default error handling has changed, to
no longer suppress fatal errors. The default error level was previously 0,
which meant that errors would only result in a message being written to the
debug log, but because the debug log is not activated by default,
these errors go unnoticed. The default error level is now 1,
which raises an exception if there’s an error.
(Changed by Lars Gustäbel; issue 7357 [https://bugs.python.org/issue7357].)

	The urlparse module’s urlsplit() now handles
unknown URL schemes in a fashion compliant with RFC 3986 [https://tools.ietf.org/html/rfc3986.html]: if the
URL is of the form "<something>://...", the text before the
:// is treated as the scheme, even if it’s a made-up scheme that
the module doesn’t know about. This change may break code that
worked around the old behaviour. For example, Python 2.6.4 or 2.5
will return the following:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', '', '//host/filename?query', '', '')

Python 2.7 (and Python 2.6.5) will return:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', 'host', '/filename?query', '', '')

(Python 2.7 actually produces slightly different output, since it
returns a named tuple instead of a standard tuple.)

For C extensions:

	C extensions that use integer format codes with the PyArg_Parse*
family of functions will now raise a TypeError exception
instead of triggering a DeprecationWarning (issue 5080 [https://bugs.python.org/issue5080]).

	Use the new PyOS_string_to_double() function instead of the old
PyOS_ascii_strtod() and PyOS_ascii_atof() functions,
which are now deprecated.

For applications that embed Python:

	The PySys_SetArgvEx() function was added, letting
applications close a security hole when the existing
PySys_SetArgv() function was used. Check whether you’re
calling PySys_SetArgv() and carefully consider whether the
application should be using PySys_SetArgvEx() with
updatepath set to false.

New Features Added to Python 2.7 Maintenance Releases

New features may be added to Python 2.7 maintenance releases when the
situation genuinely calls for it. Any such additions must go through
the Python Enhancement Proposal process, and make a compelling case for why
they can’t be adequately addressed by either adding the new feature solely to
Python 3, or else by publishing it on the Python Package Index.

In addition to the specific proposals listed below, there is a general
exemption allowing new -3 warnings to be added in any Python 2.7
maintenance release.

PEP 434: IDLE Enhancement Exception for All Branches

PEP 434 [https://www.python.org/dev/peps/pep-0434] describes a general exemption for changes made to the IDLE
development environment shipped along with Python. This exemption makes it
possible for the IDLE developers to provide a more consistent user
experience across all supported versions of Python 2 and 3.

For details of any IDLE changes, refer to the NEWS file for the specific
release.

PEP 466: Network Security Enhancements for Python 2.7

PEP 466 [https://www.python.org/dev/peps/pep-0466] describes a number of network security enhancement proposals
that have been approved for inclusion in Python 2.7 maintenance releases,
with the first of those changes appearing in the Python 2.7.7 release.

PEP 466 [https://www.python.org/dev/peps/pep-0466] related features added in Python 2.7.7:

	hmac.compare_digest() was backported from Python 3 to make a timing
attack resistant comparison operation available to Python 2 applications.
(Contributed by Alex Gaynor; issue 21306 [https://bugs.python.org/issue21306].)

	OpenSSL 1.0.1g was upgraded in the official Windows installers published on
python.org. (Contributed by Zachary Ware; issue 21462 [https://bugs.python.org/issue21462].)

PEP 466 [https://www.python.org/dev/peps/pep-0466] related features added in Python 2.7.8:

	hashlib.pbkdf2_hmac() was backported from Python 3 to make a hashing
algorithm suitable for secure password storage broadly available to Python
2 applications. (Contributed by Alex Gaynor; issue 21304 [https://bugs.python.org/issue21304].)

	OpenSSL 1.0.1h was upgraded for the official Windows installers published on
python.org. (contributed by Zachary Ware in issue 21671 [https://bugs.python.org/issue21671] for CVE-2014-0224)

PEP 466 [https://www.python.org/dev/peps/pep-0466] related features added in Python 2.7.9:

	Most of Python 3.4’s ssl module was backported. This means ssl
now supports Server Name Indication, TLS1.x settings, access to the platform
certificate store, the SSLContext class, and other
features. (Contributed by Alex Gaynor and David Reid; issue 21308 [https://bugs.python.org/issue21308].)

Refer to the “Version added: 2.7.9” notes in the module documentation for
specific details.

	os.urandom() was changed to cache a file descriptor to /dev/urandom
instead of reopening /dev/urandom on every call. (Contributed by Alex
Gaynor; issue 21305 [https://bugs.python.org/issue21305].)

	hashlib.algorithms_guaranteed and
hashlib.algorithms_available were backported from Python 3 to make
it easier for Python 2 applications to select the strongest available hash
algorithm. (Contributed by Alex Gaynor in issue 21307 [https://bugs.python.org/issue21307])

PEP 477: Backport ensurepip (PEP 453) to Python 2.7

PEP 477 [https://www.python.org/dev/peps/pep-0477] approves the inclusion of the PEP 453 [https://www.python.org/dev/peps/pep-0453] ensurepip module and the
improved documentation that was enabled by it in the Python 2.7 maintenance
releases, appearing first in the Python 2.7.9 release.

Bootstrapping pip By Default

The new ensurepip module (defined in PEP 453 [https://www.python.org/dev/peps/pep-0453]) provides a standard
cross-platform mechanism to bootstrap the pip installer into Python
installations. The version of pip included with Python 2.7.9 is pip
1.5.6, and future 2.7.x maintenance releases will update the bundled version to
the latest version of pip that is available at the time of creating the
release candidate.

By default, the commands pip, pipX and pipX.Y will be installed on
all platforms (where X.Y stands for the version of the Python installation),
along with the pip Python package and its dependencies.

For CPython source builds on POSIX systems,
the make install and make altinstall commands do not bootstrap pip
by default. This behaviour can be controlled through configure options, and
overridden through Makefile options.

On Windows and Mac OS X, the CPython installers now default to installing
pip along with CPython itself (users may opt out of installing it
during the installation process). Window users will need to opt in to the
automatic PATH modifications to have pip available from the command
line by default, otherwise it can still be accessed through the Python
launcher for Windows as py -m pip.

As discussed in the PEP [https://www.python.org/dev/peps/pep-0477/#disabling-ensurepip-by-downstream-distributors], platform packagers may choose not to install
these commands by default, as long as, when invoked, they provide clear and
simple directions on how to install them on that platform (usually using
the system package manager).

Documentation Changes

As part of this change, the Installing Python Modules and
Distributing Python Modules sections of the documentation have been
completely redesigned as short getting started and FAQ documents. Most
packaging documentation has now been moved out to the Python Packaging
Authority maintained Python Packaging User Guide [http://packaging.python.org] and the documentation of the individual
projects.

However, as this migration is currently still incomplete, the legacy
versions of those guides remaining available as Installing Python Modules (Legacy version)
and Distributing Python Modules (Legacy version).

See also

	PEP 453 [https://www.python.org/dev/peps/pep-0453] – Explicit bootstrapping of pip in Python installations

	PEP written by Donald Stufft and Nick Coghlan, implemented by
Donald Stufft, Nick Coghlan, Martin von Löwis and Ned Deily.

PEP 476: Enabling certificate verification by default for stdlib http clients

PEP 476 [https://www.python.org/dev/peps/pep-0476] updated httplib and modules which use it, such as
urllib2 and xmlrpclib, to now verify that the server
presents a certificate which is signed by a Certificate Authority in the
platform trust store and whose hostname matches the hostname being requested
by default, significantly improving security for many applications. This
change was made in the Python 2.7.9 release.

For applications which require the old previous behavior, they can pass an
alternate context:

import urllib2
import ssl

This disables all verification
context = ssl._create_unverified_context()

This allows using a specific certificate for the host, which doesn't need
to be in the trust store
context = ssl.create_default_context(cafile="/path/to/file.crt")

urllib2.urlopen("https://invalid-cert", context=context)

PEP 493: HTTPS verification migration tools for Python 2.7

PEP 493 [https://www.python.org/dev/peps/pep-0493] provides additional migration tools to support a more incremental
infrastructure upgrade process for environments containing applications and
services relying on the historically permissive processing of server
certificates when establishing client HTTPS connections. These additions were
made in the Python 2.7.12 release.

These tools are intended for use in cases where affected applications and
services can’t be modified to explicitly pass a more permissive SSL context
when establishing the connection.

For applications and services which can’t be modified at all, the new
PYTHONHTTPSVERIFY environment variable may be set to 0 to revert an
entire Python process back to the default permissive behaviour of Python 2.7.8
and earlier.

For cases where the connection establishment code can’t be modified, but the
overall application can be, the new ssl._https_verify_certificates()
function can be used to adjust the default behaviour at runtime.

Acknowledgements

The author would like to thank the following people for offering
suggestions, corrections and assistance with various drafts of this
article: Nick Coghlan, Philip Jenvey, Ryan Lovett, R. David Murray,
Hugh Secker-Walker.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

What’s New in Python 2.6

	Author:	A.M. Kuchling (amk at amk.ca)

This article explains the new features in Python 2.6, released on October 1
2008. The release schedule is described in PEP 361 [https://www.python.org/dev/peps/pep-0361].

The major theme of Python 2.6 is preparing the migration path to
Python 3.0, a major redesign of the language. Whenever possible,
Python 2.6 incorporates new features and syntax from 3.0 while
remaining compatible with existing code by not removing older features
or syntax. When it’s not possible to do that, Python 2.6 tries to do
what it can, adding compatibility functions in a
future_builtins module and a -3 switch to warn about
usages that will become unsupported in 3.0.

Some significant new packages have been added to the standard library,
such as the multiprocessing and json modules, but
there aren’t many new features that aren’t related to Python 3.0 in
some way.

Python 2.6 also sees a number of improvements and bugfixes throughout
the source. A search through the change logs finds there were 259
patches applied and 612 bugs fixed between Python 2.5 and 2.6. Both
figures are likely to be underestimates.

This article doesn’t attempt to provide a complete specification of
the new features, but instead provides a convenient overview. For
full details, you should refer to the documentation for Python 2.6. If
you want to understand the rationale for the design and
implementation, refer to the PEP for a particular new feature.
Whenever possible, “What’s New in Python” links to the bug/patch item
for each change.

Python 3.0

The development cycle for Python versions 2.6 and 3.0 was
synchronized, with the alpha and beta releases for both versions being
made on the same days. The development of 3.0 has influenced many
features in 2.6.

Python 3.0 is a far-ranging redesign of Python that breaks
compatibility with the 2.x series. This means that existing Python
code will need some conversion in order to run on
Python 3.0. However, not all the changes in 3.0 necessarily break
compatibility. In cases where new features won’t cause existing code
to break, they’ve been backported to 2.6 and are described in this
document in the appropriate place. Some of the 3.0-derived features
are:

	A __complex__() method for converting objects to a complex number.

	Alternate syntax for catching exceptions: except TypeError as exc.

	The addition of functools.reduce() as a synonym for the built-in
reduce() function.

Python 3.0 adds several new built-in functions and changes the
semantics of some existing builtins. Functions that are new in 3.0
such as bin() have simply been added to Python 2.6, but existing
builtins haven’t been changed; instead, the future_builtins
module has versions with the new 3.0 semantics. Code written to be
compatible with 3.0 can do from future_builtins import hex, map as
necessary.

A new command-line switch, -3, enables warnings
about features that will be removed in Python 3.0. You can run code
with this switch to see how much work will be necessary to port
code to 3.0. The value of this switch is available
to Python code as the boolean variable sys.py3kwarning,
and to C extension code as Py_Py3kWarningFlag.

See also

The 3xxx series of PEPs, which contains proposals for Python 3.0.
PEP 3000 [https://www.python.org/dev/peps/pep-3000] describes the development process for Python 3.0.
Start with PEP 3100 [https://www.python.org/dev/peps/pep-3100] that describes the general goals for Python
3.0, and then explore the higher-numbered PEPS that propose
specific features.

Changes to the Development Process

While 2.6 was being developed, the Python development process
underwent two significant changes: we switched from SourceForge’s
issue tracker to a customized Roundup installation, and the
documentation was converted from LaTeX to reStructuredText.

New Issue Tracker: Roundup

For a long time, the Python developers had been growing increasingly
annoyed by SourceForge’s bug tracker. SourceForge’s hosted solution
doesn’t permit much customization; for example, it wasn’t possible to
customize the life cycle of issues.

The infrastructure committee of the Python Software Foundation
therefore posted a call for issue trackers, asking volunteers to set
up different products and import some of the bugs and patches from
SourceForge. Four different trackers were examined: Jira [https://www.atlassian.com/software/jira/],
Launchpad [https://launchpad.net/],
Roundup [http://roundup.sourceforge.net/], and
Trac [https://trac.edgewall.org/].
The committee eventually settled on Jira
and Roundup as the two candidates. Jira is a commercial product that
offers no-cost hosted instances to free-software projects; Roundup
is an open-source project that requires volunteers
to administer it and a server to host it.

After posting a call for volunteers, a new Roundup installation was
set up at https://bugs.python.org. One installation of Roundup can
host multiple trackers, and this server now also hosts issue trackers
for Jython and for the Python web site. It will surely find
other uses in the future. Where possible,
this edition of “What’s New in Python” links to the bug/patch
item for each change.

Hosting of the Python bug tracker is kindly provided by
Upfront Systems [http://www.upfrontsystems.co.za/]
of Stellenbosch, South Africa. Martin von Loewis put a
lot of effort into importing existing bugs and patches from
SourceForge; his scripts for this import operation are at
http://svn.python.org/view/tracker/importer/ and may be useful to
other projects wishing to move from SourceForge to Roundup.

See also

	https://bugs.python.org

	The Python bug tracker.

	http://bugs.jython.org:

	The Jython bug tracker.

	http://roundup.sourceforge.net/

	Roundup downloads and documentation.

	http://svn.python.org/view/tracker/importer/

	Martin von Loewis’s conversion scripts.

New Documentation Format: reStructuredText Using Sphinx

The Python documentation was written using LaTeX since the project
started around 1989. In the 1980s and early 1990s, most documentation
was printed out for later study, not viewed online. LaTeX was widely
used because it provided attractive printed output while remaining
straightforward to write once the basic rules of the markup were
learned.

Today LaTeX is still used for writing publications destined for
printing, but the landscape for programming tools has shifted. We no
longer print out reams of documentation; instead, we browse through it
online and HTML has become the most important format to support.
Unfortunately, converting LaTeX to HTML is fairly complicated and Fred
L. Drake Jr., the long-time Python documentation editor, spent a lot
of time maintaining the conversion process. Occasionally people would
suggest converting the documentation into SGML and later XML, but
performing a good conversion is a major task and no one ever committed
the time required to finish the job.

During the 2.6 development cycle, Georg Brandl put a lot of effort
into building a new toolchain for processing the documentation. The
resulting package is called Sphinx, and is available from
http://sphinx-doc.org/.

Sphinx concentrates on HTML output, producing attractively styled and
modern HTML; printed output is still supported through conversion to
LaTeX. The input format is reStructuredText, a markup syntax
supporting custom extensions and directives that is commonly used in
the Python community.

Sphinx is a standalone package that can be used for writing, and
almost two dozen other projects
(listed on the Sphinx web site [http://sphinx-doc.org/examples.html])
have adopted Sphinx as their documentation tool.

See also

	Documenting Python [https://docs.python.org/devguide/documenting.html]

	Describes how to write for Python’s documentation.

	Sphinx [http://sphinx-doc.org/]

	Documentation and code for the Sphinx toolchain.

	Docutils [http://docutils.sourceforge.net]

	The underlying reStructuredText parser and toolset.

PEP 343: The ‘with’ statement

The previous version, Python 2.5, added the ‘with‘
statement as an optional feature, to be enabled by a from __future__
import with_statement directive. In 2.6 the statement no longer needs to
be specially enabled; this means that with is now always a
keyword. The rest of this section is a copy of the corresponding
section from the “What’s New in Python 2.5” document; if you’re
familiar with the ‘with‘ statement
from Python 2.5, you can skip this section.

The ‘with‘ statement clarifies code that previously would use
try...finally blocks to ensure that clean-up code is executed. In this
section, I’ll discuss the statement as it will commonly be used. In the next
section, I’ll examine the implementation details and show how to write objects
for use with this statement.

The ‘with‘ statement is a control-flow structure whose basic
structure is:

with expression [as variable]:
 with-block

The expression is evaluated, and it should result in an object that supports the
context management protocol (that is, has __enter__() and __exit__()
methods).

The object’s __enter__() is called before with-block is executed and
therefore can run set-up code. It also may return a value that is bound to the
name variable, if given. (Note carefully that variable is not assigned
the result of expression.)

After execution of the with-block is finished, the object’s __exit__()
method is called, even if the block raised an exception, and can therefore run
clean-up code.

Some standard Python objects now support the context management protocol and can
be used with the ‘with‘ statement. File objects are one example:

with open('/etc/passwd', 'r') as f:
 for line in f:
 print line
 ... more processing code ...

After this statement has executed, the file object in f will have been
automatically closed, even if the for loop raised an exception part-
way through the block.

Note

In this case, f is the same object created by open(), because
file.__enter__() returns self.

The threading module’s locks and condition variables also support the
‘with‘ statement:

lock = threading.Lock()
with lock:
 # Critical section of code
 ...

The lock is acquired before the block is executed and always released once the
block is complete.

The localcontext() function in the decimal module makes it easy
to save and restore the current decimal context, which encapsulates the desired
precision and rounding characteristics for computations:

from decimal import Decimal, Context, localcontext

Displays with default precision of 28 digits
v = Decimal('578')
print v.sqrt()

with localcontext(Context(prec=16)):
 # All code in this block uses a precision of 16 digits.
 # The original context is restored on exiting the block.
 print v.sqrt()

Writing Context Managers

Under the hood, the ‘with‘ statement is fairly complicated. Most
people will only use ‘with‘ in company with existing objects and
don’t need to know these details, so you can skip the rest of this section if
you like. Authors of new objects will need to understand the details of the
underlying implementation and should keep reading.

A high-level explanation of the context management protocol is:

	The expression is evaluated and should result in an object called a “context
manager”. The context manager must have __enter__() and __exit__()
methods.

	The context manager’s __enter__() method is called. The value returned
is assigned to VAR. If no as VAR clause is present, the value is simply
discarded.

	The code in BLOCK is executed.

	If BLOCK raises an exception, the context manager’s __exit__() method
is called with three arguments, the exception details (type, value, traceback,
the same values returned by sys.exc_info(), which can also be None
if no exception occurred). The method’s return value controls whether an exception
is re-raised: any false value re-raises the exception, and True will result
in suppressing it. You’ll only rarely want to suppress the exception, because
if you do the author of the code containing the ‘with‘ statement will
never realize anything went wrong.

	If BLOCK didn’t raise an exception, the __exit__() method is still
called, but type, value, and traceback are all None.

Let’s think through an example. I won’t present detailed code but will only
sketch the methods necessary for a database that supports transactions.

(For people unfamiliar with database terminology: a set of changes to the
database are grouped into a transaction. Transactions can be either committed,
meaning that all the changes are written into the database, or rolled back,
meaning that the changes are all discarded and the database is unchanged. See
any database textbook for more information.)

Let’s assume there’s an object representing a database connection. Our goal will
be to let the user write code like this:

db_connection = DatabaseConnection()
with db_connection as cursor:
 cursor.execute('insert into ...')
 cursor.execute('delete from ...')
 # ... more operations ...

The transaction should be committed if the code in the block runs flawlessly or
rolled back if there’s an exception. Here’s the basic interface for
DatabaseConnection that I’ll assume:

class DatabaseConnection:
 # Database interface
 def cursor(self):
 "Returns a cursor object and starts a new transaction"
 def commit(self):
 "Commits current transaction"
 def rollback(self):
 "Rolls back current transaction"

The __enter__() method is pretty easy, having only to start a new
transaction. For this application the resulting cursor object would be a useful
result, so the method will return it. The user can then add as cursor to
their ‘with‘ statement to bind the cursor to a variable name.

class DatabaseConnection:
 ...
 def __enter__(self):
 # Code to start a new transaction
 cursor = self.cursor()
 return cursor

The __exit__() method is the most complicated because it’s where most of
the work has to be done. The method has to check if an exception occurred. If
there was no exception, the transaction is committed. The transaction is rolled
back if there was an exception.

In the code below, execution will just fall off the end of the function,
returning the default value of None. None is false, so the exception
will be re-raised automatically. If you wished, you could be more explicit and
add a return statement at the marked location.

class DatabaseConnection:
 ...
 def __exit__(self, type, value, tb):
 if tb is None:
 # No exception, so commit
 self.commit()
 else:
 # Exception occurred, so rollback.
 self.rollback()
 # return False

The contextlib module

The contextlib module provides some functions and a decorator that
are useful when writing objects for use with the ‘with‘ statement.

The decorator is called contextmanager(), and lets you write a single
generator function instead of defining a new class. The generator should yield
exactly one value. The code up to the yield will be executed as the
__enter__() method, and the value yielded will be the method’s return
value that will get bound to the variable in the ‘with‘ statement’s
as clause, if any. The code after the yield will be
executed in the __exit__() method. Any exception raised in the block will
be raised by the yield statement.

Using this decorator, our database example from the previous section
could be written as:

from contextlib import contextmanager

@contextmanager
def db_transaction(connection):
 cursor = connection.cursor()
 try:
 yield cursor
 except:
 connection.rollback()
 raise
 else:
 connection.commit()

db = DatabaseConnection()
with db_transaction(db) as cursor:
 ...

The contextlib module also has a nested(mgr1, mgr2, ...) function
that combines a number of context managers so you don’t need to write nested
‘with‘ statements. In this example, the single ‘with‘
statement both starts a database transaction and acquires a thread lock:

lock = threading.Lock()
with nested (db_transaction(db), lock) as (cursor, locked):
 ...

Finally, the closing() function returns its argument so that it can be
bound to a variable, and calls the argument’s .close() method at the end
of the block.

import urllib, sys
from contextlib import closing

with closing(urllib.urlopen('http://www.yahoo.com')) as f:
 for line in f:
 sys.stdout.write(line)

See also

	PEP 343 [https://www.python.org/dev/peps/pep-0343] - The “with” statement

	PEP written by Guido van Rossum and Nick Coghlan; implemented by Mike Bland,
Guido van Rossum, and Neal Norwitz. The PEP shows the code generated for a
‘with‘ statement, which can be helpful in learning how the statement
works.

The documentation for the contextlib module.

PEP 366: Explicit Relative Imports From a Main Module

Python’s -m switch allows running a module as a script.
When you ran a module that was located inside a package, relative
imports didn’t work correctly.

The fix for Python 2.6 adds a __package__ attribute to
modules. When this attribute is present, relative imports will be
relative to the value of this attribute instead of the
__name__ attribute.

PEP 302-style importers can then set __package__ as necessary.
The runpy module that implements the -m switch now
does this, so relative imports will now work correctly in scripts
running from inside a package.

PEP 370: Per-user site-packages Directory

When you run Python, the module search path sys.path usually
includes a directory whose path ends in "site-packages". This
directory is intended to hold locally-installed packages available to
all users using a machine or a particular site installation.

Python 2.6 introduces a convention for user-specific site directories.
The directory varies depending on the platform:

	Unix and Mac OS X: ~/.local/

	Windows: %APPDATA%/Python

Within this directory, there will be version-specific subdirectories,
such as lib/python2.6/site-packages on Unix/Mac OS and
Python26/site-packages on Windows.

If you don’t like the default directory, it can be overridden by an
environment variable. PYTHONUSERBASE sets the root
directory used for all Python versions supporting this feature. On
Windows, the directory for application-specific data can be changed by
setting the APPDATA environment variable. You can also
modify the site.py file for your Python installation.

The feature can be disabled entirely by running Python with the
-s option or setting the PYTHONNOUSERSITE
environment variable.

See also

	PEP 370 [https://www.python.org/dev/peps/pep-0370] - Per-user site-packages Directory

	PEP written and implemented by Christian Heimes.

PEP 371: The multiprocessing Package

The new multiprocessing package lets Python programs create new
processes that will perform a computation and return a result to the
parent. The parent and child processes can communicate using queues
and pipes, synchronize their operations using locks and semaphores,
and can share simple arrays of data.

The multiprocessing module started out as an exact emulation of
the threading module using processes instead of threads. That
goal was discarded along the path to Python 2.6, but the general
approach of the module is still similar. The fundamental class
is the Process, which is passed a callable object and
a collection of arguments. The start() method
sets the callable running in a subprocess, after which you can call
the is_alive() method to check whether the subprocess is still running
and the join() method to wait for the process to exit.

Here’s a simple example where the subprocess will calculate a
factorial. The function doing the calculation is written strangely so
that it takes significantly longer when the input argument is a
multiple of 4.

import time
from multiprocessing import Process, Queue

def factorial(queue, N):
 "Compute a factorial."
 # If N is a multiple of 4, this function will take much longer.
 if (N % 4) == 0:
 time.sleep(.05 * N/4)

 # Calculate the result
 fact = 1L
 for i in range(1, N+1):
 fact = fact * i

 # Put the result on the queue
 queue.put(fact)

if __name__ == '__main__':
 queue = Queue()

 N = 5

 p = Process(target=factorial, args=(queue, N))
 p.start()
 p.join()

 result = queue.get()
 print 'Factorial', N, '=', result

A Queue is used to communicate the result of the factorial.
The Queue object is stored in a global variable.
The child process will use the value of the variable when the child
was created; because it’s a Queue, parent and child can use
the object to communicate. (If the parent were to change the value of
the global variable, the child’s value would be unaffected, and vice
versa.)

Two other classes, Pool and Manager, provide
higher-level interfaces. Pool will create a fixed number of
worker processes, and requests can then be distributed to the workers
by calling apply() or apply_async() to add a single request,
and map() or map_async() to add a number of
requests. The following code uses a Pool to spread requests
across 5 worker processes and retrieve a list of results:

from multiprocessing import Pool

def factorial(N, dictionary):
 "Compute a factorial."
 ...
p = Pool(5)
result = p.map(factorial, range(1, 1000, 10))
for v in result:
 print v

This produces the following output:

1
39916800
51090942171709440000
8222838654177922817725562880000000
33452526613163807108170062053440751665152000000000
...

The other high-level interface, the Manager class, creates a
separate server process that can hold master copies of Python data
structures. Other processes can then access and modify these data
structures using proxy objects. The following example creates a
shared dictionary by calling the dict() method; the worker
processes then insert values into the dictionary. (Locking is not
done for you automatically, which doesn’t matter in this example.
Manager‘s methods also include Lock(), RLock(),
and Semaphore() to create shared locks.)

import time
from multiprocessing import Pool, Manager

def factorial(N, dictionary):
 "Compute a factorial."
 # Calculate the result
 fact = 1L
 for i in range(1, N+1):
 fact = fact * i

 # Store result in dictionary
 dictionary[N] = fact

if __name__ == '__main__':
 p = Pool(5)
 mgr = Manager()
 d = mgr.dict() # Create shared dictionary

 # Run tasks using the pool
 for N in range(1, 1000, 10):
 p.apply_async(factorial, (N, d))

 # Mark pool as closed -- no more tasks can be added.
 p.close()

 # Wait for tasks to exit
 p.join()

 # Output results
 for k, v in sorted(d.items()):
 print k, v

This will produce the output:

1 1
11 39916800
21 51090942171709440000
31 8222838654177922817725562880000000
41 33452526613163807108170062053440751665152000000000
51 15511187532873822802242430164693032110632597200169861120000...

See also

The documentation for the multiprocessing module.

	PEP 371 [https://www.python.org/dev/peps/pep-0371] - Addition of the multiprocessing package

	PEP written by Jesse Noller and Richard Oudkerk;
implemented by Richard Oudkerk and Jesse Noller.

PEP 3101: Advanced String Formatting

In Python 3.0, the % operator is supplemented by a more powerful string
formatting method, format(). Support for the str.format() method
has been backported to Python 2.6.

In 2.6, both 8-bit and Unicode strings have a .format() method that
treats the string as a template and takes the arguments to be formatted.
The formatting template uses curly brackets ({, }) as special characters:

>>> # Substitute positional argument 0 into the string.
>>> "User ID: {0}".format("root")
'User ID: root'
>>> # Use the named keyword arguments
>>> "User ID: {uid} Last seen: {last_login}".format(
... uid="root",
... last_login = "5 Mar 2008 07:20")
'User ID: root Last seen: 5 Mar 2008 07:20'

Curly brackets can be escaped by doubling them:

>>> "Empty dict: {{}}".format()
"Empty dict: {}"

Field names can be integers indicating positional arguments, such as
{0}, {1}, etc. or names of keyword arguments. You can also
supply compound field names that read attributes or access dictionary keys:

>>> import sys
>>> print 'Platform: {0.platform}\nPython version: {0.version}'.format(sys)
Platform: darwin
Python version: 2.6a1+ (trunk:61261M, Mar 5 2008, 20:29:41)
[GCC 4.0.1 (Apple Computer, Inc. build 5367)]'

>>> import mimetypes
>>> 'Content-type: {0[.mp4]}'.format(mimetypes.types_map)
'Content-type: video/mp4'

Note that when using dictionary-style notation such as [.mp4], you
don’t need to put any quotation marks around the string; it will look
up the value using .mp4 as the key. Strings beginning with a
number will be converted to an integer. You can’t write more
complicated expressions inside a format string.

So far we’ve shown how to specify which field to substitute into the
resulting string. The precise formatting used is also controllable by
adding a colon followed by a format specifier. For example:

>>> # Field 0: left justify, pad to 15 characters
>>> # Field 1: right justify, pad to 6 characters
>>> fmt = '{0:15} ${1:>6}'
>>> fmt.format('Registration', 35)
'Registration $ 35'
>>> fmt.format('Tutorial', 50)
'Tutorial $ 50'
>>> fmt.format('Banquet', 125)
'Banquet $ 125'

Format specifiers can reference other fields through nesting:

>>> fmt = '{0:{1}}'
>>> width = 15
>>> fmt.format('Invoice #1234', width)
'Invoice #1234 '
>>> width = 35
>>> fmt.format('Invoice #1234', width)
'Invoice #1234 '

The alignment of a field within the desired width can be specified:

	Character
	Effect

	< (default)
	Left-align

	>
	Right-align

	^
	Center

	=
	(For numeric types only) Pad after the sign.

Format specifiers can also include a presentation type, which
controls how the value is formatted. For example, floating-point numbers
can be formatted as a general number or in exponential notation:

>>> '{0:g}'.format(3.75)
'3.75'
>>> '{0:e}'.format(3.75)
'3.750000e+00'

A variety of presentation types are available. Consult the 2.6
documentation for a complete list; here’s a sample:

	b
	Binary. Outputs the number in base 2.

	c
	Character. Converts the integer to the corresponding Unicode character
before printing.

	d
	Decimal Integer. Outputs the number in base 10.

	o
	Octal format. Outputs the number in base 8.

	x
	Hex format. Outputs the number in base 16, using lower-case letters for
the digits above 9.

	e
	Exponent notation. Prints the number in scientific notation using the
letter ‘e’ to indicate the exponent.

	g
	General format. This prints the number as a fixed-point number, unless
the number is too large, in which case it switches to ‘e’ exponent
notation.

	n
	Number. This is the same as ‘g’ (for floats) or ‘d’ (for integers),
except that it uses the current locale setting to insert the appropriate
number separator characters.

	%
	Percentage. Multiplies the number by 100 and displays in fixed (‘f’)
format, followed by a percent sign.

Classes and types can define a __format__() method to control how they’re
formatted. It receives a single argument, the format specifier:

def __format__(self, format_spec):
 if isinstance(format_spec, unicode):
 return unicode(str(self))
 else:
 return str(self)

There’s also a format() builtin that will format a single
value. It calls the type’s __format__() method with the
provided specifier:

>>> format(75.6564, '.2f')
'75.66'

See also

	Format String Syntax

	The reference documentation for format fields.

	PEP 3101 [https://www.python.org/dev/peps/pep-3101] - Advanced String Formatting

	PEP written by Talin. Implemented by Eric Smith.

PEP 3105: print As a Function

The print statement becomes the print() function in Python 3.0.
Making print() a function makes it possible to replace the function
by doing def print(...) or importing a new function from somewhere else.

Python 2.6 has a __future__ import that removes print as language
syntax, letting you use the functional form instead. For example:

>>> from __future__ import print_function
>>> print('# of entries', len(dictionary), file=sys.stderr)

The signature of the new function is:

def print(*args, sep=' ', end='\n', file=None)

The parameters are:

	args: positional arguments whose values will be printed out.

	sep: the separator, which will be printed between arguments.

	end: the ending text, which will be printed after all of the
arguments have been output.

	file: the file object to which the output will be sent.

See also

	PEP 3105 [https://www.python.org/dev/peps/pep-3105] - Make print a function

	PEP written by Georg Brandl.

PEP 3110: Exception-Handling Changes

One error that Python programmers occasionally make
is writing the following code:

try:
 ...
except TypeError, ValueError: # Wrong!
 ...

The author is probably trying to catch both TypeError and
ValueError exceptions, but this code actually does something
different: it will catch TypeError and bind the resulting
exception object to the local name "ValueError". The
ValueError exception will not be caught at all. The correct
code specifies a tuple of exceptions:

try:
 ...
except (TypeError, ValueError):
 ...

This error happens because the use of the comma here is ambiguous:
does it indicate two different nodes in the parse tree, or a single
node that’s a tuple?

Python 3.0 makes this unambiguous by replacing the comma with the word
“as”. To catch an exception and store the exception object in the
variable exc, you must write:

try:
 ...
except TypeError as exc:
 ...

Python 3.0 will only support the use of “as”, and therefore interprets
the first example as catching two different exceptions. Python 2.6
supports both the comma and “as”, so existing code will continue to
work. We therefore suggest using “as” when writing new Python code
that will only be executed with 2.6.

See also

	PEP 3110 [https://www.python.org/dev/peps/pep-3110] - Catching Exceptions in Python 3000

	PEP written and implemented by Collin Winter.

PEP 3112: Byte Literals

Python 3.0 adopts Unicode as the language’s fundamental string type and
denotes 8-bit literals differently, either as b'string'
or using a bytes constructor. For future compatibility,
Python 2.6 adds bytes as a synonym for the str type,
and it also supports the b'' notation.

The 2.6 str differs from 3.0’s bytes type in various
ways; most notably, the constructor is completely different. In 3.0,
bytes([65, 66, 67]) is 3 elements long, containing the bytes
representing ABC; in 2.6, bytes([65, 66, 67]) returns the
12-byte string representing the str() of the list.

The primary use of bytes in 2.6 will be to write tests of
object type such as isinstance(x, bytes). This will help the 2to3
converter, which can’t tell whether 2.x code intends strings to
contain either characters or 8-bit bytes; you can now
use either bytes or str to represent your intention
exactly, and the resulting code will also be correct in Python 3.0.

There’s also a __future__ import that causes all string literals
to become Unicode strings. This means that \u escape sequences
can be used to include Unicode characters:

from __future__ import unicode_literals

s = ('\u751f\u3080\u304e\u3000\u751f\u3054'
 '\u3081\u3000\u751f\u305f\u307e\u3054')

print len(s) # 12 Unicode characters

At the C level, Python 3.0 will rename the existing 8-bit
string type, called PyStringObject in Python 2.x,
to PyBytesObject. Python 2.6 uses #define
to support using the names PyBytesObject(),
PyBytes_Check(), PyBytes_FromStringAndSize(),
and all the other functions and macros used with strings.

Instances of the bytes type are immutable just
as strings are. A new bytearray type stores a mutable
sequence of bytes:

>>> bytearray([65, 66, 67])
bytearray(b'ABC')
>>> b = bytearray(u'\u21ef\u3244', 'utf-8')
>>> b
bytearray(b'\xe2\x87\xaf\xe3\x89\x84')
>>> b[0] = '\xe3'
>>> b
bytearray(b'\xe3\x87\xaf\xe3\x89\x84')
>>> unicode(str(b), 'utf-8')
u'\u31ef \u3244'

Byte arrays support most of the methods of string types, such as
startswith()/endswith(), find()/rfind(),
and some of the methods of lists, such as append(),
pop(), and reverse().

>>> b = bytearray('ABC')
>>> b.append('d')
>>> b.append(ord('e'))
>>> b
bytearray(b'ABCde')

There’s also a corresponding C API, with
PyByteArray_FromObject(),
PyByteArray_FromStringAndSize(),
and various other functions.

See also

	PEP 3112 [https://www.python.org/dev/peps/pep-3112] - Bytes literals in Python 3000

	PEP written by Jason Orendorff; backported to 2.6 by Christian Heimes.

PEP 3116: New I/O Library

Python’s built-in file objects support a number of methods, but
file-like objects don’t necessarily support all of them. Objects that
imitate files usually support read() and write(), but they
may not support readline(), for example. Python 3.0 introduces
a layered I/O library in the io module that separates buffering
and text-handling features from the fundamental read and write
operations.

There are three levels of abstract base classes provided by
the io module:

	RawIOBase defines raw I/O operations: read(),
readinto(),
write(), seek(), tell(), truncate(),
and close().
Most of the methods of this class will often map to a single system call.
There are also readable(), writable(), and seekable()
methods for determining what operations a given object will allow.

Python 3.0 has concrete implementations of this class for files and
sockets, but Python 2.6 hasn’t restructured its file and socket objects
in this way.

	BufferedIOBase is an abstract base class that
buffers data in memory to reduce the number of
system calls used, making I/O processing more efficient.
It supports all of the methods of RawIOBase,
and adds a raw attribute holding the underlying raw object.

There are five concrete classes implementing this ABC.
BufferedWriter and BufferedReader are for objects
that support write-only or read-only usage that have a seek()
method for random access. BufferedRandom objects support
read and write access upon the same underlying stream, and
BufferedRWPair is for objects such as TTYs that have both
read and write operations acting upon unconnected streams of data.
The BytesIO class supports reading, writing, and seeking
over an in-memory buffer.

	TextIOBase: Provides functions for reading and writing
strings (remember, strings will be Unicode in Python 3.0),
and supporting universal newlines. TextIOBase defines
the readline() method and supports iteration upon
objects.

There are two concrete implementations. TextIOWrapper
wraps a buffered I/O object, supporting all of the methods for
text I/O and adding a buffer attribute for access
to the underlying object. StringIO simply buffers
everything in memory without ever writing anything to disk.

(In Python 2.6, io.StringIO is implemented in
pure Python, so it’s pretty slow. You should therefore stick with the
existing StringIO module or cStringIO for now. At some
point Python 3.0’s io module will be rewritten into C for speed,
and perhaps the C implementation will be backported to the 2.x releases.)

In Python 2.6, the underlying implementations haven’t been
restructured to build on top of the io module’s classes. The
module is being provided to make it easier to write code that’s
forward-compatible with 3.0, and to save developers the effort of writing
their own implementations of buffering and text I/O.

See also

	PEP 3116 [https://www.python.org/dev/peps/pep-3116] - New I/O

	PEP written by Daniel Stutzbach, Mike Verdone, and Guido van Rossum.
Code by Guido van Rossum, Georg Brandl, Walter Doerwald,
Jeremy Hylton, Martin von Loewis, Tony Lownds, and others.

PEP 3118: Revised Buffer Protocol

The buffer protocol is a C-level API that lets Python types
exchange pointers into their internal representations. A
memory-mapped file can be viewed as a buffer of characters, for
example, and this lets another module such as re
treat memory-mapped files as a string of characters to be searched.

The primary users of the buffer protocol are numeric-processing
packages such as NumPy, which expose the internal representation
of arrays so that callers can write data directly into an array instead
of going through a slower API. This PEP updates the buffer protocol in light of experience
from NumPy development, adding a number of new features
such as indicating the shape of an array or locking a memory region.

The most important new C API function is
PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags), which
takes an object and a set of flags, and fills in the
Py_buffer structure with information
about the object’s memory representation. Objects
can use this operation to lock memory in place
while an external caller could be modifying the contents,
so there’s a corresponding PyBuffer_Release(Py_buffer *view) to
indicate that the external caller is done.

The flags argument to PyObject_GetBuffer() specifies
constraints upon the memory returned. Some examples are:

	PyBUF_WRITABLE indicates that the memory must be writable.

	PyBUF_LOCK requests a read-only or exclusive lock on the memory.

	PyBUF_C_CONTIGUOUS and PyBUF_F_CONTIGUOUS
requests a C-contiguous (last dimension varies the fastest) or
Fortran-contiguous (first dimension varies the fastest) array layout.

Two new argument codes for PyArg_ParseTuple(),
s* and z*, return locked buffer objects for a parameter.

See also

	PEP 3118 [https://www.python.org/dev/peps/pep-3118] - Revising the buffer protocol

	PEP written by Travis Oliphant and Carl Banks; implemented by
Travis Oliphant.

PEP 3119: Abstract Base Classes

Some object-oriented languages such as Java support interfaces,
declaring that a class has a given set of methods or supports a given
access protocol. Abstract Base Classes (or ABCs) are an equivalent
feature for Python. The ABC support consists of an abc module
containing a metaclass called ABCMeta, special handling of
this metaclass by the isinstance() and issubclass()
builtins, and a collection of basic ABCs that the Python developers
think will be widely useful. Future versions of Python will probably
add more ABCs.

Let’s say you have a particular class and wish to know whether it supports
dictionary-style access. The phrase “dictionary-style” is vague, however.
It probably means that accessing items with obj[1] works.
Does it imply that setting items with obj[2] = value works?
Or that the object will have keys(), values(), and items()
methods? What about the iterative variants such as iterkeys()? copy()
and update()? Iterating over the object with iter()?

The Python 2.6 collections module includes a number of
different ABCs that represent these distinctions. Iterable
indicates that a class defines __iter__(), and
Container means the class defines a __contains__()
method and therefore supports x in y expressions. The basic
dictionary interface of getting items, setting items, and
keys(), values(), and items(), is defined by the
MutableMapping ABC.

You can derive your own classes from a particular ABC
to indicate they support that ABC’s interface:

import collections

class Storage(collections.MutableMapping):
 ...

Alternatively, you could write the class without deriving from
the desired ABC and instead register the class by
calling the ABC’s register() method:

import collections

class Storage:
 ...

collections.MutableMapping.register(Storage)

For classes that you write, deriving from the ABC is probably clearer.
The register() method is useful when you’ve written a new
ABC that can describe an existing type or class, or if you want
to declare that some third-party class implements an ABC.
For example, if you defined a PrintableType ABC,
it’s legal to do:

Register Python's types
PrintableType.register(int)
PrintableType.register(float)
PrintableType.register(str)

Classes should obey the semantics specified by an ABC, but
Python can’t check this; it’s up to the class author to
understand the ABC’s requirements and to implement the code accordingly.

To check whether an object supports a particular interface, you can
now write:

def func(d):
 if not isinstance(d, collections.MutableMapping):
 raise ValueError("Mapping object expected, not %r" % d)

Don’t feel that you must now begin writing lots of checks as in the
above example. Python has a strong tradition of duck-typing, where
explicit type-checking is never done and code simply calls methods on
an object, trusting that those methods will be there and raising an
exception if they aren’t. Be judicious in checking for ABCs and only
do it where it’s absolutely necessary.

You can write your own ABCs by using abc.ABCMeta as the
metaclass in a class definition:

from abc import ABCMeta, abstractmethod

class Drawable():
 __metaclass__ = ABCMeta

 @abstractmethod
 def draw(self, x, y, scale=1.0):
 pass

 def draw_doubled(self, x, y):
 self.draw(x, y, scale=2.0)

class Square(Drawable):
 def draw(self, x, y, scale):
 ...

In the Drawable ABC above, the draw_doubled() method
renders the object at twice its size and can be implemented in terms
of other methods described in Drawable. Classes implementing
this ABC therefore don’t need to provide their own implementation
of draw_doubled(), though they can do so. An implementation
of draw() is necessary, though; the ABC can’t provide
a useful generic implementation.

You can apply the @abstractmethod decorator to methods such as
draw() that must be implemented; Python will then raise an
exception for classes that don’t define the method.
Note that the exception is only raised when you actually
try to create an instance of a subclass lacking the method:

>>> class Circle(Drawable):
... pass
...
>>> c = Circle()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Circle with abstract methods draw
>>>

Abstract data attributes can be declared using the
@abstractproperty decorator:

from abc import abstractproperty
...

@abstractproperty
def readonly(self):
 return self._x

Subclasses must then define a readonly() property.

See also

	PEP 3119 [https://www.python.org/dev/peps/pep-3119] - Introducing Abstract Base Classes

	PEP written by Guido van Rossum and Talin.
Implemented by Guido van Rossum.
Backported to 2.6 by Benjamin Aranguren, with Alex Martelli.

PEP 3127: Integer Literal Support and Syntax

Python 3.0 changes the syntax for octal (base-8) integer literals,
prefixing them with “0o” or “0O” instead of a leading zero, and adds
support for binary (base-2) integer literals, signalled by a “0b” or
“0B” prefix.

Python 2.6 doesn’t drop support for a leading 0 signalling
an octal number, but it does add support for “0o” and “0b”:

>>> 0o21, 2*8 + 1
(17, 17)
>>> 0b101111
47

The oct() builtin still returns numbers
prefixed with a leading zero, and a new bin()
builtin returns the binary representation for a number:

>>> oct(42)
'052'
>>> future_builtins.oct(42)
'0o52'
>>> bin(173)
'0b10101101'

The int() and long() builtins will now accept the “0o”
and “0b” prefixes when base-8 or base-2 are requested, or when the
base argument is zero (signalling that the base used should be
determined from the string):

>>> int ('0o52', 0)
42
>>> int('1101', 2)
13
>>> int('0b1101', 2)
13
>>> int('0b1101', 0)
13

See also

	PEP 3127 [https://www.python.org/dev/peps/pep-3127] - Integer Literal Support and Syntax

	PEP written by Patrick Maupin; backported to 2.6 by
Eric Smith.

PEP 3129: Class Decorators

Decorators have been extended from functions to classes. It’s now legal to
write:

@foo
@bar
class A:
 pass

This is equivalent to:

class A:
 pass

A = foo(bar(A))

See also

	PEP 3129 [https://www.python.org/dev/peps/pep-3129] - Class Decorators

	PEP written by Collin Winter.

PEP 3141: A Type Hierarchy for Numbers

Python 3.0 adds several abstract base classes for numeric types
inspired by Scheme’s numeric tower. These classes were backported to
2.6 as the numbers module.

The most general ABC is Number. It defines no operations at
all, and only exists to allow checking if an object is a number by
doing isinstance(obj, Number).

Complex is a subclass of Number. Complex numbers
can undergo the basic operations of addition, subtraction,
multiplication, division, and exponentiation, and you can retrieve the
real and imaginary parts and obtain a number’s conjugate. Python’s built-in
complex type is an implementation of Complex.

Real further derives from Complex, and adds
operations that only work on real numbers: floor(), trunc(),
rounding, taking the remainder mod N, floor division,
and comparisons.

Rational numbers derive from Real, have
numerator and denominator properties, and can be
converted to floats. Python 2.6 adds a simple rational-number class,
Fraction, in the fractions module. (It’s called
Fraction instead of Rational to avoid
a name clash with numbers.Rational.)

Integral numbers derive from Rational, and
can be shifted left and right with << and >>,
combined using bitwise operations such as & and |,
and can be used as array indexes and slice boundaries.

In Python 3.0, the PEP slightly redefines the existing builtins
round(), math.floor(), math.ceil(), and adds a new
one, math.trunc(), that’s been backported to Python 2.6.
math.trunc() rounds toward zero, returning the closest
Integral that’s between the function’s argument and zero.

See also

	PEP 3141 [https://www.python.org/dev/peps/pep-3141] - A Type Hierarchy for Numbers

	PEP written by Jeffrey Yasskin.

Scheme’s numerical tower [https://www.gnu.org/software/guile/manual/html_node/Numerical-Tower.html#Numerical-Tower], from the Guile manual.

Scheme’s number datatypes [http://schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.2] from the R5RS Scheme specification.

The fractions Module

To fill out the hierarchy of numeric types, the fractions
module provides a rational-number class. Rational numbers store their
values as a numerator and denominator forming a fraction, and can
exactly represent numbers such as 2/3 that floating-point numbers
can only approximate.

The Fraction constructor takes two Integral values
that will be the numerator and denominator of the resulting fraction.

>>> from fractions import Fraction
>>> a = Fraction(2, 3)
>>> b = Fraction(2, 5)
>>> float(a), float(b)
(0.66666666666666663, 0.40000000000000002)
>>> a+b
Fraction(16, 15)
>>> a/b
Fraction(5, 3)

For converting floating-point numbers to rationals,
the float type now has an as_integer_ratio() method that returns
the numerator and denominator for a fraction that evaluates to the same
floating-point value:

>>> (2.5) .as_integer_ratio()
(5, 2)
>>> (3.1415) .as_integer_ratio()
(7074029114692207L, 2251799813685248L)
>>> (1./3) .as_integer_ratio()
(6004799503160661L, 18014398509481984L)

Note that values that can only be approximated by floating-point
numbers, such as 1./3, are not simplified to the number being
approximated; the fraction attempts to match the floating-point value
exactly.

The fractions module is based upon an implementation by Sjoerd
Mullender that was in Python’s Demo/classes/ directory for a
long time. This implementation was significantly updated by Jeffrey
Yasskin.

Other Language Changes

Some smaller changes made to the core Python language are:

	Directories and zip archives containing a __main__.py file
can now be executed directly by passing their name to the
interpreter. The directory or zip archive is automatically inserted
as the first entry in sys.path. (Suggestion and initial patch by
Andy Chu, subsequently revised by Phillip J. Eby and Nick Coghlan;
issue 1739468 [https://bugs.python.org/issue1739468].)

	The hasattr() function was catching and ignoring all errors,
under the assumption that they meant a __getattr__() method
was failing somehow and the return value of hasattr() would
therefore be False. This logic shouldn’t be applied to
KeyboardInterrupt and SystemExit, however; Python 2.6
will no longer discard such exceptions when hasattr()
encounters them. (Fixed by Benjamin Peterson; issue 2196 [https://bugs.python.org/issue2196].)

	When calling a function using the ** syntax to provide keyword
arguments, you are no longer required to use a Python dictionary;
any mapping will now work:

>>> def f(**kw):
... print sorted(kw)
...
>>> ud=UserDict.UserDict()
>>> ud['a'] = 1
>>> ud['b'] = 'string'
>>> f(**ud)
['a', 'b']

(Contributed by Alexander Belopolsky; issue 1686487 [https://bugs.python.org/issue1686487].)

It’s also become legal to provide keyword arguments after a *args argument
to a function call.

>>> def f(*args, **kw):
... print args, kw
...
>>> f(1,2,3, *(4,5,6), keyword=13)
(1, 2, 3, 4, 5, 6) {'keyword': 13}

Previously this would have been a syntax error.
(Contributed by Amaury Forgeot d’Arc; issue 3473 [https://bugs.python.org/issue3473].)

	A new builtin, next(iterator, [default]) returns the next item
from the specified iterator. If the default argument is supplied,
it will be returned if iterator has been exhausted; otherwise,
the StopIteration exception will be raised. (Backported
in issue 2719 [https://bugs.python.org/issue2719].)

	Tuples now have index() and count() methods matching the
list type’s index() and count() methods:

>>> t = (0,1,2,3,4,0,1,2)
>>> t.index(3)
3
>>> t.count(0)
2

(Contributed by Raymond Hettinger)

	The built-in types now have improved support for extended slicing syntax,
accepting various combinations of (start, stop, step).
Previously, the support was partial and certain corner cases wouldn’t work.
(Implemented by Thomas Wouters.)

	Properties now have three attributes, getter, setter
and deleter, that are decorators providing useful shortcuts
for adding a getter, setter or deleter function to an existing
property. You would use them like this:

class C(object):
 @property
 def x(self):
 return self._x

 @x.setter
 def x(self, value):
 self._x = value

 @x.deleter
 def x(self):
 del self._x

class D(C):
 @C.x.getter
 def x(self):
 return self._x * 2

 @x.setter
 def x(self, value):
 self._x = value / 2

	Several methods of the built-in set types now accept multiple iterables:
intersection(),
intersection_update(),
union(), update(),
difference() and difference_update().

>>> s=set('1234567890')
>>> s.intersection('abc123', 'cdf246') # Intersection between all inputs
set(['2'])
>>> s.difference('246', '789')
set(['1', '0', '3', '5'])

(Contributed by Raymond Hettinger.)

	Many floating-point features were added. The float() function
will now turn the string nan into an
IEEE 754 Not A Number value, and +inf and -inf into
positive or negative infinity. This works on any platform with
IEEE 754 semantics. (Contributed by Christian Heimes; issue 1635 [https://bugs.python.org/issue1635].)

Other functions in the math module, isinf() and
isnan(), return true if their floating-point argument is
infinite or Not A Number. (issue 1640 [https://bugs.python.org/issue1640])

Conversion functions were added to convert floating-point numbers
into hexadecimal strings (issue 3008 [https://bugs.python.org/issue3008]). These functions
convert floats to and from a string representation without
introducing rounding errors from the conversion between decimal and
binary. Floats have a hex() method that returns a string
representation, and the float.fromhex() method converts a string
back into a number:

>>> a = 3.75
>>> a.hex()
'0x1.e000000000000p+1'
>>> float.fromhex('0x1.e000000000000p+1')
3.75
>>> b=1./3
>>> b.hex()
'0x1.5555555555555p-2'

	A numerical nicety: when creating a complex number from two floats
on systems that support signed zeros (-0 and +0), the
complex() constructor will now preserve the sign
of the zero. (Fixed by Mark T. Dickinson; issue 1507 [https://bugs.python.org/issue1507].)

	Classes that inherit a __hash__() method from a parent class
can set __hash__ = None to indicate that the class isn’t
hashable. This will make hash(obj) raise a TypeError
and the class will not be indicated as implementing the
Hashable ABC.

You should do this when you’ve defined a __cmp__() or
__eq__() method that compares objects by their value rather
than by identity. All objects have a default hash method that uses
id(obj) as the hash value. There’s no tidy way to remove the
__hash__() method inherited from a parent class, so
assigning None was implemented as an override. At the
C level, extensions can set tp_hash to
PyObject_HashNotImplemented().
(Fixed by Nick Coghlan and Amaury Forgeot d’Arc; issue 2235 [https://bugs.python.org/issue2235].)

	The GeneratorExit exception now subclasses
BaseException instead of Exception. This means
that an exception handler that does except Exception:
will not inadvertently catch GeneratorExit.
(Contributed by Chad Austin; issue 1537 [https://bugs.python.org/issue1537].)

	Generator objects now have a gi_code attribute that refers to
the original code object backing the generator.
(Contributed by Collin Winter; issue 1473257 [https://bugs.python.org/issue1473257].)

	The compile() built-in function now accepts keyword arguments
as well as positional parameters. (Contributed by Thomas Wouters;
issue 1444529 [https://bugs.python.org/issue1444529].)

	The complex() constructor now accepts strings containing
parenthesized complex numbers, meaning that complex(repr(cplx))
will now round-trip values. For example, complex('(3+4j)')
now returns the value (3+4j). (issue 1491866 [https://bugs.python.org/issue1491866])

	The string translate() method now accepts None as the
translation table parameter, which is treated as the identity
transformation. This makes it easier to carry out operations
that only delete characters. (Contributed by Bengt Richter and
implemented by Raymond Hettinger; issue 1193128 [https://bugs.python.org/issue1193128].)

	The built-in dir() function now checks for a __dir__()
method on the objects it receives. This method must return a list
of strings containing the names of valid attributes for the object,
and lets the object control the value that dir() produces.
Objects that have __getattr__() or __getattribute__()
methods can use this to advertise pseudo-attributes they will honor.
(issue 1591665 [https://bugs.python.org/issue1591665])

	Instance method objects have new attributes for the object and function
comprising the method; the new synonym for im_self is
__self__, and im_func is also available as __func__.
The old names are still supported in Python 2.6, but are gone in 3.0.

	An obscure change: when you use the locals() function inside a
class statement, the resulting dictionary no longer returns free
variables. (Free variables, in this case, are variables referenced in the
class statement that aren’t attributes of the class.)

Optimizations

	The warnings module has been rewritten in C. This makes
it possible to invoke warnings from the parser, and may also
make the interpreter’s startup faster.
(Contributed by Neal Norwitz and Brett Cannon; issue 1631171 [https://bugs.python.org/issue1631171].)

	Type objects now have a cache of methods that can reduce
the work required to find the correct method implementation
for a particular class; once cached, the interpreter doesn’t need to
traverse base classes to figure out the right method to call.
The cache is cleared if a base class or the class itself is modified,
so the cache should remain correct even in the face of Python’s dynamic
nature.
(Original optimization implemented by Armin Rigo, updated for
Python 2.6 by Kevin Jacobs; issue 1700288 [https://bugs.python.org/issue1700288].)

By default, this change is only applied to types that are included with
the Python core. Extension modules may not necessarily be compatible with
this cache,
so they must explicitly add Py_TPFLAGS_HAVE_VERSION_TAG
to the module’s tp_flags field to enable the method cache.
(To be compatible with the method cache, the extension module’s code
must not directly access and modify the tp_dict member of
any of the types it implements. Most modules don’t do this,
but it’s impossible for the Python interpreter to determine that.
See issue 1878 [https://bugs.python.org/issue1878] for some discussion.)

	Function calls that use keyword arguments are significantly faster
by doing a quick pointer comparison, usually saving the time of a
full string comparison. (Contributed by Raymond Hettinger, after an
initial implementation by Antoine Pitrou; issue 1819 [https://bugs.python.org/issue1819].)

	All of the functions in the struct module have been rewritten in
C, thanks to work at the Need For Speed sprint.
(Contributed by Raymond Hettinger.)

	Some of the standard built-in types now set a bit in their type
objects. This speeds up checking whether an object is a subclass of
one of these types. (Contributed by Neal Norwitz.)

	Unicode strings now use faster code for detecting
whitespace and line breaks; this speeds up the split() method
by about 25% and splitlines() by 35%.
(Contributed by Antoine Pitrou.) Memory usage is reduced
by using pymalloc for the Unicode string’s data.

	The with statement now stores the __exit__() method on the stack,
producing a small speedup. (Implemented by Jeffrey Yasskin.)

	To reduce memory usage, the garbage collector will now clear internal
free lists when garbage-collecting the highest generation of objects.
This may return memory to the operating system sooner.

Interpreter Changes

Two command-line options have been reserved for use by other Python
implementations. The -J switch has been reserved for use by
Jython for Jython-specific options, such as switches that are passed to
the underlying JVM. -X has been reserved for options
specific to a particular implementation of Python such as CPython,
Jython, or IronPython. If either option is used with Python 2.6, the
interpreter will report that the option isn’t currently used.

Python can now be prevented from writing .pyc or .pyo
files by supplying the -B switch to the Python interpreter,
or by setting the PYTHONDONTWRITEBYTECODE environment
variable before running the interpreter. This setting is available to
Python programs as the sys.dont_write_bytecode variable, and
Python code can change the value to modify the interpreter’s
behaviour. (Contributed by Neal Norwitz and Georg Brandl.)

The encoding used for standard input, output, and standard error can
be specified by setting the PYTHONIOENCODING environment
variable before running the interpreter. The value should be a string
in the form <encoding> or <encoding>:<errorhandler>.
The encoding part specifies the encoding’s name, e.g. utf-8 or
latin-1; the optional errorhandler part specifies
what to do with characters that can’t be handled by the encoding,
and should be one of “error”, “ignore”, or “replace”. (Contributed
by Martin von Loewis.)

New and Improved Modules

As in every release, Python’s standard library received a number of
enhancements and bug fixes. Here’s a partial list of the most notable
changes, sorted alphabetically by module name. Consult the
Misc/NEWS file in the source tree for a more complete list of
changes, or look through the Subversion logs for all the details.

	The asyncore and asynchat modules are
being actively maintained again, and a number of patches and bugfixes
were applied. (Maintained by Josiah Carlson; see issue 1736190 [https://bugs.python.org/issue1736190] for
one patch.)

	The bsddb module also has a new maintainer, Jesús Cea Avion, and the package
is now available as a standalone package. The web page for the package is
www.jcea.es/programacion/pybsddb.htm [https://www.jcea.es/programacion/pybsddb.htm].
The plan is to remove the package from the standard library
in Python 3.0, because its pace of releases is much more frequent than
Python’s.

The bsddb.dbshelve module now uses the highest pickling protocol
available, instead of restricting itself to protocol 1.
(Contributed by W. Barnes.)

	The cgi module will now read variables from the query string
of an HTTP POST request. This makes it possible to use form actions
with URLs that include query strings such as
“/cgi-bin/add.py?category=1”. (Contributed by Alexandre Fiori and
Nubis; issue 1817 [https://bugs.python.org/issue1817].)

The parse_qs() and parse_qsl() functions have been
relocated from the cgi module to the urlparse module.
The versions still available in the cgi module will
trigger PendingDeprecationWarning messages in 2.6
(issue 600362 [https://bugs.python.org/issue600362]).

	The cmath module underwent extensive revision,
contributed by Mark Dickinson and Christian Heimes.
Five new functions were added:

	polar() converts a complex number to polar form, returning
the modulus and argument of the complex number.

	rect() does the opposite, turning a modulus, argument pair
back into the corresponding complex number.

	phase() returns the argument (also called the angle) of a complex
number.

	isnan() returns True if either
the real or imaginary part of its argument is a NaN.

	isinf() returns True if either the real or imaginary part of
its argument is infinite.

The revisions also improved the numerical soundness of the
cmath module. For all functions, the real and imaginary
parts of the results are accurate to within a few units of least
precision (ulps) whenever possible. See issue 1381 [https://bugs.python.org/issue1381] for the
details. The branch cuts for asinh(), atanh(): and
atan() have also been corrected.

The tests for the module have been greatly expanded; nearly 2000 new
test cases exercise the algebraic functions.

On IEEE 754 platforms, the cmath module now handles IEEE 754
special values and floating-point exceptions in a manner consistent
with Annex ‘G’ of the C99 standard.

	A new data type in the collections module: namedtuple(typename,
fieldnames) is a factory function that creates subclasses of the standard tuple
whose fields are accessible by name as well as index. For example:

>>> var_type = collections.namedtuple('variable',
... 'id name type size')
>>> # Names are separated by spaces or commas.
>>> # 'id, name, type, size' would also work.
>>> var_type._fields
('id', 'name', 'type', 'size')

>>> var = var_type(1, 'frequency', 'int', 4)
>>> print var[0], var.id # Equivalent
1 1
>>> print var[2], var.type # Equivalent
int int
>>> var._asdict()
{'size': 4, 'type': 'int', 'id': 1, 'name': 'frequency'}
>>> v2 = var._replace(name='amplitude')
>>> v2
variable(id=1, name='amplitude', type='int', size=4)

Several places in the standard library that returned tuples have
been modified to return namedtuple instances. For example,
the Decimal.as_tuple() method now returns a named tuple with
sign, digits, and exponent fields.

(Contributed by Raymond Hettinger.)

	Another change to the collections module is that the
deque type now supports an optional maxlen parameter;
if supplied, the deque’s size will be restricted to no more
than maxlen items. Adding more items to a full deque causes
old items to be discarded.

>>> from collections import deque
>>> dq=deque(maxlen=3)
>>> dq
deque([], maxlen=3)
>>> dq.append(1); dq.append(2); dq.append(3)
>>> dq
deque([1, 2, 3], maxlen=3)
>>> dq.append(4)
>>> dq
deque([2, 3, 4], maxlen=3)

(Contributed by Raymond Hettinger.)

	The Cookie module’s Morsel objects now support an
httponly attribute. In some browsers. cookies with this attribute
set cannot be accessed or manipulated by JavaScript code.
(Contributed by Arvin Schnell; issue 1638033 [https://bugs.python.org/issue1638033].)

	A new window method in the curses module,
chgat(), changes the display attributes for a certain number of
characters on a single line. (Contributed by Fabian Kreutz.)

Boldface text starting at y=0,x=21
and affecting the rest of the line.
stdscr.chgat(0, 21, curses.A_BOLD)

The Textbox class in the curses.textpad module
now supports editing in insert mode as well as overwrite mode.
Insert mode is enabled by supplying a true value for the insert_mode
parameter when creating the Textbox instance.

	The datetime module’s strftime() methods now support a
%f format code that expands to the number of microseconds in the
object, zero-padded on
the left to six places. (Contributed by Skip Montanaro; issue 1158 [https://bugs.python.org/issue1158].)

	The decimal module was updated to version 1.66 of
the General Decimal Specification [http://speleotrove.com/decimal/decarith.html]. New features
include some methods for some basic mathematical functions such as
exp() and log10():

>>> Decimal(1).exp()
Decimal("2.718281828459045235360287471")
>>> Decimal("2.7182818").ln()
Decimal("0.9999999895305022877376682436")
>>> Decimal(1000).log10()
Decimal("3")

The as_tuple() method of Decimal objects now returns a
named tuple with sign, digits, and exponent fields.

(Implemented by Facundo Batista and Mark Dickinson. Named tuple
support added by Raymond Hettinger.)

	The difflib module’s SequenceMatcher class
now returns named tuples representing matches,
with a, b, and size attributes.
(Contributed by Raymond Hettinger.)

	An optional timeout parameter, specifying a timeout measured in
seconds, was added to the ftplib.FTP class constructor as
well as the connect() method. (Added by Facundo Batista.)
Also, the FTP class’s storbinary() and
storlines() now take an optional callback parameter that
will be called with each block of data after the data has been sent.
(Contributed by Phil Schwartz; issue 1221598 [https://bugs.python.org/issue1221598].)

	The reduce() built-in function is also available in the
functools module. In Python 3.0, the builtin has been
dropped and reduce() is only available from functools;
currently there are no plans to drop the builtin in the 2.x series.
(Patched by Christian Heimes; issue 1739906 [https://bugs.python.org/issue1739906].)

	When possible, the getpass module will now use
/dev/tty to print a prompt message and read the password,
falling back to standard error and standard input. If the
password may be echoed to the terminal, a warning is printed before
the prompt is displayed. (Contributed by Gregory P. Smith.)

	The glob.glob() function can now return Unicode filenames if
a Unicode path was used and Unicode filenames are matched within the
directory. (issue 1001604 [https://bugs.python.org/issue1001604])

	A new function in the heapq module, merge(iter1, iter2, ...),
takes any number of iterables returning data in sorted
order, and returns a new generator that returns the contents of all
the iterators, also in sorted order. For example:

>>> list(heapq.merge([1, 3, 5, 9], [2, 8, 16]))
[1, 2, 3, 5, 8, 9, 16]

Another new function, heappushpop(heap, item),
pushes item onto heap, then pops off and returns the smallest item.
This is more efficient than making a call to heappush() and then
heappop().

heapq is now implemented to only use less-than comparison,
instead of the less-than-or-equal comparison it previously used.
This makes heapq‘s usage of a type match the
list.sort() method.
(Contributed by Raymond Hettinger.)

	An optional timeout parameter, specifying a timeout measured in
seconds, was added to the httplib.HTTPConnection and
HTTPSConnection class constructors. (Added by Facundo
Batista.)

	Most of the inspect module’s functions, such as
getmoduleinfo() and getargs(), now return named tuples.
In addition to behaving like tuples, the elements of the return value
can also be accessed as attributes.
(Contributed by Raymond Hettinger.)

Some new functions in the module include
isgenerator(), isgeneratorfunction(),
and isabstract().

	The itertools module gained several new functions.

izip_longest(iter1, iter2, ...[, fillvalue]) makes tuples from
each of the elements; if some of the iterables are shorter than
others, the missing values are set to fillvalue. For example:

>>> tuple(itertools.izip_longest([1,2,3], [1,2,3,4,5]))
((1, 1), (2, 2), (3, 3), (None, 4), (None, 5))

product(iter1, iter2, ..., [repeat=N]) returns the Cartesian product
of the supplied iterables, a set of tuples containing
every possible combination of the elements returned from each iterable.

>>> list(itertools.product([1,2,3], [4,5,6]))
[(1, 4), (1, 5), (1, 6),
 (2, 4), (2, 5), (2, 6),
 (3, 4), (3, 5), (3, 6)]

The optional repeat keyword argument is used for taking the
product of an iterable or a set of iterables with themselves,
repeated N times. With a single iterable argument, N-tuples
are returned:

>>> list(itertools.product([1,2], repeat=3))
[(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
 (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]

With two iterables, 2N-tuples are returned.

>>> list(itertools.product([1,2], [3,4], repeat=2))
[(1, 3, 1, 3), (1, 3, 1, 4), (1, 3, 2, 3), (1, 3, 2, 4),
 (1, 4, 1, 3), (1, 4, 1, 4), (1, 4, 2, 3), (1, 4, 2, 4),
 (2, 3, 1, 3), (2, 3, 1, 4), (2, 3, 2, 3), (2, 3, 2, 4),
 (2, 4, 1, 3), (2, 4, 1, 4), (2, 4, 2, 3), (2, 4, 2, 4)]

combinations(iterable, r) returns sub-sequences of length r from
the elements of iterable.

>>> list(itertools.combinations('123', 2))
[('1', '2'), ('1', '3'), ('2', '3')]
>>> list(itertools.combinations('123', 3))
[('1', '2', '3')]
>>> list(itertools.combinations('1234', 3))
[('1', '2', '3'), ('1', '2', '4'),
 ('1', '3', '4'), ('2', '3', '4')]

permutations(iter[, r]) returns all the permutations of length r of
the iterable’s elements. If r is not specified, it will default to the
number of elements produced by the iterable.

>>> list(itertools.permutations([1,2,3,4], 2))
[(1, 2), (1, 3), (1, 4),
 (2, 1), (2, 3), (2, 4),
 (3, 1), (3, 2), (3, 4),
 (4, 1), (4, 2), (4, 3)]

itertools.chain(*iterables) is an existing function in
itertools that gained a new constructor in Python 2.6.
itertools.chain.from_iterable(iterable) takes a single
iterable that should return other iterables. chain() will
then return all the elements of the first iterable, then
all the elements of the second, and so on.

>>> list(itertools.chain.from_iterable([[1,2,3], [4,5,6]]))
[1, 2, 3, 4, 5, 6]

(All contributed by Raymond Hettinger.)

	The logging module’s FileHandler class
and its subclasses WatchedFileHandler, RotatingFileHandler,
and TimedRotatingFileHandler now
have an optional delay parameter to their constructors. If delay
is true, opening of the log file is deferred until the first
emit() call is made. (Contributed by Vinay Sajip.)

TimedRotatingFileHandler also has a utc constructor
parameter. If the argument is true, UTC time will be used
in determining when midnight occurs and in generating filenames;
otherwise local time will be used.

	Several new functions were added to the math module:

	isinf() and isnan() determine whether a given float
is a (positive or negative) infinity or a NaN (Not a Number), respectively.

	copysign() copies the sign bit of an IEEE 754 number,
returning the absolute value of x combined with the sign bit of
y. For example, math.copysign(1, -0.0) returns -1.0.
(Contributed by Christian Heimes.)

	factorial() computes the factorial of a number.
(Contributed by Raymond Hettinger; issue 2138 [https://bugs.python.org/issue2138].)

	fsum() adds up the stream of numbers from an iterable,
and is careful to avoid loss of precision through using partial sums.
(Contributed by Jean Brouwers, Raymond Hettinger, and Mark Dickinson;
issue 2819 [https://bugs.python.org/issue2819].)

	acosh(), asinh()
and atanh() compute the inverse hyperbolic functions.

	log1p() returns the natural logarithm of 1+x
(base e).

	trunc() rounds a number toward zero, returning the closest
Integral that’s between the function’s argument and zero.
Added as part of the backport of
PEP 3141’s type hierarchy for numbers.

	The math module has been improved to give more consistent
behaviour across platforms, especially with respect to handling of
floating-point exceptions and IEEE 754 special values.

Whenever possible, the module follows the recommendations of the C99
standard about 754’s special values. For example, sqrt(-1.)
should now give a ValueError across almost all platforms,
while sqrt(float('NaN')) should return a NaN on all IEEE 754
platforms. Where Annex ‘F’ of the C99 standard recommends signaling
‘divide-by-zero’ or ‘invalid’, Python will raise ValueError.
Where Annex ‘F’ of the C99 standard recommends signaling ‘overflow’,
Python will raise OverflowError. (See issue 711019 [https://bugs.python.org/issue711019] and
issue 1640 [https://bugs.python.org/issue1640].)

(Contributed by Christian Heimes and Mark Dickinson.)

	mmap objects now have a rfind() method that searches for a
substring beginning at the end of the string and searching
backwards. The find() method also gained an end parameter
giving an index at which to stop searching.
(Contributed by John Lenton.)

	The operator module gained a
methodcaller() function that takes a name and an optional
set of arguments, returning a callable that will call
the named function on any arguments passed to it. For example:

>>> # Equivalent to lambda s: s.replace('old', 'new')
>>> replacer = operator.methodcaller('replace', 'old', 'new')
>>> replacer('old wine in old bottles')
'new wine in new bottles'

(Contributed by Georg Brandl, after a suggestion by Gregory Petrosyan.)

The attrgetter() function now accepts dotted names and performs
the corresponding attribute lookups:

>>> inst_name = operator.attrgetter(
... '__class__.__name__')
>>> inst_name('')
'str'
>>> inst_name(help)
'_Helper'

(Contributed by Georg Brandl, after a suggestion by Barry Warsaw.)

	The os module now wraps several new system calls.
fchmod(fd, mode) and fchown(fd, uid, gid) change the mode
and ownership of an opened file, and lchmod(path, mode) changes
the mode of a symlink. (Contributed by Georg Brandl and Christian
Heimes.)

chflags() and lchflags() are wrappers for the
corresponding system calls (where they’re available), changing the
flags set on a file. Constants for the flag values are defined in
the stat module; some possible values include
UF_IMMUTABLE to signal the file may not be changed and
UF_APPEND to indicate that data can only be appended to the
file. (Contributed by M. Levinson.)

os.closerange(low, high) efficiently closes all file descriptors
from low to high, ignoring any errors and not including high itself.
This function is now used by the subprocess module to make starting
processes faster. (Contributed by Georg Brandl; issue 1663329 [https://bugs.python.org/issue1663329].)

	The os.environ object’s clear() method will now unset the
environment variables using os.unsetenv() in addition to clearing
the object’s keys. (Contributed by Martin Horcicka; issue 1181 [https://bugs.python.org/issue1181].)

	The os.walk() function now has a followlinks parameter. If
set to True, it will follow symlinks pointing to directories and
visit the directory’s contents. For backward compatibility, the
parameter’s default value is false. Note that the function can fall
into an infinite recursion if there’s a symlink that points to a
parent directory. (issue 1273829 [https://bugs.python.org/issue1273829])

	In the os.path module, the splitext() function
has been changed to not split on leading period characters.
This produces better results when operating on Unix’s dot-files.
For example, os.path.splitext('.ipython')
now returns ('.ipython', '') instead of ('', '.ipython').
(issue 1115886 [https://bugs.python.org/issue1115886])

A new function, os.path.relpath(path, start='.'), returns a relative path
from the start path, if it’s supplied, or from the current
working directory to the destination path. (Contributed by
Richard Barran; issue 1339796 [https://bugs.python.org/issue1339796].)

On Windows, os.path.expandvars() will now expand environment variables
given in the form “%var%”, and “~user” will be expanded into the
user’s home directory path. (Contributed by Josiah Carlson;
issue 957650 [https://bugs.python.org/issue957650].)

	The Python debugger provided by the pdb module
gained a new command: “run” restarts the Python program being debugged
and can optionally take new command-line arguments for the program.
(Contributed by Rocky Bernstein; issue 1393667 [https://bugs.python.org/issue1393667].)

	The pdb.post_mortem() function, used to begin debugging a
traceback, will now use the traceback returned by sys.exc_info()
if no traceback is supplied. (Contributed by Facundo Batista;
issue 1106316 [https://bugs.python.org/issue1106316].)

	The pickletools module now has an optimize() function
that takes a string containing a pickle and removes some unused
opcodes, returning a shorter pickle that contains the same data structure.
(Contributed by Raymond Hettinger.)

	A get_data() function was added to the pkgutil
module that returns the contents of resource files included
with an installed Python package. For example:

>>> import pkgutil
>>> print pkgutil.get_data('test', 'exception_hierarchy.txt')
BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
 +-- StopIteration
 +-- StandardError
 ...

(Contributed by Paul Moore; issue 2439 [https://bugs.python.org/issue2439].)

	The pyexpat module’s Parser objects now allow setting
their buffer_size attribute to change the size of the buffer
used to hold character data.
(Contributed by Achim Gaedke; issue 1137 [https://bugs.python.org/issue1137].)

	The Queue module now provides queue variants that retrieve entries
in different orders. The PriorityQueue class stores
queued items in a heap and retrieves them in priority order,
and LifoQueue retrieves the most recently added entries first,
meaning that it behaves like a stack.
(Contributed by Raymond Hettinger.)

	The random module’s Random objects can
now be pickled on a 32-bit system and unpickled on a 64-bit
system, and vice versa. Unfortunately, this change also means
that Python 2.6’s Random objects can’t be unpickled correctly
on earlier versions of Python.
(Contributed by Shawn Ligocki; issue 1727780 [https://bugs.python.org/issue1727780].)

The new triangular(low, high, mode) function returns random
numbers following a triangular distribution. The returned values
are between low and high, not including high itself, and
with mode as the most frequently occurring value
in the distribution. (Contributed by Wladmir van der Laan and
Raymond Hettinger; issue 1681432 [https://bugs.python.org/issue1681432].)

	Long regular expression searches carried out by the re
module will check for signals being delivered, so
time-consuming searches can now be interrupted.
(Contributed by Josh Hoyt and Ralf Schmitt; issue 846388 [https://bugs.python.org/issue846388].)

The regular expression module is implemented by compiling bytecodes
for a tiny regex-specific virtual machine. Untrusted code
could create malicious strings of bytecode directly and cause crashes,
so Python 2.6 includes a verifier for the regex bytecode.
(Contributed by Guido van Rossum from work for Google App Engine;
issue 3487 [https://bugs.python.org/issue3487].)

	The rlcompleter module’s Completer.complete() method
will now ignore exceptions triggered while evaluating a name.
(Fixed by Lorenz Quack; issue 2250 [https://bugs.python.org/issue2250].)

	The sched module’s scheduler instances now
have a read-only queue attribute that returns the
contents of the scheduler’s queue, represented as a list of
named tuples with the fields (time, priority, action, argument).
(Contributed by Raymond Hettinger; issue 1861 [https://bugs.python.org/issue1861].)

	The select module now has wrapper functions
for the Linux epoll() and BSD kqueue() system calls.
modify() method was added to the existing poll
objects; pollobj.modify(fd, eventmask) takes a file descriptor
or file object and an event mask, modifying the recorded event mask
for that file.
(Contributed by Christian Heimes; issue 1657 [https://bugs.python.org/issue1657].)

	The shutil.copytree() function now has an optional ignore argument
that takes a callable object. This callable will receive each directory path
and a list of the directory’s contents, and returns a list of names that
will be ignored, not copied.

The shutil module also provides an ignore_patterns()
function for use with this new parameter. ignore_patterns()
takes an arbitrary number of glob-style patterns and returns a
callable that will ignore any files and directories that match any
of these patterns. The following example copies a directory tree,
but skips both .svn directories and Emacs backup files,
which have names ending with ‘~’:

shutil.copytree('Doc/library', '/tmp/library',
 ignore=shutil.ignore_patterns('*~', '.svn'))

(Contributed by Tarek Ziadé; issue 2663 [https://bugs.python.org/issue2663].)

	Integrating signal handling with GUI handling event loops
like those used by Tkinter or GTk+ has long been a problem; most
software ends up polling, waking up every fraction of a second to check
if any GUI events have occurred.
The signal module can now make this more efficient.
Calling signal.set_wakeup_fd(fd) sets a file descriptor
to be used; when a signal is received, a byte is written to that
file descriptor. There’s also a C-level function,
PySignal_SetWakeupFd(), for setting the descriptor.

Event loops will use this by opening a pipe to create two descriptors,
one for reading and one for writing. The writable descriptor
will be passed to set_wakeup_fd(), and the readable descriptor
will be added to the list of descriptors monitored by the event loop via
select() or poll().
On receiving a signal, a byte will be written and the main event loop
will be woken up, avoiding the need to poll.

(Contributed by Adam Olsen; issue 1583 [https://bugs.python.org/issue1583].)

The siginterrupt() function is now available from Python code,
and allows changing whether signals can interrupt system calls or not.
(Contributed by Ralf Schmitt.)

The setitimer() and getitimer() functions have also been
added (where they’re available). setitimer()
allows setting interval timers that will cause a signal to be
delivered to the process after a specified time, measured in
wall-clock time, consumed process time, or combined process+system
time. (Contributed by Guilherme Polo; issue 2240 [https://bugs.python.org/issue2240].)

	The smtplib module now supports SMTP over SSL thanks to the
addition of the SMTP_SSL class. This class supports an
interface identical to the existing SMTP class.
(Contributed by Monty Taylor.) Both class constructors also have an
optional timeout parameter that specifies a timeout for the
initial connection attempt, measured in seconds. (Contributed by
Facundo Batista.)

An implementation of the LMTP protocol (RFC 2033 [https://tools.ietf.org/html/rfc2033.html]) was also added
to the module. LMTP is used in place of SMTP when transferring
e-mail between agents that don’t manage a mail queue. (LMTP
implemented by Leif Hedstrom; issue 957003 [https://bugs.python.org/issue957003].)

SMTP.starttls() now complies with RFC 3207 [https://tools.ietf.org/html/rfc3207.html] and forgets any
knowledge obtained from the server not obtained from the TLS
negotiation itself. (Patch contributed by Bill Fenner;
issue 829951 [https://bugs.python.org/issue829951].)

	The socket module now supports TIPC (http://tipc.sourceforge.net/),
a high-performance non-IP-based protocol designed for use in clustered
environments. TIPC addresses are 4- or 5-tuples.
(Contributed by Alberto Bertogli; issue 1646 [https://bugs.python.org/issue1646].)

A new function, create_connection(), takes an address and
connects to it using an optional timeout value, returning the
connected socket object. This function also looks up the address’s
type and connects to it using IPv4 or IPv6 as appropriate. Changing
your code to use create_connection() instead of
socket(socket.AF_INET, ...) may be all that’s required to make
your code work with IPv6.

	The base classes in the SocketServer module now support
calling a handle_timeout() method after a span of inactivity
specified by the server’s timeout attribute. (Contributed
by Michael Pomraning.) The serve_forever() method
now takes an optional poll interval measured in seconds,
controlling how often the server will check for a shutdown request.
(Contributed by Pedro Werneck and Jeffrey Yasskin;
issue 742598 [https://bugs.python.org/issue742598], issue 1193577 [https://bugs.python.org/issue1193577].)

	The sqlite3 module, maintained by Gerhard Haering,
has been updated from version 2.3.2 in Python 2.5 to
version 2.4.1.

	The struct module now supports the C99 _Bool type,
using the format character '?'.
(Contributed by David Remahl.)

	The Popen objects provided by the subprocess module
now have terminate(), kill(), and send_signal() methods.
On Windows, send_signal() only supports the SIGTERM
signal, and all these methods are aliases for the Win32 API function
TerminateProcess().
(Contributed by Christian Heimes.)

	A new variable in the sys module, float_info, is an
object containing information derived from the float.h file
about the platform’s floating-point support. Attributes of this
object include mant_dig (number of digits in the mantissa),
epsilon (smallest difference between 1.0 and the next
largest value representable), and several others. (Contributed by
Christian Heimes; issue 1534 [https://bugs.python.org/issue1534].)

Another new variable, dont_write_bytecode, controls whether Python
writes any .pyc or .pyo files on importing a module.
If this variable is true, the compiled files are not written. The
variable is initially set on start-up by supplying the -B
switch to the Python interpreter, or by setting the
PYTHONDONTWRITEBYTECODE environment variable before
running the interpreter. Python code can subsequently
change the value of this variable to control whether bytecode files
are written or not.
(Contributed by Neal Norwitz and Georg Brandl.)

Information about the command-line arguments supplied to the Python
interpreter is available by reading attributes of a named
tuple available as sys.flags. For example, the verbose
attribute is true if Python
was executed in verbose mode, debug is true in debugging mode, etc.
These attributes are all read-only.
(Contributed by Christian Heimes.)

A new function, getsizeof(), takes a Python object and returns
the amount of memory used by the object, measured in bytes. Built-in
objects return correct results; third-party extensions may not,
but can define a __sizeof__() method to return the
object’s size.
(Contributed by Robert Schuppenies; issue 2898 [https://bugs.python.org/issue2898].)

It’s now possible to determine the current profiler and tracer functions
by calling sys.getprofile() and sys.gettrace().
(Contributed by Georg Brandl; issue 1648 [https://bugs.python.org/issue1648].)

	The tarfile module now supports POSIX.1-2001 (pax) tarfiles in
addition to the POSIX.1-1988 (ustar) and GNU tar formats that were
already supported. The default format is GNU tar; specify the
format parameter to open a file using a different format:

tar = tarfile.open("output.tar", "w",
 format=tarfile.PAX_FORMAT)

The new encoding and errors parameters specify an encoding and
an error handling scheme for character conversions. 'strict',
'ignore', and 'replace' are the three standard ways Python can
handle errors,;
'utf-8' is a special value that replaces bad characters with
their UTF-8 representation. (Character conversions occur because the
PAX format supports Unicode filenames, defaulting to UTF-8 encoding.)

The TarFile.add() method now accepts an exclude argument that’s
a function that can be used to exclude certain filenames from
an archive.
The function must take a filename and return true if the file
should be excluded or false if it should be archived.
The function is applied to both the name initially passed to add()
and to the names of files in recursively-added directories.

(All changes contributed by Lars Gustäbel).

	An optional timeout parameter was added to the
telnetlib.Telnet class constructor, specifying a timeout
measured in seconds. (Added by Facundo Batista.)

	The tempfile.NamedTemporaryFile class usually deletes
the temporary file it created when the file is closed. This
behaviour can now be changed by passing delete=False to the
constructor. (Contributed by Damien Miller; issue 1537850 [https://bugs.python.org/issue1537850].)

A new class, SpooledTemporaryFile, behaves like
a temporary file but stores its data in memory until a maximum size is
exceeded. On reaching that limit, the contents will be written to
an on-disk temporary file. (Contributed by Dustin J. Mitchell.)

The NamedTemporaryFile and SpooledTemporaryFile classes
both work as context managers, so you can write
with tempfile.NamedTemporaryFile() as tmp:
(Contributed by Alexander Belopolsky; issue 2021 [https://bugs.python.org/issue2021].)

	The test.test_support module gained a number
of context managers useful for writing tests.
EnvironmentVarGuard() is a
context manager that temporarily changes environment variables and
automatically restores them to their old values.

Another context manager, TransientResource, can surround calls
to resources that may or may not be available; it will catch and
ignore a specified list of exceptions. For example,
a network test may ignore certain failures when connecting to an
external web site:

with test_support.TransientResource(IOError,
 errno=errno.ETIMEDOUT):
 f = urllib.urlopen('https://sf.net')
 ...

Finally, check_warnings() resets the warning module’s
warning filters and returns an object that will record all warning
messages triggered (issue 3781 [https://bugs.python.org/issue3781]):

with test_support.check_warnings() as wrec:
 warnings.simplefilter("always")
 # ... code that triggers a warning ...
 assert str(wrec.message) == "function is outdated"
 assert len(wrec.warnings) == 1, "Multiple warnings raised"

(Contributed by Brett Cannon.)

	The textwrap module can now preserve existing whitespace
at the beginnings and ends of the newly-created lines
by specifying drop_whitespace=False
as an argument:

>>> S = """This sentence has a bunch of
... extra whitespace."""
>>> print textwrap.fill(S, width=15)
This sentence
has a bunch
of extra
whitespace.
>>> print textwrap.fill(S, drop_whitespace=False, width=15)
This sentence
 has a bunch
 of extra
 whitespace.
>>>

(Contributed by Dwayne Bailey; issue 1581073 [https://bugs.python.org/issue1581073].)

	The threading module API is being changed to use properties
such as daemon instead of setDaemon() and
isDaemon() methods, and some methods have been renamed to use
underscores instead of camel-case; for example, the
activeCount() method is renamed to active_count(). Both
the 2.6 and 3.0 versions of the module support the same properties
and renamed methods, but don’t remove the old methods. No date has been set
for the deprecation of the old APIs in Python 3.x; the old APIs won’t
be removed in any 2.x version.
(Carried out by several people, most notably Benjamin Peterson.)

The threading module’s Thread objects
gained an ident property that returns the thread’s
identifier, a nonzero integer. (Contributed by Gregory P. Smith;
issue 2871 [https://bugs.python.org/issue2871].)

	The timeit module now accepts callables as well as strings
for the statement being timed and for the setup code.
Two convenience functions were added for creating
Timer instances:
repeat(stmt, setup, time, repeat, number) and
timeit(stmt, setup, time, number) create an instance and call
the corresponding method. (Contributed by Erik Demaine;
issue 1533909 [https://bugs.python.org/issue1533909].)

	The Tkinter module now accepts lists and tuples for options,
separating the elements by spaces before passing the resulting value to
Tcl/Tk.
(Contributed by Guilherme Polo; issue 2906 [https://bugs.python.org/issue2906].)

	The turtle module for turtle graphics was greatly enhanced by
Gregor Lingl. New features in the module include:

	Better animation of turtle movement and rotation.

	Control over turtle movement using the new delay(),
tracer(), and speed() methods.

	The ability to set new shapes for the turtle, and to
define a new coordinate system.

	Turtles now have an undo() method that can roll back actions.

	Simple support for reacting to input events such as mouse and keyboard
activity, making it possible to write simple games.

	A turtle.cfg file can be used to customize the starting appearance
of the turtle’s screen.

	The module’s docstrings can be replaced by new docstrings that have been
translated into another language.

(issue 1513695 [https://bugs.python.org/issue1513695])

	An optional timeout parameter was added to the
urllib.urlopen() function and the
urllib.ftpwrapper class constructor, as well as the
urllib2.urlopen() function. The parameter specifies a timeout
measured in seconds. For example:

>>> u = urllib2.urlopen("http://slow.example.com",
 timeout=3)
Traceback (most recent call last):
 ...
urllib2.URLError: <urlopen error timed out>
>>>

(Added by Facundo Batista.)

	The Unicode database provided by the unicodedata module
has been updated to version 5.1.0. (Updated by
Martin von Loewis; issue 3811 [https://bugs.python.org/issue3811].)

	The warnings module’s formatwarning() and showwarning()
gained an optional line argument that can be used to supply the
line of source code. (Added as part of issue 1631171 [https://bugs.python.org/issue1631171], which re-implemented
part of the warnings module in C code.)

A new function, catch_warnings(), is a context manager
intended for testing purposes that lets you temporarily modify the
warning filters and then restore their original values (issue 3781 [https://bugs.python.org/issue3781]).

	The XML-RPC SimpleXMLRPCServer and DocXMLRPCServer
classes can now be prevented from immediately opening and binding to
their socket by passing True as the bind_and_activate
constructor parameter. This can be used to modify the instance’s
allow_reuse_address attribute before calling the
server_bind() and server_activate() methods to
open the socket and begin listening for connections.
(Contributed by Peter Parente; issue 1599845 [https://bugs.python.org/issue1599845].)

SimpleXMLRPCServer also has a _send_traceback_header
attribute; if true, the exception and formatted traceback are returned
as HTTP headers “X-Exception” and “X-Traceback”. This feature is
for debugging purposes only and should not be used on production servers
because the tracebacks might reveal passwords or other sensitive
information. (Contributed by Alan McIntyre as part of his
project for Google’s Summer of Code 2007.)

	The xmlrpclib module no longer automatically converts
datetime.date and datetime.time to the
xmlrpclib.DateTime type; the conversion semantics were
not necessarily correct for all applications. Code using
xmlrpclib should convert date and time
instances. (issue 1330538 [https://bugs.python.org/issue1330538]) The code can also handle
dates before 1900 (contributed by Ralf Schmitt; issue 2014 [https://bugs.python.org/issue2014])
and 64-bit integers represented by using <i8> in XML-RPC responses
(contributed by Riku Lindblad; issue 2985 [https://bugs.python.org/issue2985]).

	The zipfile module’s ZipFile class now has
extract() and extractall() methods that will unpack
a single file or all the files in the archive to the current directory, or
to a specified directory:

z = zipfile.ZipFile('python-251.zip')

Unpack a single file, writing it relative
to the /tmp directory.
z.extract('Python/sysmodule.c', '/tmp')

Unpack all the files in the archive.
z.extractall()

(Contributed by Alan McIntyre; issue 467924 [https://bugs.python.org/issue467924].)

The open(), read() and extract() methods can now
take either a filename or a ZipInfo object. This is useful when an
archive accidentally contains a duplicated filename.
(Contributed by Graham Horler; issue 1775025 [https://bugs.python.org/issue1775025].)

Finally, zipfile now supports using Unicode filenames
for archived files. (Contributed by Alexey Borzenkov; issue 1734346 [https://bugs.python.org/issue1734346].)

The ast module

The ast module provides an Abstract Syntax Tree
representation of Python code, and Armin Ronacher
contributed a set of helper functions that perform a variety of
common tasks. These will be useful for HTML templating
packages, code analyzers, and similar tools that process
Python code.

The parse() function takes an expression and returns an AST.
The dump() function outputs a representation of a tree, suitable
for debugging:

import ast

t = ast.parse("""
d = {}
for i in 'abcdefghijklm':
 d[i + i] = ord(i) - ord('a') + 1
print d
""")
print ast.dump(t)

This outputs a deeply nested tree:

Module(body=[
 Assign(targets=[
 Name(id='d', ctx=Store())
], value=Dict(keys=[], values=[]))
 For(target=Name(id='i', ctx=Store()),
 iter=Str(s='abcdefghijklm'), body=[
 Assign(targets=[
 Subscript(value=
 Name(id='d', ctx=Load()),
 slice=
 Index(value=
 BinOp(left=Name(id='i', ctx=Load()), op=Add(),
 right=Name(id='i', ctx=Load()))), ctx=Store())
], value=
 BinOp(left=
 BinOp(left=
 Call(func=
 Name(id='ord', ctx=Load()), args=[
 Name(id='i', ctx=Load())
], keywords=[], starargs=None, kwargs=None),
 op=Sub(), right=Call(func=
 Name(id='ord', ctx=Load()), args=[
 Str(s='a')
], keywords=[], starargs=None, kwargs=None)),
 op=Add(), right=Num(n=1)))
], orelse=[])
 Print(dest=None, values=[
 Name(id='d', ctx=Load())
], nl=True)
])

The literal_eval() method takes a string or an AST
representing a literal expression, parses and evaluates it, and
returns the resulting value. A literal expression is a Python
expression containing only strings, numbers, dictionaries,
etc. but no statements or function calls. If you need to
evaluate an expression but cannot accept the security risk of using an
eval() call, literal_eval() will handle it safely:

>>> literal = '("a", "b", {2:4, 3:8, 1:2})'
>>> print ast.literal_eval(literal)
('a', 'b', {1: 2, 2: 4, 3: 8})
>>> print ast.literal_eval('"a" + "b"')
Traceback (most recent call last):
 ...
ValueError: malformed string

The module also includes NodeVisitor and
NodeTransformer classes for traversing and modifying an AST,
and functions for common transformations such as changing line
numbers.

The future_builtins module

Python 3.0 makes many changes to the repertoire of built-in
functions, and most of the changes can’t be introduced in the Python
2.x series because they would break compatibility.
The future_builtins module provides versions
of these built-in functions that can be imported when writing
3.0-compatible code.

The functions in this module currently include:

	ascii(obj): equivalent to repr(). In Python 3.0,
repr() will return a Unicode string, while ascii() will
return a pure ASCII bytestring.

	filter(predicate, iterable),
map(func, iterable1, ...): the 3.0 versions
return iterators, unlike the 2.x builtins which return lists.

	hex(value), oct(value): instead of calling the
__hex__() or __oct__() methods, these versions will
call the __index__() method and convert the result to hexadecimal
or octal. oct() will use the new 0o notation for its
result.

The json module: JavaScript Object Notation

The new json module supports the encoding and decoding of Python types in
JSON (Javascript Object Notation). JSON is a lightweight interchange format
often used in web applications. For more information about JSON, see
http://www.json.org.

json comes with support for decoding and encoding most built-in Python
types. The following example encodes and decodes a dictionary:

>>> import json
>>> data = {"spam": "foo", "parrot": 42}
>>> in_json = json.dumps(data) # Encode the data
>>> in_json
'{"parrot": 42, "spam": "foo"}'
>>> json.loads(in_json) # Decode into a Python object
{"spam": "foo", "parrot": 42}

It’s also possible to write your own decoders and encoders to support
more types. Pretty-printing of the JSON strings is also supported.

json (originally called simplejson) was written by Bob
Ippolito.

The plistlib module: A Property-List Parser

The .plist format is commonly used on Mac OS X to
store basic data types (numbers, strings, lists,
and dictionaries) by serializing them into an XML-based format.
It resembles the XML-RPC serialization of data types.

Despite being primarily used on Mac OS X, the format
has nothing Mac-specific about it and the Python implementation works
on any platform that Python supports, so the plistlib module
has been promoted to the standard library.

Using the module is simple:

import sys
import plistlib
import datetime

Create data structure
data_struct = dict(lastAccessed=datetime.datetime.now(),
 version=1,
 categories=('Personal','Shared','Private'))

Create string containing XML.
plist_str = plistlib.writePlistToString(data_struct)
new_struct = plistlib.readPlistFromString(plist_str)
print data_struct
print new_struct

Write data structure to a file and read it back.
plistlib.writePlist(data_struct, '/tmp/customizations.plist')
new_struct = plistlib.readPlist('/tmp/customizations.plist')

read/writePlist accepts file-like objects as well as paths.
plistlib.writePlist(data_struct, sys.stdout)

ctypes Enhancements

Thomas Heller continued to maintain and enhance the
ctypes module.

ctypes now supports a c_bool datatype
that represents the C99 bool type. (Contributed by David Remahl;
issue 1649190 [https://bugs.python.org/issue1649190].)

The ctypes string, buffer and array types have improved
support for extended slicing syntax,
where various combinations of (start, stop, step) are supplied.
(Implemented by Thomas Wouters.)

All ctypes data types now support
from_buffer() and from_buffer_copy()
methods that create a ctypes instance based on a
provided buffer object. from_buffer_copy() copies
the contents of the object,
while from_buffer() will share the same memory area.

A new calling convention tells ctypes to clear the errno or
Win32 LastError variables at the outset of each wrapped call.
(Implemented by Thomas Heller; issue 1798 [https://bugs.python.org/issue1798].)

You can now retrieve the Unix errno variable after a function
call. When creating a wrapped function, you can supply
use_errno=True as a keyword parameter to the DLL() function
and then call the module-level methods set_errno() and
get_errno() to set and retrieve the error value.

The Win32 LastError variable is similarly supported by
the DLL(), OleDLL(), and WinDLL() functions.
You supply use_last_error=True as a keyword parameter
and then call the module-level methods set_last_error()
and get_last_error().

The byref() function, used to retrieve a pointer to a ctypes
instance, now has an optional offset parameter that is a byte
count that will be added to the returned pointer.

Improved SSL Support

Bill Janssen made extensive improvements to Python 2.6’s support for
the Secure Sockets Layer by adding a new module, ssl, that’s
built atop the OpenSSL [https://www.openssl.org/] library.
This new module provides more control over the protocol negotiated,
the X.509 certificates used, and has better support for writing SSL
servers (as opposed to clients) in Python. The existing SSL support
in the socket module hasn’t been removed and continues to work,
though it will be removed in Python 3.0.

To use the new module, you must first create a TCP connection in the
usual way and then pass it to the ssl.wrap_socket() function.
It’s possible to specify whether a certificate is required, and to
obtain certificate info by calling the getpeercert() method.

See also

The documentation for the ssl module.

Deprecations and Removals

	String exceptions have been removed. Attempting to use them raises a
TypeError.

	Changes to the Exception interface
as dictated by PEP 352 [https://www.python.org/dev/peps/pep-0352] continue to be made. For 2.6,
the message attribute is being deprecated in favor of the
args attribute.

	(3.0-warning mode) Python 3.0 will feature a reorganized standard
library that will drop many outdated modules and rename others.
Python 2.6 running in 3.0-warning mode will warn about these modules
when they are imported.

The list of deprecated modules is:
audiodev,
bgenlocations,
buildtools,
bundlebuilder,
Canvas,
compiler,
dircache,
dl,
fpformat,
gensuitemodule,
ihooks,
imageop,
imgfile,
linuxaudiodev,
mhlib,
mimetools,
multifile,
new,
pure,
statvfs,
sunaudiodev,
test.testall, and
toaiff.

	The gopherlib module has been removed.

	The MimeWriter module and mimify module
have been deprecated; use the email
package instead.

	The md5 module has been deprecated; use the hashlib module
instead.

	The posixfile module has been deprecated; fcntl.lockf()
provides better locking.

	The popen2 module has been deprecated; use the subprocess
module.

	The rgbimg module has been removed.

	The sets module has been deprecated; it’s better to
use the built-in set and frozenset types.

	The sha module has been deprecated; use the hashlib module
instead.

Build and C API Changes

Changes to Python’s build process and to the C API include:

	Python now must be compiled with C89 compilers (after 19
years!). This means that the Python source tree has dropped its
own implementations of memmove() and strerror(), which
are in the C89 standard library.

	Python 2.6 can be built with Microsoft Visual Studio 2008 (version
9.0), and this is the new default compiler. See the
PCbuild directory for the build files. (Implemented by
Christian Heimes.)

	On Mac OS X, Python 2.6 can be compiled as a 4-way universal build.
The configure script
can take a --with-universal-archs=[32-bit|64-bit|all]
switch, controlling whether the binaries are built for 32-bit
architectures (x86, PowerPC), 64-bit (x86-64 and PPC-64), or both.
(Contributed by Ronald Oussoren.)

	The BerkeleyDB module now has a C API object, available as
bsddb.db.api. This object can be used by other C extensions
that wish to use the bsddb module for their own purposes.
(Contributed by Duncan Grisby.)

	The new buffer interface, previously described in
the PEP 3118 section,
adds PyObject_GetBuffer() and PyBuffer_Release(),
as well as a few other functions.

	Python’s use of the C stdio library is now thread-safe, or at least
as thread-safe as the underlying library is. A long-standing potential
bug occurred if one thread closed a file object while another thread
was reading from or writing to the object. In 2.6 file objects
have a reference count, manipulated by the
PyFile_IncUseCount() and PyFile_DecUseCount()
functions. File objects can’t be closed unless the reference count
is zero. PyFile_IncUseCount() should be called while the GIL
is still held, before carrying out an I/O operation using the
FILE * pointer, and PyFile_DecUseCount() should be called
immediately after the GIL is re-acquired.
(Contributed by Antoine Pitrou and Gregory P. Smith.)

	Importing modules simultaneously in two different threads no longer
deadlocks; it will now raise an ImportError. A new API
function, PyImport_ImportModuleNoBlock(), will look for a
module in sys.modules first, then try to import it after
acquiring an import lock. If the import lock is held by another
thread, an ImportError is raised.
(Contributed by Christian Heimes.)

	Several functions return information about the platform’s
floating-point support. PyFloat_GetMax() returns
the maximum representable floating point value,
and PyFloat_GetMin() returns the minimum
positive value. PyFloat_GetInfo() returns an object
containing more information from the float.h file, such as
"mant_dig" (number of digits in the mantissa), "epsilon"
(smallest difference between 1.0 and the next largest value
representable), and several others.
(Contributed by Christian Heimes; issue 1534 [https://bugs.python.org/issue1534].)

	C functions and methods that use
PyComplex_AsCComplex() will now accept arguments that
have a __complex__() method. In particular, the functions in the
cmath module will now accept objects with this method.
This is a backport of a Python 3.0 change.
(Contributed by Mark Dickinson; issue 1675423 [https://bugs.python.org/issue1675423].)

	Python’s C API now includes two functions for case-insensitive string
comparisons, PyOS_stricmp(char*, char*)
and PyOS_strnicmp(char*, char*, Py_ssize_t).
(Contributed by Christian Heimes; issue 1635 [https://bugs.python.org/issue1635].)

	Many C extensions define their own little macro for adding
integers and strings to the module’s dictionary in the
init* function. Python 2.6 finally defines standard macros
for adding values to a module, PyModule_AddStringMacro
and PyModule_AddIntMacro(). (Contributed by
Christian Heimes.)

	Some macros were renamed in both 3.0 and 2.6 to make it clearer that
they are macros,
not functions. Py_Size() became Py_SIZE(),
Py_Type() became Py_TYPE(), and
Py_Refcnt() became Py_REFCNT().
The mixed-case macros are still available
in Python 2.6 for backward compatibility.
(issue 1629 [https://bugs.python.org/issue1629])

	Distutils now places C extensions it builds in a
different directory when running on a debug version of Python.
(Contributed by Collin Winter; issue 1530959 [https://bugs.python.org/issue1530959].)

	Several basic data types, such as integers and strings, maintain
internal free lists of objects that can be re-used. The data
structures for these free lists now follow a naming convention: the
variable is always named free_list, the counter is always named
numfree, and a macro Py<typename>_MAXFREELIST is
always defined.

	A new Makefile target, “make patchcheck”, prepares the Python source tree
for making a patch: it fixes trailing whitespace in all modified
.py files, checks whether the documentation has been changed,
and reports whether the Misc/ACKS and Misc/NEWS files
have been updated.
(Contributed by Brett Cannon.)

Another new target, “make profile-opt”, compiles a Python binary
using GCC’s profile-guided optimization. It compiles Python with
profiling enabled, runs the test suite to obtain a set of profiling
results, and then compiles using these results for optimization.
(Contributed by Gregory P. Smith.)

Port-Specific Changes: Windows

	The support for Windows 95, 98, ME and NT4 has been dropped.
Python 2.6 requires at least Windows 2000 SP4.

	The new default compiler on Windows is Visual Studio 2008 (version
9.0). The build directories for Visual Studio 2003 (version 7.1) and
2005 (version 8.0) were moved into the PC/ directory. The new
PCbuild directory supports cross compilation for X64, debug
builds and Profile Guided Optimization (PGO). PGO builds are roughly
10% faster than normal builds. (Contributed by Christian Heimes
with help from Amaury Forgeot d’Arc and Martin von Loewis.)

	The msvcrt module now supports
both the normal and wide char variants of the console I/O
API. The getwch() function reads a keypress and returns a Unicode
value, as does the getwche() function. The putwch() function
takes a Unicode character and writes it to the console.
(Contributed by Christian Heimes.)

	os.path.expandvars() will now expand environment variables in
the form “%var%”, and “~user” will be expanded into the user’s home
directory path. (Contributed by Josiah Carlson; issue 957650 [https://bugs.python.org/issue957650].)

	The socket module’s socket objects now have an
ioctl() method that provides a limited interface to the
WSAIoctl() system interface.

	The _winreg module now has a function,
ExpandEnvironmentStrings(),
that expands environment variable references such as %NAME%
in an input string. The handle objects provided by this
module now support the context protocol, so they can be used
in with statements. (Contributed by Christian Heimes.)

_winreg also has better support for x64 systems,
exposing the DisableReflectionKey(), EnableReflectionKey(),
and QueryReflectionKey() functions, which enable and disable
registry reflection for 32-bit processes running on 64-bit systems.
(issue 1753245 [https://bugs.python.org/issue1753245])

	The msilib module’s Record object
gained GetInteger() and GetString() methods that
return field values as an integer or a string.
(Contributed by Floris Bruynooghe; issue 2125 [https://bugs.python.org/issue2125].)

Port-Specific Changes: Mac OS X

	When compiling a framework build of Python, you can now specify the
framework name to be used by providing the
--with-framework-name= option to the
configure script.

	The macfs module has been removed. This in turn required the
macostools.touched() function to be removed because it depended on the
macfs module. (issue 1490190 [https://bugs.python.org/issue1490190])

	Many other Mac OS modules have been deprecated and will be removed in
Python 3.0:
_builtinSuites,
aepack,
aetools,
aetypes,
applesingle,
appletrawmain,
appletrunner,
argvemulator,
Audio_mac,
autoGIL,
Carbon,
cfmfile,
CodeWarrior,
ColorPicker,
EasyDialogs,
Explorer,
Finder,
FrameWork,
findertools,
ic,
icglue,
icopen,
macerrors,
MacOS,
macfs,
macostools,
macresource,
MiniAEFrame,
Nav,
Netscape,
OSATerminology,
pimp,
PixMapWrapper,
StdSuites,
SystemEvents,
Terminal, and
terminalcommand.

Port-Specific Changes: IRIX

A number of old IRIX-specific modules were deprecated and will
be removed in Python 3.0:
al and AL,
cd,
cddb,
cdplayer,
CL and cl,
DEVICE,
ERRNO,
FILE,
FL and fl,
flp,
fm,
GET,
GLWS,
GL and gl,
IN,
IOCTL,
jpeg,
panelparser,
readcd,
SV and sv,
torgb,
videoreader, and
WAIT.

Porting to Python 2.6

This section lists previously described changes and other bugfixes
that may require changes to your code:

	Classes that aren’t supposed to be hashable should
set __hash__ = None in their definitions to indicate
the fact.

	String exceptions have been removed. Attempting to use them raises a
TypeError.

	The __init__() method of collections.deque
now clears any existing contents of the deque
before adding elements from the iterable. This change makes the
behavior match list.__init__().

	object.__init__() previously accepted arbitrary arguments and
keyword arguments, ignoring them. In Python 2.6, this is no longer
allowed and will result in a TypeError. This will affect
__init__() methods that end up calling the corresponding
method on object (perhaps through using super()).
See issue 1683368 [https://bugs.python.org/issue1683368] for discussion.

	The Decimal constructor now accepts leading and trailing
whitespace when passed a string. Previously it would raise an
InvalidOperation exception. On the other hand, the
create_decimal() method of Context objects now
explicitly disallows extra whitespace, raising a
ConversionSyntax exception.

	Due to an implementation accident, if you passed a file path to
the built-in __import__() function, it would actually import
the specified file. This was never intended to work, however, and
the implementation now explicitly checks for this case and raises
an ImportError.

	C API: the PyImport_Import() and PyImport_ImportModule()
functions now default to absolute imports, not relative imports.
This will affect C extensions that import other modules.

	C API: extension data types that shouldn’t be hashable
should define their tp_hash slot to
PyObject_HashNotImplemented().

	The socket module exception socket.error now inherits
from IOError. Previously it wasn’t a subclass of
StandardError but now it is, through IOError.
(Implemented by Gregory P. Smith; issue 1706815 [https://bugs.python.org/issue1706815].)

	The xmlrpclib module no longer automatically converts
datetime.date and datetime.time to the
xmlrpclib.DateTime type; the conversion semantics were
not necessarily correct for all applications. Code using
xmlrpclib should convert date and time
instances. (issue 1330538 [https://bugs.python.org/issue1330538])

	(3.0-warning mode) The Exception class now warns
when accessed using slicing or index access; having
Exception behave like a tuple is being phased out.

	(3.0-warning mode) inequality comparisons between two dictionaries
or two objects that don’t implement comparison methods are reported
as warnings. dict1 == dict2 still works, but dict1 < dict2
is being phased out.

Comparisons between cells, which are an implementation detail of Python’s
scoping rules, also cause warnings because such comparisons are forbidden
entirely in 3.0.

Acknowledgements

The author would like to thank the following people for offering
suggestions, corrections and assistance with various drafts of this
article: Georg Brandl, Steve Brown, Nick Coghlan, Ralph Corderoy,
Jim Jewett, Kent Johnson, Chris Lambacher, Martin Michlmayr,
Antoine Pitrou, Brian Warner.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

What’s New in Python 2.5

	Author:	A.M. Kuchling

This article explains the new features in Python 2.5. The final release of
Python 2.5 is scheduled for August 2006; PEP 356 [https://www.python.org/dev/peps/pep-0356] describes the planned
release schedule.

The changes in Python 2.5 are an interesting mix of language and library
improvements. The library enhancements will be more important to Python’s user
community, I think, because several widely-useful packages were added. New
modules include ElementTree for XML processing (xml.etree),
the SQLite database module (sqlite), and the ctypes
module for calling C functions.

The language changes are of middling significance. Some pleasant new features
were added, but most of them aren’t features that you’ll use every day.
Conditional expressions were finally added to the language using a novel syntax;
see section PEP 308: Conditional Expressions. The new ‘with‘ statement will make
writing cleanup code easier (section PEP 343: The ‘with’ statement). Values can now be passed
into generators (section PEP 342: New Generator Features). Imports are now visible as either
absolute or relative (section PEP 328: Absolute and Relative Imports). Some corner cases of exception
handling are handled better (section PEP 341: Unified try/except/finally). All these improvements
are worthwhile, but they’re improvements to one specific language feature or
another; none of them are broad modifications to Python’s semantics.

As well as the language and library additions, other improvements and bugfixes
were made throughout the source tree. A search through the SVN change logs
finds there were 353 patches applied and 458 bugs fixed between Python 2.4 and
2.5. (Both figures are likely to be underestimates.)

This article doesn’t try to be a complete specification of the new features;
instead changes are briefly introduced using helpful examples. For full
details, you should always refer to the documentation for Python 2.5 at
https://docs.python.org. If you want to understand the complete implementation
and design rationale, refer to the PEP for a particular new feature.

Comments, suggestions, and error reports for this document are welcome; please
e-mail them to the author or open a bug in the Python bug tracker.

PEP 308: Conditional Expressions

For a long time, people have been requesting a way to write conditional
expressions, which are expressions that return value A or value B depending on
whether a Boolean value is true or false. A conditional expression lets you
write a single assignment statement that has the same effect as the following:

if condition:
 x = true_value
else:
 x = false_value

There have been endless tedious discussions of syntax on both python-dev and
comp.lang.python. A vote was even held that found the majority of voters wanted
conditional expressions in some form, but there was no syntax that was preferred
by a clear majority. Candidates included C’s cond ? true_v : false_v, if
cond then true_v else false_v, and 16 other variations.

Guido van Rossum eventually chose a surprising syntax:

x = true_value if condition else false_value

Evaluation is still lazy as in existing Boolean expressions, so the order of
evaluation jumps around a bit. The condition expression in the middle is
evaluated first, and the true_value expression is evaluated only if the
condition was true. Similarly, the false_value expression is only evaluated
when the condition is false.

This syntax may seem strange and backwards; why does the condition go in the
middle of the expression, and not in the front as in C’s c ? x : y? The
decision was checked by applying the new syntax to the modules in the standard
library and seeing how the resulting code read. In many cases where a
conditional expression is used, one value seems to be the ‘common case’ and one
value is an ‘exceptional case’, used only on rarer occasions when the condition
isn’t met. The conditional syntax makes this pattern a bit more obvious:

contents = ((doc + '\n') if doc else '')

I read the above statement as meaning “here contents is usually assigned a
value of doc+'\n'; sometimes doc is empty, in which special case an empty
string is returned.” I doubt I will use conditional expressions very often
where there isn’t a clear common and uncommon case.

There was some discussion of whether the language should require surrounding
conditional expressions with parentheses. The decision was made to not
require parentheses in the Python language’s grammar, but as a matter of style I
think you should always use them. Consider these two statements:

First version -- no parens
level = 1 if logging else 0

Second version -- with parens
level = (1 if logging else 0)

In the first version, I think a reader’s eye might group the statement into
‘level = 1’, ‘if logging’, ‘else 0’, and think that the condition decides
whether the assignment to level is performed. The second version reads
better, in my opinion, because it makes it clear that the assignment is always
performed and the choice is being made between two values.

Another reason for including the brackets: a few odd combinations of list
comprehensions and lambdas could look like incorrect conditional expressions.
See PEP 308 [https://www.python.org/dev/peps/pep-0308] for some examples. If you put parentheses around your
conditional expressions, you won’t run into this case.

See also

	PEP 308 [https://www.python.org/dev/peps/pep-0308] - Conditional Expressions

	PEP written by Guido van Rossum and Raymond D. Hettinger; implemented by Thomas
Wouters.

PEP 309: Partial Function Application

The functools module is intended to contain tools for functional-style
programming.

One useful tool in this module is the partial() function. For programs
written in a functional style, you’ll sometimes want to construct variants of
existing functions that have some of the parameters filled in. Consider a
Python function f(a, b, c); you could create a new function g(b, c) that
was equivalent to f(1, b, c). This is called “partial function
application”.

partial() takes the arguments (function, arg1, arg2, ... kwarg1=value1,
kwarg2=value2). The resulting object is callable, so you can just call it to
invoke function with the filled-in arguments.

Here’s a small but realistic example:

import functools

def log (message, subsystem):
 "Write the contents of 'message' to the specified subsystem."
 print '%s: %s' % (subsystem, message)
 ...

server_log = functools.partial(log, subsystem='server')
server_log('Unable to open socket')

Here’s another example, from a program that uses PyGTK. Here a context-
sensitive pop-up menu is being constructed dynamically. The callback provided
for the menu option is a partially applied version of the open_item()
method, where the first argument has been provided.

...
class Application:
 def open_item(self, path):
 ...
 def init (self):
 open_func = functools.partial(self.open_item, item_path)
 popup_menu.append(("Open", open_func, 1))

Another function in the functools module is the
update_wrapper(wrapper, wrapped)() function that helps you write well-
behaved decorators. update_wrapper() copies the name, module, and
docstring attribute to a wrapper function so that tracebacks inside the wrapped
function are easier to understand. For example, you might write:

def my_decorator(f):
 def wrapper(*args, **kwds):
 print 'Calling decorated function'
 return f(*args, **kwds)
 functools.update_wrapper(wrapper, f)
 return wrapper

wraps() is a decorator that can be used inside your own decorators to copy
the wrapped function’s information. An alternate version of the previous
example would be:

def my_decorator(f):
 @functools.wraps(f)
 def wrapper(*args, **kwds):
 print 'Calling decorated function'
 return f(*args, **kwds)
 return wrapper

See also

	PEP 309 [https://www.python.org/dev/peps/pep-0309] - Partial Function Application

	PEP proposed and written by Peter Harris; implemented by Hye-Shik Chang and Nick
Coghlan, with adaptations by Raymond Hettinger.

PEP 314: Metadata for Python Software Packages v1.1

Some simple dependency support was added to Distutils. The setup()
function now has requires, provides, and obsoletes keyword
parameters. When you build a source distribution using the sdist command,
the dependency information will be recorded in the PKG-INFO file.

Another new keyword parameter is download_url, which should be set to a URL
for the package’s source code. This means it’s now possible to look up an entry
in the package index, determine the dependencies for a package, and download the
required packages.

VERSION = '1.0'
setup(name='PyPackage',
 version=VERSION,
 requires=['numarray', 'zlib (>=1.1.4)'],
 obsoletes=['OldPackage']
 download_url=('http://www.example.com/pypackage/dist/pkg-%s.tar.gz'
 % VERSION),
)

Another new enhancement to the Python package index at
https://pypi.python.org is storing source and binary archives for a
package. The new upload Distutils command will upload a package to
the repository.

Before a package can be uploaded, you must be able to build a distribution using
the sdist Distutils command. Once that works, you can run python
setup.py upload to add your package to the PyPI archive. Optionally you can
GPG-sign the package by supplying the --sign and --identity
options.

Package uploading was implemented by Martin von Löwis and Richard Jones.

See also

	PEP 314 [https://www.python.org/dev/peps/pep-0314] - Metadata for Python Software Packages v1.1

	PEP proposed and written by A.M. Kuchling, Richard Jones, and Fred Drake;
implemented by Richard Jones and Fred Drake.

PEP 328: Absolute and Relative Imports

The simpler part of PEP 328 was implemented in Python 2.4: parentheses could now
be used to enclose the names imported from a module using the from ... import
... statement, making it easier to import many different names.

The more complicated part has been implemented in Python 2.5: importing a module
can be specified to use absolute or package-relative imports. The plan is to
move toward making absolute imports the default in future versions of Python.

Let’s say you have a package directory like this:

pkg/
pkg/__init__.py
pkg/main.py
pkg/string.py

This defines a package named pkg containing the pkg.main and
pkg.string submodules.

Consider the code in the main.py module. What happens if it executes
the statement import string? In Python 2.4 and earlier, it will first look
in the package’s directory to perform a relative import, finds
pkg/string.py, imports the contents of that file as the
pkg.string module, and that module is bound to the name string in the
pkg.main module’s namespace.

That’s fine if pkg.string was what you wanted. But what if you wanted
Python’s standard string module? There’s no clean way to ignore
pkg.string and look for the standard module; generally you had to look at
the contents of sys.modules, which is slightly unclean. Holger Krekel’s
py.std package provides a tidier way to perform imports from the standard
library, import py; py.std.string.join(), but that package isn’t available
on all Python installations.

Reading code which relies on relative imports is also less clear, because a
reader may be confused about which module, string or pkg.string,
is intended to be used. Python users soon learned not to duplicate the names of
standard library modules in the names of their packages’ submodules, but you
can’t protect against having your submodule’s name being used for a new module
added in a future version of Python.

In Python 2.5, you can switch import‘s behaviour to absolute imports
using a from __future__ import absolute_import directive. This absolute-
import behaviour will become the default in a future version (probably Python
2.7). Once absolute imports are the default, import string will always
find the standard library’s version. It’s suggested that users should begin
using absolute imports as much as possible, so it’s preferable to begin writing
from pkg import string in your code.

Relative imports are still possible by adding a leading period to the module
name when using the from ... import form:

Import names from pkg.string
from .string import name1, name2
Import pkg.string
from . import string

This imports the string module relative to the current package, so in
pkg.main this will import name1 and name2 from pkg.string.
Additional leading periods perform the relative import starting from the parent
of the current package. For example, code in the A.B.C module can do:

from . import D # Imports A.B.D
from .. import E # Imports A.E
from ..F import G # Imports A.F.G

Leading periods cannot be used with the import modname form of the import
statement, only the from ... import form.

See also

	PEP 328 [https://www.python.org/dev/peps/pep-0328] - Imports: Multi-Line and Absolute/Relative

	PEP written by Aahz; implemented by Thomas Wouters.

	https://pylib.readthedocs.org/

	The py library by Holger Krekel, which contains the py.std package.

PEP 338: Executing Modules as Scripts

The -m switch added in Python 2.4 to execute a module as a script
gained a few more abilities. Instead of being implemented in C code inside the
Python interpreter, the switch now uses an implementation in a new module,
runpy.

The runpy module implements a more sophisticated import mechanism so that
it’s now possible to run modules in a package such as pychecker.checker.
The module also supports alternative import mechanisms such as the
zipimport module. This means you can add a .zip archive’s path to
sys.path and then use the -m switch to execute code from the
archive.

See also

	PEP 338 [https://www.python.org/dev/peps/pep-0338] - Executing modules as scripts

	PEP written and implemented by Nick Coghlan.

PEP 341: Unified try/except/finally

Until Python 2.5, the try statement came in two flavours. You could
use a finally block to ensure that code is always executed, or one or
more except blocks to catch specific exceptions. You couldn’t
combine both except blocks and a finally block, because
generating the right bytecode for the combined version was complicated and it
wasn’t clear what the semantics of the combined statement should be.

Guido van Rossum spent some time working with Java, which does support the
equivalent of combining except blocks and a finally block,
and this clarified what the statement should mean. In Python 2.5, you can now
write:

try:
 block-1 ...
except Exception1:
 handler-1 ...
except Exception2:
 handler-2 ...
else:
 else-block
finally:
 final-block

The code in block-1 is executed. If the code raises an exception, the various
except blocks are tested: if the exception is of class
Exception1, handler-1 is executed; otherwise if it’s of class
Exception2, handler-2 is executed, and so forth. If no exception is
raised, the else-block is executed.

No matter what happened previously, the final-block is executed once the code
block is complete and any raised exceptions handled. Even if there’s an error in
an exception handler or the else-block and a new exception is raised, the code
in the final-block is still run.

See also

	PEP 341 [https://www.python.org/dev/peps/pep-0341] - Unifying try-except and try-finally

	PEP written by Georg Brandl; implementation by Thomas Lee.

PEP 342: New Generator Features

Python 2.5 adds a simple way to pass values into a generator. As introduced in
Python 2.3, generators only produce output; once a generator’s code was invoked
to create an iterator, there was no way to pass any new information into the
function when its execution is resumed. Sometimes the ability to pass in some
information would be useful. Hackish solutions to this include making the
generator’s code look at a global variable and then changing the global
variable’s value, or passing in some mutable object that callers then modify.

To refresh your memory of basic generators, here’s a simple example:

def counter (maximum):
 i = 0
 while i < maximum:
 yield i
 i += 1

When you call counter(10), the result is an iterator that returns the values
from 0 up to 9. On encountering the yield statement, the iterator
returns the provided value and suspends the function’s execution, preserving the
local variables. Execution resumes on the following call to the iterator’s
next() method, picking up after the yield statement.

In Python 2.3, yield was a statement; it didn’t return any value. In
2.5, yield is now an expression, returning a value that can be
assigned to a variable or otherwise operated on:

val = (yield i)

I recommend that you always put parentheses around a yield expression
when you’re doing something with the returned value, as in the above example.
The parentheses aren’t always necessary, but it’s easier to always add them
instead of having to remember when they’re needed.

(PEP 342 [https://www.python.org/dev/peps/pep-0342] explains the exact rules, which are that a yield-expression must always be parenthesized except when it occurs at the top-level
expression on the right-hand side of an assignment. This means you can write
val = yield i but have to use parentheses when there’s an operation, as in
val = (yield i) + 12.)

Values are sent into a generator by calling its send(value)() method. The
generator’s code is then resumed and the yield expression returns the
specified value. If the regular next() method is called, the
yield returns None.

Here’s the previous example, modified to allow changing the value of the
internal counter.

def counter (maximum):
 i = 0
 while i < maximum:
 val = (yield i)
 # If value provided, change counter
 if val is not None:
 i = val
 else:
 i += 1

And here’s an example of changing the counter:

>>> it = counter(10)
>>> print it.next()
0
>>> print it.next()
1
>>> print it.send(8)
8
>>> print it.next()
9
>>> print it.next()
Traceback (most recent call last):
 File "t.py", line 15, in ?
 print it.next()
StopIteration

yield will usually return None, so you should always check
for this case. Don’t just use its value in expressions unless you’re sure that
the send() method will be the only method used to resume your generator
function.

In addition to send(), there are two other new methods on generators:

	throw(type, value=None, traceback=None)() is used to raise an exception
inside the generator; the exception is raised by the yield expression
where the generator’s execution is paused.

	close() raises a new GeneratorExit exception inside the generator
to terminate the iteration. On receiving this exception, the generator’s code
must either raise GeneratorExit or StopIteration. Catching the
GeneratorExit exception and returning a value is illegal and will trigger
a RuntimeError; if the function raises some other exception, that
exception is propagated to the caller. close() will also be called by
Python’s garbage collector when the generator is garbage-collected.

If you need to run cleanup code when a GeneratorExit occurs, I suggest
using a try: ... finally: suite instead of catching GeneratorExit.

The cumulative effect of these changes is to turn generators from one-way
producers of information into both producers and consumers.

Generators also become coroutines, a more generalized form of subroutines.
Subroutines are entered at one point and exited at another point (the top of the
function, and a return statement), but coroutines can be entered,
exited, and resumed at many different points (the yield statements).
We’ll have to figure out patterns for using coroutines effectively in Python.

The addition of the close() method has one side effect that isn’t obvious.
close() is called when a generator is garbage-collected, so this means the
generator’s code gets one last chance to run before the generator is destroyed.
This last chance means that try...finally statements in generators can now
be guaranteed to work; the finally clause will now always get a
chance to run. The syntactic restriction that you couldn’t mix yield
statements with a try...finally suite has therefore been removed. This
seems like a minor bit of language trivia, but using generators and
try...finally is actually necessary in order to implement the
with statement described by PEP 343. I’ll look at this new statement
in the following section.

Another even more esoteric effect of this change: previously, the
gi_frame attribute of a generator was always a frame object. It’s now
possible for gi_frame to be None once the generator has been
exhausted.

See also

	PEP 342 [https://www.python.org/dev/peps/pep-0342] - Coroutines via Enhanced Generators

	PEP written by Guido van Rossum and Phillip J. Eby; implemented by Phillip J.
Eby. Includes examples of some fancier uses of generators as coroutines.

Earlier versions of these features were proposed in PEP 288 [https://www.python.org/dev/peps/pep-0288] by Raymond
Hettinger and PEP 325 [https://www.python.org/dev/peps/pep-0325] by Samuele Pedroni.

	https://en.wikipedia.org/wiki/Coroutine

	The Wikipedia entry for coroutines.

	http://www.sidhe.org/~dan/blog/archives/000178.html

	An explanation of coroutines from a Perl point of view, written by Dan Sugalski.

PEP 343: The ‘with’ statement

The ‘with‘ statement clarifies code that previously would use
try...finally blocks to ensure that clean-up code is executed. In this
section, I’ll discuss the statement as it will commonly be used. In the next
section, I’ll examine the implementation details and show how to write objects
for use with this statement.

The ‘with‘ statement is a new control-flow structure whose basic
structure is:

with expression [as variable]:
 with-block

The expression is evaluated, and it should result in an object that supports the
context management protocol (that is, has __enter__() and __exit__()
methods.

The object’s __enter__() is called before with-block is executed and
therefore can run set-up code. It also may return a value that is bound to the
name variable, if given. (Note carefully that variable is not assigned
the result of expression.)

After execution of the with-block is finished, the object’s __exit__()
method is called, even if the block raised an exception, and can therefore run
clean-up code.

To enable the statement in Python 2.5, you need to add the following directive
to your module:

from __future__ import with_statement

The statement will always be enabled in Python 2.6.

Some standard Python objects now support the context management protocol and can
be used with the ‘with‘ statement. File objects are one example:

with open('/etc/passwd', 'r') as f:
 for line in f:
 print line
 ... more processing code ...

After this statement has executed, the file object in f will have been
automatically closed, even if the for loop raised an exception part-
way through the block.

Note

In this case, f is the same object created by open(), because
file.__enter__() returns self.

The threading module’s locks and condition variables also support the
‘with‘ statement:

lock = threading.Lock()
with lock:
 # Critical section of code
 ...

The lock is acquired before the block is executed and always released once the
block is complete.

The new localcontext() function in the decimal module makes it easy
to save and restore the current decimal context, which encapsulates the desired
precision and rounding characteristics for computations:

from decimal import Decimal, Context, localcontext

Displays with default precision of 28 digits
v = Decimal('578')
print v.sqrt()

with localcontext(Context(prec=16)):
 # All code in this block uses a precision of 16 digits.
 # The original context is restored on exiting the block.
 print v.sqrt()

Writing Context Managers

Under the hood, the ‘with‘ statement is fairly complicated. Most
people will only use ‘with‘ in company with existing objects and
don’t need to know these details, so you can skip the rest of this section if
you like. Authors of new objects will need to understand the details of the
underlying implementation and should keep reading.

A high-level explanation of the context management protocol is:

	The expression is evaluated and should result in an object called a “context
manager”. The context manager must have __enter__() and __exit__()
methods.

	The context manager’s __enter__() method is called. The value returned
is assigned to VAR. If no 'as VAR' clause is present, the value is simply
discarded.

	The code in BLOCK is executed.

	If BLOCK raises an exception, the __exit__(type, value, traceback)()
is called with the exception details, the same values returned by
sys.exc_info(). The method’s return value controls whether the exception
is re-raised: any false value re-raises the exception, and True will result
in suppressing it. You’ll only rarely want to suppress the exception, because
if you do the author of the code containing the ‘with‘ statement will
never realize anything went wrong.

	If BLOCK didn’t raise an exception, the __exit__() method is still
called, but type, value, and traceback are all None.

Let’s think through an example. I won’t present detailed code but will only
sketch the methods necessary for a database that supports transactions.

(For people unfamiliar with database terminology: a set of changes to the
database are grouped into a transaction. Transactions can be either committed,
meaning that all the changes are written into the database, or rolled back,
meaning that the changes are all discarded and the database is unchanged. See
any database textbook for more information.)

Let’s assume there’s an object representing a database connection. Our goal will
be to let the user write code like this:

db_connection = DatabaseConnection()
with db_connection as cursor:
 cursor.execute('insert into ...')
 cursor.execute('delete from ...')
 # ... more operations ...

The transaction should be committed if the code in the block runs flawlessly or
rolled back if there’s an exception. Here’s the basic interface for
DatabaseConnection that I’ll assume:

class DatabaseConnection:
 # Database interface
 def cursor (self):
 "Returns a cursor object and starts a new transaction"
 def commit (self):
 "Commits current transaction"
 def rollback (self):
 "Rolls back current transaction"

The __enter__() method is pretty easy, having only to start a new
transaction. For this application the resulting cursor object would be a useful
result, so the method will return it. The user can then add as cursor to
their ‘with‘ statement to bind the cursor to a variable name.

class DatabaseConnection:
 ...
 def __enter__ (self):
 # Code to start a new transaction
 cursor = self.cursor()
 return cursor

The __exit__() method is the most complicated because it’s where most of
the work has to be done. The method has to check if an exception occurred. If
there was no exception, the transaction is committed. The transaction is rolled
back if there was an exception.

In the code below, execution will just fall off the end of the function,
returning the default value of None. None is false, so the exception
will be re-raised automatically. If you wished, you could be more explicit and
add a return statement at the marked location.

class DatabaseConnection:
 ...
 def __exit__ (self, type, value, tb):
 if tb is None:
 # No exception, so commit
 self.commit()
 else:
 # Exception occurred, so rollback.
 self.rollback()
 # return False

The contextlib module

The new contextlib module provides some functions and a decorator that
are useful for writing objects for use with the ‘with‘ statement.

The decorator is called contextmanager(), and lets you write a single
generator function instead of defining a new class. The generator should yield
exactly one value. The code up to the yield will be executed as the
__enter__() method, and the value yielded will be the method’s return
value that will get bound to the variable in the ‘with‘ statement’s
as clause, if any. The code after the yield will be
executed in the __exit__() method. Any exception raised in the block will
be raised by the yield statement.

Our database example from the previous section could be written using this
decorator as:

from contextlib import contextmanager

@contextmanager
def db_transaction (connection):
 cursor = connection.cursor()
 try:
 yield cursor
 except:
 connection.rollback()
 raise
 else:
 connection.commit()

db = DatabaseConnection()
with db_transaction(db) as cursor:
 ...

The contextlib module also has a nested(mgr1, mgr2, ...)() function
that combines a number of context managers so you don’t need to write nested
‘with‘ statements. In this example, the single ‘with‘
statement both starts a database transaction and acquires a thread lock:

lock = threading.Lock()
with nested (db_transaction(db), lock) as (cursor, locked):
 ...

Finally, the closing(object)() function returns object so that it can be
bound to a variable, and calls object.close at the end of the block.

import urllib, sys
from contextlib import closing

with closing(urllib.urlopen('http://www.yahoo.com')) as f:
 for line in f:
 sys.stdout.write(line)

See also

	PEP 343 [https://www.python.org/dev/peps/pep-0343] - The “with” statement

	PEP written by Guido van Rossum and Nick Coghlan; implemented by Mike Bland,
Guido van Rossum, and Neal Norwitz. The PEP shows the code generated for a
‘with‘ statement, which can be helpful in learning how the statement
works.

The documentation for the contextlib module.

PEP 352: Exceptions as New-Style Classes

Exception classes can now be new-style classes, not just classic classes, and
the built-in Exception class and all the standard built-in exceptions
(NameError, ValueError, etc.) are now new-style classes.

The inheritance hierarchy for exceptions has been rearranged a bit. In 2.5, the
inheritance relationships are:

BaseException # New in Python 2.5
|- KeyboardInterrupt
|- SystemExit
|- Exception
 |- (all other current built-in exceptions)

This rearrangement was done because people often want to catch all exceptions
that indicate program errors. KeyboardInterrupt and SystemExit
aren’t errors, though, and usually represent an explicit action such as the user
hitting Control-C or code calling sys.exit(). A bare except: will
catch all exceptions, so you commonly need to list KeyboardInterrupt and
SystemExit in order to re-raise them. The usual pattern is:

try:
 ...
except (KeyboardInterrupt, SystemExit):
 raise
except:
 # Log error...
 # Continue running program...

In Python 2.5, you can now write except Exception to achieve the same
result, catching all the exceptions that usually indicate errors but leaving
KeyboardInterrupt and SystemExit alone. As in previous versions,
a bare except: still catches all exceptions.

The goal for Python 3.0 is to require any class raised as an exception to derive
from BaseException or some descendant of BaseException, and future
releases in the Python 2.x series may begin to enforce this constraint.
Therefore, I suggest you begin making all your exception classes derive from
Exception now. It’s been suggested that the bare except: form should
be removed in Python 3.0, but Guido van Rossum hasn’t decided whether to do this
or not.

Raising of strings as exceptions, as in the statement raise "Error
occurred", is deprecated in Python 2.5 and will trigger a warning. The aim is
to be able to remove the string-exception feature in a few releases.

See also

	PEP 352 [https://www.python.org/dev/peps/pep-0352] - Required Superclass for Exceptions

	PEP written by Brett Cannon and Guido van Rossum; implemented by Brett Cannon.

PEP 353: Using ssize_t as the index type

A wide-ranging change to Python’s C API, using a new Py_ssize_t type
definition instead of int, will permit the interpreter to handle more
data on 64-bit platforms. This change doesn’t affect Python’s capacity on 32-bit
platforms.

Various pieces of the Python interpreter used C’s int type to store
sizes or counts; for example, the number of items in a list or tuple were stored
in an int. The C compilers for most 64-bit platforms still define
int as a 32-bit type, so that meant that lists could only hold up to
2**31 - 1 = 2147483647 items. (There are actually a few different
programming models that 64-bit C compilers can use – see
http://www.unix.org/version2/whatsnew/lp64_wp.html for a discussion – but the
most commonly available model leaves int as 32 bits.)

A limit of 2147483647 items doesn’t really matter on a 32-bit platform because
you’ll run out of memory before hitting the length limit. Each list item
requires space for a pointer, which is 4 bytes, plus space for a
PyObject representing the item. 2147483647*4 is already more bytes
than a 32-bit address space can contain.

It’s possible to address that much memory on a 64-bit platform, however. The
pointers for a list that size would only require 16 GiB of space, so it’s not
unreasonable that Python programmers might construct lists that large.
Therefore, the Python interpreter had to be changed to use some type other than
int, and this will be a 64-bit type on 64-bit platforms. The change
will cause incompatibilities on 64-bit machines, so it was deemed worth making
the transition now, while the number of 64-bit users is still relatively small.
(In 5 or 10 years, we may all be on 64-bit machines, and the transition would
be more painful then.)

This change most strongly affects authors of C extension modules. Python
strings and container types such as lists and tuples now use
Py_ssize_t to store their size. Functions such as
PyList_Size() now return Py_ssize_t. Code in extension modules
may therefore need to have some variables changed to Py_ssize_t.

The PyArg_ParseTuple() and Py_BuildValue() functions have a new
conversion code, n, for Py_ssize_t. PyArg_ParseTuple()‘s
s# and t# still output int by default, but you can define the
macro PY_SSIZE_T_CLEAN before including Python.h to make
them return Py_ssize_t.

PEP 353 [https://www.python.org/dev/peps/pep-0353] has a section on conversion guidelines that extension authors should
read to learn about supporting 64-bit platforms.

See also

	PEP 353 [https://www.python.org/dev/peps/pep-0353] - Using ssize_t as the index type

	PEP written and implemented by Martin von Löwis.

PEP 357: The ‘__index__’ method

The NumPy developers had a problem that could only be solved by adding a new
special method, __index__(). When using slice notation, as in
[start:stop:step], the values of the start, stop, and step indexes
must all be either integers or long integers. NumPy defines a variety of
specialized integer types corresponding to unsigned and signed integers of 8,
16, 32, and 64 bits, but there was no way to signal that these types could be
used as slice indexes.

Slicing can’t just use the existing __int__() method because that method
is also used to implement coercion to integers. If slicing used
__int__(), floating-point numbers would also become legal slice indexes
and that’s clearly an undesirable behaviour.

Instead, a new special method called __index__() was added. It takes no
arguments and returns an integer giving the slice index to use. For example:

class C:
 def __index__ (self):
 return self.value

The return value must be either a Python integer or long integer. The
interpreter will check that the type returned is correct, and raises a
TypeError if this requirement isn’t met.

A corresponding nb_index slot was added to the C-level
PyNumberMethods structure to let C extensions implement this protocol.
PyNumber_Index(obj)() can be used in extension code to call the
__index__() function and retrieve its result.

See also

	PEP 357 [https://www.python.org/dev/peps/pep-0357] - Allowing Any Object to be Used for Slicing

	PEP written and implemented by Travis Oliphant.

Other Language Changes

Here are all of the changes that Python 2.5 makes to the core Python language.

	The dict type has a new hook for letting subclasses provide a default
value when a key isn’t contained in the dictionary. When a key isn’t found, the
dictionary’s __missing__(key)() method will be called. This hook is used
to implement the new defaultdict class in the collections
module. The following example defines a dictionary that returns zero for any
missing key:

class zerodict (dict):
 def __missing__ (self, key):
 return 0

d = zerodict({1:1, 2:2})
print d[1], d[2] # Prints 1, 2
print d[3], d[4] # Prints 0, 0

	Both 8-bit and Unicode strings have new partition(sep)() and
rpartition(sep)() methods that simplify a common use case.

The find(S)() method is often used to get an index which is then used to
slice the string and obtain the pieces that are before and after the separator.
partition(sep)() condenses this pattern into a single method call that
returns a 3-tuple containing the substring before the separator, the separator
itself, and the substring after the separator. If the separator isn’t found,
the first element of the tuple is the entire string and the other two elements
are empty. rpartition(sep)() also returns a 3-tuple but starts searching
from the end of the string; the r stands for ‘reverse’.

Some examples:

>>> ('http://www.python.org').partition('://')
('http', '://', 'www.python.org')
>>> ('file:/usr/share/doc/index.html').partition('://')
('file:/usr/share/doc/index.html', '', '')
>>> (u'Subject: a quick question').partition(':')
(u'Subject', u':', u' a quick question')
>>> 'www.python.org'.rpartition('.')
('www.python', '.', 'org')
>>> 'www.python.org'.rpartition(':')
('', '', 'www.python.org')

(Implemented by Fredrik Lundh following a suggestion by Raymond Hettinger.)

	The startswith() and endswith() methods of string types now accept
tuples of strings to check for.

def is_image_file (filename):
 return filename.endswith(('.gif', '.jpg', '.tiff'))

(Implemented by Georg Brandl following a suggestion by Tom Lynn.)

	The min() and max() built-in functions gained a key keyword
parameter analogous to the key argument for sort(). This parameter
supplies a function that takes a single argument and is called for every value
in the list; min()/max() will return the element with the
smallest/largest return value from this function. For example, to find the
longest string in a list, you can do:

L = ['medium', 'longest', 'short']
Prints 'longest'
print max(L, key=len)
Prints 'short', because lexicographically 'short' has the largest value
print max(L)

(Contributed by Steven Bethard and Raymond Hettinger.)

	Two new built-in functions, any() and all(), evaluate whether an
iterator contains any true or false values. any() returns True
if any value returned by the iterator is true; otherwise it will return
False. all() returns True only if all of the values
returned by the iterator evaluate as true. (Suggested by Guido van Rossum, and
implemented by Raymond Hettinger.)

	The result of a class’s __hash__() method can now be either a long
integer or a regular integer. If a long integer is returned, the hash of that
value is taken. In earlier versions the hash value was required to be a
regular integer, but in 2.5 the id() built-in was changed to always
return non-negative numbers, and users often seem to use id(self) in
__hash__() methods (though this is discouraged).

	ASCII is now the default encoding for modules. It’s now a syntax error if a
module contains string literals with 8-bit characters but doesn’t have an
encoding declaration. In Python 2.4 this triggered a warning, not a syntax
error. See PEP 263 [https://www.python.org/dev/peps/pep-0263] for how to declare a module’s encoding; for example, you
might add a line like this near the top of the source file:

-*- coding: latin1 -*-

	A new warning, UnicodeWarning, is triggered when you attempt to
compare a Unicode string and an 8-bit string that can’t be converted to Unicode
using the default ASCII encoding. The result of the comparison is false:

>>> chr(128) == unichr(128) # Can't convert chr(128) to Unicode
__main__:1: UnicodeWarning: Unicode equal comparison failed
 to convert both arguments to Unicode - interpreting them
 as being unequal
False
>>> chr(127) == unichr(127) # chr(127) can be converted
True

Previously this would raise a UnicodeDecodeError exception, but in 2.5
this could result in puzzling problems when accessing a dictionary. If you
looked up unichr(128) and chr(128) was being used as a key, you’d get a
UnicodeDecodeError exception. Other changes in 2.5 resulted in this
exception being raised instead of suppressed by the code in dictobject.c
that implements dictionaries.

Raising an exception for such a comparison is strictly correct, but the change
might have broken code, so instead UnicodeWarning was introduced.

(Implemented by Marc-André Lemburg.)

	One error that Python programmers sometimes make is forgetting to include an
__init__.py module in a package directory. Debugging this mistake can be
confusing, and usually requires running Python with the -v switch to
log all the paths searched. In Python 2.5, a new ImportWarning warning is
triggered when an import would have picked up a directory as a package but no
__init__.py was found. This warning is silently ignored by default;
provide the -Wd option when running the Python executable to display
the warning message. (Implemented by Thomas Wouters.)

	The list of base classes in a class definition can now be empty. As an
example, this is now legal:

class C():
 pass

(Implemented by Brett Cannon.)

Interactive Interpreter Changes

In the interactive interpreter, quit and exit have long been strings so
that new users get a somewhat helpful message when they try to quit:

>>> quit
'Use Ctrl-D (i.e. EOF) to exit.'

In Python 2.5, quit and exit are now objects that still produce string
representations of themselves, but are also callable. Newbies who try quit()
or exit() will now exit the interpreter as they expect. (Implemented by
Georg Brandl.)

The Python executable now accepts the standard long options --help
and --version; on Windows, it also accepts the /? option
for displaying a help message. (Implemented by Georg Brandl.)

Optimizations

Several of the optimizations were developed at the NeedForSpeed sprint, an event
held in Reykjavik, Iceland, from May 21–28 2006. The sprint focused on speed
enhancements to the CPython implementation and was funded by EWT LLC with local
support from CCP Games. Those optimizations added at this sprint are specially
marked in the following list.

	When they were introduced in Python 2.4, the built-in set and
frozenset types were built on top of Python’s dictionary type. In 2.5
the internal data structure has been customized for implementing sets, and as a
result sets will use a third less memory and are somewhat faster. (Implemented
by Raymond Hettinger.)

	The speed of some Unicode operations, such as finding substrings, string
splitting, and character map encoding and decoding, has been improved.
(Substring search and splitting improvements were added by Fredrik Lundh and
Andrew Dalke at the NeedForSpeed sprint. Character maps were improved by Walter
Dörwald and Martin von Löwis.)

	The long(str, base)() function is now faster on long digit strings
because fewer intermediate results are calculated. The peak is for strings of
around 800–1000 digits where the function is 6 times faster. (Contributed by
Alan McIntyre and committed at the NeedForSpeed sprint.)

	It’s now illegal to mix iterating over a file with for line in file and
calling the file object’s read()/readline()/readlines()
methods. Iteration uses an internal buffer and the read*() methods
don’t use that buffer. Instead they would return the data following the
buffer, causing the data to appear out of order. Mixing iteration and these
methods will now trigger a ValueError from the read*() method.
(Implemented by Thomas Wouters.)

	The struct module now compiles structure format strings into an
internal representation and caches this representation, yielding a 20% speedup.
(Contributed by Bob Ippolito at the NeedForSpeed sprint.)

	The re module got a 1 or 2% speedup by switching to Python’s allocator
functions instead of the system’s malloc() and free().
(Contributed by Jack Diederich at the NeedForSpeed sprint.)

	The code generator’s peephole optimizer now performs simple constant folding
in expressions. If you write something like a = 2+3, the code generator
will do the arithmetic and produce code corresponding to a = 5. (Proposed
and implemented by Raymond Hettinger.)

	Function calls are now faster because code objects now keep the most recently
finished frame (a “zombie frame”) in an internal field of the code object,
reusing it the next time the code object is invoked. (Original patch by Michael
Hudson, modified by Armin Rigo and Richard Jones; committed at the NeedForSpeed
sprint.) Frame objects are also slightly smaller, which may improve cache
locality and reduce memory usage a bit. (Contributed by Neal Norwitz.)

	Python’s built-in exceptions are now new-style classes, a change that speeds
up instantiation considerably. Exception handling in Python 2.5 is therefore
about 30% faster than in 2.4. (Contributed by Richard Jones, Georg Brandl and
Sean Reifschneider at the NeedForSpeed sprint.)

	Importing now caches the paths tried, recording whether they exist or not so
that the interpreter makes fewer open() and stat() calls on
startup. (Contributed by Martin von Löwis and Georg Brandl.)

New, Improved, and Removed Modules

The standard library received many enhancements and bug fixes in Python 2.5.
Here’s a partial list of the most notable changes, sorted alphabetically by
module name. Consult the Misc/NEWS file in the source tree for a more
complete list of changes, or look through the SVN logs for all the details.

	The audioop module now supports the a-LAW encoding, and the code for
u-LAW encoding has been improved. (Contributed by Lars Immisch.)

	The codecs module gained support for incremental codecs. The
codec.lookup() function now returns a CodecInfo instance instead
of a tuple. CodecInfo instances behave like a 4-tuple to preserve
backward compatibility but also have the attributes encode,
decode, incrementalencoder, incrementaldecoder,
streamwriter, and streamreader. Incremental codecs can receive
input and produce output in multiple chunks; the output is the same as if the
entire input was fed to the non-incremental codec. See the codecs module
documentation for details. (Designed and implemented by Walter Dörwald.)

	The collections module gained a new type, defaultdict, that
subclasses the standard dict type. The new type mostly behaves like a
dictionary but constructs a default value when a key isn’t present,
automatically adding it to the dictionary for the requested key value.

The first argument to defaultdict‘s constructor is a factory function
that gets called whenever a key is requested but not found. This factory
function receives no arguments, so you can use built-in type constructors such
as list() or int(). For example, you can make an index of words
based on their initial letter like this:

words = """Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la diritta via era smarrita""".lower().split()

index = defaultdict(list)

for w in words:
 init_letter = w[0]
 index[init_letter].append(w)

Printing index results in the following output:

defaultdict(<type 'list'>, {'c': ['cammin', 'che'], 'e': ['era'],
 'd': ['del', 'di', 'diritta'], 'm': ['mezzo', 'mi'],
 'l': ['la'], 'o': ['oscura'], 'n': ['nel', 'nostra'],
 'p': ['per'], 's': ['selva', 'smarrita'],
 'r': ['ritrovai'], 'u': ['una'], 'v': ['vita', 'via']}

(Contributed by Guido van Rossum.)

	The deque double-ended queue type supplied by the collections
module now has a remove(value)() method that removes the first occurrence
of value in the queue, raising ValueError if the value isn’t found.
(Contributed by Raymond Hettinger.)

	New module: The contextlib module contains helper functions for use
with the new ‘with‘ statement. See section The contextlib module
for more about this module.

	New module: The cProfile module is a C implementation of the existing
profile module that has much lower overhead. The module’s interface is
the same as profile: you run cProfile.run('main()') to profile a
function, can save profile data to a file, etc. It’s not yet known if the
Hotshot profiler, which is also written in C but doesn’t match the
profile module’s interface, will continue to be maintained in future
versions of Python. (Contributed by Armin Rigo.)

Also, the pstats module for analyzing the data measured by the profiler
now supports directing the output to any file object by supplying a stream
argument to the Stats constructor. (Contributed by Skip Montanaro.)

	The csv module, which parses files in comma-separated value format,
received several enhancements and a number of bugfixes. You can now set the
maximum size in bytes of a field by calling the
csv.field_size_limit(new_limit)() function; omitting the new_limit
argument will return the currently-set limit. The reader class now has
a line_num attribute that counts the number of physical lines read from
the source; records can span multiple physical lines, so line_num is not
the same as the number of records read.

The CSV parser is now stricter about multi-line quoted fields. Previously, if a
line ended within a quoted field without a terminating newline character, a
newline would be inserted into the returned field. This behavior caused problems
when reading files that contained carriage return characters within fields, so
the code was changed to return the field without inserting newlines. As a
consequence, if newlines embedded within fields are important, the input should
be split into lines in a manner that preserves the newline characters.

(Contributed by Skip Montanaro and Andrew McNamara.)

	The datetime class in the datetime module now has a
strptime(string, format)() method for parsing date strings, contributed
by Josh Spoerri. It uses the same format characters as time.strptime() and
time.strftime():

from datetime import datetime

ts = datetime.strptime('10:13:15 2006-03-07',
 '%H:%M:%S %Y-%m-%d')

	The SequenceMatcher.get_matching_blocks() method in the difflib
module now guarantees to return a minimal list of blocks describing matching
subsequences. Previously, the algorithm would occasionally break a block of
matching elements into two list entries. (Enhancement by Tim Peters.)

	The doctest module gained a SKIP option that keeps an example from
being executed at all. This is intended for code snippets that are usage
examples intended for the reader and aren’t actually test cases.

An encoding parameter was added to the testfile() function and the
DocFileSuite class to specify the file’s encoding. This makes it
easier to use non-ASCII characters in tests contained within a docstring.
(Contributed by Bjorn Tillenius.)

	The email package has been updated to version 4.0. (Contributed by
Barry Warsaw.)

	The fileinput module was made more flexible. Unicode filenames are now
supported, and a mode parameter that defaults to "r" was added to the
input() function to allow opening files in binary or universal
newlines mode. Another new parameter, openhook, lets you use a function
other than open() to open the input files. Once you’re iterating over
the set of files, the FileInput object’s new fileno() returns
the file descriptor for the currently opened file. (Contributed by Georg
Brandl.)

	In the gc module, the new get_count() function returns a 3-tuple
containing the current collection counts for the three GC generations. This is
accounting information for the garbage collector; when these counts reach a
specified threshold, a garbage collection sweep will be made. The existing
gc.collect() function now takes an optional generation argument of 0, 1,
or 2 to specify which generation to collect. (Contributed by Barry Warsaw.)

	The nsmallest() and nlargest() functions in the heapq
module now support a key keyword parameter similar to the one provided by
the min()/max() functions and the sort() methods. For
example:

>>> import heapq
>>> L = ["short", 'medium', 'longest', 'longer still']
>>> heapq.nsmallest(2, L) # Return two lowest elements, lexicographically
['longer still', 'longest']
>>> heapq.nsmallest(2, L, key=len) # Return two shortest elements
['short', 'medium']

(Contributed by Raymond Hettinger.)

	The itertools.islice() function now accepts None for the start and
step arguments. This makes it more compatible with the attributes of slice
objects, so that you can now write the following:

s = slice(5) # Create slice object
itertools.islice(iterable, s.start, s.stop, s.step)

(Contributed by Raymond Hettinger.)

	The format() function in the locale module has been modified and
two new functions were added, format_string() and currency().

The format() function’s val parameter could previously be a string as
long as no more than one %char specifier appeared; now the parameter must be
exactly one %char specifier with no surrounding text. An optional monetary
parameter was also added which, if True, will use the locale’s rules for
formatting currency in placing a separator between groups of three digits.

To format strings with multiple %char specifiers, use the new
format_string() function that works like format() but also supports
mixing %char specifiers with arbitrary text.

A new currency() function was also added that formats a number according
to the current locale’s settings.

(Contributed by Georg Brandl.)

	The mailbox module underwent a massive rewrite to add the capability to
modify mailboxes in addition to reading them. A new set of classes that include
mbox, MH, and Maildir are used to read mailboxes, and
have an add(message)() method to add messages, remove(key)() to
remove messages, and lock()/unlock() to lock/unlock the mailbox.
The following example converts a maildir-format mailbox into an mbox-format
one:

import mailbox

'factory=None' uses email.Message.Message as the class representing
individual messages.
src = mailbox.Maildir('maildir', factory=None)
dest = mailbox.mbox('/tmp/mbox')

for msg in src:
 dest.add(msg)

(Contributed by Gregory K. Johnson. Funding was provided by Google’s 2005
Summer of Code.)

	New module: the msilib module allows creating Microsoft Installer
.msi files and CAB files. Some support for reading the .msi
database is also included. (Contributed by Martin von Löwis.)

	The nis module now supports accessing domains other than the system
default domain by supplying a domain argument to the nis.match() and
nis.maps() functions. (Contributed by Ben Bell.)

	The operator module’s itemgetter() and attrgetter()
functions now support multiple fields. A call such as
operator.attrgetter('a', 'b') will return a function that retrieves the
a and b attributes. Combining this new feature with the
sort() method’s key parameter lets you easily sort lists using
multiple fields. (Contributed by Raymond Hettinger.)

	The optparse module was updated to version 1.5.1 of the Optik library.
The OptionParser class gained an epilog attribute, a string
that will be printed after the help message, and a destroy() method to
break reference cycles created by the object. (Contributed by Greg Ward.)

	The os module underwent several changes. The stat_float_times
variable now defaults to true, meaning that os.stat() will now return time
values as floats. (This doesn’t necessarily mean that os.stat() will
return times that are precise to fractions of a second; not all systems support
such precision.)

Constants named os.SEEK_SET, os.SEEK_CUR, and
os.SEEK_END have been added; these are the parameters to the
os.lseek() function. Two new constants for locking are
os.O_SHLOCK and os.O_EXLOCK.

Two new functions, wait3() and wait4(), were added. They’re similar
the waitpid() function which waits for a child process to exit and returns
a tuple of the process ID and its exit status, but wait3() and
wait4() return additional information. wait3() doesn’t take a
process ID as input, so it waits for any child process to exit and returns a
3-tuple of process-id, exit-status, resource-usage as returned from the
resource.getrusage() function. wait4(pid)() does take a process ID.
(Contributed by Chad J. Schroeder.)

On FreeBSD, the os.stat() function now returns times with nanosecond
resolution, and the returned object now has st_gen and
st_birthtime. The st_flags attribute is also available, if the
platform supports it. (Contributed by Antti Louko and Diego Pettenò.)

	The Python debugger provided by the pdb module can now store lists of
commands to execute when a breakpoint is reached and execution stops. Once
breakpoint #1 has been created, enter commands 1 and enter a series of
commands to be executed, finishing the list with end. The command list can
include commands that resume execution, such as continue or next.
(Contributed by Grégoire Dooms.)

	The pickle and cPickle modules no longer accept a return value
of None from the __reduce__() method; the method must return a tuple
of arguments instead. The ability to return None was deprecated in Python
2.4, so this completes the removal of the feature.

	The pkgutil module, containing various utility functions for finding
packages, was enhanced to support PEP 302’s import hooks and now also works for
packages stored in ZIP-format archives. (Contributed by Phillip J. Eby.)

	The pybench benchmark suite by Marc-André Lemburg is now included in the
Tools/pybench directory. The pybench suite is an improvement on the
commonly used pystone.py program because pybench provides a more
detailed measurement of the interpreter’s speed. It times particular operations
such as function calls, tuple slicing, method lookups, and numeric operations,
instead of performing many different operations and reducing the result to a
single number as pystone.py does.

	The pyexpat module now uses version 2.0 of the Expat parser.
(Contributed by Trent Mick.)

	The Queue class provided by the Queue module gained two new
methods. join() blocks until all items in the queue have been retrieved
and all processing work on the items have been completed. Worker threads call
the other new method, task_done(), to signal that processing for an item
has been completed. (Contributed by Raymond Hettinger.)

	The old regex and regsub modules, which have been deprecated
ever since Python 2.0, have finally been deleted. Other deleted modules:
statcache, tzparse, whrandom.

	Also deleted: the lib-old directory, which includes ancient modules
such as dircmp and ni, was removed. lib-old wasn’t on the
default sys.path, so unless your programs explicitly added the directory to
sys.path, this removal shouldn’t affect your code.

	The rlcompleter module is no longer dependent on importing the
readline module and therefore now works on non-Unix platforms. (Patch
from Robert Kiendl.)

	The SimpleXMLRPCServer and DocXMLRPCServer classes now have a
rpc_paths attribute that constrains XML-RPC operations to a limited set
of URL paths; the default is to allow only '/' and '/RPC2'. Setting
rpc_paths to None or an empty tuple disables this path checking.

	The socket module now supports AF_NETLINK sockets on Linux,
thanks to a patch from Philippe Biondi. Netlink sockets are a Linux-specific
mechanism for communications between a user-space process and kernel code; an
introductory article about them is at https://www.linuxjournal.com/article/7356.
In Python code, netlink addresses are represented as a tuple of 2 integers,
(pid, group_mask).

Two new methods on socket objects, recv_into(buffer)() and
recvfrom_into(buffer)(), store the received data in an object that
supports the buffer protocol instead of returning the data as a string. This
means you can put the data directly into an array or a memory-mapped file.

Socket objects also gained getfamily(), gettype(), and
getproto() accessor methods to retrieve the family, type, and protocol
values for the socket.

	New module: the spwd module provides functions for accessing the shadow
password database on systems that support shadow passwords.

	The struct is now faster because it compiles format strings into
Struct objects with pack() and unpack() methods. This is
similar to how the re module lets you create compiled regular expression
objects. You can still use the module-level pack() and unpack()
functions; they’ll create Struct objects and cache them. Or you can
use Struct instances directly:

s = struct.Struct('ih3s')

data = s.pack(1972, 187, 'abc')
year, number, name = s.unpack(data)

You can also pack and unpack data to and from buffer objects directly using the
pack_into(buffer, offset, v1, v2, ...)() and unpack_from(buffer,
offset)() methods. This lets you store data directly into an array or a memory-
mapped file.

(Struct objects were implemented by Bob Ippolito at the NeedForSpeed
sprint. Support for buffer objects was added by Martin Blais, also at the
NeedForSpeed sprint.)

	The Python developers switched from CVS to Subversion during the 2.5
development process. Information about the exact build version is available as
the sys.subversion variable, a 3-tuple of (interpreter-name, branch-name,
revision-range). For example, at the time of writing my copy of 2.5 was
reporting ('CPython', 'trunk', '45313:45315').

This information is also available to C extensions via the
Py_GetBuildInfo() function that returns a string of build information
like this: "trunk:45355:45356M, Apr 13 2006, 07:42:19". (Contributed by
Barry Warsaw.)

	Another new function, sys._current_frames(), returns the current stack
frames for all running threads as a dictionary mapping thread identifiers to the
topmost stack frame currently active in that thread at the time the function is
called. (Contributed by Tim Peters.)

	The TarFile class in the tarfile module now has an
extractall() method that extracts all members from the archive into the
current working directory. It’s also possible to set a different directory as
the extraction target, and to unpack only a subset of the archive’s members.

The compression used for a tarfile opened in stream mode can now be autodetected
using the mode 'r|*'. (Contributed by Lars Gustäbel.)

	The threading module now lets you set the stack size used when new
threads are created. The stack_size([*size*])() function returns the
currently configured stack size, and supplying the optional size parameter
sets a new value. Not all platforms support changing the stack size, but
Windows, POSIX threading, and OS/2 all do. (Contributed by Andrew MacIntyre.)

	The unicodedata module has been updated to use version 4.1.0 of the
Unicode character database. Version 3.2.0 is required by some specifications,
so it’s still available as unicodedata.ucd_3_2_0.

	New module: the uuid module generates universally unique identifiers
(UUIDs) according to RFC 4122 [https://tools.ietf.org/html/rfc4122.html]. The RFC defines several different UUID
versions that are generated from a starting string, from system properties, or
purely randomly. This module contains a UUID class and functions
named uuid1(), uuid3(), uuid4(), and uuid5() to
generate different versions of UUID. (Version 2 UUIDs are not specified in
RFC 4122 [https://tools.ietf.org/html/rfc4122.html] and are not supported by this module.)

>>> import uuid
>>> # make a UUID based on the host ID and current time
>>> uuid.uuid1()
UUID('a8098c1a-f86e-11da-bd1a-00112444be1e')

>>> # make a UUID using an MD5 hash of a namespace UUID and a name
>>> uuid.uuid3(uuid.NAMESPACE_DNS, 'python.org')
UUID('6fa459ea-ee8a-3ca4-894e-db77e160355e')

>>> # make a random UUID
>>> uuid.uuid4()
UUID('16fd2706-8baf-433b-82eb-8c7fada847da')

>>> # make a UUID using a SHA-1 hash of a namespace UUID and a name
>>> uuid.uuid5(uuid.NAMESPACE_DNS, 'python.org')
UUID('886313e1-3b8a-5372-9b90-0c9aee199e5d')

(Contributed by Ka-Ping Yee.)

	The weakref module’s WeakKeyDictionary and
WeakValueDictionary types gained new methods for iterating over the
weak references contained in the dictionary. iterkeyrefs() and
keyrefs() methods were added to WeakKeyDictionary, and
itervaluerefs() and valuerefs() were added to
WeakValueDictionary. (Contributed by Fred L. Drake, Jr.)

	The webbrowser module received a number of enhancements. It’s now
usable as a script with python -m webbrowser, taking a URL as the argument;
there are a number of switches to control the behaviour (-n for a new
browser window, -t for a new tab). New module-level functions,
open_new() and open_new_tab(), were added to support this. The
module’s open() function supports an additional feature, an autoraise
parameter that signals whether to raise the open window when possible. A number
of additional browsers were added to the supported list such as Firefox, Opera,
Konqueror, and elinks. (Contributed by Oleg Broytmann and Georg Brandl.)

	The xmlrpclib module now supports returning datetime objects
for the XML-RPC date type. Supply use_datetime=True to the loads()
function or the Unmarshaller class to enable this feature. (Contributed
by Skip Montanaro.)

	The zipfile module now supports the ZIP64 version of the format,
meaning that a .zip archive can now be larger than 4 GiB and can contain
individual files larger than 4 GiB. (Contributed by Ronald Oussoren.)

	The zlib module’s Compress and Decompress objects now
support a copy() method that makes a copy of the object’s internal state
and returns a new Compress or Decompress object.
(Contributed by Chris AtLee.)

The ctypes package

The ctypes package, written by Thomas Heller, has been added to the
standard library. ctypes lets you call arbitrary functions in shared
libraries or DLLs. Long-time users may remember the dl module, which
provides functions for loading shared libraries and calling functions in them.
The ctypes package is much fancier.

To load a shared library or DLL, you must create an instance of the
CDLL class and provide the name or path of the shared library or DLL.
Once that’s done, you can call arbitrary functions by accessing them as
attributes of the CDLL object.

import ctypes

libc = ctypes.CDLL('libc.so.6')
result = libc.printf("Line of output\n")

Type constructors for the various C types are provided: c_int(),
c_float(), c_double(), c_char_p() (equivalent to char
*), and so forth. Unlike Python’s types, the C versions are all mutable; you
can assign to their value attribute to change the wrapped value. Python
integers and strings will be automatically converted to the corresponding C
types, but for other types you must call the correct type constructor. (And I
mean must; getting it wrong will often result in the interpreter crashing
with a segmentation fault.)

You shouldn’t use c_char_p() with a Python string when the C function will
be modifying the memory area, because Python strings are supposed to be
immutable; breaking this rule will cause puzzling bugs. When you need a
modifiable memory area, use create_string_buffer():

s = "this is a string"
buf = ctypes.create_string_buffer(s)
libc.strfry(buf)

C functions are assumed to return integers, but you can set the restype
attribute of the function object to change this:

>>> libc.atof('2.71828')
-1783957616
>>> libc.atof.restype = ctypes.c_double
>>> libc.atof('2.71828')
2.71828

ctypes also provides a wrapper for Python’s C API as the
ctypes.pythonapi object. This object does not release the global
interpreter lock before calling a function, because the lock must be held when
calling into the interpreter’s code. There’s a py_object() type
constructor that will create a PyObject * pointer. A simple usage:

import ctypes

d = {}
ctypes.pythonapi.PyObject_SetItem(ctypes.py_object(d),
 ctypes.py_object("abc"), ctypes.py_object(1))
d is now {'abc', 1}.

Don’t forget to use py_object(); if it’s omitted you end up with a
segmentation fault.

ctypes has been around for a while, but people still write and
distribution hand-coded extension modules because you can’t rely on
ctypes being present. Perhaps developers will begin to write Python
wrappers atop a library accessed through ctypes instead of extension
modules, now that ctypes is included with core Python.

See also

	http://starship.python.net/crew/theller/ctypes/

	The ctypes web page, with a tutorial, reference, and FAQ.

The documentation for the ctypes module.

The ElementTree package

A subset of Fredrik Lundh’s ElementTree library for processing XML has been
added to the standard library as xml.etree. The available modules are
ElementTree, ElementPath, and ElementInclude from
ElementTree 1.2.6. The cElementTree accelerator module is also
included.

The rest of this section will provide a brief overview of using ElementTree.
Full documentation for ElementTree is available at
http://effbot.org/zone/element-index.htm.

ElementTree represents an XML document as a tree of element nodes. The text
content of the document is stored as the text and tail
attributes of (This is one of the major differences between ElementTree and
the Document Object Model; in the DOM there are many different types of node,
including TextNode.)

The most commonly used parsing function is parse(), that takes either a
string (assumed to contain a filename) or a file-like object and returns an
ElementTree instance:

from xml.etree import ElementTree as ET

tree = ET.parse('ex-1.xml')

feed = urllib.urlopen(
 'http://planet.python.org/rss10.xml')
tree = ET.parse(feed)

Once you have an ElementTree instance, you can call its getroot()
method to get the root Element node.

There’s also an XML() function that takes a string literal and returns an
Element node (not an ElementTree). This function provides a
tidy way to incorporate XML fragments, approaching the convenience of an XML
literal:

svg = ET.XML("""<svg width="10px" version="1.0">
 </svg>""")
svg.set('height', '320px')
svg.append(elem1)

Each XML element supports some dictionary-like and some list-like access
methods. Dictionary-like operations are used to access attribute values, and
list-like operations are used to access child nodes.

	Operation
	Result

	elem[n]
	Returns n’th child element.

	elem[m:n]
	Returns list of m’th through n’th child
elements.

	len(elem)
	Returns number of child elements.

	list(elem)
	Returns list of child elements.

	elem.append(elem2)
	Adds elem2 as a child.

	elem.insert(index, elem2)
	Inserts elem2 at the specified location.

	del elem[n]
	Deletes n’th child element.

	elem.keys()
	Returns list of attribute names.

	elem.get(name)
	Returns value of attribute name.

	elem.set(name, value)
	Sets new value for attribute name.

	elem.attrib
	Retrieves the dictionary containing
attributes.

	del elem.attrib[name]
	Deletes attribute name.

Comments and processing instructions are also represented as Element
nodes. To check if a node is a comment or processing instructions:

if elem.tag is ET.Comment:
 ...
elif elem.tag is ET.ProcessingInstruction:
 ...

To generate XML output, you should call the ElementTree.write() method.
Like parse(), it can take either a string or a file-like object:

Encoding is US-ASCII
tree.write('output.xml')

Encoding is UTF-8
f = open('output.xml', 'w')
tree.write(f, encoding='utf-8')

(Caution: the default encoding used for output is ASCII. For general XML work,
where an element’s name may contain arbitrary Unicode characters, ASCII isn’t a
very useful encoding because it will raise an exception if an element’s name
contains any characters with values greater than 127. Therefore, it’s best to
specify a different encoding such as UTF-8 that can handle any Unicode
character.)

This section is only a partial description of the ElementTree interfaces. Please
read the package’s official documentation for more details.

See also

	http://effbot.org/zone/element-index.htm

	Official documentation for ElementTree.

The hashlib package

A new hashlib module, written by Gregory P. Smith, has been added to
replace the md5 and sha modules. hashlib adds support for
additional secure hashes (SHA-224, SHA-256, SHA-384, and SHA-512). When
available, the module uses OpenSSL for fast platform optimized implementations
of algorithms.

The old md5 and sha modules still exist as wrappers around hashlib
to preserve backwards compatibility. The new module’s interface is very close
to that of the old modules, but not identical. The most significant difference
is that the constructor functions for creating new hashing objects are named
differently.

Old versions
h = md5.md5()
h = md5.new()

New version
h = hashlib.md5()

Old versions
h = sha.sha()
h = sha.new()

New version
h = hashlib.sha1()

Hash that weren't previously available
h = hashlib.sha224()
h = hashlib.sha256()
h = hashlib.sha384()
h = hashlib.sha512()

Alternative form
h = hashlib.new('md5') # Provide algorithm as a string

Once a hash object has been created, its methods are the same as before:
update(string)() hashes the specified string into the current digest
state, digest() and hexdigest() return the digest value as a binary
string or a string of hex digits, and copy() returns a new hashing object
with the same digest state.

See also

The documentation for the hashlib module.

The sqlite3 package

The pysqlite module (http://www.pysqlite.org), a wrapper for the SQLite embedded
database, has been added to the standard library under the package name
sqlite3.

SQLite is a C library that provides a lightweight disk-based database that
doesn’t require a separate server process and allows accessing the database
using a nonstandard variant of the SQL query language. Some applications can use
SQLite for internal data storage. It’s also possible to prototype an
application using SQLite and then port the code to a larger database such as
PostgreSQL or Oracle.

pysqlite was written by Gerhard Häring and provides a SQL interface compliant
with the DB-API 2.0 specification described by PEP 249 [https://www.python.org/dev/peps/pep-0249].

If you’re compiling the Python source yourself, note that the source tree
doesn’t include the SQLite code, only the wrapper module. You’ll need to have
the SQLite libraries and headers installed before compiling Python, and the
build process will compile the module when the necessary headers are available.

To use the module, you must first create a Connection object that
represents the database. Here the data will be stored in the
/tmp/example file:

conn = sqlite3.connect('/tmp/example')

You can also supply the special name :memory: to create a database in RAM.

Once you have a Connection, you can create a Cursor object
and call its execute() method to perform SQL commands:

c = conn.cursor()

Create table
c.execute('''create table stocks
(date text, trans text, symbol text,
 qty real, price real)''')

Insert a row of data
c.execute("""insert into stocks
 values ('2006-01-05','BUY','RHAT',100,35.14)""")

Usually your SQL operations will need to use values from Python variables. You
shouldn’t assemble your query using Python’s string operations because doing so
is insecure; it makes your program vulnerable to an SQL injection attack.

Instead, use the DB-API’s parameter substitution. Put ? as a placeholder
wherever you want to use a value, and then provide a tuple of values as the
second argument to the cursor’s execute() method. (Other database modules
may use a different placeholder, such as %s or :1.) For example:

Never do this -- insecure!
symbol = 'IBM'
c.execute("... where symbol = '%s'" % symbol)

Do this instead
t = (symbol,)
c.execute('select * from stocks where symbol=?', t)

Larger example
for t in (('2006-03-28', 'BUY', 'IBM', 1000, 45.00),
 ('2006-04-05', 'BUY', 'MSOFT', 1000, 72.00),
 ('2006-04-06', 'SELL', 'IBM', 500, 53.00),
):
 c.execute('insert into stocks values (?,?,?,?,?)', t)

To retrieve data after executing a SELECT statement, you can either treat the
cursor as an iterator, call the cursor’s fetchone() method to retrieve a
single matching row, or call fetchall() to get a list of the matching
rows.

This example uses the iterator form:

>>> c = conn.cursor()
>>> c.execute('select * from stocks order by price')
>>> for row in c:
... print row
...
(u'2006-01-05', u'BUY', u'RHAT', 100, 35.140000000000001)
(u'2006-03-28', u'BUY', u'IBM', 1000, 45.0)
(u'2006-04-06', u'SELL', u'IBM', 500, 53.0)
(u'2006-04-05', u'BUY', u'MSOFT', 1000, 72.0)
>>>

For more information about the SQL dialect supported by SQLite, see
https://www.sqlite.org.

See also

	http://www.pysqlite.org

	The pysqlite web page.

	https://www.sqlite.org

	The SQLite web page; the documentation describes the syntax and the available
data types for the supported SQL dialect.

The documentation for the sqlite3 module.

	PEP 249 [https://www.python.org/dev/peps/pep-0249] - Database API Specification 2.0

	PEP written by Marc-André Lemburg.

The wsgiref package

The Web Server Gateway Interface (WSGI) v1.0 defines a standard interface
between web servers and Python web applications and is described in PEP 333 [https://www.python.org/dev/peps/pep-0333].
The wsgiref package is a reference implementation of the WSGI
specification.

The package includes a basic HTTP server that will run a WSGI application; this
server is useful for debugging but isn’t intended for production use. Setting
up a server takes only a few lines of code:

from wsgiref import simple_server

wsgi_app = ...

host = ''
port = 8000
httpd = simple_server.make_server(host, port, wsgi_app)
httpd.serve_forever()

See also

	http://www.wsgi.org

	A central web site for WSGI-related resources.

	PEP 333 [https://www.python.org/dev/peps/pep-0333] - Python Web Server Gateway Interface v1.0

	PEP written by Phillip J. Eby.

Build and C API Changes

Changes to Python’s build process and to the C API include:

	The Python source tree was converted from CVS to Subversion, in a complex
migration procedure that was supervised and flawlessly carried out by Martin von
Löwis. The procedure was developed as PEP 347 [https://www.python.org/dev/peps/pep-0347].

	Coverity, a company that markets a source code analysis tool called Prevent,
provided the results of their examination of the Python source code. The
analysis found about 60 bugs that were quickly fixed. Many of the bugs were
refcounting problems, often occurring in error-handling code. See
https://scan.coverity.com for the statistics.

	The largest change to the C API came from PEP 353 [https://www.python.org/dev/peps/pep-0353], which modifies the
interpreter to use a Py_ssize_t type definition instead of
int. See the earlier section PEP 353: Using ssize_t as the index type for a discussion of this
change.

	The design of the bytecode compiler has changed a great deal, no longer
generating bytecode by traversing the parse tree. Instead the parse tree is
converted to an abstract syntax tree (or AST), and it is the abstract syntax
tree that’s traversed to produce the bytecode.

It’s possible for Python code to obtain AST objects by using the
compile() built-in and specifying _ast.PyCF_ONLY_AST as the value of
the flags parameter:

from _ast import PyCF_ONLY_AST
ast = compile("""a=0
for i in range(10):
 a += i
""", "<string>", 'exec', PyCF_ONLY_AST)

assignment = ast.body[0]
for_loop = ast.body[1]

No official documentation has been written for the AST code yet, but PEP 339 [https://www.python.org/dev/peps/pep-0339]
discusses the design. To start learning about the code, read the definition of
the various AST nodes in Parser/Python.asdl. A Python script reads this
file and generates a set of C structure definitions in
Include/Python-ast.h. The PyParser_ASTFromString() and
PyParser_ASTFromFile(), defined in Include/pythonrun.h, take
Python source as input and return the root of an AST representing the contents.
This AST can then be turned into a code object by PyAST_Compile(). For
more information, read the source code, and then ask questions on python-dev.

The AST code was developed under Jeremy Hylton’s management, and implemented by
(in alphabetical order) Brett Cannon, Nick Coghlan, Grant Edwards, John
Ehresman, Kurt Kaiser, Neal Norwitz, Tim Peters, Armin Rigo, and Neil
Schemenauer, plus the participants in a number of AST sprints at conferences
such as PyCon.

	Evan Jones’s patch to obmalloc, first described in a talk at PyCon DC 2005,
was applied. Python 2.4 allocated small objects in 256K-sized arenas, but never
freed arenas. With this patch, Python will free arenas when they’re empty. The
net effect is that on some platforms, when you allocate many objects, Python’s
memory usage may actually drop when you delete them and the memory may be
returned to the operating system. (Implemented by Evan Jones, and reworked by
Tim Peters.)

Note that this change means extension modules must be more careful when
allocating memory. Python’s API has many different functions for allocating
memory that are grouped into families. For example, PyMem_Malloc(),
PyMem_Realloc(), and PyMem_Free() are one family that allocates
raw memory, while PyObject_Malloc(), PyObject_Realloc(), and
PyObject_Free() are another family that’s supposed to be used for
creating Python objects.

Previously these different families all reduced to the platform’s
malloc() and free() functions. This meant it didn’t matter if
you got things wrong and allocated memory with the PyMem() function but
freed it with the PyObject() function. With 2.5’s changes to obmalloc,
these families now do different things and mismatches will probably result in a
segfault. You should carefully test your C extension modules with Python 2.5.

	The built-in set types now have an official C API. Call PySet_New()
and PyFrozenSet_New() to create a new set, PySet_Add() and
PySet_Discard() to add and remove elements, and PySet_Contains()
and PySet_Size() to examine the set’s state. (Contributed by Raymond
Hettinger.)

	C code can now obtain information about the exact revision of the Python
interpreter by calling the Py_GetBuildInfo() function that returns a
string of build information like this: "trunk:45355:45356M, Apr 13 2006,
07:42:19". (Contributed by Barry Warsaw.)

	Two new macros can be used to indicate C functions that are local to the
current file so that a faster calling convention can be used.
Py_LOCAL(type)() declares the function as returning a value of the
specified type and uses a fast-calling qualifier.
Py_LOCAL_INLINE(type)() does the same thing and also requests the
function be inlined. If PY_LOCAL_AGGRESSIVE() is defined before
python.h is included, a set of more aggressive optimizations are enabled
for the module; you should benchmark the results to find out if these
optimizations actually make the code faster. (Contributed by Fredrik Lundh at
the NeedForSpeed sprint.)

	PyErr_NewException(name, base, dict)() can now accept a tuple of base
classes as its base argument. (Contributed by Georg Brandl.)

	The PyErr_Warn() function for issuing warnings is now deprecated in
favour of PyErr_WarnEx(category, message, stacklevel)() which lets you
specify the number of stack frames separating this function and the caller. A
stacklevel of 1 is the function calling PyErr_WarnEx(), 2 is the
function above that, and so forth. (Added by Neal Norwitz.)

	The CPython interpreter is still written in C, but the code can now be
compiled with a C++ compiler without errors. (Implemented by Anthony Baxter,
Martin von Löwis, Skip Montanaro.)

	The PyRange_New() function was removed. It was never documented, never
used in the core code, and had dangerously lax error checking. In the unlikely
case that your extensions were using it, you can replace it by something like
the following:

range = PyObject_CallFunction((PyObject*) &PyRange_Type, "lll",
 start, stop, step);

Port-Specific Changes

	MacOS X (10.3 and higher): dynamic loading of modules now uses the
dlopen() function instead of MacOS-specific functions.

	MacOS X: an --enable-universalsdk switch was added to the
configure script that compiles the interpreter as a universal binary
able to run on both PowerPC and Intel processors. (Contributed by Ronald
Oussoren; issue 2573 [https://bugs.python.org/issue2573].)

	Windows: .dll is no longer supported as a filename extension for
extension modules. .pyd is now the only filename extension that will be
searched for.

Porting to Python 2.5

This section lists previously described changes that may require changes to your
code:

	ASCII is now the default encoding for modules. It’s now a syntax error if a
module contains string literals with 8-bit characters but doesn’t have an
encoding declaration. In Python 2.4 this triggered a warning, not a syntax
error.

	Previously, the gi_frame attribute of a generator was always a frame
object. Because of the PEP 342 [https://www.python.org/dev/peps/pep-0342] changes described in section PEP 342: New Generator Features,
it’s now possible for gi_frame to be None.

	A new warning, UnicodeWarning, is triggered when you attempt to
compare a Unicode string and an 8-bit string that can’t be converted to Unicode
using the default ASCII encoding. Previously such comparisons would raise a
UnicodeDecodeError exception.

	Library: the csv module is now stricter about multi-line quoted fields.
If your files contain newlines embedded within fields, the input should be split
into lines in a manner which preserves the newline characters.

	Library: the locale module’s format() function’s would
previously accept any string as long as no more than one %char specifier
appeared. In Python 2.5, the argument must be exactly one %char specifier with
no surrounding text.

	Library: The pickle and cPickle modules no longer accept a
return value of None from the __reduce__() method; the method must
return a tuple of arguments instead. The modules also no longer accept the
deprecated bin keyword parameter.

	Library: The SimpleXMLRPCServer and DocXMLRPCServer classes now
have a rpc_paths attribute that constrains XML-RPC operations to a
limited set of URL paths; the default is to allow only '/' and '/RPC2'.
Setting rpc_paths to None or an empty tuple disables this path
checking.

	C API: Many functions now use Py_ssize_t instead of int to
allow processing more data on 64-bit machines. Extension code may need to make
the same change to avoid warnings and to support 64-bit machines. See the
earlier section PEP 353: Using ssize_t as the index type for a discussion of this change.

	C API: The obmalloc changes mean that you must be careful to not mix usage
of the PyMem_*() and PyObject_*() families of functions. Memory
allocated with one family’s *_Malloc() must be freed with the
corresponding family’s *_Free() function.

Acknowledgements

The author would like to thank the following people for offering suggestions,
corrections and assistance with various drafts of this article: Georg Brandl,
Nick Coghlan, Phillip J. Eby, Lars Gustäbel, Raymond Hettinger, Ralf W. Grosse-
Kunstleve, Kent Johnson, Iain Lowe, Martin von Löwis, Fredrik Lundh, Andrew
McNamara, Skip Montanaro, Gustavo Niemeyer, Paul Prescod, James Pryor, Mike
Rovner, Scott Weikart, Barry Warsaw, Thomas Wouters.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

What’s New in Python 2.4

	Author:	A.M. Kuchling

This article explains the new features in Python 2.4.1, released on March 30,
2005.

Python 2.4 is a medium-sized release. It doesn’t introduce as many changes as
the radical Python 2.2, but introduces more features than the conservative 2.3
release. The most significant new language features are function decorators and
generator expressions; most other changes are to the standard library.

According to the CVS change logs, there were 481 patches applied and 502 bugs
fixed between Python 2.3 and 2.4. Both figures are likely to be underestimates.

This article doesn’t attempt to provide a complete specification of every single
new feature, but instead provides a brief introduction to each feature. For
full details, you should refer to the documentation for Python 2.4, such as the
Python Library Reference and the Python Reference Manual. Often you will be
referred to the PEP for a particular new feature for explanations of the
implementation and design rationale.

PEP 218: Built-In Set Objects

Python 2.3 introduced the sets module. C implementations of set data
types have now been added to the Python core as two new built-in types,
set(iterable)() and frozenset(iterable)(). They provide high speed
operations for membership testing, for eliminating duplicates from sequences,
and for mathematical operations like unions, intersections, differences, and
symmetric differences.

>>> a = set('abracadabra') # form a set from a string
>>> 'z' in a # fast membership testing
False
>>> a # unique letters in a
set(['a', 'r', 'b', 'c', 'd'])
>>> ''.join(a) # convert back into a string
'arbcd'

>>> b = set('alacazam') # form a second set
>>> a - b # letters in a but not in b
set(['r', 'd', 'b'])
>>> a | b # letters in either a or b
set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
>>> a & b # letters in both a and b
set(['a', 'c'])
>>> a ^ b # letters in a or b but not both
set(['r', 'd', 'b', 'm', 'z', 'l'])

>>> a.add('z') # add a new element
>>> a.update('wxy') # add multiple new elements
>>> a
set(['a', 'c', 'b', 'd', 'r', 'w', 'y', 'x', 'z'])
>>> a.remove('x') # take one element out
>>> a
set(['a', 'c', 'b', 'd', 'r', 'w', 'y', 'z'])

The frozenset() type is an immutable version of set(). Since it is
immutable and hashable, it may be used as a dictionary key or as a member of
another set.

The sets module remains in the standard library, and may be useful if you
wish to subclass the Set or ImmutableSet classes. There are
currently no plans to deprecate the module.

See also

	PEP 218 [https://www.python.org/dev/peps/pep-0218] - Adding a Built-In Set Object Type

	Originally proposed by Greg Wilson and ultimately implemented by Raymond
Hettinger.

PEP 237: Unifying Long Integers and Integers

The lengthy transition process for this PEP, begun in Python 2.2, takes another
step forward in Python 2.4. In 2.3, certain integer operations that would
behave differently after int/long unification triggered FutureWarning
warnings and returned values limited to 32 or 64 bits (depending on your
platform). In 2.4, these expressions no longer produce a warning and instead
produce a different result that’s usually a long integer.

The problematic expressions are primarily left shifts and lengthy hexadecimal
and octal constants. For example, 2 << 32 results in a warning in 2.3,
evaluating to 0 on 32-bit platforms. In Python 2.4, this expression now returns
the correct answer, 8589934592.

See also

	PEP 237 [https://www.python.org/dev/peps/pep-0237] - Unifying Long Integers and Integers

	Original PEP written by Moshe Zadka and GvR. The changes for 2.4 were
implemented by Kalle Svensson.

PEP 289: Generator Expressions

The iterator feature introduced in Python 2.2 and the itertools module
make it easier to write programs that loop through large data sets without
having the entire data set in memory at one time. List comprehensions don’t fit
into this picture very well because they produce a Python list object containing
all of the items. This unavoidably pulls all of the objects into memory, which
can be a problem if your data set is very large. When trying to write a
functionally-styled program, it would be natural to write something like:

links = [link for link in get_all_links() if not link.followed]
for link in links:
 ...

instead of

for link in get_all_links():
 if link.followed:
 continue
 ...

The first form is more concise and perhaps more readable, but if you’re dealing
with a large number of link objects you’d have to write the second form to avoid
having all link objects in memory at the same time.

Generator expressions work similarly to list comprehensions but don’t
materialize the entire list; instead they create a generator that will return
elements one by one. The above example could be written as:

links = (link for link in get_all_links() if not link.followed)
for link in links:
 ...

Generator expressions always have to be written inside parentheses, as in the
above example. The parentheses signalling a function call also count, so if you
want to create an iterator that will be immediately passed to a function you
could write:

print sum(obj.count for obj in list_all_objects())

Generator expressions differ from list comprehensions in various small ways.
Most notably, the loop variable (obj in the above example) is not accessible
outside of the generator expression. List comprehensions leave the variable
assigned to its last value; future versions of Python will change this, making
list comprehensions match generator expressions in this respect.

See also

	PEP 289 [https://www.python.org/dev/peps/pep-0289] - Generator Expressions

	Proposed by Raymond Hettinger and implemented by Jiwon Seo with early efforts
steered by Hye-Shik Chang.

PEP 292: Simpler String Substitutions

Some new classes in the standard library provide an alternative mechanism for
substituting variables into strings; this style of substitution may be better
for applications where untrained users need to edit templates.

The usual way of substituting variables by name is the % operator:

>>> '%(page)i: %(title)s' % {'page':2, 'title': 'The Best of Times'}
'2: The Best of Times'

When writing the template string, it can be easy to forget the i or s
after the closing parenthesis. This isn’t a big problem if the template is in a
Python module, because you run the code, get an “Unsupported format character”
ValueError, and fix the problem. However, consider an application such
as Mailman where template strings or translations are being edited by users who
aren’t aware of the Python language. The format string’s syntax is complicated
to explain to such users, and if they make a mistake, it’s difficult to provide
helpful feedback to them.

PEP 292 adds a Template class to the string module that uses
$ to indicate a substitution:

>>> import string
>>> t = string.Template('$page: $title')
>>> t.substitute({'page':2, 'title': 'The Best of Times'})
'2: The Best of Times'

If a key is missing from the dictionary, the substitute() method will
raise a KeyError. There’s also a safe_substitute() method that
ignores missing keys:

>>> t = string.Template('$page: $title')
>>> t.safe_substitute({'page':3})
'3: $title'

See also

	PEP 292 [https://www.python.org/dev/peps/pep-0292] - Simpler String Substitutions

	Written and implemented by Barry Warsaw.

PEP 318: Decorators for Functions and Methods

Python 2.2 extended Python’s object model by adding static methods and class
methods, but it didn’t extend Python’s syntax to provide any new way of defining
static or class methods. Instead, you had to write a def statement
in the usual way, and pass the resulting method to a staticmethod() or
classmethod() function that would wrap up the function as a method of the
new type. Your code would look like this:

class C:
 def meth (cls):
 ...

 meth = classmethod(meth) # Rebind name to wrapped-up class method

If the method was very long, it would be easy to miss or forget the
classmethod() invocation after the function body.

The intention was always to add some syntax to make such definitions more
readable, but at the time of 2.2’s release a good syntax was not obvious. Today
a good syntax still isn’t obvious but users are asking for easier access to
the feature; a new syntactic feature has been added to meet this need.

The new feature is called “function decorators”. The name comes from the idea
that classmethod(), staticmethod(), and friends are storing
additional information on a function object; they’re decorating functions with
more details.

The notation borrows from Java and uses the '@' character as an indicator.
Using the new syntax, the example above would be written:

class C:

 @classmethod
 def meth (cls):
 ...

The @classmethod is shorthand for the meth=classmethod(meth) assignment.
More generally, if you have the following:

@A
@B
@C
def f ():
 ...

It’s equivalent to the following pre-decorator code:

def f(): ...
f = A(B(C(f)))

Decorators must come on the line before a function definition, one decorator per
line, and can’t be on the same line as the def statement, meaning that @A def
f(): ... is illegal. You can only decorate function definitions, either at
the module level or inside a class; you can’t decorate class definitions.

A decorator is just a function that takes the function to be decorated as an
argument and returns either the same function or some new object. The return
value of the decorator need not be callable (though it typically is), unless
further decorators will be applied to the result. It’s easy to write your own
decorators. The following simple example just sets an attribute on the function
object:

>>> def deco(func):
... func.attr = 'decorated'
... return func
...
>>> @deco
... def f(): pass
...
>>> f
<function f at 0x402ef0d4>
>>> f.attr
'decorated'
>>>

As a slightly more realistic example, the following decorator checks that the
supplied argument is an integer:

def require_int (func):
 def wrapper (arg):
 assert isinstance(arg, int)
 return func(arg)

 return wrapper

@require_int
def p1 (arg):
 print arg

@require_int
def p2(arg):
 print arg*2

An example in PEP 318 [https://www.python.org/dev/peps/pep-0318] contains a fancier version of this idea that lets you
both specify the required type and check the returned type.

Decorator functions can take arguments. If arguments are supplied, your
decorator function is called with only those arguments and must return a new
decorator function; this function must take a single function and return a
function, as previously described. In other words, @A @B @C(args) becomes:

def f(): ...
_deco = C(args)
f = A(B(_deco(f)))

Getting this right can be slightly brain-bending, but it’s not too difficult.

A small related change makes the func_name attribute of functions
writable. This attribute is used to display function names in tracebacks, so
decorators should change the name of any new function that’s constructed and
returned.

See also

	PEP 318 [https://www.python.org/dev/peps/pep-0318] - Decorators for Functions, Methods and Classes

	Written by Kevin D. Smith, Jim Jewett, and Skip Montanaro. Several people
wrote patches implementing function decorators, but the one that was actually
checked in was patch #979728, written by Mark Russell.

	https://wiki.python.org/moin/PythonDecoratorLibrary

	This Wiki page contains several examples of decorators.

PEP 322: Reverse Iteration

A new built-in function, reversed(seq)(), takes a sequence and returns an
iterator that loops over the elements of the sequence in reverse order.

>>> for i in reversed(xrange(1,4)):
... print i
...
3
2
1

Compared to extended slicing, such as range(1,4)[::-1], reversed() is
easier to read, runs faster, and uses substantially less memory.

Note that reversed() only accepts sequences, not arbitrary iterators. If
you want to reverse an iterator, first convert it to a list with list().

>>> input = open('/etc/passwd', 'r')
>>> for line in reversed(list(input)):
... print line
...
root:*:0:0:System Administrator:/var/root:/bin/tcsh
 ...

See also

	PEP 322 [https://www.python.org/dev/peps/pep-0322] - Reverse Iteration

	Written and implemented by Raymond Hettinger.

PEP 324: New subprocess Module

The standard library provides a number of ways to execute a subprocess, offering
different features and different levels of complexity.
os.system(command)() is easy to use, but slow (it runs a shell process
which executes the command) and dangerous (you have to be careful about escaping
the shell’s metacharacters). The popen2 module offers classes that can
capture standard output and standard error from the subprocess, but the naming
is confusing. The subprocess module cleans this up, providing a unified
interface that offers all the features you might need.

Instead of popen2‘s collection of classes, subprocess contains a
single class called Popen whose constructor supports a number of
different keyword arguments.

class Popen(args, bufsize=0, executable=None,
 stdin=None, stdout=None, stderr=None,
 preexec_fn=None, close_fds=False, shell=False,
 cwd=None, env=None, universal_newlines=False,
 startupinfo=None, creationflags=0):

args is commonly a sequence of strings that will be the arguments to the
program executed as the subprocess. (If the shell argument is true, args
can be a string which will then be passed on to the shell for interpretation,
just as os.system() does.)

stdin, stdout, and stderr specify what the subprocess’s input, output, and
error streams will be. You can provide a file object or a file descriptor, or
you can use the constant subprocess.PIPE to create a pipe between the
subprocess and the parent.

The constructor has a number of handy options:

	close_fds requests that all file descriptors be closed before running the
subprocess.

	cwd specifies the working directory in which the subprocess will be executed
(defaulting to whatever the parent’s working directory is).

	env is a dictionary specifying environment variables.

	preexec_fn is a function that gets called before the child is started.

	universal_newlines opens the child’s input and output using Python’s
universal newlines feature.

Once you’ve created the Popen instance, you can call its wait()
method to pause until the subprocess has exited, poll() to check if it’s
exited without pausing, or communicate(data)() to send the string data
to the subprocess’s standard input. communicate(data)() then reads any
data that the subprocess has sent to its standard output or standard error,
returning a tuple (stdout_data, stderr_data).

call() is a shortcut that passes its arguments along to the Popen
constructor, waits for the command to complete, and returns the status code of
the subprocess. It can serve as a safer analog to os.system():

sts = subprocess.call(['dpkg', '-i', '/tmp/new-package.deb'])
if sts == 0:
 # Success
 ...
else:
 # dpkg returned an error
 ...

The command is invoked without use of the shell. If you really do want to use
the shell, you can add shell=True as a keyword argument and provide a string
instead of a sequence:

sts = subprocess.call('dpkg -i /tmp/new-package.deb', shell=True)

The PEP takes various examples of shell and Python code and shows how they’d be
translated into Python code that uses subprocess. Reading this section
of the PEP is highly recommended.

See also

	PEP 324 [https://www.python.org/dev/peps/pep-0324] - subprocess - New process module

	Written and implemented by Peter Åstrand, with assistance from Fredrik Lundh and
others.

PEP 327: Decimal Data Type

Python has always supported floating-point (FP) numbers, based on the underlying
C double type, as a data type. However, while most programming
languages provide a floating-point type, many people (even programmers) are
unaware that floating-point numbers don’t represent certain decimal fractions
accurately. The new Decimal type can represent these fractions
accurately, up to a user-specified precision limit.

Why is Decimal needed?

The limitations arise from the representation used for floating-point numbers.
FP numbers are made up of three components:

	The sign, which is positive or negative.

	The mantissa, which is a single-digit binary number followed by a fractional
part. For example, 1.01 in base-2 notation is 1 + 0/2 + 1/4, or 1.25 in
decimal notation.

	The exponent, which tells where the decimal point is located in the number
represented.

For example, the number 1.25 has positive sign, a mantissa value of 1.01 (in
binary), and an exponent of 0 (the decimal point doesn’t need to be shifted).
The number 5 has the same sign and mantissa, but the exponent is 2 because the
mantissa is multiplied by 4 (2 to the power of the exponent 2); 1.25 * 4 equals
5.

Modern systems usually provide floating-point support that conforms to a
standard called IEEE 754. C’s double type is usually implemented as a
64-bit IEEE 754 number, which uses 52 bits of space for the mantissa. This
means that numbers can only be specified to 52 bits of precision. If you’re
trying to represent numbers whose expansion repeats endlessly, the expansion is
cut off after 52 bits. Unfortunately, most software needs to produce output in
base 10, and common fractions in base 10 are often repeating decimals in binary.
For example, 1.1 decimal is binary 1.0001100110011 ...; .1 = 1/16 + 1/32 +
1/256 plus an infinite number of additional terms. IEEE 754 has to chop off
that infinitely repeated decimal after 52 digits, so the representation is
slightly inaccurate.

Sometimes you can see this inaccuracy when the number is printed:

>>> 1.1
1.1000000000000001

The inaccuracy isn’t always visible when you print the number because the FP-to-
decimal-string conversion is provided by the C library, and most C libraries try
to produce sensible output. Even if it’s not displayed, however, the inaccuracy
is still there and subsequent operations can magnify the error.

For many applications this doesn’t matter. If I’m plotting points and
displaying them on my monitor, the difference between 1.1 and 1.1000000000000001
is too small to be visible. Reports often limit output to a certain number of
decimal places, and if you round the number to two or three or even eight
decimal places, the error is never apparent. However, for applications where it
does matter, it’s a lot of work to implement your own custom arithmetic
routines.

Hence, the Decimal type was created.

The Decimal type

A new module, decimal, was added to Python’s standard library. It
contains two classes, Decimal and Context. Decimal
instances represent numbers, and Context instances are used to wrap up
various settings such as the precision and default rounding mode.

Decimal instances are immutable, like regular Python integers and FP
numbers; once it’s been created, you can’t change the value an instance
represents. Decimal instances can be created from integers or
strings:

>>> import decimal
>>> decimal.Decimal(1972)
Decimal("1972")
>>> decimal.Decimal("1.1")
Decimal("1.1")

You can also provide tuples containing the sign, the mantissa represented as a
tuple of decimal digits, and the exponent:

>>> decimal.Decimal((1, (1, 4, 7, 5), -2))
Decimal("-14.75")

Cautionary note: the sign bit is a Boolean value, so 0 is positive and 1 is
negative.

Converting from floating-point numbers poses a bit of a problem: should the FP
number representing 1.1 turn into the decimal number for exactly 1.1, or for 1.1
plus whatever inaccuracies are introduced? The decision was to dodge the issue
and leave such a conversion out of the API. Instead, you should convert the
floating-point number into a string using the desired precision and pass the
string to the Decimal constructor:

>>> f = 1.1
>>> decimal.Decimal(str(f))
Decimal("1.1")
>>> decimal.Decimal('%.12f' % f)
Decimal("1.100000000000")

Once you have Decimal instances, you can perform the usual mathematical
operations on them. One limitation: exponentiation requires an integer
exponent:

>>> a = decimal.Decimal('35.72')
>>> b = decimal.Decimal('1.73')
>>> a+b
Decimal("37.45")
>>> a-b
Decimal("33.99")
>>> a*b
Decimal("61.7956")
>>> a/b
Decimal("20.64739884393063583815028902")
>>> a ** 2
Decimal("1275.9184")
>>> a**b
Traceback (most recent call last):
 ...
decimal.InvalidOperation: x ** (non-integer)

You can combine Decimal instances with integers, but not with floating-
point numbers:

>>> a + 4
Decimal("39.72")
>>> a + 4.5
Traceback (most recent call last):
 ...
TypeError: You can interact Decimal only with int, long or Decimal data types.
>>>

Decimal numbers can be used with the math and cmath
modules, but note that they’ll be immediately converted to floating-point
numbers before the operation is performed, resulting in a possible loss of
precision and accuracy. You’ll also get back a regular floating-point number
and not a Decimal.

>>> import math, cmath
>>> d = decimal.Decimal('123456789012.345')
>>> math.sqrt(d)
351364.18288201344
>>> cmath.sqrt(-d)
351364.18288201344j

Decimal instances have a sqrt() method that returns a
Decimal, but if you need other things such as trigonometric functions
you’ll have to implement them.

>>> d.sqrt()
Decimal("351364.1828820134592177245001")

The Context type

Instances of the Context class encapsulate several settings for
decimal operations:

	prec is the precision, the number of decimal places.

	rounding specifies the rounding mode. The decimal module has
constants for the various possibilities: ROUND_DOWN,
ROUND_CEILING, ROUND_HALF_EVEN, and various others.

	traps is a dictionary specifying what happens on encountering certain
error conditions: either an exception is raised or a value is returned. Some
examples of error conditions are division by zero, loss of precision, and
overflow.

There’s a thread-local default context available by calling getcontext();
you can change the properties of this context to alter the default precision,
rounding, or trap handling. The following example shows the effect of changing
the precision of the default context:

>>> decimal.getcontext().prec
28
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.1428571428571428571428571429")
>>> decimal.getcontext().prec = 9
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.142857143")

The default action for error conditions is selectable; the module can either
return a special value such as infinity or not-a-number, or exceptions can be
raised:

>>> decimal.Decimal(1) / decimal.Decimal(0)
Traceback (most recent call last):
 ...
decimal.DivisionByZero: x / 0
>>> decimal.getcontext().traps[decimal.DivisionByZero] = False
>>> decimal.Decimal(1) / decimal.Decimal(0)
Decimal("Infinity")
>>>

The Context instance also has various methods for formatting numbers
such as to_eng_string() and to_sci_string().

For more information, see the documentation for the decimal module, which
includes a quick-start tutorial and a reference.

See also

	PEP 327 [https://www.python.org/dev/peps/pep-0327] - Decimal Data Type

	Written by Facundo Batista and implemented by Facundo Batista, Eric Price,
Raymond Hettinger, Aahz, and Tim Peters.

	http://www.lahey.com/float.htm

	The article uses Fortran code to illustrate many of the problems that floating-
point inaccuracy can cause.

	http://speleotrove.com/decimal/

	A description of a decimal-based representation. This representation is being
proposed as a standard, and underlies the new Python decimal type. Much of this
material was written by Mike Cowlishaw, designer of the Rexx language.

PEP 328: Multi-line Imports

One language change is a small syntactic tweak aimed at making it easier to
import many names from a module. In a from module import names statement,
names is a sequence of names separated by commas. If the sequence is very
long, you can either write multiple imports from the same module, or you can use
backslashes to escape the line endings like this:

from SimpleXMLRPCServer import SimpleXMLRPCServer,\
 SimpleXMLRPCRequestHandler,\
 CGIXMLRPCRequestHandler,\
 resolve_dotted_attribute

The syntactic change in Python 2.4 simply allows putting the names within
parentheses. Python ignores newlines within a parenthesized expression, so the
backslashes are no longer needed:

from SimpleXMLRPCServer import (SimpleXMLRPCServer,
 SimpleXMLRPCRequestHandler,
 CGIXMLRPCRequestHandler,
 resolve_dotted_attribute)

The PEP also proposes that all import statements be absolute imports,
with a leading . character to indicate a relative import. This part of the
PEP was not implemented for Python 2.4, but was completed for Python 2.5.

See also

	PEP 328 [https://www.python.org/dev/peps/pep-0328] - Imports: Multi-Line and Absolute/Relative

	Written by Aahz. Multi-line imports were implemented by Dima Dorfman.

PEP 331: Locale-Independent Float/String Conversions

The locale modules lets Python software select various conversions and
display conventions that are localized to a particular country or language.
However, the module was careful to not change the numeric locale because various
functions in Python’s implementation required that the numeric locale remain set
to the 'C' locale. Often this was because the code was using the C
library’s atof() function.

Not setting the numeric locale caused trouble for extensions that used third-
party C libraries, however, because they wouldn’t have the correct locale set.
The motivating example was GTK+, whose user interface widgets weren’t displaying
numbers in the current locale.

The solution described in the PEP is to add three new functions to the Python
API that perform ASCII-only conversions, ignoring the locale setting:

	PyOS_ascii_strtod(str, ptr)() and PyOS_ascii_atof(str, ptr)()
both convert a string to a C double.

	PyOS_ascii_formatd(buffer, buf_len, format, d)() converts a
double to an ASCII string.

The code for these functions came from the GLib library
(https://developer.gnome.org/glib/stable/), whose developers kindly
relicensed the relevant functions and donated them to the Python Software
Foundation. The locale module can now change the numeric locale,
letting extensions such as GTK+ produce the correct results.

See also

	PEP 331 [https://www.python.org/dev/peps/pep-0331] - Locale-Independent Float/String Conversions

	Written by Christian R. Reis, and implemented by Gustavo Carneiro.

Other Language Changes

Here are all of the changes that Python 2.4 makes to the core Python language.

	Decorators for functions and methods were added (PEP 318 [https://www.python.org/dev/peps/pep-0318]).

	Built-in set() and frozenset() types were added (PEP 218 [https://www.python.org/dev/peps/pep-0218]).
Other new built-ins include the reversed(seq)() function (PEP 322 [https://www.python.org/dev/peps/pep-0322]).

	Generator expressions were added (PEP 289 [https://www.python.org/dev/peps/pep-0289]).

	Certain numeric expressions no longer return values restricted to 32 or 64
bits (PEP 237 [https://www.python.org/dev/peps/pep-0237]).

	You can now put parentheses around the list of names in a from module import
names statement (PEP 328 [https://www.python.org/dev/peps/pep-0328]).

	The dict.update() method now accepts the same argument forms as the
dict constructor. This includes any mapping, any iterable of key/value
pairs, and keyword arguments. (Contributed by Raymond Hettinger.)

	The string methods ljust(), rjust(), and center() now take
an optional argument for specifying a fill character other than a space.
(Contributed by Raymond Hettinger.)

	Strings also gained an rsplit() method that works like the split()
method but splits from the end of the string. (Contributed by Sean
Reifschneider.)

>>> 'www.python.org'.split('.', 1)
['www', 'python.org']
'www.python.org'.rsplit('.', 1)
['www.python', 'org']

	Three keyword parameters, cmp, key, and reverse, were added to the
sort() method of lists. These parameters make some common usages of
sort() simpler. All of these parameters are optional.

For the cmp parameter, the value should be a comparison function that takes
two parameters and returns -1, 0, or +1 depending on how the parameters compare.
This function will then be used to sort the list. Previously this was the only
parameter that could be provided to sort().

key should be a single-parameter function that takes a list element and
returns a comparison key for the element. The list is then sorted using the
comparison keys. The following example sorts a list case-insensitively:

>>> L = ['A', 'b', 'c', 'D']
>>> L.sort() # Case-sensitive sort
>>> L
['A', 'D', 'b', 'c']
>>> # Using 'key' parameter to sort list
>>> L.sort(key=lambda x: x.lower())
>>> L
['A', 'b', 'c', 'D']
>>> # Old-fashioned way
>>> L.sort(cmp=lambda x,y: cmp(x.lower(), y.lower()))
>>> L
['A', 'b', 'c', 'D']

The last example, which uses the cmp parameter, is the old way to perform a
case-insensitive sort. It works but is slower than using a key parameter.
Using key calls lower() method once for each element in the list while
using cmp will call it twice for each comparison, so using key saves on
invocations of the lower() method.

For simple key functions and comparison functions, it is often possible to avoid
a lambda expression by using an unbound method instead. For example,
the above case-insensitive sort is best written as:

>>> L.sort(key=str.lower)
>>> L
['A', 'b', 'c', 'D']

Finally, the reverse parameter takes a Boolean value. If the value is true,
the list will be sorted into reverse order. Instead of L.sort();
L.reverse(), you can now write L.sort(reverse=True).

The results of sorting are now guaranteed to be stable. This means that two
entries with equal keys will be returned in the same order as they were input.
For example, you can sort a list of people by name, and then sort the list by
age, resulting in a list sorted by age where people with the same age are in
name-sorted order.

(All changes to sort() contributed by Raymond Hettinger.)

	There is a new built-in function sorted(iterable)() that works like the
in-place list.sort() method but can be used in expressions. The
differences are:

	the input may be any iterable;

	a newly formed copy is sorted, leaving the original intact; and

	the expression returns the new sorted copy

>>> L = [9,7,8,3,2,4,1,6,5]
>>> [10+i for i in sorted(L)] # usable in a list comprehension
[11, 12, 13, 14, 15, 16, 17, 18, 19]
>>> L # original is left unchanged
[9,7,8,3,2,4,1,6,5]
>>> sorted('Monty Python') # any iterable may be an input
[' ', 'M', 'P', 'h', 'n', 'n', 'o', 'o', 't', 't', 'y', 'y']

>>> # List the contents of a dict sorted by key values
>>> colormap = dict(red=1, blue=2, green=3, black=4, yellow=5)
>>> for k, v in sorted(colormap.iteritems()):
... print k, v
...
black 4
blue 2
green 3
red 1
yellow 5

(Contributed by Raymond Hettinger.)

	Integer operations will no longer trigger an OverflowWarning. The
OverflowWarning warning will disappear in Python 2.5.

	The interpreter gained a new switch, -m, that takes a name, searches
for the corresponding module on sys.path, and runs the module as a script.
For example, you can now run the Python profiler with python -m profile.
(Contributed by Nick Coghlan.)

	The eval(expr, globals, locals)() and execfile(filename, globals,
locals)() functions and the exec statement now accept any mapping type
for the locals parameter. Previously this had to be a regular Python
dictionary. (Contributed by Raymond Hettinger.)

	The zip() built-in function and itertools.izip() now return an
empty list if called with no arguments. Previously they raised a
TypeError exception. This makes them more suitable for use with variable
length argument lists:

>>> def transpose(array):
... return zip(*array)
...
>>> transpose([(1,2,3), (4,5,6)])
[(1, 4), (2, 5), (3, 6)]
>>> transpose([])
[]

(Contributed by Raymond Hettinger.)

	Encountering a failure while importing a module no longer leaves a partially-
initialized module object in sys.modules. The incomplete module object left
behind would fool further imports of the same module into succeeding, leading to
confusing errors. (Fixed by Tim Peters.)

	None is now a constant; code that binds a new value to the name
None is now a syntax error. (Contributed by Raymond Hettinger.)

Optimizations

	The inner loops for list and tuple slicing were optimized and now run about
one-third faster. The inner loops for dictionaries were also optimized,
resulting in performance boosts for keys(), values(), items(),
iterkeys(), itervalues(), and iteritems(). (Contributed by
Raymond Hettinger.)

	The machinery for growing and shrinking lists was optimized for speed and for
space efficiency. Appending and popping from lists now runs faster due to more
efficient code paths and less frequent use of the underlying system
realloc(). List comprehensions also benefit. list.extend() was
also optimized and no longer converts its argument into a temporary list before
extending the base list. (Contributed by Raymond Hettinger.)

	list(), tuple(), map(), filter(), and zip() now
run several times faster with non-sequence arguments that supply a
__len__() method. (Contributed by Raymond Hettinger.)

	The methods list.__getitem__(), dict.__getitem__(), and
dict.__contains__() are now implemented as method_descriptor
objects rather than wrapper_descriptor objects. This form of access
doubles their performance and makes them more suitable for use as arguments to
functionals: map(mydict.__getitem__, keylist). (Contributed by Raymond
Hettinger.)

	Added a new opcode, LIST_APPEND, that simplifies the generated bytecode
for list comprehensions and speeds them up by about a third. (Contributed by
Raymond Hettinger.)

	The peephole bytecode optimizer has been improved to produce shorter, faster
bytecode; remarkably, the resulting bytecode is more readable. (Enhanced by
Raymond Hettinger.)

	String concatenations in statements of the form s = s + "abc" and s +=
"abc" are now performed more efficiently in certain circumstances. This
optimization won’t be present in other Python implementations such as Jython, so
you shouldn’t rely on it; using the join() method of strings is still
recommended when you want to efficiently glue a large number of strings
together. (Contributed by Armin Rigo.)

The net result of the 2.4 optimizations is that Python 2.4 runs the pystone
benchmark around 5% faster than Python 2.3 and 35% faster than Python 2.2.
(pystone is not a particularly good benchmark, but it’s the most commonly used
measurement of Python’s performance. Your own applications may show greater or
smaller benefits from Python 2.4.)

New, Improved, and Deprecated Modules

As usual, Python’s standard library received a number of enhancements and bug
fixes. Here’s a partial list of the most notable changes, sorted alphabetically
by module name. Consult the Misc/NEWS file in the source tree for a more
complete list of changes, or look through the CVS logs for all the details.

	The asyncore module’s loop() function now has a count parameter
that lets you perform a limited number of passes through the polling loop. The
default is still to loop forever.

	The base64 module now has more complete RFC 3548 support for Base64,
Base32, and Base16 encoding and decoding, including optional case folding and
optional alternative alphabets. (Contributed by Barry Warsaw.)

	The bisect module now has an underlying C implementation for improved
performance. (Contributed by Dmitry Vasiliev.)

	The CJKCodecs collections of East Asian codecs, maintained by Hye-Shik Chang,
was integrated into 2.4. The new encodings are:

	Chinese (PRC): gb2312, gbk, gb18030, big5hkscs, hz

	Chinese (ROC): big5, cp950

	
	Japanese: cp932, euc-jis-2004, euc-jp, euc-jisx0213, iso-2022-jp,

	iso-2022-jp-1, iso-2022-jp-2, iso-2022-jp-3, iso-2022-jp-ext, iso-2022-jp-2004,
shift-jis, shift-jisx0213, shift-jis-2004

	Korean: cp949, euc-kr, johab, iso-2022-kr

	Some other new encodings were added: HP Roman8, ISO_8859-11, ISO_8859-16,
PCTP-154, and TIS-620.

	The UTF-8 and UTF-16 codecs now cope better with receiving partial input.
Previously the StreamReader class would try to read more data, making
it impossible to resume decoding from the stream. The read() method will
now return as much data as it can and future calls will resume decoding where
previous ones left off. (Implemented by Walter Dörwald.)

	There is a new collections module for various specialized collection
datatypes. Currently it contains just one type, deque, a double-
ended queue that supports efficiently adding and removing elements from either
end:

>>> from collections import deque
>>> d = deque('ghi') # make a new deque with three items
>>> d.append('j') # add a new entry to the right side
>>> d.appendleft('f') # add a new entry to the left side
>>> d # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])
>>> d.pop() # return and remove the rightmost item
'j'
>>> d.popleft() # return and remove the leftmost item
'f'
>>> list(d) # list the contents of the deque
['g', 'h', 'i']
>>> 'h' in d # search the deque
True

Several modules, such as the Queue and threading modules, now take
advantage of collections.deque for improved performance. (Contributed
by Raymond Hettinger.)

	The ConfigParser classes have been enhanced slightly. The read()
method now returns a list of the files that were successfully parsed, and the
set() method raises TypeError if passed a value argument that
isn’t a string. (Contributed by John Belmonte and David Goodger.)

	The curses module now supports the ncurses extension
use_default_colors(). On platforms where the terminal supports
transparency, this makes it possible to use a transparent background.
(Contributed by Jörg Lehmann.)

	The difflib module now includes an HtmlDiff class that creates
an HTML table showing a side by side comparison of two versions of a text.
(Contributed by Dan Gass.)

	The email package was updated to version 3.0, which dropped various
deprecated APIs and removes support for Python versions earlier than 2.3. The
3.0 version of the package uses a new incremental parser for MIME messages,
available in the email.FeedParser module. The new parser doesn’t require
reading the entire message into memory, and doesn’t raise exceptions if a
message is malformed; instead it records any problems in the defect
attribute of the message. (Developed by Anthony Baxter, Barry Warsaw, Thomas
Wouters, and others.)

	The heapq module has been converted to C. The resulting tenfold
improvement in speed makes the module suitable for handling high volumes of
data. In addition, the module has two new functions nlargest() and
nsmallest() that use heaps to find the N largest or smallest values in a
dataset without the expense of a full sort. (Contributed by Raymond Hettinger.)

	The httplib module now contains constants for HTTP status codes defined
in various HTTP-related RFC documents. Constants have names such as
OK, CREATED, CONTINUE, and
MOVED_PERMANENTLY; use pydoc to get a full list. (Contributed by
Andrew Eland.)

	The imaplib module now supports IMAP’s THREAD command (contributed by
Yves Dionne) and new deleteacl() and myrights() methods (contributed
by Arnaud Mazin).

	The itertools module gained a groupby(iterable[, *func*])()
function. iterable is something that can be iterated over to return a stream
of elements, and the optional func parameter is a function that takes an
element and returns a key value; if omitted, the key is simply the element
itself. groupby() then groups the elements into subsequences which have
matching values of the key, and returns a series of 2-tuples containing the key
value and an iterator over the subsequence.

Here’s an example to make this clearer. The key function simply returns
whether a number is even or odd, so the result of groupby() is to return
consecutive runs of odd or even numbers.

>>> import itertools
>>> L = [2, 4, 6, 7, 8, 9, 11, 12, 14]
>>> for key_val, it in itertools.groupby(L, lambda x: x % 2):
... print key_val, list(it)
...
0 [2, 4, 6]
1 [7]
0 [8]
1 [9, 11]
0 [12, 14]
>>>

groupby() is typically used with sorted input. The logic for
groupby() is similar to the Unix uniq filter which makes it handy for
eliminating, counting, or identifying duplicate elements:

>>> word = 'abracadabra'
>>> letters = sorted(word) # Turn string into a sorted list of letters
>>> letters
['a', 'a', 'a', 'a', 'a', 'b', 'b', 'c', 'd', 'r', 'r']
>>> for k, g in itertools.groupby(letters):
... print k, list(g)
...
a ['a', 'a', 'a', 'a', 'a']
b ['b', 'b']
c ['c']
d ['d']
r ['r', 'r']
>>> # List unique letters
>>> [k for k, g in groupby(letters)]
['a', 'b', 'c', 'd', 'r']
>>> # Count letter occurrences
>>> [(k, len(list(g))) for k, g in groupby(letters)]
[('a', 5), ('b', 2), ('c', 1), ('d', 1), ('r', 2)]

(Contributed by Hye-Shik Chang.)

	itertools also gained a function named tee(iterator, N)() that
returns N independent iterators that replicate iterator. If N is omitted,
the default is 2.

>>> L = [1,2,3]
>>> i1, i2 = itertools.tee(L)
>>> i1,i2
(<itertools.tee object at 0x402c2080>, <itertools.tee object at 0x402c2090>)
>>> list(i1) # Run the first iterator to exhaustion
[1, 2, 3]
>>> list(i2) # Run the second iterator to exhaustion
[1, 2, 3]

Note that tee() has to keep copies of the values returned by the
iterator; in the worst case, it may need to keep all of them. This should
therefore be used carefully if the leading iterator can run far ahead of the
trailing iterator in a long stream of inputs. If the separation is large, then
you might as well use list() instead. When the iterators track closely
with one another, tee() is ideal. Possible applications include
bookmarking, windowing, or lookahead iterators. (Contributed by Raymond
Hettinger.)

	A number of functions were added to the locale module, such as
bind_textdomain_codeset() to specify a particular encoding and a family of
l*gettext() functions that return messages in the chosen encoding.
(Contributed by Gustavo Niemeyer.)

	Some keyword arguments were added to the logging package’s
basicConfig() function to simplify log configuration. The default
behavior is to log messages to standard error, but various keyword arguments can
be specified to log to a particular file, change the logging format, or set the
logging level. For example:

import logging
logging.basicConfig(filename='/var/log/application.log',
 level=0, # Log all messages
 format='%(levelname):%(process):%(thread):%(message)')

Other additions to the logging package include a log(level, msg)()
convenience method, as well as a TimedRotatingFileHandler class that
rotates its log files at a timed interval. The module already had
RotatingFileHandler, which rotated logs once the file exceeded a
certain size. Both classes derive from a new BaseRotatingHandler class
that can be used to implement other rotating handlers.

(Changes implemented by Vinay Sajip.)

	The marshal module now shares interned strings on unpacking a data
structure. This may shrink the size of certain pickle strings, but the primary
effect is to make .pyc files significantly smaller. (Contributed by
Martin von Löwis.)

	The nntplib module’s NNTP class gained description() and
descriptions() methods to retrieve newsgroup descriptions for a single
group or for a range of groups. (Contributed by Jürgen A. Erhard.)

	Two new functions were added to the operator module,
attrgetter(attr)() and itemgetter(index)(). Both functions return
callables that take a single argument and return the corresponding attribute or
item; these callables make excellent data extractors when used with map()
or sorted(). For example:

>>> L = [('c', 2), ('d', 1), ('a', 4), ('b', 3)]
>>> map(operator.itemgetter(0), L)
['c', 'd', 'a', 'b']
>>> map(operator.itemgetter(1), L)
[2, 1, 4, 3]
>>> sorted(L, key=operator.itemgetter(1)) # Sort list by second tuple item
[('d', 1), ('c', 2), ('b', 3), ('a', 4)]

(Contributed by Raymond Hettinger.)

	The optparse module was updated in various ways. The module now passes
its messages through gettext.gettext(), making it possible to
internationalize Optik’s help and error messages. Help messages for options can
now include the string '%default', which will be replaced by the option’s
default value. (Contributed by Greg Ward.)

	The long-term plan is to deprecate the rfc822 module in some future
Python release in favor of the email package. To this end, the
email.Utils.formatdate() function has been changed to make it usable as a
replacement for rfc822.formatdate(). You may want to write new e-mail
processing code with this in mind. (Change implemented by Anthony Baxter.)

	A new urandom(n)() function was added to the os module, returning
a string containing n bytes of random data. This function provides access to
platform-specific sources of randomness such as /dev/urandom on Linux or
the Windows CryptoAPI. (Contributed by Trevor Perrin.)

	Another new function: os.path.lexists(path)() returns true if the file
specified by path exists, whether or not it’s a symbolic link. This differs
from the existing os.path.exists(path)() function, which returns false if
path is a symlink that points to a destination that doesn’t exist.
(Contributed by Beni Cherniavsky.)

	A new getsid() function was added to the posix module that
underlies the os module. (Contributed by J. Raynor.)

	The poplib module now supports POP over SSL. (Contributed by Hector
Urtubia.)

	The profile module can now profile C extension functions. (Contributed
by Nick Bastin.)

	The random module has a new method called getrandbits(N)() that
returns a long integer N bits in length. The existing randrange()
method now uses getrandbits() where appropriate, making generation of
arbitrarily large random numbers more efficient. (Contributed by Raymond
Hettinger.)

	The regular expression language accepted by the re module was extended
with simple conditional expressions, written as (?(group)A|B). group is
either a numeric group ID or a group name defined with (?P<group>...)
earlier in the expression. If the specified group matched, the regular
expression pattern A will be tested against the string; if the group didn’t
match, the pattern B will be used instead. (Contributed by Gustavo Niemeyer.)

	The re module is also no longer recursive, thanks to a massive amount
of work by Gustavo Niemeyer. In a recursive regular expression engine, certain
patterns result in a large amount of C stack space being consumed, and it was
possible to overflow the stack. For example, if you matched a 30000-byte string
of a characters against the expression (a|b)+, one stack frame was
consumed per character. Python 2.3 tried to check for stack overflow and raise
a RuntimeError exception, but certain patterns could sidestep the
checking and if you were unlucky Python could segfault. Python 2.4’s regular
expression engine can match this pattern without problems.

	The signal module now performs tighter error-checking on the parameters
to the signal.signal() function. For example, you can’t set a handler on
the SIGKILL signal; previous versions of Python would quietly accept
this, but 2.4 will raise a RuntimeError exception.

	Two new functions were added to the socket module. socketpair()
returns a pair of connected sockets and getservbyport(port)() looks up the
service name for a given port number. (Contributed by Dave Cole and Barry
Warsaw.)

	The sys.exitfunc() function has been deprecated. Code should be using
the existing atexit module, which correctly handles calling multiple exit
functions. Eventually sys.exitfunc() will become a purely internal
interface, accessed only by atexit.

	The tarfile module now generates GNU-format tar files by default.
(Contributed by Lars Gustaebel.)

	The threading module now has an elegantly simple way to support
thread-local data. The module contains a local class whose attribute
values are local to different threads.

import threading

data = threading.local()
data.number = 42
data.url = ('www.python.org', 80)

Other threads can assign and retrieve their own values for the number
and url attributes. You can subclass local to initialize
attributes or to add methods. (Contributed by Jim Fulton.)

	The timeit module now automatically disables periodic garbage
collection during the timing loop. This change makes consecutive timings more
comparable. (Contributed by Raymond Hettinger.)

	The weakref module now supports a wider variety of objects including
Python functions, class instances, sets, frozensets, deques, arrays, files,
sockets, and regular expression pattern objects. (Contributed by Raymond
Hettinger.)

	The xmlrpclib module now supports a multi-call extension for
transmitting multiple XML-RPC calls in a single HTTP operation. (Contributed by
Brian Quinlan.)

	The mpz, rotor, and xreadlines modules have been
removed.

cookielib

The cookielib library supports client-side handling for HTTP cookies,
mirroring the Cookie module’s server-side cookie support. Cookies are
stored in cookie jars; the library transparently stores cookies offered by the
web server in the cookie jar, and fetches the cookie from the jar when
connecting to the server. As in web browsers, policy objects control whether
cookies are accepted or not.

In order to store cookies across sessions, two implementations of cookie jars
are provided: one that stores cookies in the Netscape format so applications can
use the Mozilla or Lynx cookie files, and one that stores cookies in the same
format as the Perl libwww library.

urllib2 has been changed to interact with cookielib:
HTTPCookieProcessor manages a cookie jar that is used when accessing
URLs.

This module was contributed by John J. Lee.

doctest

The doctest module underwent considerable refactoring thanks to Edward
Loper and Tim Peters. Testing can still be as simple as running
doctest.testmod(), but the refactorings allow customizing the module’s
operation in various ways

The new DocTestFinder class extracts the tests from a given object’s
docstrings:

def f (x, y):
 """>>> f(2,2)
4
>>> f(3,2)
6
 """
 return x*y

finder = doctest.DocTestFinder()

Get list of DocTest instances
tests = finder.find(f)

The new DocTestRunner class then runs individual tests and can produce
a summary of the results:

runner = doctest.DocTestRunner()
for t in tests:
 tried, failed = runner.run(t)

runner.summarize(verbose=1)

The above example produces the following output:

1 items passed all tests:
 2 tests in f
2 tests in 1 items.
2 passed and 0 failed.
Test passed.

DocTestRunner uses an instance of the OutputChecker class to
compare the expected output with the actual output. This class takes a number
of different flags that customize its behaviour; ambitious users can also write
a completely new subclass of OutputChecker.

The default output checker provides a number of handy features. For example,
with the doctest.ELLIPSIS option flag, an ellipsis (...) in the
expected output matches any substring, making it easier to accommodate outputs
that vary in minor ways:

def o (n):
 """>>> o(1)
<__main__.C instance at 0x...>
>>>
"""

Another special string, <BLANKLINE>, matches a blank line:

def p (n):
 """>>> p(1)
<BLANKLINE>
>>>
"""

Another new capability is producing a diff-style display of the output by
specifying the doctest.REPORT_UDIFF (unified diffs),
doctest.REPORT_CDIFF (context diffs), or doctest.REPORT_NDIFF
(delta-style) option flags. For example:

def g (n):
 """>>> g(4)
here
is
a
lengthy
>>>"""
 L = 'here is a rather lengthy list of words'.split()
 for word in L[:n]:
 print word

Running the above function’s tests with doctest.REPORT_UDIFF specified,
you get the following output:

**
File "t.py", line 15, in g
Failed example:
 g(4)
Differences (unified diff with -expected +actual):
 @@ -2,3 +2,3 @@
 is
 a
 -lengthy
 +rather
**

Build and C API Changes

Some of the changes to Python’s build process and to the C API are:

	Three new convenience macros were added for common return values from
extension functions: Py_RETURN_NONE, Py_RETURN_TRUE, and
Py_RETURN_FALSE. (Contributed by Brett Cannon.)

	Another new macro, Py_CLEAR(obj), decreases the reference count of
obj and sets obj to the null pointer. (Contributed by Jim Fulton.)

	A new function, PyTuple_Pack(N, obj1, obj2, ..., objN)(), constructs
tuples from a variable length argument list of Python objects. (Contributed by
Raymond Hettinger.)

	A new function, PyDict_Contains(d, k)(), implements fast dictionary
lookups without masking exceptions raised during the look-up process.
(Contributed by Raymond Hettinger.)

	The Py_IS_NAN(X) macro returns 1 if its float or double argument
X is a NaN. (Contributed by Tim Peters.)

	C code can avoid unnecessary locking by using the new
PyEval_ThreadsInitialized() function to tell if any thread operations
have been performed. If this function returns false, no lock operations are
needed. (Contributed by Nick Coghlan.)

	A new function, PyArg_VaParseTupleAndKeywords(), is the same as
PyArg_ParseTupleAndKeywords() but takes a va_list instead of a
number of arguments. (Contributed by Greg Chapman.)

	A new method flag, METH_COEXISTS, allows a function defined in slots
to co-exist with a PyCFunction having the same name. This can halve
the access time for a method such as set.__contains__(). (Contributed by
Raymond Hettinger.)

	Python can now be built with additional profiling for the interpreter itself,
intended as an aid to people developing the Python core. Providing
--enable-profiling to the configure script will let you
profile the interpreter with gprof, and providing the
--with-tsc switch enables profiling using the Pentium’s Time-Stamp-
Counter register. Note that the --with-tsc switch is slightly
misnamed, because the profiling feature also works on the PowerPC platform,
though that processor architecture doesn’t call that register “the TSC
register”. (Contributed by Jeremy Hylton.)

	The tracebackobject type has been renamed to
PyTracebackObject.

Port-Specific Changes

	The Windows port now builds under MSVC++ 7.1 as well as version 6.
(Contributed by Martin von Löwis.)

Porting to Python 2.4

This section lists previously described changes that may require changes to your
code:

	Left shifts and hexadecimal/octal constants that are too large no longer
trigger a FutureWarning and return a value limited to 32 or 64 bits;
instead they return a long integer.

	Integer operations will no longer trigger an OverflowWarning. The
OverflowWarning warning will disappear in Python 2.5.

	The zip() built-in function and itertools.izip() now return an
empty list instead of raising a TypeError exception if called with no
arguments.

	You can no longer compare the date and datetime instances
provided by the datetime module. Two instances of different classes
will now always be unequal, and relative comparisons (<, >) will raise
a TypeError.

	dircache.listdir() now passes exceptions to the caller instead of
returning empty lists.

	LexicalHandler.startDTD() used to receive the public and system IDs in
the wrong order. This has been corrected; applications relying on the wrong
order need to be fixed.

	fcntl.ioctl() now warns if the mutate argument is omitted and
relevant.

	The tarfile module now generates GNU-format tar files by default.

	Encountering a failure while importing a module no longer leaves a partially-
initialized module object in sys.modules.

	None is now a constant; code that binds a new value to the name
None is now a syntax error.

	The signals.signal() function now raises a RuntimeError exception
for certain illegal values; previously these errors would pass silently. For
example, you can no longer set a handler on the SIGKILL signal.

Acknowledgements

The author would like to thank the following people for offering suggestions,
corrections and assistance with various drafts of this article: Koray Can,
Hye-Shik Chang, Michael Dyck, Raymond Hettinger, Brian Hurt, Hamish Lawson,
Fredrik Lundh, Sean Reifschneider, Sadruddin Rejeb.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

What’s New in Python 2.3

	Author:	A.M. Kuchling

This article explains the new features in Python 2.3. Python 2.3 was released
on July 29, 2003.

The main themes for Python 2.3 are polishing some of the features added in 2.2,
adding various small but useful enhancements to the core language, and expanding
the standard library. The new object model introduced in the previous version
has benefited from 18 months of bugfixes and from optimization efforts that have
improved the performance of new-style classes. A few new built-in functions
have been added such as sum() and enumerate(). The in
operator can now be used for substring searches (e.g. "ab" in "abc" returns
True).

Some of the many new library features include Boolean, set, heap, and date/time
data types, the ability to import modules from ZIP-format archives, metadata
support for the long-awaited Python catalog, an updated version of IDLE, and
modules for logging messages, wrapping text, parsing CSV files, processing
command-line options, using BerkeleyDB databases... the list of new and
enhanced modules is lengthy.

This article doesn’t attempt to provide a complete specification of the new
features, but instead provides a convenient overview. For full details, you
should refer to the documentation for Python 2.3, such as the Python Library
Reference and the Python Reference Manual. If you want to understand the
complete implementation and design rationale, refer to the PEP for a particular
new feature.

PEP 218: A Standard Set Datatype

The new sets module contains an implementation of a set datatype. The
Set class is for mutable sets, sets that can have members added and
removed. The ImmutableSet class is for sets that can’t be modified,
and instances of ImmutableSet can therefore be used as dictionary keys.
Sets are built on top of dictionaries, so the elements within a set must be
hashable.

Here’s a simple example:

>>> import sets
>>> S = sets.Set([1,2,3])
>>> S
Set([1, 2, 3])
>>> 1 in S
True
>>> 0 in S
False
>>> S.add(5)
>>> S.remove(3)
>>> S
Set([1, 2, 5])
>>>

The union and intersection of sets can be computed with the union() and
intersection() methods; an alternative notation uses the bitwise operators
& and |. Mutable sets also have in-place versions of these methods,
union_update() and intersection_update().

>>> S1 = sets.Set([1,2,3])
>>> S2 = sets.Set([4,5,6])
>>> S1.union(S2)
Set([1, 2, 3, 4, 5, 6])
>>> S1 | S2 # Alternative notation
Set([1, 2, 3, 4, 5, 6])
>>> S1.intersection(S2)
Set([])
>>> S1 & S2 # Alternative notation
Set([])
>>> S1.union_update(S2)
>>> S1
Set([1, 2, 3, 4, 5, 6])
>>>

It’s also possible to take the symmetric difference of two sets. This is the
set of all elements in the union that aren’t in the intersection. Another way
of putting it is that the symmetric difference contains all elements that are in
exactly one set. Again, there’s an alternative notation (^), and an in-
place version with the ungainly name symmetric_difference_update().

>>> S1 = sets.Set([1,2,3,4])
>>> S2 = sets.Set([3,4,5,6])
>>> S1.symmetric_difference(S2)
Set([1, 2, 5, 6])
>>> S1 ^ S2
Set([1, 2, 5, 6])
>>>

There are also issubset() and issuperset() methods for checking
whether one set is a subset or superset of another:

>>> S1 = sets.Set([1,2,3])
>>> S2 = sets.Set([2,3])
>>> S2.issubset(S1)
True
>>> S1.issubset(S2)
False
>>> S1.issuperset(S2)
True
>>>

See also

	PEP 218 [https://www.python.org/dev/peps/pep-0218] - Adding a Built-In Set Object Type

	PEP written by Greg V. Wilson. Implemented by Greg V. Wilson, Alex Martelli, and
GvR.

PEP 255: Simple Generators

In Python 2.2, generators were added as an optional feature, to be enabled by a
from __future__ import generators directive. In 2.3 generators no longer
need to be specially enabled, and are now always present; this means that
yield is now always a keyword. The rest of this section is a copy of
the description of generators from the “What’s New in Python 2.2” document; if
you read it back when Python 2.2 came out, you can skip the rest of this
section.

You’re doubtless familiar with how function calls work in Python or C. When you
call a function, it gets a private namespace where its local variables are
created. When the function reaches a return statement, the local
variables are destroyed and the resulting value is returned to the caller. A
later call to the same function will get a fresh new set of local variables.
But, what if the local variables weren’t thrown away on exiting a function?
What if you could later resume the function where it left off? This is what
generators provide; they can be thought of as resumable functions.

Here’s the simplest example of a generator function:

def generate_ints(N):
 for i in range(N):
 yield i

A new keyword, yield, was introduced for generators. Any function
containing a yield statement is a generator function; this is
detected by Python’s bytecode compiler which compiles the function specially as
a result.

When you call a generator function, it doesn’t return a single value; instead it
returns a generator object that supports the iterator protocol. On executing
the yield statement, the generator outputs the value of i,
similar to a return statement. The big difference between
yield and a return statement is that on reaching a
yield the generator’s state of execution is suspended and local
variables are preserved. On the next call to the generator’s .next()
method, the function will resume executing immediately after the
yield statement. (For complicated reasons, the yield
statement isn’t allowed inside the try block of a try...finally statement; read PEP 255 [https://www.python.org/dev/peps/pep-0255] for a full explanation of the
interaction between yield and exceptions.)

Here’s a sample usage of the generate_ints() generator:

>>> gen = generate_ints(3)
>>> gen
<generator object at 0x8117f90>
>>> gen.next()
0
>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
Traceback (most recent call last):
 File "stdin", line 1, in ?
 File "stdin", line 2, in generate_ints
StopIteration

You could equally write for i in generate_ints(5), or a,b,c =
generate_ints(3).

Inside a generator function, the return statement can only be used
without a value, and signals the end of the procession of values; afterwards the
generator cannot return any further values. return with a value, such
as return 5, is a syntax error inside a generator function. The end of the
generator’s results can also be indicated by raising StopIteration
manually, or by just letting the flow of execution fall off the bottom of the
function.

You could achieve the effect of generators manually by writing your own class
and storing all the local variables of the generator as instance variables. For
example, returning a list of integers could be done by setting self.count to
0, and having the next() method increment self.count and return it.
However, for a moderately complicated generator, writing a corresponding class
would be much messier. Lib/test/test_generators.py contains a number of
more interesting examples. The simplest one implements an in-order traversal of
a tree using generators recursively.

A recursive generator that generates Tree leaves in in-order.
def inorder(t):
 if t:
 for x in inorder(t.left):
 yield x
 yield t.label
 for x in inorder(t.right):
 yield x

Two other examples in Lib/test/test_generators.py produce solutions for
the N-Queens problem (placing N queens on an NxN chess board so that no
queen threatens another) and the Knight’s Tour (a route that takes a knight to
every square of an NxN chessboard without visiting any square twice).

The idea of generators comes from other programming languages, especially Icon
(https://www.cs.arizona.edu/icon/), where the idea of generators is central. In
Icon, every expression and function call behaves like a generator. One example
from “An Overview of the Icon Programming Language” at
https://www.cs.arizona.edu/icon/docs/ipd266.htm gives an idea of what this looks
like:

sentence := "Store it in the neighboring harbor"
if (i := find("or", sentence)) > 5 then write(i)

In Icon the find() function returns the indexes at which the substring
“or” is found: 3, 23, 33. In the if statement, i is first
assigned a value of 3, but 3 is less than 5, so the comparison fails, and Icon
retries it with the second value of 23. 23 is greater than 5, so the comparison
now succeeds, and the code prints the value 23 to the screen.

Python doesn’t go nearly as far as Icon in adopting generators as a central
concept. Generators are considered part of the core Python language, but
learning or using them isn’t compulsory; if they don’t solve any problems that
you have, feel free to ignore them. One novel feature of Python’s interface as
compared to Icon’s is that a generator’s state is represented as a concrete
object (the iterator) that can be passed around to other functions or stored in
a data structure.

See also

	PEP 255 [https://www.python.org/dev/peps/pep-0255] - Simple Generators

	Written by Neil Schemenauer, Tim Peters, Magnus Lie Hetland. Implemented mostly
by Neil Schemenauer and Tim Peters, with other fixes from the Python Labs crew.

PEP 263: Source Code Encodings

Python source files can now be declared as being in different character set
encodings. Encodings are declared by including a specially formatted comment in
the first or second line of the source file. For example, a UTF-8 file can be
declared with:

#!/usr/bin/env python
-*- coding: UTF-8 -*-

Without such an encoding declaration, the default encoding used is 7-bit ASCII.
Executing or importing modules that contain string literals with 8-bit
characters and have no encoding declaration will result in a
DeprecationWarning being signalled by Python 2.3; in 2.4 this will be a
syntax error.

The encoding declaration only affects Unicode string literals, which will be
converted to Unicode using the specified encoding. Note that Python identifiers
are still restricted to ASCII characters, so you can’t have variable names that
use characters outside of the usual alphanumerics.

See also

	PEP 263 [https://www.python.org/dev/peps/pep-0263] - Defining Python Source Code Encodings

	Written by Marc-André Lemburg and Martin von Löwis; implemented by Suzuki Hisao
and Martin von Löwis.

PEP 273: Importing Modules from ZIP Archives

The new zipimport module adds support for importing modules from a ZIP-
format archive. You don’t need to import the module explicitly; it will be
automatically imported if a ZIP archive’s filename is added to sys.path.
For example:

amk@nyman:~/src/python$ unzip -l /tmp/example.zip
Archive: /tmp/example.zip
 Length Date Time Name
 -------- ---- ---- ----
 8467 11-26-02 22:30 jwzthreading.py
 -------- -------
 8467 1 file
amk@nyman:~/src/python$./python
Python 2.3 (#1, Aug 1 2003, 19:54:32)
>>> import sys
>>> sys.path.insert(0, '/tmp/example.zip') # Add .zip file to front of path
>>> import jwzthreading
>>> jwzthreading.__file__
'/tmp/example.zip/jwzthreading.py'
>>>

An entry in sys.path can now be the filename of a ZIP archive. The ZIP
archive can contain any kind of files, but only files named *.py,
*.pyc, or *.pyo can be imported. If an archive only contains
*.py files, Python will not attempt to modify the archive by adding the
corresponding *.pyc file, meaning that if a ZIP archive doesn’t contain
*.pyc files, importing may be rather slow.

A path within the archive can also be specified to only import from a
subdirectory; for example, the path /tmp/example.zip/lib/ would only
import from the lib/ subdirectory within the archive.

See also

	PEP 273 [https://www.python.org/dev/peps/pep-0273] - Import Modules from Zip Archives

	Written by James C. Ahlstrom, who also provided an implementation. Python 2.3
follows the specification in PEP 273 [https://www.python.org/dev/peps/pep-0273], but uses an implementation written by
Just van Rossum that uses the import hooks described in PEP 302 [https://www.python.org/dev/peps/pep-0302]. See section
PEP 302: New Import Hooks for a description of the new import hooks.

PEP 277: Unicode file name support for Windows NT

On Windows NT, 2000, and XP, the system stores file names as Unicode strings.
Traditionally, Python has represented file names as byte strings, which is
inadequate because it renders some file names inaccessible.

Python now allows using arbitrary Unicode strings (within the limitations of the
file system) for all functions that expect file names, most notably the
open() built-in function. If a Unicode string is passed to
os.listdir(), Python now returns a list of Unicode strings. A new
function, os.getcwdu(), returns the current directory as a Unicode string.

Byte strings still work as file names, and on Windows Python will transparently
convert them to Unicode using the mbcs encoding.

Other systems also allow Unicode strings as file names but convert them to byte
strings before passing them to the system, which can cause a UnicodeError
to be raised. Applications can test whether arbitrary Unicode strings are
supported as file names by checking os.path.supports_unicode_filenames,
a Boolean value.

Under MacOS, os.listdir() may now return Unicode filenames.

See also

	PEP 277 [https://www.python.org/dev/peps/pep-0277] - Unicode file name support for Windows NT

	Written by Neil Hodgson; implemented by Neil Hodgson, Martin von Löwis, and Mark
Hammond.

PEP 278: Universal Newline Support

The three major operating systems used today are Microsoft Windows, Apple’s
Macintosh OS, and the various Unix derivatives. A minor irritation of cross-
platform work is that these three platforms all use different characters to
mark the ends of lines in text files. Unix uses the linefeed (ASCII character
10), MacOS uses the carriage return (ASCII character 13), and Windows uses a
two-character sequence of a carriage return plus a newline.

Python’s file objects can now support end of line conventions other than the
one followed by the platform on which Python is running. Opening a file with
the mode 'U' or 'rU' will open a file for reading in universal
newlines mode. All three line ending conventions will be translated to a
'\n' in the strings returned by the various file methods such as
read() and readline().

Universal newline support is also used when importing modules and when executing
a file with the execfile() function. This means that Python modules can
be shared between all three operating systems without needing to convert the
line-endings.

This feature can be disabled when compiling Python by specifying the
--without-universal-newlines switch when running Python’s
configure script.

See also

	PEP 278 [https://www.python.org/dev/peps/pep-0278] - Universal Newline Support

	Written and implemented by Jack Jansen.

PEP 279: enumerate()

A new built-in function, enumerate(), will make certain loops a bit
clearer. enumerate(thing), where thing is either an iterator or a
sequence, returns an iterator that will return (0, thing[0]), (1,
thing[1]), (2, thing[2]), and so forth.

A common idiom to change every element of a list looks like this:

for i in range(len(L)):
 item = L[i]
 # ... compute some result based on item ...
 L[i] = result

This can be rewritten using enumerate() as:

for i, item in enumerate(L):
 # ... compute some result based on item ...
 L[i] = result

See also

	PEP 279 [https://www.python.org/dev/peps/pep-0279] - The enumerate() built-in function

	Written and implemented by Raymond D. Hettinger.

PEP 282: The logging Package

A standard package for writing logs, logging, has been added to Python
2.3. It provides a powerful and flexible mechanism for generating logging
output which can then be filtered and processed in various ways. A
configuration file written in a standard format can be used to control the
logging behavior of a program. Python includes handlers that will write log
records to standard error or to a file or socket, send them to the system log,
or even e-mail them to a particular address; of course, it’s also possible to
write your own handler classes.

The Logger class is the primary class. Most application code will deal
with one or more Logger objects, each one used by a particular
subsystem of the application. Each Logger is identified by a name, and
names are organized into a hierarchy using . as the component separator.
For example, you might have Logger instances named server,
server.auth and server.network. The latter two instances are below
server in the hierarchy. This means that if you turn up the verbosity for
server or direct server messages to a different handler, the changes
will also apply to records logged to server.auth and server.network.
There’s also a root Logger that’s the parent of all other loggers.

For simple uses, the logging package contains some convenience functions
that always use the root log:

import logging

logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf')
logging.error('Error occurred')
logging.critical('Critical error -- shutting down')

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

In the default configuration, informational and debugging messages are
suppressed and the output is sent to standard error. You can enable the display
of informational and debugging messages by calling the setLevel() method
on the root logger.

Notice the warning() call’s use of string formatting operators; all of the
functions for logging messages take the arguments (msg, arg1, arg2, ...) and
log the string resulting from msg % (arg1, arg2, ...).

There’s also an exception() function that records the most recent
traceback. Any of the other functions will also record the traceback if you
specify a true value for the keyword argument exc_info.

def f():
 try: 1/0
 except: logging.exception('Problem recorded')

f()

This produces the following output:

ERROR:root:Problem recorded
Traceback (most recent call last):
 File "t.py", line 6, in f
 1/0
ZeroDivisionError: integer division or modulo by zero

Slightly more advanced programs will use a logger other than the root logger.
The getLogger(name)() function is used to get a particular log, creating
it if it doesn’t exist yet. getLogger(None)() returns the root logger.

log = logging.getLogger('server')
 ...
log.info('Listening on port %i', port)
 ...
log.critical('Disk full')
 ...

Log records are usually propagated up the hierarchy, so a message logged to
server.auth is also seen by server and root, but a Logger
can prevent this by setting its propagate attribute to False.

There are more classes provided by the logging package that can be
customized. When a Logger instance is told to log a message, it
creates a LogRecord instance that is sent to any number of different
Handler instances. Loggers and handlers can also have an attached list
of filters, and each filter can cause the LogRecord to be ignored or
can modify the record before passing it along. When they’re finally output,
LogRecord instances are converted to text by a Formatter
class. All of these classes can be replaced by your own specially-written
classes.

With all of these features the logging package should provide enough
flexibility for even the most complicated applications. This is only an
incomplete overview of its features, so please see the package’s reference
documentation for all of the details. Reading PEP 282 [https://www.python.org/dev/peps/pep-0282] will also be helpful.

See also

	PEP 282 [https://www.python.org/dev/peps/pep-0282] - A Logging System

	Written by Vinay Sajip and Trent Mick; implemented by Vinay Sajip.

PEP 285: A Boolean Type

A Boolean type was added to Python 2.3. Two new constants were added to the
__builtin__ module, True and False. (True and
False constants were added to the built-ins in Python 2.2.1, but the
2.2.1 versions are simply set to integer values of 1 and 0 and aren’t a
different type.)

The type object for this new type is named bool; the constructor for it
takes any Python value and converts it to True or False.

>>> bool(1)
True
>>> bool(0)
False
>>> bool([])
False
>>> bool((1,))
True

Most of the standard library modules and built-in functions have been changed to
return Booleans.

>>> obj = []
>>> hasattr(obj, 'append')
True
>>> isinstance(obj, list)
True
>>> isinstance(obj, tuple)
False

Python’s Booleans were added with the primary goal of making code clearer. For
example, if you’re reading a function and encounter the statement return 1,
you might wonder whether the 1 represents a Boolean truth value, an index,
or a coefficient that multiplies some other quantity. If the statement is
return True, however, the meaning of the return value is quite clear.

Python’s Booleans were not added for the sake of strict type-checking. A very
strict language such as Pascal would also prevent you performing arithmetic with
Booleans, and would require that the expression in an if statement
always evaluate to a Boolean result. Python is not this strict and never will
be, as PEP 285 [https://www.python.org/dev/peps/pep-0285] explicitly says. This means you can still use any expression
in an if statement, even ones that evaluate to a list or tuple or
some random object. The Boolean type is a subclass of the int class so
that arithmetic using a Boolean still works.

>>> True + 1
2
>>> False + 1
1
>>> False * 75
0
>>> True * 75
75

To sum up True and False in a sentence: they’re alternative
ways to spell the integer values 1 and 0, with the single difference that
str() and repr() return the strings 'True' and 'False'
instead of '1' and '0'.

See also

	PEP 285 [https://www.python.org/dev/peps/pep-0285] - Adding a bool type

	Written and implemented by GvR.

PEP 293: Codec Error Handling Callbacks

When encoding a Unicode string into a byte string, unencodable characters may be
encountered. So far, Python has allowed specifying the error processing as
either “strict” (raising UnicodeError), “ignore” (skipping the
character), or “replace” (using a question mark in the output string), with
“strict” being the default behavior. It may be desirable to specify alternative
processing of such errors, such as inserting an XML character reference or HTML
entity reference into the converted string.

Python now has a flexible framework to add different processing strategies. New
error handlers can be added with codecs.register_error(), and codecs then
can access the error handler with codecs.lookup_error(). An equivalent C
API has been added for codecs written in C. The error handler gets the necessary
state information such as the string being converted, the position in the string
where the error was detected, and the target encoding. The handler can then
either raise an exception or return a replacement string.

Two additional error handlers have been implemented using this framework:
“backslashreplace” uses Python backslash quoting to represent unencodable
characters and “xmlcharrefreplace” emits XML character references.

See also

	PEP 293 [https://www.python.org/dev/peps/pep-0293] - Codec Error Handling Callbacks

	Written and implemented by Walter Dörwald.

PEP 301: Package Index and Metadata for Distutils

Support for the long-requested Python catalog makes its first appearance in 2.3.

The heart of the catalog is the new Distutils register command.
Running python setup.py register will collect the metadata describing a
package, such as its name, version, maintainer, description, &c., and send it to
a central catalog server. The resulting catalog is available from
https://pypi.python.org/pypi.

To make the catalog a bit more useful, a new optional classifiers keyword
argument has been added to the Distutils setup() function. A list of
Trove [http://catb.org/~esr/trove/]-style strings can be supplied to help
classify the software.

Here’s an example setup.py with classifiers, written to be compatible
with older versions of the Distutils:

from distutils import core
kw = {'name': "Quixote",
 'version': "0.5.1",
 'description': "A highly Pythonic Web application framework",
 # ...
 }

if (hasattr(core, 'setup_keywords') and
 'classifiers' in core.setup_keywords):
 kw['classifiers'] = \
 ['Topic :: Internet :: WWW/HTTP :: Dynamic Content',
 'Environment :: No Input/Output (Daemon)',
 'Intended Audience :: Developers'],

core.setup(**kw)

The full list of classifiers can be obtained by running python setup.py
register --list-classifiers.

See also

	PEP 301 [https://www.python.org/dev/peps/pep-0301] - Package Index and Metadata for Distutils

	Written and implemented by Richard Jones.

PEP 302: New Import Hooks

While it’s been possible to write custom import hooks ever since the
ihooks module was introduced in Python 1.3, no one has ever been really
happy with it because writing new import hooks is difficult and messy. There
have been various proposed alternatives such as the imputil and iu
modules, but none of them has ever gained much acceptance, and none of them were
easily usable from C code.

PEP 302 [https://www.python.org/dev/peps/pep-0302] borrows ideas from its predecessors, especially from Gordon
McMillan’s iu module. Three new items are added to the sys
module:

	sys.path_hooks is a list of callable objects; most often they’ll be
classes. Each callable takes a string containing a path and either returns an
importer object that will handle imports from this path or raises an
ImportError exception if it can’t handle this path.

	sys.path_importer_cache caches importer objects for each path, so
sys.path_hooks will only need to be traversed once for each path.

	sys.meta_path is a list of importer objects that will be traversed before
sys.path is checked. This list is initially empty, but user code can add
objects to it. Additional built-in and frozen modules can be imported by an
object added to this list.

Importer objects must have a single method, find_module(fullname,
path=None)(). fullname will be a module or package name, e.g. string or
distutils.core. find_module() must return a loader object that has a
single method, load_module(fullname)(), that creates and returns the
corresponding module object.

Pseudo-code for Python’s new import logic, therefore, looks something like this
(simplified a bit; see PEP 302 [https://www.python.org/dev/peps/pep-0302] for the full details):

for mp in sys.meta_path:
 loader = mp(fullname)
 if loader is not None:
 <module> = loader.load_module(fullname)

for path in sys.path:
 for hook in sys.path_hooks:
 try:
 importer = hook(path)
 except ImportError:
 # ImportError, so try the other path hooks
 pass
 else:
 loader = importer.find_module(fullname)
 <module> = loader.load_module(fullname)

Not found!
raise ImportError

See also

	PEP 302 [https://www.python.org/dev/peps/pep-0302] - New Import Hooks

	Written by Just van Rossum and Paul Moore. Implemented by Just van Rossum.

PEP 305: Comma-separated Files

Comma-separated files are a format frequently used for exporting data from
databases and spreadsheets. Python 2.3 adds a parser for comma-separated files.

Comma-separated format is deceptively simple at first glance:

Costs,150,200,3.95

Read a line and call line.split(','): what could be simpler? But toss in
string data that can contain commas, and things get more complicated:

"Costs",150,200,3.95,"Includes taxes, shipping, and sundry items"

A big ugly regular expression can parse this, but using the new csv
package is much simpler:

import csv

input = open('datafile', 'rb')
reader = csv.reader(input)
for line in reader:
 print line

The reader() function takes a number of different options. The field
separator isn’t limited to the comma and can be changed to any character, and so
can the quoting and line-ending characters.

Different dialects of comma-separated files can be defined and registered;
currently there are two dialects, both used by Microsoft Excel. A separate
csv.writer class will generate comma-separated files from a succession
of tuples or lists, quoting strings that contain the delimiter.

See also

	PEP 305 [https://www.python.org/dev/peps/pep-0305] - CSV File API

	Written and implemented by Kevin Altis, Dave Cole, Andrew McNamara, Skip
Montanaro, Cliff Wells.

PEP 307: Pickle Enhancements

The pickle and cPickle modules received some attention during the
2.3 development cycle. In 2.2, new-style classes could be pickled without
difficulty, but they weren’t pickled very compactly; PEP 307 [https://www.python.org/dev/peps/pep-0307] quotes a trivial
example where a new-style class results in a pickled string three times longer
than that for a classic class.

The solution was to invent a new pickle protocol. The pickle.dumps()
function has supported a text-or-binary flag for a long time. In 2.3, this
flag is redefined from a Boolean to an integer: 0 is the old text-mode pickle
format, 1 is the old binary format, and now 2 is a new 2.3-specific format. A
new constant, pickle.HIGHEST_PROTOCOL, can be used to select the
fanciest protocol available.

Unpickling is no longer considered a safe operation. 2.2’s pickle
provided hooks for trying to prevent unsafe classes from being unpickled
(specifically, a __safe_for_unpickling__ attribute), but none of this
code was ever audited and therefore it’s all been ripped out in 2.3. You should
not unpickle untrusted data in any version of Python.

To reduce the pickling overhead for new-style classes, a new interface for
customizing pickling was added using three special methods:
__getstate__(), __setstate__(), and __getnewargs__(). Consult
PEP 307 [https://www.python.org/dev/peps/pep-0307] for the full semantics of these methods.

As a way to compress pickles yet further, it’s now possible to use integer codes
instead of long strings to identify pickled classes. The Python Software
Foundation will maintain a list of standardized codes; there’s also a range of
codes for private use. Currently no codes have been specified.

See also

	PEP 307 [https://www.python.org/dev/peps/pep-0307] - Extensions to the pickle protocol

	Written and implemented by Guido van Rossum and Tim Peters.

Extended Slices

Ever since Python 1.4, the slicing syntax has supported an optional third “step”
or “stride” argument. For example, these are all legal Python syntax:
L[1:10:2], L[:-1:1], L[::-1]. This was added to Python at the
request of the developers of Numerical Python, which uses the third argument
extensively. However, Python’s built-in list, tuple, and string sequence types
have never supported this feature, raising a TypeError if you tried it.
Michael Hudson contributed a patch to fix this shortcoming.

For example, you can now easily extract the elements of a list that have even
indexes:

>>> L = range(10)
>>> L[::2]
[0, 2, 4, 6, 8]

Negative values also work to make a copy of the same list in reverse order:

>>> L[::-1]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

This also works for tuples, arrays, and strings:

>>> s='abcd'
>>> s[::2]
'ac'
>>> s[::-1]
'dcba'

If you have a mutable sequence such as a list or an array you can assign to or
delete an extended slice, but there are some differences between assignment to
extended and regular slices. Assignment to a regular slice can be used to
change the length of the sequence:

>>> a = range(3)
>>> a
[0, 1, 2]
>>> a[1:3] = [4, 5, 6]
>>> a
[0, 4, 5, 6]

Extended slices aren’t this flexible. When assigning to an extended slice, the
list on the right hand side of the statement must contain the same number of
items as the slice it is replacing:

>>> a = range(4)
>>> a
[0, 1, 2, 3]
>>> a[::2]
[0, 2]
>>> a[::2] = [0, -1]
>>> a
[0, 1, -1, 3]
>>> a[::2] = [0,1,2]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: attempt to assign sequence of size 3 to extended slice of size 2

Deletion is more straightforward:

>>> a = range(4)
>>> a
[0, 1, 2, 3]
>>> a[::2]
[0, 2]
>>> del a[::2]
>>> a
[1, 3]

One can also now pass slice objects to the __getitem__() methods of the
built-in sequences:

>>> range(10).__getitem__(slice(0, 5, 2))
[0, 2, 4]

Or use slice objects directly in subscripts:

>>> range(10)[slice(0, 5, 2)]
[0, 2, 4]

To simplify implementing sequences that support extended slicing, slice objects
now have a method indices(length)() which, given the length of a sequence,
returns a (start, stop, step) tuple that can be passed directly to
range(). indices() handles omitted and out-of-bounds indices in a
manner consistent with regular slices (and this innocuous phrase hides a welter
of confusing details!). The method is intended to be used like this:

class FakeSeq:
 ...
 def calc_item(self, i):
 ...
 def __getitem__(self, item):
 if isinstance(item, slice):
 indices = item.indices(len(self))
 return FakeSeq([self.calc_item(i) for i in range(*indices)])
 else:
 return self.calc_item(i)

From this example you can also see that the built-in slice object is
now the type object for the slice type, and is no longer a function. This is
consistent with Python 2.2, where int, str, etc., underwent
the same change.

Other Language Changes

Here are all of the changes that Python 2.3 makes to the core Python language.

	The yield statement is now always a keyword, as described in
section PEP 255: Simple Generators of this document.

	A new built-in function enumerate() was added, as described in section
PEP 279: enumerate() of this document.

	Two new constants, True and False were added along with the
built-in bool type, as described in section PEP 285: A Boolean Type of this
document.

	The int() type constructor will now return a long integer instead of
raising an OverflowError when a string or floating-point number is too
large to fit into an integer. This can lead to the paradoxical result that
isinstance(int(expression), int) is false, but that seems unlikely to cause
problems in practice.

	Built-in types now support the extended slicing syntax, as described in
section Extended Slices of this document.

	A new built-in function, sum(iterable, start=0)(), adds up the numeric
items in the iterable object and returns their sum. sum() only accepts
numbers, meaning that you can’t use it to concatenate a bunch of strings.
(Contributed by Alex Martelli.)

	list.insert(pos, value) used to insert value at the front of the list
when pos was negative. The behaviour has now been changed to be consistent
with slice indexing, so when pos is -1 the value will be inserted before the
last element, and so forth.

	list.index(value), which searches for value within the list and returns
its index, now takes optional start and stop arguments to limit the search
to only part of the list.

	Dictionaries have a new method, pop(key[, *default*])(), that returns
the value corresponding to key and removes that key/value pair from the
dictionary. If the requested key isn’t present in the dictionary, default is
returned if it’s specified and KeyError raised if it isn’t.

>>> d = {1:2}
>>> d
{1: 2}
>>> d.pop(4)
Traceback (most recent call last):
 File "stdin", line 1, in ?
KeyError: 4
>>> d.pop(1)
2
>>> d.pop(1)
Traceback (most recent call last):
 File "stdin", line 1, in ?
KeyError: 'pop(): dictionary is empty'
>>> d
{}
>>>

There’s also a new class method, dict.fromkeys(iterable, value)(), that
creates a dictionary with keys taken from the supplied iterator iterable and
all values set to value, defaulting to None.

(Patches contributed by Raymond Hettinger.)

Also, the dict() constructor now accepts keyword arguments to simplify
creating small dictionaries:

>>> dict(red=1, blue=2, green=3, black=4)
{'blue': 2, 'black': 4, 'green': 3, 'red': 1}

(Contributed by Just van Rossum.)

	The assert statement no longer checks the __debug__ flag, so
you can no longer disable assertions by assigning to __debug__. Running
Python with the -O switch will still generate code that doesn’t
execute any assertions.

	Most type objects are now callable, so you can use them to create new objects
such as functions, classes, and modules. (This means that the new module
can be deprecated in a future Python version, because you can now use the type
objects available in the types module.) For example, you can create a new
module object with the following code:

>>> import types
>>> m = types.ModuleType('abc','docstring')
>>> m
<module 'abc' (built-in)>
>>> m.__doc__
'docstring'

	A new warning, PendingDeprecationWarning was added to indicate features
which are in the process of being deprecated. The warning will not be printed
by default. To check for use of features that will be deprecated in the future,
supply -Walways::PendingDeprecationWarning:: on the command line or
use warnings.filterwarnings().

	The process of deprecating string-based exceptions, as in raise "Error
occurred", has begun. Raising a string will now trigger
PendingDeprecationWarning.

	Using None as a variable name will now result in a SyntaxWarning
warning. In a future version of Python, None may finally become a keyword.

	The xreadlines() method of file objects, introduced in Python 2.1, is no
longer necessary because files now behave as their own iterator.
xreadlines() was originally introduced as a faster way to loop over all
the lines in a file, but now you can simply write for line in file_obj.
File objects also have a new read-only encoding attribute that gives the
encoding used by the file; Unicode strings written to the file will be
automatically converted to bytes using the given encoding.

	The method resolution order used by new-style classes has changed, though
you’ll only notice the difference if you have a really complicated inheritance
hierarchy. Classic classes are unaffected by this change. Python 2.2
originally used a topological sort of a class’s ancestors, but 2.3 now uses the
C3 algorithm as described in the paper “A Monotonic Superclass Linearization
for Dylan” [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.3910]. To
understand the motivation for this change, read Michele Simionato’s article
“Python 2.3 Method Resolution Order” [http://www.phyast.pitt.edu/~micheles/mro.html], or
read the thread on python-dev starting with the message at
https://mail.python.org/pipermail/python-dev/2002-October/029035.html. Samuele
Pedroni first pointed out the problem and also implemented the fix by coding the
C3 algorithm.

	Python runs multithreaded programs by switching between threads after
executing N bytecodes. The default value for N has been increased from 10 to
100 bytecodes, speeding up single-threaded applications by reducing the
switching overhead. Some multithreaded applications may suffer slower response
time, but that’s easily fixed by setting the limit back to a lower number using
sys.setcheckinterval(N)(). The limit can be retrieved with the new
sys.getcheckinterval() function.

	One minor but far-reaching change is that the names of extension types defined
by the modules included with Python now contain the module and a '.' in
front of the type name. For example, in Python 2.2, if you created a socket and
printed its __class__, you’d get this output:

>>> s = socket.socket()
>>> s.__class__
<type 'socket'>

In 2.3, you get this:

>>> s.__class__
<type '_socket.socket'>

	One of the noted incompatibilities between old- and new-style classes has been
removed: you can now assign to the __name__ and __bases__
attributes of new-style classes. There are some restrictions on what can be
assigned to __bases__ along the lines of those relating to assigning to
an instance’s __class__ attribute.

String Changes

	The in operator now works differently for strings. Previously, when
evaluating X in Y where X and Y are strings, X could only be a single
character. That’s now changed; X can be a string of any length, and X in Y
will return True if X is a substring of Y. If X is the empty
string, the result is always True.

>>> 'ab' in 'abcd'
True
>>> 'ad' in 'abcd'
False
>>> '' in 'abcd'
True

Note that this doesn’t tell you where the substring starts; if you need that
information, use the find() string method.

	The strip(), lstrip(), and rstrip() string methods now have
an optional argument for specifying the characters to strip. The default is
still to remove all whitespace characters:

>>> ' abc '.strip()
'abc'
>>> '><><abc<><><>'.strip('<>')
'abc'
>>> '><><abc<><><>\n'.strip('<>')
'abc<><><>\n'
>>> u'\u4000\u4001abc\u4000'.strip(u'\u4000')
u'\u4001abc'
>>>

(Suggested by Simon Brunning and implemented by Walter Dörwald.)

	The startswith() and endswith() string methods now accept negative
numbers for the start and end parameters.

	Another new string method is zfill(), originally a function in the
string module. zfill() pads a numeric string with zeros on the
left until it’s the specified width. Note that the % operator is still more
flexible and powerful than zfill().

>>> '45'.zfill(4)
'0045'
>>> '12345'.zfill(4)
'12345'
>>> 'goofy'.zfill(6)
'0goofy'

(Contributed by Walter Dörwald.)

	A new type object, basestring, has been added. Both 8-bit strings and
Unicode strings inherit from this type, so isinstance(obj, basestring) will
return True for either kind of string. It’s a completely abstract
type, so you can’t create basestring instances.

	Interned strings are no longer immortal and will now be garbage-collected in
the usual way when the only reference to them is from the internal dictionary of
interned strings. (Implemented by Oren Tirosh.)

Optimizations

	The creation of new-style class instances has been made much faster; they’re
now faster than classic classes!

	The sort() method of list objects has been extensively rewritten by Tim
Peters, and the implementation is significantly faster.

	Multiplication of large long integers is now much faster thanks to an
implementation of Karatsuba multiplication, an algorithm that scales better than
the O(n*n) required for the grade-school multiplication algorithm. (Original
patch by Christopher A. Craig, and significantly reworked by Tim Peters.)

	The SET_LINENO opcode is now gone. This may provide a small speed
increase, depending on your compiler’s idiosyncrasies. See section
Other Changes and Fixes for a longer explanation. (Removed by Michael Hudson.)

	xrange() objects now have their own iterator, making for i in
xrange(n) slightly faster than for i in range(n). (Patch by Raymond
Hettinger.)

	A number of small rearrangements have been made in various hotspots to improve
performance, such as inlining a function or removing some code. (Implemented
mostly by GvR, but lots of people have contributed single changes.)

The net result of the 2.3 optimizations is that Python 2.3 runs the pystone
benchmark around 25% faster than Python 2.2.

New, Improved, and Deprecated Modules

As usual, Python’s standard library received a number of enhancements and bug
fixes. Here’s a partial list of the most notable changes, sorted alphabetically
by module name. Consult the Misc/NEWS file in the source tree for a more
complete list of changes, or look through the CVS logs for all the details.

	The array module now supports arrays of Unicode characters using the
'u' format character. Arrays also now support using the += assignment
operator to add another array’s contents, and the *= assignment operator to
repeat an array. (Contributed by Jason Orendorff.)

	The bsddb module has been replaced by version 4.1.6 of the PyBSDDB [http://pybsddb.sourceforge.net] package, providing a more complete interface
to the transactional features of the BerkeleyDB library.

The old version of the module has been renamed to bsddb185 and is no
longer built automatically; you’ll have to edit Modules/Setup to enable
it. Note that the new bsddb package is intended to be compatible with
the old module, so be sure to file bugs if you discover any incompatibilities.
When upgrading to Python 2.3, if the new interpreter is compiled with a new
version of the underlying BerkeleyDB library, you will almost certainly have to
convert your database files to the new version. You can do this fairly easily
with the new scripts db2pickle.py and pickle2db.py which you
will find in the distribution’s Tools/scripts directory. If you’ve
already been using the PyBSDDB package and importing it as bsddb3, you
will have to change your import statements to import it as bsddb.

	The new bz2 module is an interface to the bz2 data compression library.
bz2-compressed data is usually smaller than corresponding zlib-compressed data. (Contributed by Gustavo Niemeyer.)

	A set of standard date/time types has been added in the new datetime
module. See the following section for more details.

	The Distutils Extension class now supports an extra constructor
argument named depends for listing additional source files that an extension
depends on. This lets Distutils recompile the module if any of the dependency
files are modified. For example, if sampmodule.c includes the header
file sample.h, you would create the Extension object like
this:

ext = Extension("samp",
 sources=["sampmodule.c"],
 depends=["sample.h"])

Modifying sample.h would then cause the module to be recompiled.
(Contributed by Jeremy Hylton.)

	Other minor changes to Distutils: it now checks for the CC,
CFLAGS, CPP, LDFLAGS, and CPPFLAGS
environment variables, using them to override the settings in Python’s
configuration (contributed by Robert Weber).

	Previously the doctest module would only search the docstrings of
public methods and functions for test cases, but it now also examines private
ones as well. The DocTestSuite(() function creates a
unittest.TestSuite object from a set of doctest tests.

	The new gc.get_referents(object)() function returns a list of all the
objects referenced by object.

	The getopt module gained a new function, gnu_getopt(), that
supports the same arguments as the existing getopt() function but uses
GNU-style scanning mode. The existing getopt() stops processing options as
soon as a non-option argument is encountered, but in GNU-style mode processing
continues, meaning that options and arguments can be mixed. For example:

>>> getopt.getopt(['-f', 'filename', 'output', '-v'], 'f:v')
([('-f', 'filename')], ['output', '-v'])
>>> getopt.gnu_getopt(['-f', 'filename', 'output', '-v'], 'f:v')
([('-f', 'filename'), ('-v', '')], ['output'])

(Contributed by Peter Åstrand.)

	The grp, pwd, and resource modules now return enhanced
tuples:

>>> import grp
>>> g = grp.getgrnam('amk')
>>> g.gr_name, g.gr_gid
('amk', 500)

	The gzip module can now handle files exceeding 2 GiB.

	The new heapq module contains an implementation of a heap queue
algorithm. A heap is an array-like data structure that keeps items in a
partially sorted order such that, for every index k, heap[k] <=
heap[2*k+1] and heap[k] <= heap[2*k+2]. This makes it quick to remove the
smallest item, and inserting a new item while maintaining the heap property is
O(lg n). (See https://xlinux.nist.gov/dads//HTML/priorityque.html for more
information about the priority queue data structure.)

The heapq module provides heappush() and heappop() functions
for adding and removing items while maintaining the heap property on top of some
other mutable Python sequence type. Here’s an example that uses a Python list:

>>> import heapq
>>> heap = []
>>> for item in [3, 7, 5, 11, 1]:
... heapq.heappush(heap, item)
...
>>> heap
[1, 3, 5, 11, 7]
>>> heapq.heappop(heap)
1
>>> heapq.heappop(heap)
3
>>> heap
[5, 7, 11]

(Contributed by Kevin O’Connor.)

	The IDLE integrated development environment has been updated using the code
from the IDLEfork project (http://idlefork.sourceforge.net). The most notable feature is
that the code being developed is now executed in a subprocess, meaning that
there’s no longer any need for manual reload() operations. IDLE’s core code
has been incorporated into the standard library as the idlelib package.

	The imaplib module now supports IMAP over SSL. (Contributed by Piers
Lauder and Tino Lange.)

	The itertools contains a number of useful functions for use with
iterators, inspired by various functions provided by the ML and Haskell
languages. For example, itertools.ifilter(predicate, iterator) returns all
elements in the iterator for which the function predicate() returns
True, and itertools.repeat(obj, N) returns obj N times.
There are a number of other functions in the module; see the package’s reference
documentation for details.
(Contributed by Raymond Hettinger.)

	Two new functions in the math module, degrees(rads)() and
radians(degs)(), convert between radians and degrees. Other functions in
the math module such as math.sin() and math.cos() have always
required input values measured in radians. Also, an optional base argument
was added to math.log() to make it easier to compute logarithms for bases
other than e and 10. (Contributed by Raymond Hettinger.)

	Several new POSIX functions (getpgid(), killpg(), lchown(),
loadavg(), major(), makedev(), minor(), and
mknod()) were added to the posix module that underlies the
os module. (Contributed by Gustavo Niemeyer, Geert Jansen, and Denis S.
Otkidach.)

	In the os module, the *stat() family of functions can now report
fractions of a second in a timestamp. Such time stamps are represented as
floats, similar to the value returned by time.time().

During testing, it was found that some applications will break if time stamps
are floats. For compatibility, when using the tuple interface of the
stat_result time stamps will be represented as integers. When using
named fields (a feature first introduced in Python 2.2), time stamps are still
represented as integers, unless os.stat_float_times() is invoked to enable
float return values:

>>> os.stat("/tmp").st_mtime
1034791200
>>> os.stat_float_times(True)
>>> os.stat("/tmp").st_mtime
1034791200.6335014

In Python 2.4, the default will change to always returning floats.

Application developers should enable this feature only if all their libraries
work properly when confronted with floating point time stamps, or if they use
the tuple API. If used, the feature should be activated on an application level
instead of trying to enable it on a per-use basis.

	The optparse module contains a new parser for command-line arguments
that can convert option values to a particular Python type and will
automatically generate a usage message. See the following section for more
details.

	The old and never-documented linuxaudiodev module has been deprecated,
and a new version named ossaudiodev has been added. The module was
renamed because the OSS sound drivers can be used on platforms other than Linux,
and the interface has also been tidied and brought up to date in various ways.
(Contributed by Greg Ward and Nicholas FitzRoy-Dale.)

	The new platform module contains a number of functions that try to
determine various properties of the platform you’re running on. There are
functions for getting the architecture, CPU type, the Windows OS version, and
even the Linux distribution version. (Contributed by Marc-André Lemburg.)

	The parser objects provided by the pyexpat module can now optionally
buffer character data, resulting in fewer calls to your character data handler
and therefore faster performance. Setting the parser object’s
buffer_text attribute to True will enable buffering.

	The sample(population, k)() function was added to the random
module. population is a sequence or xrange object containing the
elements of a population, and sample() chooses k elements from the
population without replacing chosen elements. k can be any value up to
len(population). For example:

>>> days = ['Mo', 'Tu', 'We', 'Th', 'Fr', 'St', 'Sn']
>>> random.sample(days, 3) # Choose 3 elements
['St', 'Sn', 'Th']
>>> random.sample(days, 7) # Choose 7 elements
['Tu', 'Th', 'Mo', 'We', 'St', 'Fr', 'Sn']
>>> random.sample(days, 7) # Choose 7 again
['We', 'Mo', 'Sn', 'Fr', 'Tu', 'St', 'Th']
>>> random.sample(days, 8) # Can't choose eight
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "random.py", line 414, in sample
 raise ValueError, "sample larger than population"
ValueError: sample larger than population
>>> random.sample(xrange(1,10000,2), 10) # Choose ten odd nos. under 10000
[3407, 3805, 1505, 7023, 2401, 2267, 9733, 3151, 8083, 9195]

The random module now uses a new algorithm, the Mersenne Twister,
implemented in C. It’s faster and more extensively studied than the previous
algorithm.

(All changes contributed by Raymond Hettinger.)

	The readline module also gained a number of new functions:
get_history_item(), get_current_history_length(), and
redisplay().

	The rexec and Bastion modules have been declared dead, and
attempts to import them will fail with a RuntimeError. New-style classes
provide new ways to break out of the restricted execution environment provided
by rexec, and no one has interest in fixing them or time to do so. If
you have applications using rexec, rewrite them to use something else.

(Sticking with Python 2.2 or 2.1 will not make your applications any safer
because there are known bugs in the rexec module in those versions. To
repeat: if you’re using rexec, stop using it immediately.)

	The rotor module has been deprecated because the algorithm it uses for
encryption is not believed to be secure. If you need encryption, use one of the
several AES Python modules that are available separately.

	The shutil module gained a move(src, dest)() function that
recursively moves a file or directory to a new location.

	Support for more advanced POSIX signal handling was added to the signal
but then removed again as it proved impossible to make it work reliably across
platforms.

	The socket module now supports timeouts. You can call the
settimeout(t)() method on a socket object to set a timeout of t seconds.
Subsequent socket operations that take longer than t seconds to complete will
abort and raise a socket.timeout exception.

The original timeout implementation was by Tim O’Malley. Michael Gilfix
integrated it into the Python socket module and shepherded it through a
lengthy review. After the code was checked in, Guido van Rossum rewrote parts
of it. (This is a good example of a collaborative development process in
action.)

	On Windows, the socket module now ships with Secure Sockets Layer
(SSL) support.

	The value of the C PYTHON_API_VERSION macro is now exposed at the
Python level as sys.api_version. The current exception can be cleared by
calling the new sys.exc_clear() function.

	The new tarfile module allows reading from and writing to
tar-format archive files. (Contributed by Lars Gustäbel.)

	The new textwrap module contains functions for wrapping strings
containing paragraphs of text. The wrap(text, width)() function takes a
string and returns a list containing the text split into lines of no more than
the chosen width. The fill(text, width)() function returns a single
string, reformatted to fit into lines no longer than the chosen width. (As you
can guess, fill() is built on top of wrap(). For example:

>>> import textwrap
>>> paragraph = "Not a whit, we defy augury: ... more text ..."
>>> textwrap.wrap(paragraph, 60)
["Not a whit, we defy augury: there's a special providence in",
 "the fall of a sparrow. If it be now, 'tis not to come; if it",
 ...]
>>> print textwrap.fill(paragraph, 35)
Not a whit, we defy augury: there's
a special providence in the fall of
a sparrow. If it be now, 'tis not
to come; if it be not to come, it
will be now; if it be not now, yet
it will come: the readiness is all.
>>>

The module also contains a TextWrapper class that actually implements
the text wrapping strategy. Both the TextWrapper class and the
wrap() and fill() functions support a number of additional keyword
arguments for fine-tuning the formatting; consult the module’s documentation
for details. (Contributed by Greg Ward.)

	The thread and threading modules now have companion modules,
dummy_thread and dummy_threading, that provide a do-nothing
implementation of the thread module’s interface for platforms where
threads are not supported. The intention is to simplify thread-aware modules
(ones that don’t rely on threads to run) by putting the following code at the
top:

try:
 import threading as _threading
except ImportError:
 import dummy_threading as _threading

In this example, _threading is used as the module name to make it clear
that the module being used is not necessarily the actual threading
module. Code can call functions and use classes in _threading whether or
not threads are supported, avoiding an if statement and making the
code slightly clearer. This module will not magically make multithreaded code
run without threads; code that waits for another thread to return or to do
something will simply hang forever.

	The time module’s strptime() function has long been an annoyance
because it uses the platform C library’s strptime() implementation, and
different platforms sometimes have odd bugs. Brett Cannon contributed a
portable implementation that’s written in pure Python and should behave
identically on all platforms.

	The new timeit module helps measure how long snippets of Python code
take to execute. The timeit.py file can be run directly from the
command line, or the module’s Timer class can be imported and used
directly. Here’s a short example that figures out whether it’s faster to
convert an 8-bit string to Unicode by appending an empty Unicode string to it or
by using the unicode() function:

import timeit

timer1 = timeit.Timer('unicode("abc")')
timer2 = timeit.Timer('"abc" + u""')

Run three trials
print timer1.repeat(repeat=3, number=100000)
print timer2.repeat(repeat=3, number=100000)

On my laptop this outputs:
[0.36831796169281006, 0.37441694736480713, 0.35304892063140869]
[0.17574405670166016, 0.18193507194519043, 0.17565798759460449]

	The Tix module has received various bug fixes and updates for the
current version of the Tix package.

	The Tkinter module now works with a thread-enabled version of Tcl.
Tcl’s threading model requires that widgets only be accessed from the thread in
which they’re created; accesses from another thread can cause Tcl to panic. For
certain Tcl interfaces, Tkinter will now automatically avoid this when a
widget is accessed from a different thread by marshalling a command, passing it
to the correct thread, and waiting for the results. Other interfaces can’t be
handled automatically but Tkinter will now raise an exception on such an
access so that you can at least find out about the problem. See
https://mail.python.org/pipermail/python-dev/2002-December/031107.html for a more
detailed explanation of this change. (Implemented by Martin von Löwis.)

	Calling Tcl methods through _tkinter no longer returns only strings.
Instead, if Tcl returns other objects those objects are converted to their
Python equivalent, if one exists, or wrapped with a _tkinter.Tcl_Obj
object if no Python equivalent exists. This behavior can be controlled through
the wantobjects() method of tkapp objects.

When using _tkinter through the Tkinter module (as most Tkinter
applications will), this feature is always activated. It should not cause
compatibility problems, since Tkinter would always convert string results to
Python types where possible.

If any incompatibilities are found, the old behavior can be restored by setting
the wantobjects variable in the Tkinter module to false before
creating the first tkapp object.

import Tkinter
Tkinter.wantobjects = 0

Any breakage caused by this change should be reported as a bug.

	The UserDict module has a new DictMixin class which defines
all dictionary methods for classes that already have a minimum mapping
interface. This greatly simplifies writing classes that need to be
substitutable for dictionaries, such as the classes in the shelve
module.

Adding the mix-in as a superclass provides the full dictionary interface
whenever the class defines __getitem__(), __setitem__(),
__delitem__(), and keys(). For example:

>>> import UserDict
>>> class SeqDict(UserDict.DictMixin):
... """Dictionary lookalike implemented with lists."""
... def __init__(self):
... self.keylist = []
... self.valuelist = []
... def __getitem__(self, key):
... try:
... i = self.keylist.index(key)
... except ValueError:
... raise KeyError
... return self.valuelist[i]
... def __setitem__(self, key, value):
... try:
... i = self.keylist.index(key)
... self.valuelist[i] = value
... except ValueError:
... self.keylist.append(key)
... self.valuelist.append(value)
... def __delitem__(self, key):
... try:
... i = self.keylist.index(key)
... except ValueError:
... raise KeyError
... self.keylist.pop(i)
... self.valuelist.pop(i)
... def keys(self):
... return list(self.keylist)
...
>>> s = SeqDict()
>>> dir(s) # See that other dictionary methods are implemented
['__cmp__', '__contains__', '__delitem__', '__doc__', '__getitem__',
 '__init__', '__iter__', '__len__', '__module__', '__repr__',
 '__setitem__', 'clear', 'get', 'has_key', 'items', 'iteritems',
 'iterkeys', 'itervalues', 'keylist', 'keys', 'pop', 'popitem',
 'setdefault', 'update', 'valuelist', 'values']

(Contributed by Raymond Hettinger.)

	The DOM implementation in xml.dom.minidom can now generate XML output
in a particular encoding by providing an optional encoding argument to the
toxml() and toprettyxml() methods of DOM nodes.

	The xmlrpclib module now supports an XML-RPC extension for handling nil
data values such as Python’s None. Nil values are always supported on
unmarshalling an XML-RPC response. To generate requests containing None,
you must supply a true value for the allow_none parameter when creating a
Marshaller instance.

	The new DocXMLRPCServer module allows writing self-documenting XML-RPC
servers. Run it in demo mode (as a program) to see it in action. Pointing the
Web browser to the RPC server produces pydoc-style documentation; pointing
xmlrpclib to the server allows invoking the actual methods. (Contributed by
Brian Quinlan.)

	Support for internationalized domain names (RFCs 3454, 3490, 3491, and 3492)
has been added. The “idna” encoding can be used to convert between a Unicode
domain name and the ASCII-compatible encoding (ACE) of that name.

>{}>{}> u"www.Alliancefrançaise.nu".encode("idna")
'www.xn--alliancefranaise-npb.nu'

The socket module has also been extended to transparently convert
Unicode hostnames to the ACE version before passing them to the C library.
Modules that deal with hostnames such as httplib and ftplib)
also support Unicode host names; httplib also sends HTTP Host
headers using the ACE version of the domain name. urllib supports
Unicode URLs with non-ASCII host names as long as the path part of the URL
is ASCII only.

To implement this change, the stringprep module, the mkstringprep
tool and the punycode encoding have been added.

Date/Time Type

Date and time types suitable for expressing timestamps were added as the
datetime module. The types don’t support different calendars or many
fancy features, and just stick to the basics of representing time.

The three primary types are: date, representing a day, month, and year;
time, consisting of hour, minute, and second; and datetime,
which contains all the attributes of both date and time.
There’s also a timedelta class representing differences between two
points in time, and time zone logic is implemented by classes inheriting from
the abstract tzinfo class.

You can create instances of date and time by either supplying
keyword arguments to the appropriate constructor, e.g.
datetime.date(year=1972, month=10, day=15), or by using one of a number of
class methods. For example, the date.today() class method returns the
current local date.

Once created, instances of the date/time classes are all immutable. There are a
number of methods for producing formatted strings from objects:

>>> import datetime
>>> now = datetime.datetime.now()
>>> now.isoformat()
'2002-12-30T21:27:03.994956'
>>> now.ctime() # Only available on date, datetime
'Mon Dec 30 21:27:03 2002'
>>> now.strftime('%Y %d %b')
'2002 30 Dec'

The replace() method allows modifying one or more fields of a
date or datetime instance, returning a new instance:

>>> d = datetime.datetime.now()
>>> d
datetime.datetime(2002, 12, 30, 22, 15, 38, 827738)
>>> d.replace(year=2001, hour = 12)
datetime.datetime(2001, 12, 30, 12, 15, 38, 827738)
>>>

Instances can be compared, hashed, and converted to strings (the result is the
same as that of isoformat()). date and datetime
instances can be subtracted from each other, and added to timedelta
instances. The largest missing feature is that there’s no standard library
support for parsing strings and getting back a date or
datetime.

For more information, refer to the module’s reference documentation.
(Contributed by Tim Peters.)

The optparse Module

The getopt module provides simple parsing of command-line arguments. The
new optparse module (originally named Optik) provides more elaborate
command-line parsing that follows the Unix conventions, automatically creates
the output for --help, and can perform different actions for different
options.

You start by creating an instance of OptionParser and telling it what
your program’s options are.

import sys
from optparse import OptionParser

op = OptionParser()
op.add_option('-i', '--input',
 action='store', type='string', dest='input',
 help='set input filename')
op.add_option('-l', '--length',
 action='store', type='int', dest='length',
 help='set maximum length of output')

Parsing a command line is then done by calling the parse_args() method.

options, args = op.parse_args(sys.argv[1:])
print options
print args

This returns an object containing all of the option values, and a list of
strings containing the remaining arguments.

Invoking the script with the various arguments now works as you’d expect it to.
Note that the length argument is automatically converted to an integer.

$./python opt.py -i data arg1
<Values at 0x400cad4c: {'input': 'data', 'length': None}>
['arg1']
$./python opt.py --input=data --length=4
<Values at 0x400cad2c: {'input': 'data', 'length': 4}>
[]
$

The help message is automatically generated for you:

$./python opt.py --help
usage: opt.py [options]

options:
 -h, --help show this help message and exit
 -iINPUT, --input=INPUT
 set input filename
 -lLENGTH, --length=LENGTH
 set maximum length of output
$

See the module’s documentation for more details.

Optik was written by Greg Ward, with suggestions from the readers of the Getopt
SIG.

Pymalloc: A Specialized Object Allocator

Pymalloc, a specialized object allocator written by Vladimir Marangozov, was a
feature added to Python 2.1. Pymalloc is intended to be faster than the system
malloc() and to have less memory overhead for allocation patterns typical
of Python programs. The allocator uses C’s malloc() function to get large
pools of memory and then fulfills smaller memory requests from these pools.

In 2.1 and 2.2, pymalloc was an experimental feature and wasn’t enabled by
default; you had to explicitly enable it when compiling Python by providing the
--with-pymalloc option to the configure script. In 2.3,
pymalloc has had further enhancements and is now enabled by default; you’ll have
to supply --without-pymalloc to disable it.

This change is transparent to code written in Python; however, pymalloc may
expose bugs in C extensions. Authors of C extension modules should test their
code with pymalloc enabled, because some incorrect code may cause core dumps at
runtime.

There’s one particularly common error that causes problems. There are a number
of memory allocation functions in Python’s C API that have previously just been
aliases for the C library’s malloc() and free(), meaning that if
you accidentally called mismatched functions the error wouldn’t be noticeable.
When the object allocator is enabled, these functions aren’t aliases of
malloc() and free() any more, and calling the wrong function to
free memory may get you a core dump. For example, if memory was allocated using
PyObject_Malloc(), it has to be freed using PyObject_Free(), not
free(). A few modules included with Python fell afoul of this and had to
be fixed; doubtless there are more third-party modules that will have the same
problem.

As part of this change, the confusing multiple interfaces for allocating memory
have been consolidated down into two API families. Memory allocated with one
family must not be manipulated with functions from the other family. There is
one family for allocating chunks of memory and another family of functions
specifically for allocating Python objects.

	To allocate and free an undistinguished chunk of memory use the “raw memory”
family: PyMem_Malloc(), PyMem_Realloc(), and PyMem_Free().

	The “object memory” family is the interface to the pymalloc facility described
above and is biased towards a large number of “small” allocations:
PyObject_Malloc(), PyObject_Realloc(), and PyObject_Free().

	To allocate and free Python objects, use the “object” family
PyObject_New(), PyObject_NewVar(), and PyObject_Del().

Thanks to lots of work by Tim Peters, pymalloc in 2.3 also provides debugging
features to catch memory overwrites and doubled frees in both extension modules
and in the interpreter itself. To enable this support, compile a debugging
version of the Python interpreter by running configure with
--with-pydebug.

To aid extension writers, a header file Misc/pymemcompat.h is
distributed with the source to Python 2.3 that allows Python extensions to use
the 2.3 interfaces to memory allocation while compiling against any version of
Python since 1.5.2. You would copy the file from Python’s source distribution
and bundle it with the source of your extension.

See also

	https://hg.python.org/cpython/file/default/Objects/obmalloc.c

	For the full details of the pymalloc implementation, see the comments at
the top of the file Objects/obmalloc.c in the Python source code.
The above link points to the file within the python.org SVN browser.

Build and C API Changes

Changes to Python’s build process and to the C API include:

	The cycle detection implementation used by the garbage collection has proven
to be stable, so it’s now been made mandatory. You can no longer compile Python
without it, and the --with-cycle-gc switch to configure has
been removed.

	Python can now optionally be built as a shared library
(libpython2.3.so) by supplying --enable-shared when running
Python’s configure script. (Contributed by Ondrej Palkovsky.)

	The DL_EXPORT and DL_IMPORT macros are now deprecated.
Initialization functions for Python extension modules should now be declared
using the new macro PyMODINIT_FUNC, while the Python core will
generally use the PyAPI_FUNC and PyAPI_DATA macros.

	The interpreter can be compiled without any docstrings for the built-in
functions and modules by supplying --without-doc-strings to the
configure script. This makes the Python executable about 10% smaller,
but will also mean that you can’t get help for Python’s built-ins. (Contributed
by Gustavo Niemeyer.)

	The PyArg_NoArgs() macro is now deprecated, and code that uses it
should be changed. For Python 2.2 and later, the method definition table can
specify the METH_NOARGS flag, signalling that there are no arguments,
and the argument checking can then be removed. If compatibility with pre-2.2
versions of Python is important, the code could use PyArg_ParseTuple(args,
"") instead, but this will be slower than using METH_NOARGS.

	PyArg_ParseTuple() accepts new format characters for various sizes of
unsigned integers: B for unsigned char, H for unsigned
short int, I for unsigned int, and K for unsigned
long long.

	A new function, PyObject_DelItemString(mapping, char *key)() was added
as shorthand for PyObject_DelItem(mapping, PyString_New(key)).

	File objects now manage their internal string buffer differently, increasing
it exponentially when needed. This results in the benchmark tests in
Lib/test/test_bufio.py speeding up considerably (from 57 seconds to 1.7
seconds, according to one measurement).

	It’s now possible to define class and static methods for a C extension type by
setting either the METH_CLASS or METH_STATIC flags in a
method’s PyMethodDef structure.

	Python now includes a copy of the Expat XML parser’s source code, removing any
dependence on a system version or local installation of Expat.

	If you dynamically allocate type objects in your extension, you should be
aware of a change in the rules relating to the __module__ and
__name__ attributes. In summary, you will want to ensure the type’s
dictionary contains a '__module__' key; making the module name the part of
the type name leading up to the final period will no longer have the desired
effect. For more detail, read the API reference documentation or the source.

Port-Specific Changes

Support for a port to IBM’s OS/2 using the EMX runtime environment was merged
into the main Python source tree. EMX is a POSIX emulation layer over the OS/2
system APIs. The Python port for EMX tries to support all the POSIX-like
capability exposed by the EMX runtime, and mostly succeeds; fork() and
fcntl() are restricted by the limitations of the underlying emulation
layer. The standard OS/2 port, which uses IBM’s Visual Age compiler, also
gained support for case-sensitive import semantics as part of the integration of
the EMX port into CVS. (Contributed by Andrew MacIntyre.)

On MacOS, most toolbox modules have been weaklinked to improve backward
compatibility. This means that modules will no longer fail to load if a single
routine is missing on the current OS version. Instead calling the missing
routine will raise an exception. (Contributed by Jack Jansen.)

The RPM spec files, found in the Misc/RPM/ directory in the Python
source distribution, were updated for 2.3. (Contributed by Sean Reifschneider.)

Other new platforms now supported by Python include AtheOS
(http://atheos.cx/), GNU/Hurd, and OpenVMS.

Other Changes and Fixes

As usual, there were a bunch of other improvements and bugfixes scattered
throughout the source tree. A search through the CVS change logs finds there
were 523 patches applied and 514 bugs fixed between Python 2.2 and 2.3. Both
figures are likely to be underestimates.

Some of the more notable changes are:

	If the PYTHONINSPECT environment variable is set, the Python
interpreter will enter the interactive prompt after running a Python program, as
if Python had been invoked with the -i option. The environment
variable can be set before running the Python interpreter, or it can be set by
the Python program as part of its execution.

	The regrtest.py script now provides a way to allow “all resources
except foo.” A resource name passed to the -u option can now be
prefixed with a hyphen ('-') to mean “remove this resource.” For example,
the option ‘-uall,-bsddb‘ could be used to enable the use of all resources
except bsddb.

	The tools used to build the documentation now work under Cygwin as well as
Unix.

	The SET_LINENO opcode has been removed. Back in the mists of time, this
opcode was needed to produce line numbers in tracebacks and support trace
functions (for, e.g., pdb). Since Python 1.5, the line numbers in
tracebacks have been computed using a different mechanism that works with
“python -O”. For Python 2.3 Michael Hudson implemented a similar scheme to
determine when to call the trace function, removing the need for SET_LINENO
entirely.

It would be difficult to detect any resulting difference from Python code, apart
from a slight speed up when Python is run without -O.

C extensions that access the f_lineno field of frame objects should
instead call PyCode_Addr2Line(f->f_code, f->f_lasti). This will have the
added effect of making the code work as desired under “python -O” in earlier
versions of Python.

A nifty new feature is that trace functions can now assign to the
f_lineno attribute of frame objects, changing the line that will be
executed next. A jump command has been added to the pdb debugger
taking advantage of this new feature. (Implemented by Richie Hindle.)

Porting to Python 2.3

This section lists previously described changes that may require changes to your
code:

	yield is now always a keyword; if it’s used as a variable name in
your code, a different name must be chosen.

	For strings X and Y, X in Y now works if X is more than one
character long.

	The int() type constructor will now return a long integer instead of
raising an OverflowError when a string or floating-point number is too
large to fit into an integer.

	If you have Unicode strings that contain 8-bit characters, you must declare
the file’s encoding (UTF-8, Latin-1, or whatever) by adding a comment to the top
of the file. See section PEP 263: Source Code Encodings for more information.

	Calling Tcl methods through _tkinter no longer returns only strings.
Instead, if Tcl returns other objects those objects are converted to their
Python equivalent, if one exists, or wrapped with a _tkinter.Tcl_Obj
object if no Python equivalent exists.

	Large octal and hex literals such as 0xffffffff now trigger a
FutureWarning. Currently they’re stored as 32-bit numbers and result in a
negative value, but in Python 2.4 they’ll become positive long integers.

There are a few ways to fix this warning. If you really need a positive number,
just add an L to the end of the literal. If you’re trying to get a 32-bit
integer with low bits set and have previously used an expression such as ~(1
<< 31), it’s probably clearest to start with all bits set and clear the
desired upper bits. For example, to clear just the top bit (bit 31), you could
write 0xffffffffL &~(1L<<31).

	You can no longer disable assertions by assigning to __debug__.

	The Distutils setup() function has gained various new keyword arguments
such as depends. Old versions of the Distutils will abort if passed unknown
keywords. A solution is to check for the presence of the new
get_distutil_options() function in your setup.py and only uses the
new keywords with a version of the Distutils that supports them:

from distutils import core

kw = {'sources': 'foo.c', ...}
if hasattr(core, 'get_distutil_options'):
 kw['depends'] = ['foo.h']
ext = Extension(**kw)

	Using None as a variable name will now result in a SyntaxWarning
warning.

	Names of extension types defined by the modules included with Python now
contain the module and a '.' in front of the type name.

Acknowledgements

The author would like to thank the following people for offering suggestions,
corrections and assistance with various drafts of this article: Jeff Bauer,
Simon Brunning, Brett Cannon, Michael Chermside, Andrew Dalke, Scott David
Daniels, Fred L. Drake, Jr., David Fraser, Kelly Gerber, Raymond Hettinger,
Michael Hudson, Chris Lambert, Detlef Lannert, Martin von Löwis, Andrew
MacIntyre, Lalo Martins, Chad Netzer, Gustavo Niemeyer, Neal Norwitz, Hans
Nowak, Chris Reedy, Francesco Ricciardi, Vinay Sajip, Neil Schemenauer, Roman
Suzi, Jason Tishler, Just van Rossum.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

What’s New in Python 2.2

	Author:	A.M. Kuchling

Introduction

This article explains the new features in Python 2.2.2, released on October 14,
2002. Python 2.2.2 is a bugfix release of Python 2.2, originally released on
December 21, 2001.

Python 2.2 can be thought of as the “cleanup release”. There are some features
such as generators and iterators that are completely new, but most of the
changes, significant and far-reaching though they may be, are aimed at cleaning
up irregularities and dark corners of the language design.

This article doesn’t attempt to provide a complete specification of the new
features, but instead provides a convenient overview. For full details, you
should refer to the documentation for Python 2.2, such as the Python Library
Reference [https://docs.python.org/2.2/lib/lib.html] and the Python
Reference Manual [https://docs.python.org/2.2/ref/ref.html]. If you want to
understand the complete implementation and design rationale for a change, refer
to the PEP for a particular new feature.

PEPs 252 and 253: Type and Class Changes

The largest and most far-reaching changes in Python 2.2 are to Python’s model of
objects and classes. The changes should be backward compatible, so it’s likely
that your code will continue to run unchanged, but the changes provide some
amazing new capabilities. Before beginning this, the longest and most
complicated section of this article, I’ll provide an overview of the changes and
offer some comments.

A long time ago I wrote a Web page listing flaws in Python’s design. One of the
most significant flaws was that it’s impossible to subclass Python types
implemented in C. In particular, it’s not possible to subclass built-in types,
so you can’t just subclass, say, lists in order to add a single useful method to
them. The UserList module provides a class that supports all of the
methods of lists and that can be subclassed further, but there’s lots of C code
that expects a regular Python list and won’t accept a UserList
instance.

Python 2.2 fixes this, and in the process adds some exciting new capabilities.
A brief summary:

	You can subclass built-in types such as lists and even integers, and your
subclasses should work in every place that requires the original type.

	It’s now possible to define static and class methods, in addition to the
instance methods available in previous versions of Python.

	It’s also possible to automatically call methods on accessing or setting an
instance attribute by using a new mechanism called properties. Many uses
of __getattr__() can be rewritten to use properties instead, making the
resulting code simpler and faster. As a small side benefit, attributes can now
have docstrings, too.

	The list of legal attributes for an instance can be limited to a particular
set using slots, making it possible to safeguard against typos and
perhaps make more optimizations possible in future versions of Python.

Some users have voiced concern about all these changes. Sure, they say, the new
features are neat and lend themselves to all sorts of tricks that weren’t
possible in previous versions of Python, but they also make the language more
complicated. Some people have said that they’ve always recommended Python for
its simplicity, and feel that its simplicity is being lost.

Personally, I think there’s no need to worry. Many of the new features are
quite esoteric, and you can write a lot of Python code without ever needed to be
aware of them. Writing a simple class is no more difficult than it ever was, so
you don’t need to bother learning or teaching them unless they’re actually
needed. Some very complicated tasks that were previously only possible from C
will now be possible in pure Python, and to my mind that’s all for the better.

I’m not going to attempt to cover every single corner case and small change that
were required to make the new features work. Instead this section will paint
only the broad strokes. See section Related Links, “Related Links”, for
further sources of information about Python 2.2’s new object model.

Old and New Classes

First, you should know that Python 2.2 really has two kinds of classes: classic
or old-style classes, and new-style classes. The old-style class model is
exactly the same as the class model in earlier versions of Python. All the new
features described in this section apply only to new-style classes. This
divergence isn’t intended to last forever; eventually old-style classes will be
dropped, possibly in Python 3.0.

So how do you define a new-style class? You do it by subclassing an existing
new-style class. Most of Python’s built-in types, such as integers, lists,
dictionaries, and even files, are new-style classes now. A new-style class
named object, the base class for all built-in types, has also been
added so if no built-in type is suitable, you can just subclass
object:

class C(object):
 def __init__ (self):
 ...
 ...

This means that class statements that don’t have any base classes are
always classic classes in Python 2.2. (Actually you can also change this by
setting a module-level variable named __metaclass__ — see PEP 253 [https://www.python.org/dev/peps/pep-0253]
for the details — but it’s easier to just subclass object.)

The type objects for the built-in types are available as built-ins, named using
a clever trick. Python has always had built-in functions named int(),
float(), and str(). In 2.2, they aren’t functions any more, but
type objects that behave as factories when called.

>>> int
<type 'int'>
>>> int('123')
123

To make the set of types complete, new type objects such as dict() and
file() have been added. Here’s a more interesting example, adding a
lock() method to file objects:

class LockableFile(file):
 def lock (self, operation, length=0, start=0, whence=0):
 import fcntl
 return fcntl.lockf(self.fileno(), operation,
 length, start, whence)

The now-obsolete posixfile module contained a class that emulated all of
a file object’s methods and also added a lock() method, but this class
couldn’t be passed to internal functions that expected a built-in file,
something which is possible with our new LockableFile.

Descriptors

In previous versions of Python, there was no consistent way to discover what
attributes and methods were supported by an object. There were some informal
conventions, such as defining __members__ and __methods__
attributes that were lists of names, but often the author of an extension type
or a class wouldn’t bother to define them. You could fall back on inspecting
the __dict__ of an object, but when class inheritance or an arbitrary
__getattr__() hook were in use this could still be inaccurate.

The one big idea underlying the new class model is that an API for describing
the attributes of an object using descriptors has been formalized.
Descriptors specify the value of an attribute, stating whether it’s a method or
a field. With the descriptor API, static methods and class methods become
possible, as well as more exotic constructs.

Attribute descriptors are objects that live inside class objects, and have a few
attributes of their own:

	__name__ is the attribute’s name.

	__doc__ is the attribute’s docstring.

	__get__(object)() is a method that retrieves the attribute value from
object.

	__set__(object, value)() sets the attribute on object to value.

	__delete__(object, value)() deletes the value attribute of object.

For example, when you write obj.x, the steps that Python actually performs
are:

descriptor = obj.__class__.x
descriptor.__get__(obj)

For methods, descriptor.__get__() returns a temporary object that’s
callable, and wraps up the instance and the method to be called on it. This is
also why static methods and class methods are now possible; they have
descriptors that wrap up just the method, or the method and the class. As a
brief explanation of these new kinds of methods, static methods aren’t passed
the instance, and therefore resemble regular functions. Class methods are
passed the class of the object, but not the object itself. Static and class
methods are defined like this:

class C(object):
 def f(arg1, arg2):
 ...
 f = staticmethod(f)

 def g(cls, arg1, arg2):
 ...
 g = classmethod(g)

The staticmethod() function takes the function f(), and returns it
wrapped up in a descriptor so it can be stored in the class object. You might
expect there to be special syntax for creating such methods (def static f,
defstatic f(), or something like that) but no such syntax has been defined
yet; that’s been left for future versions of Python.

More new features, such as slots and properties, are also implemented as new
kinds of descriptors, and it’s not difficult to write a descriptor class that
does something novel. For example, it would be possible to write a descriptor
class that made it possible to write Eiffel-style preconditions and
postconditions for a method. A class that used this feature might be defined
like this:

from eiffel import eiffelmethod

class C(object):
 def f(self, arg1, arg2):
 # The actual function
 ...
 def pre_f(self):
 # Check preconditions
 ...
 def post_f(self):
 # Check postconditions
 ...

 f = eiffelmethod(f, pre_f, post_f)

Note that a person using the new eiffelmethod() doesn’t have to understand
anything about descriptors. This is why I think the new features don’t increase
the basic complexity of the language. There will be a few wizards who need to
know about it in order to write eiffelmethod() or the ZODB or whatever,
but most users will just write code on top of the resulting libraries and ignore
the implementation details.

Multiple Inheritance: The Diamond Rule

Multiple inheritance has also been made more useful through changing the rules
under which names are resolved. Consider this set of classes (diagram taken
from PEP 253 [https://www.python.org/dev/peps/pep-0253] by Guido van Rossum):

 class A:
 ^ ^ def save(self): ...
 / \
 / \
 / \
 / \
class B class C:
 ^ ^ def save(self): ...
 \ /
 \ /
 \ /
 \ /
 class D

The lookup rule for classic classes is simple but not very smart; the base
classes are searched depth-first, going from left to right. A reference to
D.save() will search the classes D, B, and then
A, where save() would be found and returned. C.save()
would never be found at all. This is bad, because if C‘s save()
method is saving some internal state specific to C, not calling it will
result in that state never getting saved.

New-style classes follow a different algorithm that’s a bit more complicated to
explain, but does the right thing in this situation. (Note that Python 2.3
changes this algorithm to one that produces the same results in most cases, but
produces more useful results for really complicated inheritance graphs.)

	List all the base classes, following the classic lookup rule and include a
class multiple times if it’s visited repeatedly. In the above example, the list
of visited classes is [D, B, A, C,
A].

	Scan the list for duplicated classes. If any are found, remove all but one
occurrence, leaving the last one in the list. In the above example, the list
becomes [D, B, C, A] after dropping
duplicates.

Following this rule, referring to D.save() will return C.save(),
which is the behaviour we’re after. This lookup rule is the same as the one
followed by Common Lisp. A new built-in function, super(), provides a way
to get at a class’s superclasses without having to reimplement Python’s
algorithm. The most commonly used form will be super(class, obj)(), which
returns a bound superclass object (not the actual class object). This form
will be used in methods to call a method in the superclass; for example,
D‘s save() method would look like this:

class D (B,C):
 def save (self):
 # Call superclass .save()
 super(D, self).save()
 # Save D's private information here
 ...

super() can also return unbound superclass objects when called as
super(class)() or super(class1, class2)(), but this probably won’t
often be useful.

Attribute Access

A fair number of sophisticated Python classes define hooks for attribute access
using __getattr__(); most commonly this is done for convenience, to make
code more readable by automatically mapping an attribute access such as
obj.parent into a method call such as obj.get_parent. Python 2.2 adds
some new ways of controlling attribute access.

First, __getattr__(attr_name)() is still supported by new-style classes,
and nothing about it has changed. As before, it will be called when an attempt
is made to access obj.foo and no attribute named foo is found in the
instance’s dictionary.

New-style classes also support a new method,
__getattribute__(attr_name)(). The difference between the two methods is
that __getattribute__() is always called whenever any attribute is
accessed, while the old __getattr__() is only called if foo isn’t
found in the instance’s dictionary.

However, Python 2.2’s support for properties will often be a simpler way
to trap attribute references. Writing a __getattr__() method is
complicated because to avoid recursion you can’t use regular attribute accesses
inside them, and instead have to mess around with the contents of
__dict__. __getattr__() methods also end up being called by Python
when it checks for other methods such as __repr__() or __coerce__(),
and so have to be written with this in mind. Finally, calling a function on
every attribute access results in a sizable performance loss.

property is a new built-in type that packages up three functions that
get, set, or delete an attribute, and a docstring. For example, if you want to
define a size attribute that’s computed, but also settable, you could
write:

class C(object):
 def get_size (self):
 result = ... computation ...
 return result
 def set_size (self, size):
 ... compute something based on the size
 and set internal state appropriately ...

 # Define a property. The 'delete this attribute'
 # method is defined as None, so the attribute
 # can't be deleted.
 size = property(get_size, set_size,
 None,
 "Storage size of this instance")

That is certainly clearer and easier to write than a pair of
__getattr__()/__setattr__() methods that check for the size
attribute and handle it specially while retrieving all other attributes from the
instance’s __dict__. Accesses to size are also the only ones
which have to perform the work of calling a function, so references to other
attributes run at their usual speed.

Finally, it’s possible to constrain the list of attributes that can be
referenced on an object using the new __slots__ class attribute. Python
objects are usually very dynamic; at any time it’s possible to define a new
attribute on an instance by just doing obj.new_attr=1. A new-style class
can define a class attribute named __slots__ to limit the legal
attributes to a particular set of names. An example will make this clear:

>>> class C(object):
... __slots__ = ('template', 'name')
...
>>> obj = C()
>>> print obj.template
None
>>> obj.template = 'Test'
>>> print obj.template
Test
>>> obj.newattr = None
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: 'C' object has no attribute 'newattr'

Note how you get an AttributeError on the attempt to assign to an
attribute not listed in __slots__.

Related Links

This section has just been a quick overview of the new features, giving enough
of an explanation to start you programming, but many details have been
simplified or ignored. Where should you go to get a more complete picture?

https://docs.python.org/dev/howto/descriptor.html is a lengthy tutorial introduction to
the descriptor features, written by Guido van Rossum. If my description has
whetted your appetite, go read this tutorial next, because it goes into much
more detail about the new features while still remaining quite easy to read.

Next, there are two relevant PEPs, PEP 252 [https://www.python.org/dev/peps/pep-0252] and PEP 253 [https://www.python.org/dev/peps/pep-0253]. PEP 252 [https://www.python.org/dev/peps/pep-0252] is
titled “Making Types Look More Like Classes”, and covers the descriptor API.
PEP 253 [https://www.python.org/dev/peps/pep-0253] is titled “Subtyping Built-in Types”, and describes the changes to
type objects that make it possible to subtype built-in objects. PEP 253 [https://www.python.org/dev/peps/pep-0253] is
the more complicated PEP of the two, and at a few points the necessary
explanations of types and meta-types may cause your head to explode. Both PEPs
were written and implemented by Guido van Rossum, with substantial assistance
from the rest of the Zope Corp. team.

Finally, there’s the ultimate authority: the source code. Most of the machinery
for the type handling is in Objects/typeobject.c, but you should only
resort to it after all other avenues have been exhausted, including posting a
question to python-list or python-dev.

PEP 234: Iterators

Another significant addition to 2.2 is an iteration interface at both the C and
Python levels. Objects can define how they can be looped over by callers.

In Python versions up to 2.1, the usual way to make for item in obj work is
to define a __getitem__() method that looks something like this:

def __getitem__(self, index):
 return <next item>

__getitem__() is more properly used to define an indexing operation on an
object so that you can write obj[5] to retrieve the sixth element. It’s a
bit misleading when you’re using this only to support for loops.
Consider some file-like object that wants to be looped over; the index
parameter is essentially meaningless, as the class probably assumes that a
series of __getitem__() calls will be made with index incrementing by
one each time. In other words, the presence of the __getitem__() method
doesn’t mean that using file[5] to randomly access the sixth element will
work, though it really should.

In Python 2.2, iteration can be implemented separately, and __getitem__()
methods can be limited to classes that really do support random access. The
basic idea of iterators is simple. A new built-in function, iter(obj)()
or iter(C, sentinel), is used to get an iterator. iter(obj)() returns
an iterator for the object obj, while iter(C, sentinel) returns an
iterator that will invoke the callable object C until it returns sentinel to
signal that the iterator is done.

Python classes can define an __iter__() method, which should create and
return a new iterator for the object; if the object is its own iterator, this
method can just return self. In particular, iterators will usually be their
own iterators. Extension types implemented in C can implement a tp_iter
function in order to return an iterator, and extension types that want to behave
as iterators can define a tp_iternext function.

So, after all this, what do iterators actually do? They have one required
method, next(), which takes no arguments and returns the next value. When
there are no more values to be returned, calling next() should raise the
StopIteration exception.

>>> L = [1,2,3]
>>> i = iter(L)
>>> print i
<iterator object at 0x8116870>
>>> i.next()
1
>>> i.next()
2
>>> i.next()
3
>>> i.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
StopIteration
>>>

In 2.2, Python’s for statement no longer expects a sequence; it
expects something for which iter() will return an iterator. For backward
compatibility and convenience, an iterator is automatically constructed for
sequences that don’t implement __iter__() or a tp_iter slot, so
for i in [1,2,3] will still work. Wherever the Python interpreter loops
over a sequence, it’s been changed to use the iterator protocol. This means you
can do things like this:

>>> L = [1,2,3]
>>> i = iter(L)
>>> a,b,c = i
>>> a,b,c
(1, 2, 3)

Iterator support has been added to some of Python’s basic types. Calling
iter() on a dictionary will return an iterator which loops over its keys:

>>> m = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'Jun': 6,
... 'Jul': 7, 'Aug': 8, 'Sep': 9, 'Oct': 10, 'Nov': 11, 'Dec': 12}
>>> for key in m: print key, m[key]
...
Mar 3
Feb 2
Aug 8
Sep 9
May 5
Jun 6
Jul 7
Jan 1
Apr 4
Nov 11
Dec 12
Oct 10

That’s just the default behaviour. If you want to iterate over keys, values, or
key/value pairs, you can explicitly call the iterkeys(),
itervalues(), or iteritems() methods to get an appropriate iterator.
In a minor related change, the in operator now works on dictionaries,
so key in dict is now equivalent to dict.has_key(key).

Files also provide an iterator, which calls the readline() method until
there are no more lines in the file. This means you can now read each line of a
file using code like this:

for line in file:
 # do something for each line
 ...

Note that you can only go forward in an iterator; there’s no way to get the
previous element, reset the iterator, or make a copy of it. An iterator object
could provide such additional capabilities, but the iterator protocol only
requires a next() method.

See also

	PEP 234 [https://www.python.org/dev/peps/pep-0234] - Iterators

	Written by Ka-Ping Yee and GvR; implemented by the Python Labs crew, mostly by
GvR and Tim Peters.

PEP 255: Simple Generators

Generators are another new feature, one that interacts with the introduction of
iterators.

You’re doubtless familiar with how function calls work in Python or C. When you
call a function, it gets a private namespace where its local variables are
created. When the function reaches a return statement, the local
variables are destroyed and the resulting value is returned to the caller. A
later call to the same function will get a fresh new set of local variables.
But, what if the local variables weren’t thrown away on exiting a function?
What if you could later resume the function where it left off? This is what
generators provide; they can be thought of as resumable functions.

Here’s the simplest example of a generator function:

def generate_ints(N):
 for i in range(N):
 yield i

A new keyword, yield, was introduced for generators. Any function
containing a yield statement is a generator function; this is
detected by Python’s bytecode compiler which compiles the function specially as
a result. Because a new keyword was introduced, generators must be explicitly
enabled in a module by including a from __future__ import generators
statement near the top of the module’s source code. In Python 2.3 this
statement will become unnecessary.

When you call a generator function, it doesn’t return a single value; instead it
returns a generator object that supports the iterator protocol. On executing
the yield statement, the generator outputs the value of i,
similar to a return statement. The big difference between
yield and a return statement is that on reaching a
yield the generator’s state of execution is suspended and local
variables are preserved. On the next call to the generator’s next() method,
the function will resume executing immediately after the yield
statement. (For complicated reasons, the yield statement isn’t
allowed inside the try block of a try...finally statement; read PEP 255 [https://www.python.org/dev/peps/pep-0255] for a full explanation of the
interaction between yield and exceptions.)

Here’s a sample usage of the generate_ints() generator:

>>> gen = generate_ints(3)
>>> gen
<generator object at 0x8117f90>
>>> gen.next()
0
>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 2, in generate_ints
StopIteration

You could equally write for i in generate_ints(5), or a,b,c =
generate_ints(3).

Inside a generator function, the return statement can only be used
without a value, and signals the end of the procession of values; afterwards the
generator cannot return any further values. return with a value, such
as return 5, is a syntax error inside a generator function. The end of the
generator’s results can also be indicated by raising StopIteration
manually, or by just letting the flow of execution fall off the bottom of the
function.

You could achieve the effect of generators manually by writing your own class
and storing all the local variables of the generator as instance variables. For
example, returning a list of integers could be done by setting self.count to
0, and having the next() method increment self.count and return it.
However, for a moderately complicated generator, writing a corresponding class
would be much messier. Lib/test/test_generators.py contains a number of
more interesting examples. The simplest one implements an in-order traversal of
a tree using generators recursively.

A recursive generator that generates Tree leaves in in-order.
def inorder(t):
 if t:
 for x in inorder(t.left):
 yield x
 yield t.label
 for x in inorder(t.right):
 yield x

Two other examples in Lib/test/test_generators.py produce solutions for
the N-Queens problem (placing N queens on an NxN chess board so that no
queen threatens another) and the Knight’s Tour (a route that takes a knight to
every square of an NxN chessboard without visiting any square twice).

The idea of generators comes from other programming languages, especially Icon
(https://www.cs.arizona.edu/icon/), where the idea of generators is central. In
Icon, every expression and function call behaves like a generator. One example
from “An Overview of the Icon Programming Language” at
https://www.cs.arizona.edu/icon/docs/ipd266.htm gives an idea of what this looks
like:

sentence := "Store it in the neighboring harbor"
if (i := find("or", sentence)) > 5 then write(i)

In Icon the find() function returns the indexes at which the substring
“or” is found: 3, 23, 33. In the if statement, i is first
assigned a value of 3, but 3 is less than 5, so the comparison fails, and Icon
retries it with the second value of 23. 23 is greater than 5, so the comparison
now succeeds, and the code prints the value 23 to the screen.

Python doesn’t go nearly as far as Icon in adopting generators as a central
concept. Generators are considered a new part of the core Python language, but
learning or using them isn’t compulsory; if they don’t solve any problems that
you have, feel free to ignore them. One novel feature of Python’s interface as
compared to Icon’s is that a generator’s state is represented as a concrete
object (the iterator) that can be passed around to other functions or stored in
a data structure.

See also

	PEP 255 [https://www.python.org/dev/peps/pep-0255] - Simple Generators

	Written by Neil Schemenauer, Tim Peters, Magnus Lie Hetland. Implemented mostly
by Neil Schemenauer and Tim Peters, with other fixes from the Python Labs crew.

PEP 237: Unifying Long Integers and Integers

In recent versions, the distinction between regular integers, which are 32-bit
values on most machines, and long integers, which can be of arbitrary size, was
becoming an annoyance. For example, on platforms that support files larger than
2**32 bytes, the tell() method of file objects has to return a long
integer. However, there were various bits of Python that expected plain integers
and would raise an error if a long integer was provided instead. For example,
in Python 1.5, only regular integers could be used as a slice index, and
'abc'[1L:] would raise a TypeError exception with the message ‘slice
index must be int’.

Python 2.2 will shift values from short to long integers as required. The ‘L’
suffix is no longer needed to indicate a long integer literal, as now the
compiler will choose the appropriate type. (Using the ‘L’ suffix will be
discouraged in future 2.x versions of Python, triggering a warning in Python
2.4, and probably dropped in Python 3.0.) Many operations that used to raise an
OverflowError will now return a long integer as their result. For
example:

>>> 1234567890123
1234567890123L
>>> 2 ** 64
18446744073709551616L

In most cases, integers and long integers will now be treated identically. You
can still distinguish them with the type() built-in function, but that’s
rarely needed.

See also

	PEP 237 [https://www.python.org/dev/peps/pep-0237] - Unifying Long Integers and Integers

	Written by Moshe Zadka and Guido van Rossum. Implemented mostly by Guido van
Rossum.

PEP 238: Changing the Division Operator

The most controversial change in Python 2.2 heralds the start of an effort to
fix an old design flaw that’s been in Python from the beginning. Currently
Python’s division operator, /, behaves like C’s division operator when
presented with two integer arguments: it returns an integer result that’s
truncated down when there would be a fractional part. For example, 3/2 is
1, not 1.5, and (-1)/2 is -1, not -0.5. This means that the results of
division can vary unexpectedly depending on the type of the two operands and
because Python is dynamically typed, it can be difficult to determine the
possible types of the operands.

(The controversy is over whether this is really a design flaw, and whether
it’s worth breaking existing code to fix this. It’s caused endless discussions
on python-dev, and in July 2001 erupted into a storm of acidly sarcastic
postings on comp.lang.python. I won’t argue for either side here
and will stick to describing what’s implemented in 2.2. Read PEP 238 [https://www.python.org/dev/peps/pep-0238] for a
summary of arguments and counter-arguments.)

Because this change might break code, it’s being introduced very gradually.
Python 2.2 begins the transition, but the switch won’t be complete until Python
3.0.

First, I’ll borrow some terminology from PEP 238 [https://www.python.org/dev/peps/pep-0238]. “True division” is the
division that most non-programmers are familiar with: 3/2 is 1.5, 1/4 is 0.25,
and so forth. “Floor division” is what Python’s / operator currently does
when given integer operands; the result is the floor of the value returned by
true division. “Classic division” is the current mixed behaviour of /; it
returns the result of floor division when the operands are integers, and returns
the result of true division when one of the operands is a floating-point number.

Here are the changes 2.2 introduces:

	A new operator, //, is the floor division operator. (Yes, we know it looks
like C++’s comment symbol.) // always performs floor division no matter
what the types of its operands are, so 1 // 2 is 0 and 1.0 // 2.0 is
also 0.0.

// is always available in Python 2.2; you don’t need to enable it using a
__future__ statement.

	By including a from __future__ import division in a module, the /
operator will be changed to return the result of true division, so 1/2 is
0.5. Without the __future__ statement, / still means classic division.
The default meaning of / will not change until Python 3.0.

	Classes can define methods called __truediv__() and __floordiv__()
to overload the two division operators. At the C level, there are also slots in
the PyNumberMethods structure so extension types can define the two
operators.

	Python 2.2 supports some command-line arguments for testing whether code will
work with the changed division semantics. Running python with -Q
warn will cause a warning to be issued whenever division is applied to two
integers. You can use this to find code that’s affected by the change and fix
it. By default, Python 2.2 will simply perform classic division without a
warning; the warning will be turned on by default in Python 2.3.

See also

	PEP 238 [https://www.python.org/dev/peps/pep-0238] - Changing the Division Operator

	Written by Moshe Zadka and Guido van Rossum. Implemented by Guido van Rossum..

Unicode Changes

Python’s Unicode support has been enhanced a bit in 2.2. Unicode strings are
usually stored as UCS-2, as 16-bit unsigned integers. Python 2.2 can also be
compiled to use UCS-4, 32-bit unsigned integers, as its internal encoding by
supplying --enable-unicode=ucs4 to the configure script. (It’s also
possible to specify --disable-unicode to completely disable Unicode
support.)

When built to use UCS-4 (a “wide Python”), the interpreter can natively handle
Unicode characters from U+000000 to U+110000, so the range of legal values for
the unichr() function is expanded accordingly. Using an interpreter
compiled to use UCS-2 (a “narrow Python”), values greater than 65535 will still
cause unichr() to raise a ValueError exception. This is all
described in PEP 261 [https://www.python.org/dev/peps/pep-0261], “Support for ‘wide’ Unicode characters”; consult it for
further details.

Another change is simpler to explain. Since their introduction, Unicode strings
have supported an encode() method to convert the string to a selected
encoding such as UTF-8 or Latin-1. A symmetric decode([*encoding*])()
method has been added to 8-bit strings (though not to Unicode strings) in 2.2.
decode() assumes that the string is in the specified encoding and decodes
it, returning whatever is returned by the codec.

Using this new feature, codecs have been added for tasks not directly related to
Unicode. For example, codecs have been added for uu-encoding, MIME’s base64
encoding, and compression with the zlib module:

>>> s = """Here is a lengthy piece of redundant, overly verbose,
... and repetitive text.
... """
>>> data = s.encode('zlib')
>>> data
'x\x9c\r\xc9\xc1\r\x80 \x10\x04\xc0?Ul...'
>>> data.decode('zlib')
'Here is a lengthy piece of redundant, overly verbose,\nand repetitive text.\n'
>>> print s.encode('uu')
begin 666 <data>
M2&5R92!I<R!A(&QE;F=T:'D@<&EE8V4@;V8@<F5D=6YD86YT+"!O=F5R;'D@
>=F5R8F]S92P*86YD(')E<&5T:71I=F4@=&5X="X*

end
>>> "sheesh".encode('rot-13')
'furrfu'

To convert a class instance to Unicode, a __unicode__() method can be
defined by a class, analogous to __str__().

encode(), decode(), and __unicode__() were implemented by
Marc-André Lemburg. The changes to support using UCS-4 internally were
implemented by Fredrik Lundh and Martin von Löwis.

See also

	PEP 261 [https://www.python.org/dev/peps/pep-0261] - Support for ‘wide’ Unicode characters

	Written by Paul Prescod.

PEP 227: Nested Scopes

In Python 2.1, statically nested scopes were added as an optional feature, to be
enabled by a from __future__ import nested_scopes directive. In 2.2 nested
scopes no longer need to be specially enabled, and are now always present. The
rest of this section is a copy of the description of nested scopes from my
“What’s New in Python 2.1” document; if you read it when 2.1 came out, you can
skip the rest of this section.

The largest change introduced in Python 2.1, and made complete in 2.2, is to
Python’s scoping rules. In Python 2.0, at any given time there are at most
three namespaces used to look up variable names: local, module-level, and the
built-in namespace. This often surprised people because it didn’t match their
intuitive expectations. For example, a nested recursive function definition
doesn’t work:

def f():
 ...
 def g(value):
 ...
 return g(value-1) + 1
 ...

The function g() will always raise a NameError exception, because
the binding of the name g isn’t in either its local namespace or in the
module-level namespace. This isn’t much of a problem in practice (how often do
you recursively define interior functions like this?), but this also made using
the lambda statement clumsier, and this was a problem in practice.
In code which uses lambda you can often find local variables being
copied by passing them as the default values of arguments.

def find(self, name):
 "Return list of any entries equal to 'name'"
 L = filter(lambda x, name=name: x == name,
 self.list_attribute)
 return L

The readability of Python code written in a strongly functional style suffers
greatly as a result.

The most significant change to Python 2.2 is that static scoping has been added
to the language to fix this problem. As a first effect, the name=name
default argument is now unnecessary in the above example. Put simply, when a
given variable name is not assigned a value within a function (by an assignment,
or the def, class, or import statements),
references to the variable will be looked up in the local namespace of the
enclosing scope. A more detailed explanation of the rules, and a dissection of
the implementation, can be found in the PEP.

This change may cause some compatibility problems for code where the same
variable name is used both at the module level and as a local variable within a
function that contains further function definitions. This seems rather unlikely
though, since such code would have been pretty confusing to read in the first
place.

One side effect of the change is that the from module import * and
exec statements have been made illegal inside a function scope under
certain conditions. The Python reference manual has said all along that from
module import * is only legal at the top level of a module, but the CPython
interpreter has never enforced this before. As part of the implementation of
nested scopes, the compiler which turns Python source into bytecodes has to
generate different code to access variables in a containing scope. from
module import * and exec make it impossible for the compiler to
figure this out, because they add names to the local namespace that are
unknowable at compile time. Therefore, if a function contains function
definitions or lambda expressions with free variables, the compiler
will flag this by raising a SyntaxError exception.

To make the preceding explanation a bit clearer, here’s an example:

x = 1
def f():
 # The next line is a syntax error
 exec 'x=2'
 def g():
 return x

Line 4 containing the exec statement is a syntax error, since
exec would define a new local variable named x whose value should
be accessed by g().

This shouldn’t be much of a limitation, since exec is rarely used in
most Python code (and when it is used, it’s often a sign of a poor design
anyway).

See also

	PEP 227 [https://www.python.org/dev/peps/pep-0227] - Statically Nested Scopes

	Written and implemented by Jeremy Hylton.

New and Improved Modules

	The xmlrpclib module was contributed to the standard library by Fredrik
Lundh, providing support for writing XML-RPC clients. XML-RPC is a simple
remote procedure call protocol built on top of HTTP and XML. For example, the
following snippet retrieves a list of RSS channels from the O’Reilly Network,
and then lists the recent headlines for one channel:

import xmlrpclib
s = xmlrpclib.Server(
 'http://www.oreillynet.com/meerkat/xml-rpc/server.php')
channels = s.meerkat.getChannels()
channels is a list of dictionaries, like this:
[{'id': 4, 'title': 'Freshmeat Daily News'}
{'id': 190, 'title': '32Bits Online'},
{'id': 4549, 'title': '3DGamers'}, ...]

Get the items for one channel
items = s.meerkat.getItems({'channel': 4})

'items' is another list of dictionaries, like this:
[{'link': 'http://freshmeat.net/releases/52719/',
'description': 'A utility which converts HTML to XSL FO.',
'title': 'html2fo 0.3 (Default)'}, ...]

The SimpleXMLRPCServer module makes it easy to create straightforward
XML-RPC servers. See http://www.xmlrpc.com/ for more information about XML-RPC.

	The new hmac module implements the HMAC algorithm described by
RFC 2104 [https://tools.ietf.org/html/rfc2104.html]. (Contributed by Gerhard Häring.)

	Several functions that originally returned lengthy tuples now return pseudo-
sequences that still behave like tuples but also have mnemonic attributes such
as memberst_mtime or tm_year. The enhanced functions include
stat(), fstat(), statvfs(), and fstatvfs() in the
os module, and localtime(), gmtime(), and strptime() in
the time module.

For example, to obtain a file’s size using the old tuples, you’d end up writing
something like file_size = os.stat(filename)[stat.ST_SIZE], but now this can
be written more clearly as file_size = os.stat(filename).st_size.

The original patch for this feature was contributed by Nick Mathewson.

	The Python profiler has been extensively reworked and various errors in its
output have been corrected. (Contributed by Fred L. Drake, Jr. and Tim Peters.)

	The socket module can be compiled to support IPv6; specify the
--enable-ipv6 option to Python’s configure script. (Contributed by
Jun-ichiro “itojun” Hagino.)

	Two new format characters were added to the struct module for 64-bit
integers on platforms that support the C long long type. q is for
a signed 64-bit integer, and Q is for an unsigned one. The value is
returned in Python’s long integer type. (Contributed by Tim Peters.)

	In the interpreter’s interactive mode, there’s a new built-in function
help() that uses the pydoc module introduced in Python 2.1 to
provide interactive help. help(object) displays any available help text
about object. help() with no argument puts you in an online help
utility, where you can enter the names of functions, classes, or modules to read
their help text. (Contributed by Guido van Rossum, using Ka-Ping Yee’s
pydoc module.)

	Various bugfixes and performance improvements have been made to the SRE engine
underlying the re module. For example, the re.sub() and
re.split() functions have been rewritten in C. Another contributed patch
speeds up certain Unicode character ranges by a factor of two, and a new
finditer() method that returns an iterator over all the non-overlapping
matches in a given string. (SRE is maintained by Fredrik Lundh. The
BIGCHARSET patch was contributed by Martin von Löwis.)

	The smtplib module now supports RFC 2487 [https://tools.ietf.org/html/rfc2487.html], “Secure SMTP over TLS”, so
it’s now possible to encrypt the SMTP traffic between a Python program and the
mail transport agent being handed a message. smtplib also supports SMTP
authentication. (Contributed by Gerhard Häring.)

	The imaplib module, maintained by Piers Lauder, has support for several
new extensions: the NAMESPACE extension defined in RFC 2342 [https://tools.ietf.org/html/rfc2342.html], SORT, GETACL and
SETACL. (Contributed by Anthony Baxter and Michel Pelletier.)

	The rfc822 module’s parsing of email addresses is now compliant with
RFC 2822 [https://tools.ietf.org/html/rfc2822.html], an update to RFC 822 [https://tools.ietf.org/html/rfc822.html]. (The module’s name is not going to be
changed to rfc2822.) A new package, email, has also been added for
parsing and generating e-mail messages. (Contributed by Barry Warsaw, and
arising out of his work on Mailman.)

	The difflib module now contains a new Differ class for
producing human-readable lists of changes (a “delta”) between two sequences of
lines of text. There are also two generator functions, ndiff() and
restore(), which respectively return a delta from two sequences, or one of
the original sequences from a delta. (Grunt work contributed by David Goodger,
from ndiff.py code by Tim Peters who then did the generatorization.)

	New constants ascii_letters, ascii_lowercase, and
ascii_uppercase were added to the string module. There were
several modules in the standard library that used string.letters to
mean the ranges A-Za-z, but that assumption is incorrect when locales are in
use, because string.letters varies depending on the set of legal
characters defined by the current locale. The buggy modules have all been fixed
to use ascii_letters instead. (Reported by an unknown person; fixed by
Fred L. Drake, Jr.)

	The mimetypes module now makes it easier to use alternative MIME-type
databases by the addition of a MimeTypes class, which takes a list of
filenames to be parsed. (Contributed by Fred L. Drake, Jr.)

	A Timer class was added to the threading module that allows
scheduling an activity to happen at some future time. (Contributed by Itamar
Shtull-Trauring.)

Interpreter Changes and Fixes

Some of the changes only affect people who deal with the Python interpreter at
the C level because they’re writing Python extension modules, embedding the
interpreter, or just hacking on the interpreter itself. If you only write Python
code, none of the changes described here will affect you very much.

	Profiling and tracing functions can now be implemented in C, which can operate
at much higher speeds than Python-based functions and should reduce the overhead
of profiling and tracing. This will be of interest to authors of development
environments for Python. Two new C functions were added to Python’s API,
PyEval_SetProfile() and PyEval_SetTrace(). The existing
sys.setprofile() and sys.settrace() functions still exist, and have
simply been changed to use the new C-level interface. (Contributed by Fred L.
Drake, Jr.)

	Another low-level API, primarily of interest to implementors of Python
debuggers and development tools, was added. PyInterpreterState_Head() and
PyInterpreterState_Next() let a caller walk through all the existing
interpreter objects; PyInterpreterState_ThreadHead() and
PyThreadState_Next() allow looping over all the thread states for a given
interpreter. (Contributed by David Beazley.)

	The C-level interface to the garbage collector has been changed to make it
easier to write extension types that support garbage collection and to debug
misuses of the functions. Various functions have slightly different semantics,
so a bunch of functions had to be renamed. Extensions that use the old API will
still compile but will not participate in garbage collection, so updating them
for 2.2 should be considered fairly high priority.

To upgrade an extension module to the new API, perform the following steps:

	Rename Py_TPFLAGS_GC() to PyTPFLAGS_HAVE_GC().

	
	Use PyObject_GC_New() or PyObject_GC_NewVar() to allocate

	objects, and PyObject_GC_Del() to deallocate them.

	
	Rename PyObject_GC_Init() to PyObject_GC_Track() and

	PyObject_GC_Fini() to PyObject_GC_UnTrack().

	Remove PyGC_HEAD_SIZE() from object size calculations.

	Remove calls to PyObject_AS_GC() and PyObject_FROM_GC().

	A new et format sequence was added to PyArg_ParseTuple(); et
takes both a parameter and an encoding name, and converts the parameter to the
given encoding if the parameter turns out to be a Unicode string, or leaves it
alone if it’s an 8-bit string, assuming it to already be in the desired
encoding. This differs from the es format character, which assumes that
8-bit strings are in Python’s default ASCII encoding and converts them to the
specified new encoding. (Contributed by M.-A. Lemburg, and used for the MBCS
support on Windows described in the following section.)

	A different argument parsing function, PyArg_UnpackTuple(), has been
added that’s simpler and presumably faster. Instead of specifying a format
string, the caller simply gives the minimum and maximum number of arguments
expected, and a set of pointers to PyObject* variables that will be
filled in with argument values.

	Two new flags METH_NOARGS and METH_O are available in method
definition tables to simplify implementation of methods with no arguments or a
single untyped argument. Calling such methods is more efficient than calling a
corresponding method that uses METH_VARARGS. Also, the old
METH_OLDARGS style of writing C methods is now officially deprecated.

	Two new wrapper functions, PyOS_snprintf() and PyOS_vsnprintf()
were added to provide cross-platform implementations for the relatively new
snprintf() and vsnprintf() C lib APIs. In contrast to the standard
sprintf() and vsprintf() functions, the Python versions check the
bounds of the buffer used to protect against buffer overruns. (Contributed by
M.-A. Lemburg.)

	The _PyTuple_Resize() function has lost an unused parameter, so now it
takes 2 parameters instead of 3. The third argument was never used, and can
simply be discarded when porting code from earlier versions to Python 2.2.

Other Changes and Fixes

As usual there were a bunch of other improvements and bugfixes scattered
throughout the source tree. A search through the CVS change logs finds there
were 527 patches applied and 683 bugs fixed between Python 2.1 and 2.2; 2.2.1
applied 139 patches and fixed 143 bugs; 2.2.2 applied 106 patches and fixed 82
bugs. These figures are likely to be underestimates.

Some of the more notable changes are:

	The code for the MacOS port for Python, maintained by Jack Jansen, is now kept
in the main Python CVS tree, and many changes have been made to support MacOS X.

The most significant change is the ability to build Python as a framework,
enabled by supplying the --enable-framework option to the configure
script when compiling Python. According to Jack Jansen, “This installs a self-
contained Python installation plus the OS X framework “glue” into
/Library/Frameworks/Python.framework (or another location of choice).
For now there is little immediate added benefit to this (actually, there is the
disadvantage that you have to change your PATH to be able to find Python), but
it is the basis for creating a full-blown Python application, porting the
MacPython IDE, possibly using Python as a standard OSA scripting language and
much more.”

Most of the MacPython toolbox modules, which interface to MacOS APIs such as
windowing, QuickTime, scripting, etc. have been ported to OS X, but they’ve been
left commented out in setup.py. People who want to experiment with
these modules can uncomment them manually.

	Keyword arguments passed to built-in functions that don’t take them now cause a
TypeError exception to be raised, with the message “function takes no
keyword arguments”.

	Weak references, added in Python 2.1 as an extension module, are now part of
the core because they’re used in the implementation of new-style classes. The
ReferenceError exception has therefore moved from the weakref
module to become a built-in exception.

	A new script, Tools/scripts/cleanfuture.py by Tim Peters,
automatically removes obsolete __future__ statements from Python source
code.

	An additional flags argument has been added to the built-in function
compile(), so the behaviour of __future__ statements can now be
correctly observed in simulated shells, such as those presented by IDLE and
other development environments. This is described in PEP 264 [https://www.python.org/dev/peps/pep-0264]. (Contributed
by Michael Hudson.)

	The new license introduced with Python 1.6 wasn’t GPL-compatible. This is
fixed by some minor textual changes to the 2.2 license, so it’s now legal to
embed Python inside a GPLed program again. Note that Python itself is not
GPLed, but instead is under a license that’s essentially equivalent to the BSD
license, same as it always was. The license changes were also applied to the
Python 2.0.1 and 2.1.1 releases.

	When presented with a Unicode filename on Windows, Python will now convert it
to an MBCS encoded string, as used by the Microsoft file APIs. As MBCS is
explicitly used by the file APIs, Python’s choice of ASCII as the default
encoding turns out to be an annoyance. On Unix, the locale’s character set is
used if locale.nl_langinfo(CODESET)() is available. (Windows support was
contributed by Mark Hammond with assistance from Marc-André Lemburg. Unix
support was added by Martin von Löwis.)

	Large file support is now enabled on Windows. (Contributed by Tim Peters.)

	The Tools/scripts/ftpmirror.py script now parses a .netrc
file, if you have one. (Contributed by Mike Romberg.)

	Some features of the object returned by the xrange() function are now
deprecated, and trigger warnings when they’re accessed; they’ll disappear in
Python 2.3. xrange objects tried to pretend they were full sequence
types by supporting slicing, sequence multiplication, and the in
operator, but these features were rarely used and therefore buggy. The
tolist() method and the start, stop, and step
attributes are also being deprecated. At the C level, the fourth argument to
the PyRange_New() function, repeat, has also been deprecated.

	There were a bunch of patches to the dictionary implementation, mostly to fix
potential core dumps if a dictionary contains objects that sneakily changed
their hash value, or mutated the dictionary they were contained in. For a while
python-dev fell into a gentle rhythm of Michael Hudson finding a case that
dumped core, Tim Peters fixing the bug, Michael finding another case, and round
and round it went.

	On Windows, Python can now be compiled with Borland C thanks to a number of
patches contributed by Stephen Hansen, though the result isn’t fully functional
yet. (But this is progress...)

	Another Windows enhancement: Wise Solutions generously offered PythonLabs use
of their InstallerMaster 8.1 system. Earlier PythonLabs Windows installers used
Wise 5.0a, which was beginning to show its age. (Packaged up by Tim Peters.)

	Files ending in .pyw can now be imported on Windows. .pyw is a
Windows-only thing, used to indicate that a script needs to be run using
PYTHONW.EXE instead of PYTHON.EXE in order to prevent a DOS console from popping
up to display the output. This patch makes it possible to import such scripts,
in case they’re also usable as modules. (Implemented by David Bolen.)

	On platforms where Python uses the C dlopen() function to load
extension modules, it’s now possible to set the flags used by dlopen()
using the sys.getdlopenflags() and sys.setdlopenflags() functions.
(Contributed by Bram Stolk.)

	The pow() built-in function no longer supports 3 arguments when
floating-point numbers are supplied. pow(x, y, z) returns (x**y) % z,
but this is never useful for floating point numbers, and the final result varies
unpredictably depending on the platform. A call such as pow(2.0, 8.0, 7.0)
will now raise a TypeError exception.

Acknowledgements

The author would like to thank the following people for offering suggestions,
corrections and assistance with various drafts of this article: Fred Bremmer,
Keith Briggs, Andrew Dalke, Fred L. Drake, Jr., Carel Fellinger, David Goodger,
Mark Hammond, Stephen Hansen, Michael Hudson, Jack Jansen, Marc-André Lemburg,
Martin von Löwis, Fredrik Lundh, Michael McLay, Nick Mathewson, Paul Moore,
Gustavo Niemeyer, Don O’Donnell, Joonas Paalasma, Tim Peters, Jens Quade, Tom
Reinhardt, Neil Schemenauer, Guido van Rossum, Greg Ward, Edward Welbourne.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

What’s New in Python 2.1

	Author:	A.M. Kuchling

Introduction

This article explains the new features in Python 2.1. While there aren’t as
many changes in 2.1 as there were in Python 2.0, there are still some pleasant
surprises in store. 2.1 is the first release to be steered through the use of
Python Enhancement Proposals, or PEPs, so most of the sizable changes have
accompanying PEPs that provide more complete documentation and a design
rationale for the change. This article doesn’t attempt to document the new
features completely, but simply provides an overview of the new features for
Python programmers. Refer to the Python 2.1 documentation, or to the specific
PEP, for more details about any new feature that particularly interests you.

One recent goal of the Python development team has been to accelerate the pace
of new releases, with a new release coming every 6 to 9 months. 2.1 is the first
release to come out at this faster pace, with the first alpha appearing in
January, 3 months after the final version of 2.0 was released.

The final release of Python 2.1 was made on April 17, 2001.

PEP 227: Nested Scopes

The largest change in Python 2.1 is to Python’s scoping rules. In Python 2.0,
at any given time there are at most three namespaces used to look up variable
names: local, module-level, and the built-in namespace. This often surprised
people because it didn’t match their intuitive expectations. For example, a
nested recursive function definition doesn’t work:

def f():
 ...
 def g(value):
 ...
 return g(value-1) + 1
 ...

The function g() will always raise a NameError exception, because
the binding of the name g isn’t in either its local namespace or in the
module-level namespace. This isn’t much of a problem in practice (how often do
you recursively define interior functions like this?), but this also made using
the lambda statement clumsier, and this was a problem in practice.
In code which uses lambda you can often find local variables being
copied by passing them as the default values of arguments.

def find(self, name):
 "Return list of any entries equal to 'name'"
 L = filter(lambda x, name=name: x == name,
 self.list_attribute)
 return L

The readability of Python code written in a strongly functional style suffers
greatly as a result.

The most significant change to Python 2.1 is that static scoping has been added
to the language to fix this problem. As a first effect, the name=name
default argument is now unnecessary in the above example. Put simply, when a
given variable name is not assigned a value within a function (by an assignment,
or the def, class, or import statements),
references to the variable will be looked up in the local namespace of the
enclosing scope. A more detailed explanation of the rules, and a dissection of
the implementation, can be found in the PEP.

This change may cause some compatibility problems for code where the same
variable name is used both at the module level and as a local variable within a
function that contains further function definitions. This seems rather unlikely
though, since such code would have been pretty confusing to read in the first
place.

One side effect of the change is that the from module import * and
exec statements have been made illegal inside a function scope under
certain conditions. The Python reference manual has said all along that from
module import * is only legal at the top level of a module, but the CPython
interpreter has never enforced this before. As part of the implementation of
nested scopes, the compiler which turns Python source into bytecodes has to
generate different code to access variables in a containing scope. from
module import * and exec make it impossible for the compiler to
figure this out, because they add names to the local namespace that are
unknowable at compile time. Therefore, if a function contains function
definitions or lambda expressions with free variables, the compiler
will flag this by raising a SyntaxError exception.

To make the preceding explanation a bit clearer, here’s an example:

x = 1
def f():
 # The next line is a syntax error
 exec 'x=2'
 def g():
 return x

Line 4 containing the exec statement is a syntax error, since
exec would define a new local variable named x whose value should
be accessed by g().

This shouldn’t be much of a limitation, since exec is rarely used in
most Python code (and when it is used, it’s often a sign of a poor design
anyway).

Compatibility concerns have led to nested scopes being introduced gradually; in
Python 2.1, they aren’t enabled by default, but can be turned on within a module
by using a future statement as described in PEP 236. (See the following section
for further discussion of PEP 236.) In Python 2.2, nested scopes will become
the default and there will be no way to turn them off, but users will have had
all of 2.1’s lifetime to fix any breakage resulting from their introduction.

See also

	PEP 227 [https://www.python.org/dev/peps/pep-0227] - Statically Nested Scopes

	Written and implemented by Jeremy Hylton.

PEP 236: __future__ Directives

The reaction to nested scopes was widespread concern about the dangers of
breaking code with the 2.1 release, and it was strong enough to make the
Pythoneers take a more conservative approach. This approach consists of
introducing a convention for enabling optional functionality in release N that
will become compulsory in release N+1.

The syntax uses a from...import statement using the reserved module name
__future__. Nested scopes can be enabled by the following statement:

from __future__ import nested_scopes

While it looks like a normal import statement, it’s not; there are
strict rules on where such a future statement can be put. They can only be at
the top of a module, and must precede any Python code or regular
import statements. This is because such statements can affect how
the Python bytecode compiler parses code and generates bytecode, so they must
precede any statement that will result in bytecodes being produced.

See also

	PEP 236 [https://www.python.org/dev/peps/pep-0236] - Back to the __future__

	Written by Tim Peters, and primarily implemented by Jeremy Hylton.

PEP 207: Rich Comparisons

In earlier versions, Python’s support for implementing comparisons on user-
defined classes and extension types was quite simple. Classes could implement a
__cmp__() method that was given two instances of a class, and could only
return 0 if they were equal or +1 or -1 if they weren’t; the method couldn’t
raise an exception or return anything other than a Boolean value. Users of
Numeric Python often found this model too weak and restrictive, because in the
number-crunching programs that numeric Python is used for, it would be more
useful to be able to perform elementwise comparisons of two matrices, returning
a matrix containing the results of a given comparison for each element. If the
two matrices are of different sizes, then the compare has to be able to raise an
exception to signal the error.

In Python 2.1, rich comparisons were added in order to support this need.
Python classes can now individually overload each of the <, <=, >,
>=, ==, and != operations. The new magic method names are:

	Operation
	Method name

	<
	__lt__()

	<=
	__le__()

	>
	__gt__()

	>=
	__ge__()

	==
	__eq__()

	!=
	__ne__()

(The magic methods are named after the corresponding Fortran operators .LT..
.LE., &c. Numeric programmers are almost certainly quite familiar with
these names and will find them easy to remember.)

Each of these magic methods is of the form method(self, other), where
self will be the object on the left-hand side of the operator, while
other will be the object on the right-hand side. For example, the
expression A < B will cause A.__lt__(B) to be called.

Each of these magic methods can return anything at all: a Boolean, a matrix, a
list, or any other Python object. Alternatively they can raise an exception if
the comparison is impossible, inconsistent, or otherwise meaningless.

The built-in cmp(A,B)() function can use the rich comparison machinery,
and now accepts an optional argument specifying which comparison operation to
use; this is given as one of the strings "<", "<=", ">", ">=",
"==", or "!=". If called without the optional third argument,
cmp() will only return -1, 0, or +1 as in previous versions of Python;
otherwise it will call the appropriate method and can return any Python object.

There are also corresponding changes of interest to C programmers; there’s a new
slot tp_richcmp in type objects and an API for performing a given rich
comparison. I won’t cover the C API here, but will refer you to PEP 207, or to
2.1’s C API documentation, for the full list of related functions.

See also

	PEP 207 [https://www.python.org/dev/peps/pep-0207] - Rich Comparisons

	Written by Guido van Rossum, heavily based on earlier work by David Ascher, and
implemented by Guido van Rossum.

PEP 230: Warning Framework

Over its 10 years of existence, Python has accumulated a certain number of
obsolete modules and features along the way. It’s difficult to know when a
feature is safe to remove, since there’s no way of knowing how much code uses it
— perhaps no programs depend on the feature, or perhaps many do. To enable
removing old features in a more structured way, a warning framework was added.
When the Python developers want to get rid of a feature, it will first trigger a
warning in the next version of Python. The following Python version can then
drop the feature, and users will have had a full release cycle to remove uses of
the old feature.

Python 2.1 adds the warning framework to be used in this scheme. It adds a
warnings module that provide functions to issue warnings, and to filter
out warnings that you don’t want to be displayed. Third-party modules can also
use this framework to deprecate old features that they no longer wish to
support.

For example, in Python 2.1 the regex module is deprecated, so importing
it causes a warning to be printed:

>>> import regex
__main__:1: DeprecationWarning: the regex module
 is deprecated; please use the re module
>>>

Warnings can be issued by calling the warnings.warn() function:

warnings.warn("feature X no longer supported")

The first parameter is the warning message; an additional optional parameters
can be used to specify a particular warning category.

Filters can be added to disable certain warnings; a regular expression pattern
can be applied to the message or to the module name in order to suppress a
warning. For example, you may have a program that uses the regex module
and not want to spare the time to convert it to use the re module right
now. The warning can be suppressed by calling

import warnings
warnings.filterwarnings(action = 'ignore',
 message='.*regex module is deprecated',
 category=DeprecationWarning,
 module = '__main__')

This adds a filter that will apply only to warnings of the class
DeprecationWarning triggered in the __main__ module, and applies
a regular expression to only match the message about the regex module
being deprecated, and will cause such warnings to be ignored. Warnings can also
be printed only once, printed every time the offending code is executed, or
turned into exceptions that will cause the program to stop (unless the
exceptions are caught in the usual way, of course).

Functions were also added to Python’s C API for issuing warnings; refer to PEP
230 or to Python’s API documentation for the details.

See also

	PEP 5 [https://www.python.org/dev/peps/pep-0005] - Guidelines for Language Evolution

	Written by Paul Prescod, to specify procedures to be followed when removing old
features from Python. The policy described in this PEP hasn’t been officially
adopted, but the eventual policy probably won’t be too different from Prescod’s
proposal.

	PEP 230 [https://www.python.org/dev/peps/pep-0230] - Warning Framework

	Written and implemented by Guido van Rossum.

PEP 229: New Build System

When compiling Python, the user had to go in and edit the Modules/Setup
file in order to enable various additional modules; the default set is
relatively small and limited to modules that compile on most Unix platforms.
This means that on Unix platforms with many more features, most notably Linux,
Python installations often don’t contain all useful modules they could.

Python 2.0 added the Distutils, a set of modules for distributing and installing
extensions. In Python 2.1, the Distutils are used to compile much of the
standard library of extension modules, autodetecting which ones are supported on
the current machine. It’s hoped that this will make Python installations easier
and more featureful.

Instead of having to edit the Modules/Setup file in order to enable
modules, a setup.py script in the top directory of the Python source
distribution is run at build time, and attempts to discover which modules can be
enabled by examining the modules and header files on the system. If a module is
configured in Modules/Setup, the setup.py script won’t attempt
to compile that module and will defer to the Modules/Setup file’s
contents. This provides a way to specific any strange command-line flags or
libraries that are required for a specific platform.

In another far-reaching change to the build mechanism, Neil Schemenauer
restructured things so Python now uses a single makefile that isn’t recursive,
instead of makefiles in the top directory and in each of the Python/,
Parser/, Objects/, and Modules/ subdirectories. This
makes building Python faster and also makes hacking the Makefiles clearer and
simpler.

See also

	PEP 229 [https://www.python.org/dev/peps/pep-0229] - Using Distutils to Build Python

	Written and implemented by A.M. Kuchling.

PEP 205: Weak References

Weak references, available through the weakref module, are a minor but
useful new data type in the Python programmer’s toolbox.

Storing a reference to an object (say, in a dictionary or a list) has the side
effect of keeping that object alive forever. There are a few specific cases
where this behaviour is undesirable, object caches being the most common one,
and another being circular references in data structures such as trees.

For example, consider a memoizing function that caches the results of another
function f(x)() by storing the function’s argument and its result in a
dictionary:

_cache = {}
def memoize(x):
 if _cache.has_key(x):
 return _cache[x]

 retval = f(x)

 # Cache the returned object
 _cache[x] = retval

 return retval

This version works for simple things such as integers, but it has a side effect;
the _cache dictionary holds a reference to the return values, so they’ll
never be deallocated until the Python process exits and cleans up This isn’t
very noticeable for integers, but if f() returns an object, or a data
structure that takes up a lot of memory, this can be a problem.

Weak references provide a way to implement a cache that won’t keep objects alive
beyond their time. If an object is only accessible through weak references, the
object will be deallocated and the weak references will now indicate that the
object it referred to no longer exists. A weak reference to an object obj is
created by calling wr = weakref.ref(obj). The object being referred to is
returned by calling the weak reference as if it were a function: wr(). It
will return the referenced object, or None if the object no longer exists.

This makes it possible to write a memoize() function whose cache doesn’t
keep objects alive, by storing weak references in the cache.

_cache = {}
def memoize(x):
 if _cache.has_key(x):
 obj = _cache[x]()
 # If weak reference object still exists,
 # return it
 if obj is not None: return obj

 retval = f(x)

 # Cache a weak reference
 _cache[x] = weakref.ref(retval)

 return retval

The weakref module also allows creating proxy objects which behave like
weak references — an object referenced only by proxy objects is deallocated –
but instead of requiring an explicit call to retrieve the object, the proxy
transparently forwards all operations to the object as long as the object still
exists. If the object is deallocated, attempting to use a proxy will cause a
weakref.ReferenceError exception to be raised.

proxy = weakref.proxy(obj)
proxy.attr # Equivalent to obj.attr
proxy.meth() # Equivalent to obj.meth()
del obj
proxy.attr # raises weakref.ReferenceError

See also

	PEP 205 [https://www.python.org/dev/peps/pep-0205] - Weak References

	Written and implemented by Fred L. Drake, Jr.

PEP 232: Function Attributes

In Python 2.1, functions can now have arbitrary information attached to them.
People were often using docstrings to hold information about functions and
methods, because the __doc__ attribute was the only way of attaching any
information to a function. For example, in the Zope Web application server,
functions are marked as safe for public access by having a docstring, and in
John Aycock’s SPARK parsing framework, docstrings hold parts of the BNF grammar
to be parsed. This overloading is unfortunate, since docstrings are really
intended to hold a function’s documentation; for example, it means you can’t
properly document functions intended for private use in Zope.

Arbitrary attributes can now be set and retrieved on functions using the regular
Python syntax:

def f(): pass

f.publish = 1
f.secure = 1
f.grammar = "A ::= B (C D)*"

The dictionary containing attributes can be accessed as the function’s
__dict__. Unlike the __dict__ attribute of class instances, in
functions you can actually assign a new dictionary to __dict__, though
the new value is restricted to a regular Python dictionary; you can’t be
tricky and set it to a UserDict instance, or any other random object
that behaves like a mapping.

See also

	PEP 232 [https://www.python.org/dev/peps/pep-0232] - Function Attributes

	Written and implemented by Barry Warsaw.

PEP 235: Importing Modules on Case-Insensitive Platforms

Some operating systems have filesystems that are case-insensitive, MacOS and
Windows being the primary examples; on these systems, it’s impossible to
distinguish the filenames FILE.PY and file.py, even though they do store
the file’s name in its original case (they’re case-preserving, too).

In Python 2.1, the import statement will work to simulate case-
sensitivity on case-insensitive platforms. Python will now search for the first
case-sensitive match by default, raising an ImportError if no such file
is found, so import file will not import a module named FILE.PY. Case-
insensitive matching can be requested by setting the PYTHONCASEOK
environment variable before starting the Python interpreter.

PEP 217: Interactive Display Hook

When using the Python interpreter interactively, the output of commands is
displayed using the built-in repr() function. In Python 2.1, the variable
sys.displayhook() can be set to a callable object which will be called
instead of repr(). For example, you can set it to a special pretty-
printing function:

>>> # Create a recursive data structure
... L = [1,2,3]
>>> L.append(L)
>>> L # Show Python's default output
[1, 2, 3, [...]]
>>> # Use pprint.pprint() as the display function
... import sys, pprint
>>> sys.displayhook = pprint.pprint
>>> L
[1, 2, 3, <Recursion on list with id=135143996>]
>>>

See also

	PEP 217 [https://www.python.org/dev/peps/pep-0217] - Display Hook for Interactive Use

	Written and implemented by Moshe Zadka.

PEP 208: New Coercion Model

How numeric coercion is done at the C level was significantly modified. This
will only affect the authors of C extensions to Python, allowing them more
flexibility in writing extension types that support numeric operations.

Extension types can now set the type flag Py_TPFLAGS_CHECKTYPES in their
PyTypeObject structure to indicate that they support the new coercion model.
In such extension types, the numeric slot functions can no longer assume that
they’ll be passed two arguments of the same type; instead they may be passed two
arguments of differing types, and can then perform their own internal coercion.
If the slot function is passed a type it can’t handle, it can indicate the
failure by returning a reference to the Py_NotImplemented singleton value.
The numeric functions of the other type will then be tried, and perhaps they can
handle the operation; if the other type also returns Py_NotImplemented, then
a TypeError will be raised. Numeric methods written in Python can also
return Py_NotImplemented, causing the interpreter to act as if the method
did not exist (perhaps raising a TypeError, perhaps trying another
object’s numeric methods).

See also

	PEP 208 [https://www.python.org/dev/peps/pep-0208] - Reworking the Coercion Model

	Written and implemented by Neil Schemenauer, heavily based upon earlier work by
Marc-André Lemburg. Read this to understand the fine points of how numeric
operations will now be processed at the C level.

PEP 241: Metadata in Python Packages

A common complaint from Python users is that there’s no single catalog of all
the Python modules in existence. T. Middleton’s Vaults of Parnassus at
http://www.vex.net/parnassus/ are the largest catalog of Python modules, but
registering software at the Vaults is optional, and many people don’t bother.

As a first small step toward fixing the problem, Python software packaged using
the Distutils sdist command will include a file named
PKG-INFO containing information about the package such as its name,
version, and author (metadata, in cataloguing terminology). PEP 241 contains
the full list of fields that can be present in the PKG-INFO file. As
people began to package their software using Python 2.1, more and more packages
will include metadata, making it possible to build automated cataloguing systems
and experiment with them. With the result experience, perhaps it’ll be possible
to design a really good catalog and then build support for it into Python 2.2.
For example, the Distutils sdist and bdist_* commands
could support a upload option that would automatically upload your
package to a catalog server.

You can start creating packages containing PKG-INFO even if you’re not
using Python 2.1, since a new release of the Distutils will be made for users of
earlier Python versions. Version 1.0.2 of the Distutils includes the changes
described in PEP 241, as well as various bugfixes and enhancements. It will be
available from the Distutils SIG at https://www.python.org/community/sigs/current/distutils-sig/.

See also

	PEP 241 [https://www.python.org/dev/peps/pep-0241] - Metadata for Python Software Packages

	Written and implemented by A.M. Kuchling.

	PEP 243 [https://www.python.org/dev/peps/pep-0243] - Module Repository Upload Mechanism

	Written by Sean Reifschneider, this draft PEP describes a proposed mechanism for
uploading Python packages to a central server.

New and Improved Modules

	Ka-Ping Yee contributed two new modules: inspect.py, a module for
getting information about live Python code, and pydoc.py, a module for
interactively converting docstrings to HTML or text. As a bonus,
Tools/scripts/pydoc, which is now automatically installed, uses
pydoc.py to display documentation given a Python module, package, or
class name. For example, pydoc xml.dom displays the following:

Python Library Documentation: package xml.dom in xml

NAME
 xml.dom - W3C Document Object Model implementation for Python.

FILE
 /usr/local/lib/python2.1/xml/dom/__init__.pyc

DESCRIPTION
 The Python mapping of the Document Object Model is documented in the
 Python Library Reference in the section on the xml.dom package.

 This package contains the following modules:
 ...

pydoc also includes a Tk-based interactive help browser. pydoc
quickly becomes addictive; try it out!

	Two different modules for unit testing were added to the standard library.
The doctest module, contributed by Tim Peters, provides a testing
framework based on running embedded examples in docstrings and comparing the
results against the expected output. PyUnit, contributed by Steve Purcell, is a
unit testing framework inspired by JUnit, which was in turn an adaptation of
Kent Beck’s Smalltalk testing framework. See http://pyunit.sourceforge.net/ for
more information about PyUnit.

	The difflib module contains a class, SequenceMatcher, which
compares two sequences and computes the changes required to transform one
sequence into the other. For example, this module can be used to write a tool
similar to the Unix diff program, and in fact the sample program
Tools/scripts/ndiff.py demonstrates how to write such a script.

	curses.panel, a wrapper for the panel library, part of ncurses and of
SYSV curses, was contributed by Thomas Gellekum. The panel library provides
windows with the additional feature of depth. Windows can be moved higher or
lower in the depth ordering, and the panel library figures out where panels
overlap and which sections are visible.

	The PyXML package has gone through a few releases since Python 2.0, and Python
2.1 includes an updated version of the xml package. Some of the
noteworthy changes include support for Expat 1.2 and later versions, the ability
for Expat parsers to handle files in any encoding supported by Python, and
various bugfixes for SAX, DOM, and the minidom module.

	Ping also contributed another hook for handling uncaught exceptions.
sys.excepthook() can be set to a callable object. When an exception isn’t
caught by any try...except blocks, the exception will be
passed to sys.excepthook(), which can then do whatever it likes. At the
Ninth Python Conference, Ping demonstrated an application for this hook:
printing an extended traceback that not only lists the stack frames, but also
lists the function arguments and the local variables for each frame.

	Various functions in the time module, such as asctime() and
localtime(), require a floating point argument containing the time in
seconds since the epoch. The most common use of these functions is to work with
the current time, so the floating point argument has been made optional; when a
value isn’t provided, the current time will be used. For example, log file
entries usually need a string containing the current time; in Python 2.1,
time.asctime() can be used, instead of the lengthier
time.asctime(time.localtime(time.time())) that was previously required.

This change was proposed and implemented by Thomas Wouters.

	The ftplib module now defaults to retrieving files in passive mode,
because passive mode is more likely to work from behind a firewall. This
request came from the Debian bug tracking system, since other Debian packages
use ftplib to retrieve files and then don’t work from behind a firewall.
It’s deemed unlikely that this will cause problems for anyone, because Netscape
defaults to passive mode and few people complain, but if passive mode is
unsuitable for your application or network setup, call set_pasv(0)() on
FTP objects to disable passive mode.

	Support for raw socket access has been added to the socket module,
contributed by Grant Edwards.

	The pstats module now contains a simple interactive statistics browser
for displaying timing profiles for Python programs, invoked when the module is
run as a script. Contributed by Eric S. Raymond.

	A new implementation-dependent function, sys._getframe([depth])(), has
been added to return a given frame object from the current call stack.
sys._getframe() returns the frame at the top of the call stack; if the
optional integer argument depth is supplied, the function returns the frame
that is depth calls below the top of the stack. For example,
sys._getframe(1) returns the caller’s frame object.

This function is only present in CPython, not in Jython or the .NET
implementation. Use it for debugging, and resist the temptation to put it into
production code.

Other Changes and Fixes

There were relatively few smaller changes made in Python 2.1 due to the shorter
release cycle. A search through the CVS change logs turns up 117 patches
applied, and 136 bugs fixed; both figures are likely to be underestimates. Some
of the more notable changes are:

	A specialized object allocator is now optionally available, that should be
faster than the system malloc() and have less memory overhead. The
allocator uses C’s malloc() function to get large pools of memory, and
then fulfills smaller memory requests from these pools. It can be enabled by
providing the --with-pymalloc option to the configure
script; see Objects/obmalloc.c for the implementation details.

Authors of C extension modules should test their code with the object allocator
enabled, because some incorrect code may break, causing core dumps at runtime.
There are a bunch of memory allocation functions in Python’s C API that have
previously been just aliases for the C library’s malloc() and
free(), meaning that if you accidentally called mismatched functions, the
error wouldn’t be noticeable. When the object allocator is enabled, these
functions aren’t aliases of malloc() and free() any more, and
calling the wrong function to free memory will get you a core dump. For
example, if memory was allocated using PyMem_New(), it has to be freed
using PyMem_Del(), not free(). A few modules included with Python
fell afoul of this and had to be fixed; doubtless there are more third-party
modules that will have the same problem.

The object allocator was contributed by Vladimir Marangozov.

	The speed of line-oriented file I/O has been improved because people often
complain about its lack of speed, and because it’s often been used as a naïve
benchmark. The readline() method of file objects has therefore been
rewritten to be much faster. The exact amount of the speedup will vary from
platform to platform depending on how slow the C library’s getc() was, but
is around 66%, and potentially much faster on some particular operating systems.
Tim Peters did much of the benchmarking and coding for this change, motivated by
a discussion in comp.lang.python.

A new module and method for file objects was also added, contributed by Jeff
Epler. The new method, xreadlines(), is similar to the existing
xrange() built-in. xreadlines() returns an opaque sequence object
that only supports being iterated over, reading a line on every iteration but
not reading the entire file into memory as the existing readlines() method
does. You’d use it like this:

for line in sys.stdin.xreadlines():
 # ... do something for each line ...
 ...

For a fuller discussion of the line I/O changes, see the python-dev summary for
January 1-15, 2001 at https://mail.python.org/pipermail/python-dev/2001-January/.

	A new method, popitem(), was added to dictionaries to enable
destructively iterating through the contents of a dictionary; this can be faster
for large dictionaries because there’s no need to construct a list containing
all the keys or values. D.popitem() removes a random (key, value) pair
from the dictionary D and returns it as a 2-tuple. This was implemented
mostly by Tim Peters and Guido van Rossum, after a suggestion and preliminary
patch by Moshe Zadka.

	Modules can now control which names are imported when from module import *
is used, by defining an __all__ attribute containing a list of names that
will be imported. One common complaint is that if the module imports other
modules such as sys or string, from module import * will add
them to the importing module’s namespace. To fix this, simply list the public
names in __all__:

List public names
__all__ = ['Database', 'open']

A stricter version of this patch was first suggested and implemented by Ben
Wolfson, but after some python-dev discussion, a weaker final version was
checked in.

	Applying repr() to strings previously used octal escapes for
non-printable characters; for example, a newline was '\012'. This was a
vestigial trace of Python’s C ancestry, but today octal is of very little
practical use. Ka-Ping Yee suggested using hex escapes instead of octal ones,
and using the \n, \t, \r escapes for the appropriate characters,
and implemented this new formatting.

	Syntax errors detected at compile-time can now raise exceptions containing the
filename and line number of the error, a pleasant side effect of the compiler
reorganization done by Jeremy Hylton.

	C extensions which import other modules have been changed to use
PyImport_ImportModule(), which means that they will use any import hooks
that have been installed. This is also encouraged for third-party extensions
that need to import some other module from C code.

	The size of the Unicode character database was shrunk by another 340K thanks
to Fredrik Lundh.

	Some new ports were contributed: MacOS X (by Steven Majewski), Cygwin (by
Jason Tishler); RISCOS (by Dietmar Schwertberger); Unixware 7 (by Billy G.
Allie).

And there’s the usual list of minor bugfixes, minor memory leaks, docstring
edits, and other tweaks, too lengthy to be worth itemizing; see the CVS logs for
the full details if you want them.

Acknowledgements

The author would like to thank the following people for offering suggestions on
various drafts of this article: Graeme Cross, David Goodger, Jay Graves, Michael
Hudson, Marc-André Lemburg, Fredrik Lundh, Neil Schemenauer, Thomas Wouters.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

What’s New in Python 2.0

	Author:	A.M. Kuchling and Moshe Zadka

Introduction

A new release of Python, version 2.0, was released on October 16, 2000. This
article covers the exciting new features in 2.0, highlights some other useful
changes, and points out a few incompatible changes that may require rewriting
code.

Python’s development never completely stops between releases, and a steady flow
of bug fixes and improvements are always being submitted. A host of minor fixes,
a few optimizations, additional docstrings, and better error messages went into
2.0; to list them all would be impossible, but they’re certainly significant.
Consult the publicly-available CVS logs if you want to see the full list. This
progress is due to the five developers working for PythonLabs are now getting
paid to spend their days fixing bugs, and also due to the improved communication
resulting from moving to SourceForge.

What About Python 1.6?

Python 1.6 can be thought of as the Contractual Obligations Python release.
After the core development team left CNRI in May 2000, CNRI requested that a 1.6
release be created, containing all the work on Python that had been performed at
CNRI. Python 1.6 therefore represents the state of the CVS tree as of May 2000,
with the most significant new feature being Unicode support. Development
continued after May, of course, so the 1.6 tree received a few fixes to ensure
that it’s forward-compatible with Python 2.0. 1.6 is therefore part of Python’s
evolution, and not a side branch.

So, should you take much interest in Python 1.6? Probably not. The 1.6final
and 2.0beta1 releases were made on the same day (September 5, 2000), the plan
being to finalize Python 2.0 within a month or so. If you have applications to
maintain, there seems little point in breaking things by moving to 1.6, fixing
them, and then having another round of breakage within a month by moving to 2.0;
you’re better off just going straight to 2.0. Most of the really interesting
features described in this document are only in 2.0, because a lot of work was
done between May and September.

New Development Process

The most important change in Python 2.0 may not be to the code at all, but to
how Python is developed: in May 2000 the Python developers began using the tools
made available by SourceForge for storing source code, tracking bug reports,
and managing the queue of patch submissions. To report bugs or submit patches
for Python 2.0, use the bug tracking and patch manager tools available from
Python’s project page, located at https://sourceforge.net/projects/python/.

The most important of the services now hosted at SourceForge is the Python CVS
tree, the version-controlled repository containing the source code for Python.
Previously, there were roughly 7 or so people who had write access to the CVS
tree, and all patches had to be inspected and checked in by one of the people on
this short list. Obviously, this wasn’t very scalable. By moving the CVS tree
to SourceForge, it became possible to grant write access to more people; as of
September 2000 there were 27 people able to check in changes, a fourfold
increase. This makes possible large-scale changes that wouldn’t be attempted if
they’d have to be filtered through the small group of core developers. For
example, one day Peter Schneider-Kamp took it into his head to drop K&R C
compatibility and convert the C source for Python to ANSI C. After getting
approval on the python-dev mailing list, he launched into a flurry of checkins
that lasted about a week, other developers joined in to help, and the job was
done. If there were only 5 people with write access, probably that task would
have been viewed as “nice, but not worth the time and effort needed” and it
would never have gotten done.

The shift to using SourceForge’s services has resulted in a remarkable increase
in the speed of development. Patches now get submitted, commented on, revised
by people other than the original submitter, and bounced back and forth between
people until the patch is deemed worth checking in. Bugs are tracked in one
central location and can be assigned to a specific person for fixing, and we can
count the number of open bugs to measure progress. This didn’t come without a
cost: developers now have more e-mail to deal with, more mailing lists to
follow, and special tools had to be written for the new environment. For
example, SourceForge sends default patch and bug notification e-mail messages
that are completely unhelpful, so Ka-Ping Yee wrote an HTML screen-scraper that
sends more useful messages.

The ease of adding code caused a few initial growing pains, such as code was
checked in before it was ready or without getting clear agreement from the
developer group. The approval process that has emerged is somewhat similar to
that used by the Apache group. Developers can vote +1, +0, -0, or -1 on a patch;
+1 and -1 denote acceptance or rejection, while +0 and -0 mean the developer is
mostly indifferent to the change, though with a slight positive or negative
slant. The most significant change from the Apache model is that the voting is
essentially advisory, letting Guido van Rossum, who has Benevolent Dictator For
Life status, know what the general opinion is. He can still ignore the result of
a vote, and approve or reject a change even if the community disagrees with him.

Producing an actual patch is the last step in adding a new feature, and is
usually easy compared to the earlier task of coming up with a good design.
Discussions of new features can often explode into lengthy mailing list threads,
making the discussion hard to follow, and no one can read every posting to
python-dev. Therefore, a relatively formal process has been set up to write
Python Enhancement Proposals (PEPs), modelled on the Internet RFC process. PEPs
are draft documents that describe a proposed new feature, and are continually
revised until the community reaches a consensus, either accepting or rejecting
the proposal. Quoting from the introduction to PEP 1, “PEP Purpose and
Guidelines”:

PEP stands for Python Enhancement Proposal. A PEP is a design document
providing information to the Python community, or describing a new feature for
Python. The PEP should provide a concise technical specification of the feature
and a rationale for the feature.

We intend PEPs to be the primary mechanisms for proposing new features, for
collecting community input on an issue, and for documenting the design decisions
that have gone into Python. The PEP author is responsible for building
consensus within the community and documenting dissenting opinions.

Read the rest of PEP 1 for the details of the PEP editorial process, style, and
format. PEPs are kept in the Python CVS tree on SourceForge, though they’re not
part of the Python 2.0 distribution, and are also available in HTML form from
https://www.python.org/dev/peps/. As of September 2000, there are 25 PEPS, ranging
from PEP 201, “Lockstep Iteration”, to PEP 225, “Elementwise/Objectwise
Operators”.

Unicode

The largest new feature in Python 2.0 is a new fundamental data type: Unicode
strings. Unicode uses 16-bit numbers to represent characters instead of the
8-bit number used by ASCII, meaning that 65,536 distinct characters can be
supported.

The final interface for Unicode support was arrived at through countless often-
stormy discussions on the python-dev mailing list, and mostly implemented by
Marc-André Lemburg, based on a Unicode string type implementation by Fredrik
Lundh. A detailed explanation of the interface was written up as PEP 100 [https://www.python.org/dev/peps/pep-0100],
“Python Unicode Integration”. This article will simply cover the most
significant points about the Unicode interfaces.

In Python source code, Unicode strings are written as u"string". Arbitrary
Unicode characters can be written using a new escape sequence, \uHHHH, where
HHHH is a 4-digit hexadecimal number from 0000 to FFFF. The existing
\xHHHH escape sequence can also be used, and octal escapes can be used for
characters up to U+01FF, which is represented by \777.

Unicode strings, just like regular strings, are an immutable sequence type.
They can be indexed and sliced, but not modified in place. Unicode strings have
an encode([encoding]) method that returns an 8-bit string in the desired
encoding. Encodings are named by strings, such as 'ascii', 'utf-8',
'iso-8859-1', or whatever. A codec API is defined for implementing and
registering new encodings that are then available throughout a Python program.
If an encoding isn’t specified, the default encoding is usually 7-bit ASCII,
though it can be changed for your Python installation by calling the
sys.setdefaultencoding(encoding)() function in a customised version of
site.py.

Combining 8-bit and Unicode strings always coerces to Unicode, using the default
ASCII encoding; the result of 'a' + u'bc' is u'abc'.

New built-in functions have been added, and existing built-ins modified to
support Unicode:

	unichr(ch) returns a Unicode string 1 character long, containing the
character ch.

	ord(u), where u is a 1-character regular or Unicode string, returns the
number of the character as an integer.

	unicode(string [, encoding] [, errors]) creates a Unicode string
from an 8-bit string. encoding is a string naming the encoding to use. The
errors parameter specifies the treatment of characters that are invalid for
the current encoding; passing 'strict' as the value causes an exception to
be raised on any encoding error, while 'ignore' causes errors to be silently
ignored and 'replace' uses U+FFFD, the official replacement character, in
case of any problems.

	The exec statement, and various built-ins such as eval(),
getattr(), and setattr() will also accept Unicode strings as well as
regular strings. (It’s possible that the process of fixing this missed some
built-ins; if you find a built-in function that accepts strings but doesn’t
accept Unicode strings at all, please report it as a bug.)

A new module, unicodedata, provides an interface to Unicode character
properties. For example, unicodedata.category(u'A') returns the 2-character
string ‘Lu’, the ‘L’ denoting it’s a letter, and ‘u’ meaning that it’s
uppercase. unicodedata.bidirectional(u'\u0660') returns ‘AN’, meaning that
U+0660 is an Arabic number.

The codecs module contains functions to look up existing encodings and
register new ones. Unless you want to implement a new encoding, you’ll most
often use the codecs.lookup(encoding)() function, which returns a
4-element tuple: (encode_func, decode_func, stream_reader, stream_writer).

	encode_func is a function that takes a Unicode string, and returns a 2-tuple
(string, length). string is an 8-bit string containing a portion (perhaps
all) of the Unicode string converted into the given encoding, and length tells
you how much of the Unicode string was converted.

	decode_func is the opposite of encode_func, taking an 8-bit string and
returning a 2-tuple (ustring, length), consisting of the resulting Unicode
string ustring and the integer length telling how much of the 8-bit string
was consumed.

	stream_reader is a class that supports decoding input from a stream.
stream_reader(file_obj) returns an object that supports the read(),
readline(), and readlines() methods. These methods will all
translate from the given encoding and return Unicode strings.

	stream_writer, similarly, is a class that supports encoding output to a
stream. stream_writer(file_obj) returns an object that supports the
write() and writelines() methods. These methods expect Unicode
strings, translating them to the given encoding on output.

For example, the following code writes a Unicode string into a file, encoding
it as UTF-8:

import codecs

unistr = u'\u0660\u2000ab ...'

(UTF8_encode, UTF8_decode,
 UTF8_streamreader, UTF8_streamwriter) = codecs.lookup('UTF-8')

output = UTF8_streamwriter(open('/tmp/output', 'wb'))
output.write(unistr)
output.close()

The following code would then read UTF-8 input from the file:

input = UTF8_streamreader(open('/tmp/output', 'rb'))
print repr(input.read())
input.close()

Unicode-aware regular expressions are available through the re module,
which has a new underlying implementation called SRE written by Fredrik Lundh of
Secret Labs AB.

A -U command line option was added which causes the Python compiler to
interpret all string literals as Unicode string literals. This is intended to be
used in testing and future-proofing your Python code, since some future version
of Python may drop support for 8-bit strings and provide only Unicode strings.

List Comprehensions

Lists are a workhorse data type in Python, and many programs manipulate a list
at some point. Two common operations on lists are to loop over them, and either
pick out the elements that meet a certain criterion, or apply some function to
each element. For example, given a list of strings, you might want to pull out
all the strings containing a given substring, or strip off trailing whitespace
from each line.

The existing map() and filter() functions can be used for this
purpose, but they require a function as one of their arguments. This is fine if
there’s an existing built-in function that can be passed directly, but if there
isn’t, you have to create a little function to do the required work, and
Python’s scoping rules make the result ugly if the little function needs
additional information. Take the first example in the previous paragraph,
finding all the strings in the list containing a given substring. You could
write the following to do it:

Given the list L, make a list of all strings
containing the substring S.
sublist = filter(lambda s, substring=S:
 string.find(s, substring) != -1,
 L)

Because of Python’s scoping rules, a default argument is used so that the
anonymous function created by the lambda statement knows what
substring is being searched for. List comprehensions make this cleaner:

sublist = [s for s in L if string.find(s, S) != -1]

List comprehensions have the form:

[expression for expr in sequence1
 for expr2 in sequence2 ...
 for exprN in sequenceN
 if condition]

The for...in clauses contain the sequences to be
iterated over. The sequences do not have to be the same length, because they
are not iterated over in parallel, but from left to right; this is explained
more clearly in the following paragraphs. The elements of the generated list
will be the successive values of expression. The final if clause
is optional; if present, expression is only evaluated and added to the result
if condition is true.

To make the semantics very clear, a list comprehension is equivalent to the
following Python code:

for expr1 in sequence1:
 for expr2 in sequence2:
 ...
 for exprN in sequenceN:
 if (condition):
 # Append the value of
 # the expression to the
 # resulting list.

This means that when there are multiple for...in
clauses, the resulting list will be equal to the product of the lengths of all
the sequences. If you have two lists of length 3, the output list is 9 elements
long:

seq1 = 'abc'
seq2 = (1,2,3)
>>> [(x,y) for x in seq1 for y in seq2]
[('a', 1), ('a', 2), ('a', 3), ('b', 1), ('b', 2), ('b', 3), ('c', 1),
('c', 2), ('c', 3)]

To avoid introducing an ambiguity into Python’s grammar, if expression is
creating a tuple, it must be surrounded with parentheses. The first list
comprehension below is a syntax error, while the second one is correct:

Syntax error
[x,y for x in seq1 for y in seq2]
Correct
[(x,y) for x in seq1 for y in seq2]

The idea of list comprehensions originally comes from the functional programming
language Haskell (https://www.haskell.org). Greg Ewing argued most effectively
for adding them to Python and wrote the initial list comprehension patch, which
was then discussed for a seemingly endless time on the python-dev mailing list
and kept up-to-date by Skip Montanaro.

Augmented Assignment

Augmented assignment operators, another long-requested feature, have been added
to Python 2.0. Augmented assignment operators include +=, -=, *=,
and so forth. For example, the statement a += 2 increments the value of the
variable a by 2, equivalent to the slightly lengthier a = a + 2.

The full list of supported assignment operators is +=, -=, *=,
/=, %=, **=, &=, |=, ^=, >>=, and <<=. Python
classes can override the augmented assignment operators by defining methods
named __iadd__(), __isub__(), etc. For example, the following
Number class stores a number and supports using += to create a new
instance with an incremented value.

class Number:
 def __init__(self, value):
 self.value = value
 def __iadd__(self, increment):
 return Number(self.value + increment)

n = Number(5)
n += 3
print n.value

The __iadd__() special method is called with the value of the increment,
and should return a new instance with an appropriately modified value; this
return value is bound as the new value of the variable on the left-hand side.

Augmented assignment operators were first introduced in the C programming
language, and most C-derived languages, such as awk, C++, Java, Perl,
and PHP also support them. The augmented assignment patch was implemented by
Thomas Wouters.

String Methods

Until now string-manipulation functionality was in the string module,
which was usually a front-end for the strop module written in C. The
addition of Unicode posed a difficulty for the strop module, because the
functions would all need to be rewritten in order to accept either 8-bit or
Unicode strings. For functions such as string.replace(), which takes 3
string arguments, that means eight possible permutations, and correspondingly
complicated code.

Instead, Python 2.0 pushes the problem onto the string type, making string
manipulation functionality available through methods on both 8-bit strings and
Unicode strings.

>>> 'andrew'.capitalize()
'Andrew'
>>> 'hostname'.replace('os', 'linux')
'hlinuxtname'
>>> 'moshe'.find('sh')
2

One thing that hasn’t changed, a noteworthy April Fools’ joke notwithstanding,
is that Python strings are immutable. Thus, the string methods return new
strings, and do not modify the string on which they operate.

The old string module is still around for backwards compatibility, but it
mostly acts as a front-end to the new string methods.

Two methods which have no parallel in pre-2.0 versions, although they did exist
in JPython for quite some time, are startswith() and endswith().
s.startswith(t) is equivalent to s[:len(t)] == t, while
s.endswith(t) is equivalent to s[-len(t):] == t.

One other method which deserves special mention is join(). The
join() method of a string receives one parameter, a sequence of strings,
and is equivalent to the string.join() function from the old string
module, with the arguments reversed. In other words, s.join(seq) is
equivalent to the old string.join(seq, s).

Garbage Collection of Cycles

The C implementation of Python uses reference counting to implement garbage
collection. Every Python object maintains a count of the number of references
pointing to itself, and adjusts the count as references are created or
destroyed. Once the reference count reaches zero, the object is no longer
accessible, since you need to have a reference to an object to access it, and if
the count is zero, no references exist any longer.

Reference counting has some pleasant properties: it’s easy to understand and
implement, and the resulting implementation is portable, fairly fast, and reacts
well with other libraries that implement their own memory handling schemes. The
major problem with reference counting is that it sometimes doesn’t realise that
objects are no longer accessible, resulting in a memory leak. This happens when
there are cycles of references.

Consider the simplest possible cycle, a class instance which has a reference to
itself:

instance = SomeClass()
instance.myself = instance

After the above two lines of code have been executed, the reference count of
instance is 2; one reference is from the variable named 'instance', and
the other is from the myself attribute of the instance.

If the next line of code is del instance, what happens? The reference count
of instance is decreased by 1, so it has a reference count of 1; the
reference in the myself attribute still exists. Yet the instance is no
longer accessible through Python code, and it could be deleted. Several objects
can participate in a cycle if they have references to each other, causing all of
the objects to be leaked.

Python 2.0 fixes this problem by periodically executing a cycle detection
algorithm which looks for inaccessible cycles and deletes the objects involved.
A new gc module provides functions to perform a garbage collection,
obtain debugging statistics, and tuning the collector’s parameters.

Running the cycle detection algorithm takes some time, and therefore will result
in some additional overhead. It is hoped that after we’ve gotten experience
with the cycle collection from using 2.0, Python 2.1 will be able to minimize
the overhead with careful tuning. It’s not yet obvious how much performance is
lost, because benchmarking this is tricky and depends crucially on how often the
program creates and destroys objects. The detection of cycles can be disabled
when Python is compiled, if you can’t afford even a tiny speed penalty or
suspect that the cycle collection is buggy, by specifying the
--without-cycle-gc switch when running the configure
script.

Several people tackled this problem and contributed to a solution. An early
implementation of the cycle detection approach was written by Toby Kelsey. The
current algorithm was suggested by Eric Tiedemann during a visit to CNRI, and
Guido van Rossum and Neil Schemenauer wrote two different implementations, which
were later integrated by Neil. Lots of other people offered suggestions along
the way; the March 2000 archives of the python-dev mailing list contain most of
the relevant discussion, especially in the threads titled “Reference cycle
collection for Python” and “Finalization again”.

Other Core Changes

Various minor changes have been made to Python’s syntax and built-in functions.
None of the changes are very far-reaching, but they’re handy conveniences.

Minor Language Changes

A new syntax makes it more convenient to call a given function with a tuple of
arguments and/or a dictionary of keyword arguments. In Python 1.5 and earlier,
you’d use the apply() built-in function: apply(f, args, kw) calls the
function f() with the argument tuple args and the keyword arguments in
the dictionary kw. apply() is the same in 2.0, but thanks to a patch
from Greg Ewing, f(*args, **kw) as a shorter and clearer way to achieve the
same effect. This syntax is symmetrical with the syntax for defining
functions:

def f(*args, **kw):
 # args is a tuple of positional args,
 # kw is a dictionary of keyword args
 ...

The print statement can now have its output directed to a file-like
object by following the print with >> file, similar to the
redirection operator in Unix shells. Previously you’d either have to use the
write() method of the file-like object, which lacks the convenience and
simplicity of print, or you could assign a new value to
sys.stdout and then restore the old value. For sending output to standard
error, it’s much easier to write this:

print >> sys.stderr, "Warning: action field not supplied"

Modules can now be renamed on importing them, using the syntax import module
as name or from module import name as othername. The patch was submitted
by Thomas Wouters.

A new format style is available when using the % operator; ‘%r’ will insert
the repr() of its argument. This was also added from symmetry
considerations, this time for symmetry with the existing ‘%s’ format style,
which inserts the str() of its argument. For example, '%r %s' % ('abc',
'abc') returns a string containing 'abc' abc.

Previously there was no way to implement a class that overrode Python’s built-in
in operator and implemented a custom version. obj in seq returns
true if obj is present in the sequence seq; Python computes this by simply
trying every index of the sequence until either obj is found or an
IndexError is encountered. Moshe Zadka contributed a patch which adds a
__contains__() magic method for providing a custom implementation for
in. Additionally, new built-in objects written in C can define what
in means for them via a new slot in the sequence protocol.

Earlier versions of Python used a recursive algorithm for deleting objects.
Deeply nested data structures could cause the interpreter to fill up the C stack
and crash; Christian Tismer rewrote the deletion logic to fix this problem. On
a related note, comparing recursive objects recursed infinitely and crashed;
Jeremy Hylton rewrote the code to no longer crash, producing a useful result
instead. For example, after this code:

a = []
b = []
a.append(a)
b.append(b)

The comparison a==b returns true, because the two recursive data structures
are isomorphic. See the thread “trashcan and PR#7” in the April 2000 archives of
the python-dev mailing list for the discussion leading up to this
implementation, and some useful relevant links. Note that comparisons can now
also raise exceptions. In earlier versions of Python, a comparison operation
such as cmp(a,b) would always produce an answer, even if a user-defined
__cmp__() method encountered an error, since the resulting exception would
simply be silently swallowed.

Work has been done on porting Python to 64-bit Windows on the Itanium processor,
mostly by Trent Mick of ActiveState. (Confusingly, sys.platform is still
'win32' on Win64 because it seems that for ease of porting, MS Visual C++
treats code as 32 bit on Itanium.) PythonWin also supports Windows CE; see the
Python CE page at http://pythonce.sourceforge.net/ for more information.

Another new platform is Darwin/MacOS X; initial support for it is in Python 2.0.
Dynamic loading works, if you specify “configure –with-dyld –with-suffix=.x”.
Consult the README in the Python source distribution for more instructions.

An attempt has been made to alleviate one of Python’s warts, the often-confusing
NameError exception when code refers to a local variable before the
variable has been assigned a value. For example, the following code raises an
exception on the print statement in both 1.5.2 and 2.0; in 1.5.2 a
NameError exception is raised, while 2.0 raises a new
UnboundLocalError exception. UnboundLocalError is a subclass of
NameError, so any existing code that expects NameError to be
raised should still work.

def f():
 print "i=",i
 i = i + 1
f()

Two new exceptions, TabError and IndentationError, have been
introduced. They’re both subclasses of SyntaxError, and are raised when
Python code is found to be improperly indented.

Changes to Built-in Functions

A new built-in, zip(seq1, seq2, ...)(), has been added. zip()
returns a list of tuples where each tuple contains the i-th element from each of
the argument sequences. The difference between zip() and map(None,
seq1, seq2) is that map() pads the sequences with None if the
sequences aren’t all of the same length, while zip() truncates the
returned list to the length of the shortest argument sequence.

The int() and long() functions now accept an optional “base”
parameter when the first argument is a string. int('123', 10) returns 123,
while int('123', 16) returns 291. int(123, 16) raises a
TypeError exception with the message “can’t convert non-string with
explicit base”.

A new variable holding more detailed version information has been added to the
sys module. sys.version_info is a tuple (major, minor, micro,
level, serial) For example, in a hypothetical 2.0.1beta1, sys.version_info
would be (2, 0, 1, 'beta', 1). level is a string such as "alpha",
"beta", or "final" for a final release.

Dictionaries have an odd new method, setdefault(key, default)(), which
behaves similarly to the existing get() method. However, if the key is
missing, setdefault() both returns the value of default as get()
would do, and also inserts it into the dictionary as the value for key. Thus,
the following lines of code:

if dict.has_key(key): return dict[key]
else:
 dict[key] = []
 return dict[key]

can be reduced to a single return dict.setdefault(key, []) statement.

The interpreter sets a maximum recursion depth in order to catch runaway
recursion before filling the C stack and causing a core dump or GPF..
Previously this limit was fixed when you compiled Python, but in 2.0 the maximum
recursion depth can be read and modified using sys.getrecursionlimit() and
sys.setrecursionlimit(). The default value is 1000, and a rough maximum
value for a given platform can be found by running a new script,
Misc/find_recursionlimit.py.

Porting to 2.0

New Python releases try hard to be compatible with previous releases, and the
record has been pretty good. However, some changes are considered useful
enough, usually because they fix initial design decisions that turned out to be
actively mistaken, that breaking backward compatibility can’t always be avoided.
This section lists the changes in Python 2.0 that may cause old Python code to
break.

The change which will probably break the most code is tightening up the
arguments accepted by some methods. Some methods would take multiple arguments
and treat them as a tuple, particularly various list methods such as
append() and insert(). In earlier versions of Python, if L is
a list, L.append(1,2) appends the tuple (1,2) to the list. In Python
2.0 this causes a TypeError exception to be raised, with the message:
‘append requires exactly 1 argument; 2 given’. The fix is to simply add an
extra set of parentheses to pass both values as a tuple: L.append((1,2)).

The earlier versions of these methods were more forgiving because they used an
old function in Python’s C interface to parse their arguments; 2.0 modernizes
them to use PyArg_ParseTuple(), the current argument parsing function,
which provides more helpful error messages and treats multi-argument calls as
errors. If you absolutely must use 2.0 but can’t fix your code, you can edit
Objects/listobject.c and define the preprocessor symbol
NO_STRICT_LIST_APPEND to preserve the old behaviour; this isn’t recommended.

Some of the functions in the socket module are still forgiving in this
way. For example, socket.connect(('hostname', 25))() is the correct
form, passing a tuple representing an IP address, but socket.connect(
'hostname', 25)() also works. socket.connect_ex() and socket.bind()
are similarly easy-going. 2.0alpha1 tightened these functions up, but because
the documentation actually used the erroneous multiple argument form, many
people wrote code which would break with the stricter checking. GvR backed out
the changes in the face of public reaction, so for the socket module, the
documentation was fixed and the multiple argument form is simply marked as
deprecated; it will be tightened up again in a future Python version.

The \x escape in string literals now takes exactly 2 hex digits. Previously
it would consume all the hex digits following the ‘x’ and take the lowest 8 bits
of the result, so \x123456 was equivalent to \x56.

The AttributeError and NameError exceptions have a more friendly
error message, whose text will be something like 'Spam' instance has no
attribute 'eggs' or name 'eggs' is not defined. Previously the error
message was just the missing attribute name eggs, and code written to take
advantage of this fact will break in 2.0.

Some work has been done to make integers and long integers a bit more
interchangeable. In 1.5.2, large-file support was added for Solaris, to allow
reading files larger than 2 GiB; this made the tell() method of file
objects return a long integer instead of a regular integer. Some code would
subtract two file offsets and attempt to use the result to multiply a sequence
or slice a string, but this raised a TypeError. In 2.0, long integers
can be used to multiply or slice a sequence, and it’ll behave as you’d
intuitively expect it to; 3L * 'abc' produces ‘abcabcabc’, and
(0,1,2,3)[2L:4L] produces (2,3). Long integers can also be used in various
contexts where previously only integers were accepted, such as in the
seek() method of file objects, and in the formats supported by the %
operator (%d, %i, %x, etc.). For example, "%d" % 2L**64 will
produce the string 18446744073709551616.

The subtlest long integer change of all is that the str() of a long
integer no longer has a trailing ‘L’ character, though repr() still
includes it. The ‘L’ annoyed many people who wanted to print long integers that
looked just like regular integers, since they had to go out of their way to chop
off the character. This is no longer a problem in 2.0, but code which does
str(longval)[:-1] and assumes the ‘L’ is there, will now lose the final
digit.

Taking the repr() of a float now uses a different formatting precision
than str(). repr() uses %.17g format string for C’s
sprintf(), while str() uses %.12g as before. The effect is that
repr() may occasionally show more decimal places than str(), for
certain numbers. For example, the number 8.1 can’t be represented exactly in
binary, so repr(8.1) is '8.0999999999999996', while str(8.1) is
'8.1'.

The -X command-line option, which turned all standard exceptions into
strings instead of classes, has been removed; the standard exceptions will now
always be classes. The exceptions module containing the standard
exceptions was translated from Python to a built-in C module, written by Barry
Warsaw and Fredrik Lundh.

Extending/Embedding Changes

Some of the changes are under the covers, and will only be apparent to people
writing C extension modules or embedding a Python interpreter in a larger
application. If you aren’t dealing with Python’s C API, you can safely skip
this section.

The version number of the Python C API was incremented, so C extensions compiled
for 1.5.2 must be recompiled in order to work with 2.0. On Windows, it’s not
possible for Python 2.0 to import a third party extension built for Python 1.5.x
due to how Windows DLLs work, so Python will raise an exception and the import
will fail.

Users of Jim Fulton’s ExtensionClass module will be pleased to find out that
hooks have been added so that ExtensionClasses are now supported by
isinstance() and issubclass(). This means you no longer have to
remember to write code such as if type(obj) == myExtensionClass, but can use
the more natural if isinstance(obj, myExtensionClass).

The Python/importdl.c file, which was a mass of #ifdefs to support
dynamic loading on many different platforms, was cleaned up and reorganised by
Greg Stein. importdl.c is now quite small, and platform-specific code
has been moved into a bunch of Python/dynload_*.c files. Another
cleanup: there were also a number of my*.h files in the Include/
directory that held various portability hacks; they’ve been merged into a single
file, Include/pyport.h.

Vladimir Marangozov’s long-awaited malloc restructuring was completed, to make
it easy to have the Python interpreter use a custom allocator instead of C’s
standard malloc(). For documentation, read the comments in
Include/pymem.h and Include/objimpl.h. For the lengthy
discussions during which the interface was hammered out, see the Web archives of
the ‘patches’ and ‘python-dev’ lists at python.org.

Recent versions of the GUSI development environment for MacOS support POSIX
threads. Therefore, Python’s POSIX threading support now works on the
Macintosh. Threading support using the user-space GNU pth library was also
contributed.

Threading support on Windows was enhanced, too. Windows supports thread locks
that use kernel objects only in case of contention; in the common case when
there’s no contention, they use simpler functions which are an order of
magnitude faster. A threaded version of Python 1.5.2 on NT is twice as slow as
an unthreaded version; with the 2.0 changes, the difference is only 10%. These
improvements were contributed by Yakov Markovitch.

Python 2.0’s source now uses only ANSI C prototypes, so compiling Python now
requires an ANSI C compiler, and can no longer be done using a compiler that
only supports K&R C.

Previously the Python virtual machine used 16-bit numbers in its bytecode,
limiting the size of source files. In particular, this affected the maximum
size of literal lists and dictionaries in Python source; occasionally people who
are generating Python code would run into this limit. A patch by Charles G.
Waldman raises the limit from 2^16 to 2^{32}.

Three new convenience functions intended for adding constants to a module’s
dictionary at module initialization time were added: PyModule_AddObject(),
PyModule_AddIntConstant(), and PyModule_AddStringConstant(). Each
of these functions takes a module object, a null-terminated C string containing
the name to be added, and a third argument for the value to be assigned to the
name. This third argument is, respectively, a Python object, a C long, or a C
string.

A wrapper API was added for Unix-style signal handlers. PyOS_getsig() gets
a signal handler and PyOS_setsig() will set a new handler.

Distutils: Making Modules Easy to Install

Before Python 2.0, installing modules was a tedious affair – there was no way
to figure out automatically where Python is installed, or what compiler options
to use for extension modules. Software authors had to go through an arduous
ritual of editing Makefiles and configuration files, which only really work on
Unix and leave Windows and MacOS unsupported. Python users faced wildly
differing installation instructions which varied between different extension
packages, which made administering a Python installation something of a chore.

The SIG for distribution utilities, shepherded by Greg Ward, has created the
Distutils, a system to make package installation much easier. They form the
distutils package, a new part of Python’s standard library. In the best
case, installing a Python module from source will require the same steps: first
you simply mean unpack the tarball or zip archive, and the run “python
setup.py install”. The platform will be automatically detected, the compiler
will be recognized, C extension modules will be compiled, and the distribution
installed into the proper directory. Optional command-line arguments provide
more control over the installation process, the distutils package offers many
places to override defaults – separating the build from the install, building
or installing in non-default directories, and more.

In order to use the Distutils, you need to write a setup.py script. For
the simple case, when the software contains only .py files, a minimal
setup.py can be just a few lines long:

from distutils.core import setup
setup (name = "foo", version = "1.0",
 py_modules = ["module1", "module2"])

The setup.py file isn’t much more complicated if the software consists
of a few packages:

from distutils.core import setup
setup (name = "foo", version = "1.0",
 packages = ["package", "package.subpackage"])

A C extension can be the most complicated case; here’s an example taken from
the PyXML package:

from distutils.core import setup, Extension

expat_extension = Extension('xml.parsers.pyexpat',
 define_macros = [('XML_NS', None)],
 include_dirs = ['extensions/expat/xmltok',
 'extensions/expat/xmlparse'],
 sources = ['extensions/pyexpat.c',
 'extensions/expat/xmltok/xmltok.c',
 'extensions/expat/xmltok/xmlrole.c',]
)
setup (name = "PyXML", version = "0.5.4",
 ext_modules =[expat_extension])

The Distutils can also take care of creating source and binary distributions.
The “sdist” command, run by “python setup.py sdist‘, builds a source
distribution such as foo-1.0.tar.gz. Adding new commands isn’t
difficult, “bdist_rpm” and “bdist_wininst” commands have already been
contributed to create an RPM distribution and a Windows installer for the
software, respectively. Commands to create other distribution formats such as
Debian packages and Solaris .pkg files are in various stages of
development.

All this is documented in a new manual, Distributing Python Modules, that
joins the basic set of Python documentation.

XML Modules

Python 1.5.2 included a simple XML parser in the form of the xmllib
module, contributed by Sjoerd Mullender. Since 1.5.2’s release, two different
interfaces for processing XML have become common: SAX2 (version 2 of the Simple
API for XML) provides an event-driven interface with some similarities to
xmllib, and the DOM (Document Object Model) provides a tree-based
interface, transforming an XML document into a tree of nodes that can be
traversed and modified. Python 2.0 includes a SAX2 interface and a stripped-
down DOM interface as part of the xml package. Here we will give a brief
overview of these new interfaces; consult the Python documentation or the source
code for complete details. The Python XML SIG is also working on improved
documentation.

SAX2 Support

SAX defines an event-driven interface for parsing XML. To use SAX, you must
write a SAX handler class. Handler classes inherit from various classes
provided by SAX, and override various methods that will then be called by the
XML parser. For example, the startElement() and endElement()
methods are called for every starting and end tag encountered by the parser, the
characters() method is called for every chunk of character data, and so
forth.

The advantage of the event-driven approach is that the whole document doesn’t
have to be resident in memory at any one time, which matters if you are
processing really huge documents. However, writing the SAX handler class can
get very complicated if you’re trying to modify the document structure in some
elaborate way.

For example, this little example program defines a handler that prints a message
for every starting and ending tag, and then parses the file hamlet.xml
using it:

from xml import sax

class SimpleHandler(sax.ContentHandler):
 def startElement(self, name, attrs):
 print 'Start of element:', name, attrs.keys()

 def endElement(self, name):
 print 'End of element:', name

Create a parser object
parser = sax.make_parser()

Tell it what handler to use
handler = SimpleHandler()
parser.setContentHandler(handler)

Parse a file!
parser.parse('hamlet.xml')

For more information, consult the Python documentation, or the XML HOWTO at
http://pyxml.sourceforge.net/topics/howto/xml-howto.html.

DOM Support

The Document Object Model is a tree-based representation for an XML document. A
top-level Document instance is the root of the tree, and has a single
child which is the top-level Element instance. This Element
has children nodes representing character data and any sub-elements, which may
have further children of their own, and so forth. Using the DOM you can
traverse the resulting tree any way you like, access element and attribute
values, insert and delete nodes, and convert the tree back into XML.

The DOM is useful for modifying XML documents, because you can create a DOM
tree, modify it by adding new nodes or rearranging subtrees, and then produce a
new XML document as output. You can also construct a DOM tree manually and
convert it to XML, which can be a more flexible way of producing XML output than
simply writing <tag1>...</tag1> to a file.

The DOM implementation included with Python lives in the xml.dom.minidom
module. It’s a lightweight implementation of the Level 1 DOM with support for
XML namespaces. The parse() and parseString() convenience
functions are provided for generating a DOM tree:

from xml.dom import minidom
doc = minidom.parse('hamlet.xml')

doc is a Document instance. Document, like all the other
DOM classes such as Element and Text, is a subclass of the
Node base class. All the nodes in a DOM tree therefore support certain
common methods, such as toxml() which returns a string containing the XML
representation of the node and its children. Each class also has special
methods of its own; for example, Element and Document
instances have a method to find all child elements with a given tag name.
Continuing from the previous 2-line example:

perslist = doc.getElementsByTagName('PERSONA')
print perslist[0].toxml()
print perslist[1].toxml()

For the Hamlet XML file, the above few lines output:

<PERSONA>CLAUDIUS, king of Denmark. </PERSONA>
<PERSONA>HAMLET, son to the late, and nephew to the present king.</PERSONA>

The root element of the document is available as doc.documentElement, and
its children can be easily modified by deleting, adding, or removing nodes:

root = doc.documentElement

Remove the first child
root.removeChild(root.childNodes[0])

Move the new first child to the end
root.appendChild(root.childNodes[0])

Insert the new first child (originally,
the third child) before the 20th child.
root.insertBefore(root.childNodes[0], root.childNodes[20])

Again, I will refer you to the Python documentation for a complete listing of
the different Node classes and their various methods.

Relationship to PyXML

The XML Special Interest Group has been working on XML-related Python code for a
while. Its code distribution, called PyXML, is available from the SIG’s Web
pages at https://www.python.org/community/sigs/current/xml-sig. The PyXML distribution also used
the package name xml. If you’ve written programs that used PyXML, you’re
probably wondering about its compatibility with the 2.0 xml package.

The answer is that Python 2.0’s xml package isn’t compatible with PyXML,
but can be made compatible by installing a recent version PyXML. Many
applications can get by with the XML support that is included with Python 2.0,
but more complicated applications will require that the full PyXML package will
be installed. When installed, PyXML versions 0.6.0 or greater will replace the
xml package shipped with Python, and will be a strict superset of the
standard package, adding a bunch of additional features. Some of the additional
features in PyXML include:

	4DOM, a full DOM implementation from FourThought, Inc.

	The xmlproc validating parser, written by Lars Marius Garshol.

	The sgmlop parser accelerator module, written by Fredrik Lundh.

Module changes

Lots of improvements and bugfixes were made to Python’s extensive standard
library; some of the affected modules include readline,
ConfigParser, cgi, calendar, posix, readline,
xmllib, aifc, chunk, wave, random, shelve,
and nntplib. Consult the CVS logs for the exact patch-by-patch details.

Brian Gallew contributed OpenSSL support for the socket module. OpenSSL
is an implementation of the Secure Socket Layer, which encrypts the data being
sent over a socket. When compiling Python, you can edit Modules/Setup
to include SSL support, which adds an additional function to the socket
module: socket.ssl(socket, keyfile, certfile)(), which takes a socket
object and returns an SSL socket. The httplib and urllib modules
were also changed to support https:// URLs, though no one has implemented
FTP or SMTP over SSL.

The httplib module has been rewritten by Greg Stein to support HTTP/1.1.
Backward compatibility with the 1.5 version of httplib is provided,
though using HTTP/1.1 features such as pipelining will require rewriting code to
use a different set of interfaces.

The Tkinter module now supports Tcl/Tk version 8.1, 8.2, or 8.3, and
support for the older 7.x versions has been dropped. The Tkinter module now
supports displaying Unicode strings in Tk widgets. Also, Fredrik Lundh
contributed an optimization which makes operations like create_line and
create_polygon much faster, especially when using lots of coordinates.

The curses module has been greatly extended, starting from Oliver
Andrich’s enhanced version, to provide many additional functions from ncurses
and SYSV curses, such as colour, alternative character set support, pads, and
mouse support. This means the module is no longer compatible with operating
systems that only have BSD curses, but there don’t seem to be any currently
maintained OSes that fall into this category.

As mentioned in the earlier discussion of 2.0’s Unicode support, the underlying
implementation of the regular expressions provided by the re module has
been changed. SRE, a new regular expression engine written by Fredrik Lundh and
partially funded by Hewlett Packard, supports matching against both 8-bit
strings and Unicode strings.

New modules

A number of new modules were added. We’ll simply list them with brief
descriptions; consult the 2.0 documentation for the details of a particular
module.

	atexit: For registering functions to be called before the Python
interpreter exits. Code that currently sets sys.exitfunc directly should be
changed to use the atexit module instead, importing atexit and
calling atexit.register() with the function to be called on exit.
(Contributed by Skip Montanaro.)

	codecs, encodings, unicodedata: Added as part of the new
Unicode support.

	filecmp: Supersedes the old cmp, cmpcache and
dircmp modules, which have now become deprecated. (Contributed by Gordon
MacMillan and Moshe Zadka.)

	gettext: This module provides internationalization (I18N) and
localization (L10N) support for Python programs by providing an interface to the
GNU gettext message catalog library. (Integrated by Barry Warsaw, from separate
contributions by Martin von Löwis, Peter Funk, and James Henstridge.)

	linuxaudiodev: Support for the /dev/audio device on Linux, a
twin to the existing sunaudiodev module. (Contributed by Peter Bosch,
with fixes by Jeremy Hylton.)

	mmap: An interface to memory-mapped files on both Windows and Unix. A
file’s contents can be mapped directly into memory, at which point it behaves
like a mutable string, so its contents can be read and modified. They can even
be passed to functions that expect ordinary strings, such as the re
module. (Contributed by Sam Rushing, with some extensions by A.M. Kuchling.)

	pyexpat: An interface to the Expat XML parser. (Contributed by Paul
Prescod.)

	robotparser: Parse a robots.txt file, which is used for writing
Web spiders that politely avoid certain areas of a Web site. The parser accepts
the contents of a robots.txt file, builds a set of rules from it, and
can then answer questions about the fetchability of a given URL. (Contributed
by Skip Montanaro.)

	tabnanny: A module/script to check Python source code for ambiguous
indentation. (Contributed by Tim Peters.)

	UserString: A base class useful for deriving objects that behave like
strings.

	webbrowser: A module that provides a platform independent way to launch
a web browser on a specific URL. For each platform, various browsers are tried
in a specific order. The user can alter which browser is launched by setting the
BROWSER environment variable. (Originally inspired by Eric S. Raymond’s patch
to urllib which added similar functionality, but the final module comes
from code originally implemented by Fred Drake as
Tools/idle/BrowserControl.py, and adapted for the standard library by
Fred.)

	_winreg: An interface to the Windows registry. _winreg is an
adaptation of functions that have been part of PythonWin since 1995, but has now
been added to the core distribution, and enhanced to support Unicode.
_winreg was written by Bill Tutt and Mark Hammond.

	zipfile: A module for reading and writing ZIP-format archives. These
are archives produced by PKZIP on DOS/Windows or zip on
Unix, not to be confused with gzip-format files (which are
supported by the gzip module) (Contributed by James C. Ahlstrom.)

	imputil: A module that provides a simpler way for writing customised
import hooks, in comparison to the existing ihooks module. (Implemented
by Greg Stein, with much discussion on python-dev along the way.)

IDLE Improvements

IDLE is the official Python cross-platform IDE, written using Tkinter. Python
2.0 includes IDLE 0.6, which adds a number of new features and improvements. A
partial list:

	UI improvements and optimizations, especially in the area of syntax
highlighting and auto-indentation.

	The class browser now shows more information, such as the top level functions
in a module.

	Tab width is now a user settable option. When opening an existing Python file,
IDLE automatically detects the indentation conventions, and adapts.

	There is now support for calling browsers on various platforms, used to open
the Python documentation in a browser.

	IDLE now has a command line, which is largely similar to the vanilla Python
interpreter.

	Call tips were added in many places.

	IDLE can now be installed as a package.

	In the editor window, there is now a line/column bar at the bottom.

	Three new keystroke commands: Check module (Alt-F5), Import module (F5) and
Run script (Ctrl-F5).

Deleted and Deprecated Modules

A few modules have been dropped because they’re obsolete, or because there are
now better ways to do the same thing. The stdwin module is gone; it was
for a platform-independent windowing toolkit that’s no longer developed.

A number of modules have been moved to the lib-old subdirectory:
cmp, cmpcache, dircmp, dump, find,
grep, packmail, poly, util, whatsound,
zmod. If you have code which relies on a module that’s been moved to
lib-old, you can simply add that directory to sys.path to get them
back, but you’re encouraged to update any code that uses these modules.

Acknowledgements

The authors would like to thank the following people for offering suggestions on
various drafts of this article: David Bolen, Mark Hammond, Gregg Hauser, Jeremy
Hylton, Fredrik Lundh, Detlef Lannert, Aahz Maruch, Skip Montanaro, Vladimir
Marangozov, Tobias Polzin, Guido van Rossum, Neil Schemenauer, and Russ Schmidt.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	What’s New in Python

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

The Python Tutorial

Python is an easy to learn, powerful programming language. It has efficient
high-level data structures and a simple but effective approach to
object-oriented programming. Python’s elegant syntax and dynamic typing,
together with its interpreted nature, make it an ideal language for scripting
and rapid application development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available
in source or binary form for all major platforms from the Python Web site,
https://www.python.org/, and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules,
programs and tools, and additional documentation.

The Python interpreter is easily extended with new functions and data types
implemented in C or C++ (or other languages callable from C). Python is also
suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and
features of the Python language and system. It helps to have a Python
interpreter handy for hands-on experience, but all examples are self-contained,
so the tutorial can be read off-line as well.

For a description of standard objects and modules, see The Python Standard Library.
The Python Language Reference gives a more formal definition of the language. To write
extensions in C or C++, read Extending and Embedding the Python Interpreter and
Python/C API Reference Manual. There are also several books covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single
feature, or even every commonly used feature. Instead, it introduces many of
Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and
write Python modules and programs, and you will be ready to learn more about the
various Python library modules described in The Python Standard Library.

The Glossary is also worth going through.

	1. Whetting Your Appetite

	2. Using the Python Interpreter
	2.1. Invoking the Interpreter
	2.1.1. Argument Passing

	2.1.2. Interactive Mode

	2.2. The Interpreter and Its Environment
	2.2.1. Source Code Encoding

	3. An Informal Introduction to Python
	3.1. Using Python as a Calculator
	3.1.1. Numbers

	3.1.2. Strings

	3.1.3. Unicode Strings

	3.1.4. Lists

	3.2. First Steps Towards Programming

	4. More Control Flow Tools
	4.1. if Statements

	4.2. for Statements

	4.3. The range() Function

	4.4. break and continue Statements, and else Clauses on Loops

	4.5. pass Statements

	4.6. Defining Functions

	4.7. More on Defining Functions
	4.7.1. Default Argument Values

	4.7.2. Keyword Arguments

	4.7.3. Arbitrary Argument Lists

	4.7.4. Unpacking Argument Lists

	4.7.5. Lambda Expressions

	4.7.6. Documentation Strings

	4.8. Intermezzo: Coding Style

	5. Data Structures
	5.1. More on Lists
	5.1.1. Using Lists as Stacks

	5.1.2. Using Lists as Queues

	5.1.3. Functional Programming Tools

	5.1.4. List Comprehensions
	5.1.4.1. Nested List Comprehensions

	5.2. The del statement

	5.3. Tuples and Sequences

	5.4. Sets

	5.5. Dictionaries

	5.6. Looping Techniques

	5.7. More on Conditions

	5.8. Comparing Sequences and Other Types

	6. Modules
	6.1. More on Modules
	6.1.1. Executing modules as scripts

	6.1.2. The Module Search Path

	6.1.3. “Compiled” Python files

	6.2. Standard Modules

	6.3. The dir() Function

	6.4. Packages
	6.4.1. Importing * From a Package

	6.4.2. Intra-package References

	6.4.3. Packages in Multiple Directories

	7. Input and Output
	7.1. Fancier Output Formatting
	7.1.1. Old string formatting

	7.2. Reading and Writing Files
	7.2.1. Methods of File Objects

	7.2.2. Saving structured data with json

	8. Errors and Exceptions
	8.1. Syntax Errors

	8.2. Exceptions

	8.3. Handling Exceptions

	8.4. Raising Exceptions

	8.5. User-defined Exceptions

	8.6. Defining Clean-up Actions

	8.7. Predefined Clean-up Actions

	9. Classes
	9.1. A Word About Names and Objects

	9.2. Python Scopes and Namespaces

	9.3. A First Look at Classes
	9.3.1. Class Definition Syntax

	9.3.2. Class Objects

	9.3.3. Instance Objects

	9.3.4. Method Objects

	9.3.5. Class and Instance Variables

	9.4. Random Remarks

	9.5. Inheritance
	9.5.1. Multiple Inheritance

	9.6. Private Variables and Class-local References

	9.7. Odds and Ends

	9.8. Exceptions Are Classes Too

	9.9. Iterators

	9.10. Generators

	9.11. Generator Expressions

	10. Brief Tour of the Standard Library
	10.1. Operating System Interface

	10.2. File Wildcards

	10.3. Command Line Arguments

	10.4. Error Output Redirection and Program Termination

	10.5. String Pattern Matching

	10.6. Mathematics

	10.7. Internet Access

	10.8. Dates and Times

	10.9. Data Compression

	10.10. Performance Measurement

	10.11. Quality Control

	10.12. Batteries Included

	11. Brief Tour of the Standard Library – Part II
	11.1. Output Formatting

	11.2. Templating

	11.3. Working with Binary Data Record Layouts

	11.4. Multi-threading

	11.5. Logging

	11.6. Weak References

	11.7. Tools for Working with Lists

	11.8. Decimal Floating Point Arithmetic

	12. What Now?

	13. Interactive Input Editing and History Substitution
	13.1. Line Editing

	13.2. History Substitution

	13.3. Key Bindings

	13.4. Alternatives to the Interactive Interpreter

	14. Floating Point Arithmetic: Issues and Limitations
	14.1. Representation Error

	15. Appendix
	15.1. Interactive Mode
	15.1.1. Error Handling

	15.1.2. Executable Python Scripts

	15.1.3. The Interactive Startup File

	15.1.4. The Customization Modules

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

1. Whetting Your Appetite

If you do much work on computers, eventually you find that there’s some task
you’d like to automate. For example, you may wish to perform a
search-and-replace over a large number of text files, or rename and rearrange a
bunch of photo files in a complicated way. Perhaps you’d like to write a small
custom database, or a specialized GUI application, or a simple game.

If you’re a professional software developer, you may have to work with several
C/C++/Java libraries but find the usual write/compile/test/re-compile cycle is
too slow. Perhaps you’re writing a test suite for such a library and find
writing the testing code a tedious task. Or maybe you’ve written a program that
could use an extension language, and you don’t want to design and implement a
whole new language for your application.

Python is just the language for you.

You could write a Unix shell script or Windows batch files for some of these
tasks, but shell scripts are best at moving around files and changing text data,
not well-suited for GUI applications or games. You could write a C/C++/Java
program, but it can take a lot of development time to get even a first-draft
program. Python is simpler to use, available on Windows, Mac OS X, and Unix
operating systems, and will help you get the job done more quickly.

Python is simple to use, but it is a real programming language, offering much
more structure and support for large programs than shell scripts or batch files
can offer. On the other hand, Python also offers much more error checking than
C, and, being a very-high-level language, it has high-level data types built
in, such as flexible arrays and dictionaries. Because of its more general data
types Python is applicable to a much larger problem domain than Awk or even
Perl, yet many things are at least as easy in Python as in those languages.

Python allows you to split your program into modules that can be reused in other
Python programs. It comes with a large collection of standard modules that you
can use as the basis of your programs — or as examples to start learning to
program in Python. Some of these modules provide things like file I/O, system
calls, sockets, and even interfaces to graphical user interface toolkits like
Tk.

Python is an interpreted language, which can save you considerable time during
program development because no compilation and linking is necessary. The
interpreter can be used interactively, which makes it easy to experiment with
features of the language, to write throw-away programs, or to test functions
during bottom-up program development. It is also a handy desk calculator.

Python enables programs to be written compactly and readably. Programs written
in Python are typically much shorter than equivalent C, C++, or Java programs,
for several reasons:

	the high-level data types allow you to express complex operations in a single
statement;

	statement grouping is done by indentation instead of beginning and ending
brackets;

	no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new
built-in function or module to the interpreter, either to perform critical
operations at maximum speed, or to link Python programs to libraries that may
only be available in binary form (such as a vendor-specific graphics library).
Once you are really hooked, you can link the Python interpreter into an
application written in C and use it as an extension or command language for that
application.

By the way, the language is named after the BBC show “Monty Python’s Flying
Circus” and has nothing to do with reptiles. Making references to Monty
Python skits in documentation is not only allowed, it is encouraged!

Now that you are all excited about Python, you’ll want to examine it in some
more detail. Since the best way to learn a language is to use it, the tutorial
invites you to play with the Python interpreter as you read.

In the next chapter, the mechanics of using the interpreter are explained. This
is rather mundane information, but essential for trying out the examples shown
later.

The rest of the tutorial introduces various features of the Python language and
system through examples, beginning with simple expressions, statements and data
types, through functions and modules, and finally touching upon advanced
concepts like exceptions and user-defined classes.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

2. Using the Python Interpreter

2.1. Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python on
those machines where it is available; putting /usr/local/bin in your
Unix shell’s search path makes it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives is
an installation option, other places are possible; check with your local Python
guru or system administrator. (E.g., /usr/local/python is a popular
alternative location.)

On Windows machines, the Python installation is usually placed in
C:\Python27, though you can change this when you’re running the
installer. To add this directory to your path, you can type the following
command into the command prompt in a DOS box:

set path=%path%;C:\python27

Typing an end-of-file character (Control-D on Unix, Control-Z on
Windows) at the primary prompt causes the interpreter to exit with a zero exit
status. If that doesn’t work, you can exit the interpreter by typing the
following command: quit().

The interpreter’s line-editing features usually aren’t very sophisticated. On
Unix, whoever installed the interpreter may have enabled support for the GNU
readline library, which adds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether command line editing is
supported is typing Control-P to the first Python prompt you get. If it beeps,
you have command line editing; see Appendix Interactive Input Editing and History Substitution for an
introduction to the keys. If nothing appears to happen, or if ^P is echoed,
command line editing isn’t available; you’ll only be able to use backspace to
remove characters from the current line.

The interpreter operates somewhat like the Unix shell: when called with standard
input connected to a tty device, it reads and executes commands interactively;
when called with a file name argument or with a file as standard input, it reads
and executes a script from that file.

A second way of starting the interpreter is python -c command [arg] ...,
which executes the statement(s) in command, analogous to the shell’s
-c option. Since Python statements often contain spaces or other
characters that are special to the shell, it is usually advised to quote
command in its entirety with single quotes.

Some Python modules are also useful as scripts. These can be invoked using
python -m module [arg] ..., which executes the source file for module as
if you had spelled out its full name on the command line.

When a script file is used, it is sometimes useful to be able to run the script
and enter interactive mode afterwards. This can be done by passing -i
before the script.

All command-line options are described in Command line and environment.

2.1.1. Argument Passing

When known to the interpreter, the script name and additional arguments
thereafter are turned into a list of strings and assigned to the argv
variable in the sys module. You can access this list by executing import
sys. The length of the list is at least one; when no script and no arguments
are given, sys.argv[0] is an empty string. When the script name is given as
'-' (meaning standard input), sys.argv[0] is set to '-'. When
-c command is used, sys.argv[0] is set to '-c'. When
-m module is used, sys.argv[0] is set to the full name of the
located module. Options found after -c command or -m
module are not consumed by the Python interpreter’s option processing but
left in sys.argv for the command or module to handle.

2.1.2. Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive
mode. In this mode it prompts for the next command with the primary prompt,
usually three greater-than signs (>>>); for continuation lines it prompts
with the secondary prompt, by default three dots (...). The interpreter
prints a welcome message stating its version number and a copyright notice
before printing the first prompt:

python
Python 2.7 (#1, Feb 28 2010, 00:02:06)
Type "help", "copyright", "credits" or "license" for more information.
>>>

Continuation lines are needed when entering a multi-line construct. As an
example, take a look at this if statement:

>>> the_world_is_flat = 1
>>> if the_world_is_flat:
... print "Be careful not to fall off!"
...
Be careful not to fall off!

For more on interactive mode, see Interactive Mode.

2.2. The Interpreter and Its Environment

2.2.1. Source Code Encoding

It is possible to use encodings different than ASCII in Python source files. The
best way to do it is to put one more special comment line right after the #!
line to define the source file encoding:

-*- coding: encoding -*-

With that declaration, all characters in the source file will be treated as
having the encoding encoding, and it will be possible to directly write
Unicode string literals in the selected encoding. The list of possible
encodings can be found in the Python Library Reference, in the section on
codecs.

For example, to write Unicode literals including the Euro currency symbol, the
ISO-8859-15 encoding can be used, with the Euro symbol having the ordinal value
164. This script, when saved in the ISO-8859-15 encoding, will print the value
8364 (the Unicode code point corresponding to the Euro symbol) and then exit:

-*- coding: iso-8859-15 -*-

currency = u"€"
print ord(currency)

If your editor supports saving files as UTF-8 with a UTF-8 byte order mark
(aka BOM), you can use that instead of an encoding declaration. IDLE supports
this capability if Options/General/Default Source Encoding/UTF-8 is set.
Notice that this signature is not understood in older Python releases (2.2 and
earlier), and also not understood by the operating system for script files with
#! lines (only used on Unix systems).

By using UTF-8 (either through the signature or an encoding declaration),
characters of most languages in the world can be used simultaneously in string
literals and comments. Using non-ASCII characters in identifiers is not
supported. To display all these characters properly, your editor must recognize
that the file is UTF-8, and it must use a font that supports all the characters
in the file.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

3. An Informal Introduction to Python

In the following examples, input and output are distinguished by the presence or
absence of prompts (>>> and ...): to repeat the example, you must type
everything after the prompt, when the prompt appears; lines that do not begin
with a prompt are output from the interpreter. Note that a secondary prompt on a
line by itself in an example means you must type a blank line; this is used to
end a multi-line command.

Many of the examples in this manual, even those entered at the interactive
prompt, include comments. Comments in Python start with the hash character,
#, and extend to the end of the physical line. A comment may appear at the
start of a line or following whitespace or code, but not within a string
literal. A hash character within a string literal is just a hash character.
Since comments are to clarify code and are not interpreted by Python, they may
be omitted when typing in examples.

Some examples:

this is the first comment
spam = 1 # and this is the second comment
 # ... and now a third!
text = "# This is not a comment because it's inside quotes."

3.1. Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the
primary prompt, >>>. (It shouldn’t take long.)

3.1.1. Numbers

The interpreter acts as a simple calculator: you can type an expression at it
and it will write the value. Expression syntax is straightforward: the
operators +, -, * and / work just like in most other languages
(for example, Pascal or C); parentheses (()) can be used for grouping.
For example:

>>> 2 + 2
4
>>> 50 - 5*6
20
>>> (50 - 5.0*6) / 4
5.0
>>> 8 / 5.0
1.6

The integer numbers (e.g. 2, 4, 20) have type int,
the ones with a fractional part (e.g. 5.0, 1.6) have type
float. We will see more about numeric types later in the tutorial.

The return type of a division (/) operation depends on its operands. If
both operands are of type int, floor division is performed
and an int is returned. If either operand is a float,
classic division is performed and a float is returned. The //
operator is also provided for doing floor division no matter what the
operands are. The remainder can be calculated with the % operator:

>>> 17 / 3 # int / int -> int
5
>>> 17 / 3.0 # int / float -> float
5.666666666666667
>>> 17 // 3.0 # explicit floor division discards the fractional part
5.0
>>> 17 % 3 # the % operator returns the remainder of the division
2
>>> 5 * 3 + 2 # result * divisor + remainder
17

With Python, it is possible to use the ** operator to calculate powers [1]:

>>> 5 ** 2 # 5 squared
25
>>> 2 ** 7 # 2 to the power of 7
128

The equal sign (=) is used to assign a value to a variable. Afterwards, no
result is displayed before the next interactive prompt:

>>> width = 20
>>> height = 5 * 9
>>> width * height
900

If a variable is not “defined” (assigned a value), trying to use it will
give you an error:

>>> n # try to access an undefined variable
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'n' is not defined

There is full support for floating point; operators with mixed type operands
convert the integer operand to floating point:

>>> 3 * 3.75 / 1.5
7.5
>>> 7.0 / 2
3.5

In interactive mode, the last printed expression is assigned to the variable
_. This means that when you are using Python as a desk calculator, it is
somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06

This variable should be treated as read-only by the user. Don’t explicitly
assign a value to it — you would create an independent local variable with the
same name masking the built-in variable with its magic behavior.

In addition to int and float, Python supports other types of
numbers, such as Decimal and Fraction.
Python also has built-in support for complex numbers,
and uses the j or J suffix to indicate the imaginary part
(e.g. 3+5j).

3.1.2. Strings

Besides numbers, Python can also manipulate strings, which can be expressed
in several ways. They can be enclosed in single quotes ('...') or
double quotes ("...") with the same result [2]. \ can be used
to escape quotes:

>>> 'spam eggs' # single quotes
'spam eggs'
>>> 'doesn\'t' # use \' to escape the single quote...
"doesn't"
>>> "doesn't" # ...or use double quotes instead
"doesn't"
>>> '"Yes," he said.'
'"Yes," he said.'
>>> "\"Yes,\" he said."
'"Yes," he said.'
>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'

In the interactive interpreter, the output string is enclosed in quotes and
special characters are escaped with backslashes. While this might sometimes
look different from the input (the enclosing quotes could change), the two
strings are equivalent. The string is enclosed in double quotes if
the string contains a single quote and no double quotes, otherwise it is
enclosed in single quotes. The print statement produces a more
readable output, by omitting the enclosing quotes and by printing escaped
and special characters:

>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'
>>> print '"Isn\'t," she said.'
"Isn't," she said.
>>> s = 'First line.\nSecond line.' # \n means newline
>>> s # without print, \n is included in the output
'First line.\nSecond line.'
>>> print s # with print, \n produces a new line
First line.
Second line.

If you don’t want characters prefaced by \ to be interpreted as
special characters, you can use raw strings by adding an r before
the first quote:

>>> print 'C:\some\name' # here \n means newline!
C:\some
ame
>>> print r'C:\some\name' # note the r before the quote
C:\some\name

String literals can span multiple lines. One way is using triple-quotes:
"""...""" or '''...'''. End of lines are automatically
included in the string, but it’s possible to prevent this by adding a \ at
the end of the line. The following example:

print """\
Usage: thingy [OPTIONS]
 -h Display this usage message
 -H hostname Hostname to connect to
"""

produces the following output (note that the initial newline is not included):

Usage: thingy [OPTIONS]
 -h Display this usage message
 -H hostname Hostname to connect to

Strings can be concatenated (glued together) with the + operator, and
repeated with *:

>>> # 3 times 'un', followed by 'ium'
>>> 3 * 'un' + 'ium'
'unununium'

Two or more string literals (i.e. the ones enclosed between quotes) next
to each other are automatically concatenated.

>>> 'Py' 'thon'
'Python'

This only works with two literals though, not with variables or expressions:

>>> prefix = 'Py'
>>> prefix 'thon' # can't concatenate a variable and a string literal
 ...
SyntaxError: invalid syntax
>>> ('un' * 3) 'ium'
 ...
SyntaxError: invalid syntax

If you want to concatenate variables or a variable and a literal, use +:

>>> prefix + 'thon'
'Python'

This feature is particularly useful when you want to break long strings:

>>> text = ('Put several strings within parentheses '
... 'to have them joined together.')
>>> text
'Put several strings within parentheses to have them joined together.'

Strings can be indexed (subscripted), with the first character having index 0.
There is no separate character type; a character is simply a string of size
one:

>>> word = 'Python'
>>> word[0] # character in position 0
'P'
>>> word[5] # character in position 5
'n'

Indices may also be negative numbers, to start counting from the right:

>>> word[-1] # last character
'n'
>>> word[-2] # second-last character
'o'
>>> word[-6]
'P'

Note that since -0 is the same as 0, negative indices start from -1.

In addition to indexing, slicing is also supported. While indexing is used
to obtain individual characters, slicing allows you to obtain a substring:

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)
'Py'
>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
'tho'

Note how the start is always included, and the end always excluded. This
makes sure that s[:i] + s[i:] is always equal to s:

>>> word[:2] + word[2:]
'Python'
>>> word[:4] + word[4:]
'Python'

Slice indices have useful defaults; an omitted first index defaults to zero, an
omitted second index defaults to the size of the string being sliced.

>>> word[:2] # character from the beginning to position 2 (excluded)
'Py'
>>> word[4:] # characters from position 4 (included) to the end
'on'
>>> word[-2:] # characters from the second-last (included) to the end
'on'

One way to remember how slices work is to think of the indices as pointing
between characters, with the left edge of the first character numbered 0.
Then the right edge of the last character of a string of n characters has
index n, for example:

 +---+---+---+---+---+---+
 | P | y | t | h | o | n |
 +---+---+---+---+---+---+
 0 1 2 3 4 5 6
-6 -5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...6 in the string;
the second row gives the corresponding negative indices. The slice from i to
j consists of all characters between the edges labeled i and j,
respectively.

For non-negative indices, the length of a slice is the difference of the
indices, if both are within bounds. For example, the length of word[1:3] is
2.

Attempting to use an index that is too large will result in an error:

>>> word[42] # the word only has 6 characters
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range

However, out of range slice indexes are handled gracefully when used for
slicing:

>>> word[4:42]
'on'
>>> word[42:]
''

Python strings cannot be changed — they are immutable.
Therefore, assigning to an indexed position in the string results in an error:

>>> word[0] = 'J'
 ...
TypeError: 'str' object does not support item assignment
>>> word[2:] = 'py'
 ...
TypeError: 'str' object does not support item assignment

If you need a different string, you should create a new one:

>>> 'J' + word[1:]
'Jython'
>>> word[:2] + 'py'
'Pypy'

The built-in function len() returns the length of a string:

>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34

See also

	Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange

	Strings, and the Unicode strings described in the next section, are
examples of sequence types, and support the common operations supported
by such types.

	String Methods

	Both strings and Unicode strings support a large number of methods for
basic transformations and searching.

	Format String Syntax

	Information about string formatting with str.format().

	String Formatting Operations

	The old formatting operations invoked when strings and Unicode strings are
the left operand of the % operator are described in more detail here.

3.1.3. Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to
the programmer: the Unicode object. It can be used to store and manipulate
Unicode data (see http://www.unicode.org/) and integrates well with the existing
string objects, providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every
script used in modern and ancient texts. Previously, there were only 256
possible ordinals for script characters. Texts were typically bound to a code
page which mapped the ordinals to script characters. This lead to very much
confusion especially with respect to internationalization (usually written as
i18n — 'i' + 18 characters + 'n') of software. Unicode solves
these problems by defining one code page for all scripts.

Creating Unicode strings in Python is just as simple as creating normal
strings:

>>> u'Hello World !'
u'Hello World !'

The small 'u' in front of the quote indicates that a Unicode string is
supposed to be created. If you want to include special characters in the string,
you can do so by using the Python Unicode-Escape encoding. The following
example shows how:

>>> u'Hello\u0020World !'
u'Hello World !'

The escape sequence \u0020 indicates to insert the Unicode character with
the ordinal value 0x0020 (the space character) at the given position.

Other characters are interpreted by using their respective ordinal values
directly as Unicode ordinals. If you have literal strings in the standard
Latin-1 encoding that is used in many Western countries, you will find it
convenient that the lower 256 characters of Unicode are the same as the 256
characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You
have to prefix the opening quote with ‘ur’ to have Python use the
Raw-Unicode-Escape encoding. It will only apply the above \uXXXX
conversion if there is an uneven number of backslashes in front of the small
‘u’.

>>> ur'Hello\u0020World !'
u'Hello World !'
>>> ur'Hello\\u0020World !'
u'Hello\\\\u0020World !'

The raw mode is most useful when you have to enter lots of backslashes, as can
be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways
of creating Unicode strings on the basis of a known encoding.

The built-in function unicode() provides access to all registered Unicode
codecs (COders and DECoders). Some of the more well known encodings which these
codecs can convert are Latin-1, ASCII, UTF-8, and UTF-16. The latter two
are variable-length encodings that store each Unicode character in one or more
bytes. The default encoding is normally set to ASCII, which passes through
characters in the range 0 to 127 and rejects any other characters with an error.
When a Unicode string is printed, written to a file, or converted with
str(), conversion takes place using this default encoding.

>>> u"abc"
u'abc'
>>> str(u"abc")
'abc'
>>> u"äöü"
u'\xe4\xf6\xfc'
>>> str(u"äöü")
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-2: ordinal not in range(128)

To convert a Unicode string into an 8-bit string using a specific encoding,
Unicode objects provide an encode() method that takes one argument, the
name of the encoding. Lowercase names for encodings are preferred.

>>> u"äöü".encode('utf-8')
'\xc3\xa4\xc3\xb6\xc3\xbc'

If you have data in a specific encoding and want to produce a corresponding
Unicode string from it, you can use the unicode() function with the
encoding name as the second argument.

>>> unicode('\xc3\xa4\xc3\xb6\xc3\xbc', 'utf-8')
u'\xe4\xf6\xfc'

3.1.4. Lists

Python knows a number of compound data types, used to group together other
values. The most versatile is the list, which can be written as a list of
comma-separated values (items) between square brackets. Lists might contain
items of different types, but usually the items all have the same type.

>>> squares = [1, 4, 9, 16, 25]
>>> squares
[1, 4, 9, 16, 25]

Like strings (and all other built-in sequence type), lists can be
indexed and sliced:

>>> squares[0] # indexing returns the item
1
>>> squares[-1]
25
>>> squares[-3:] # slicing returns a new list
[9, 16, 25]

All slice operations return a new list containing the requested elements. This
means that the following slice returns a new (shallow) copy of the list:

>>> squares[:]
[1, 4, 9, 16, 25]

Lists also supports operations like concatenation:

>>> squares + [36, 49, 64, 81, 100]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Unlike strings, which are immutable, lists are a mutable
type, i.e. it is possible to change their content:

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here
>>> 4 ** 3 # the cube of 4 is 64, not 65!
64
>>> cubes[3] = 64 # replace the wrong value
>>> cubes
[1, 8, 27, 64, 125]

You can also add new items at the end of the list, by using
the append() method (we will see more about methods later):

>>> cubes.append(216) # add the cube of 6
>>> cubes.append(7 ** 3) # and the cube of 7
>>> cubes
[1, 8, 27, 64, 125, 216, 343]

Assignment to slices is also possible, and this can even change the size of the
list or clear it entirely:

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> letters
['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> # replace some values
>>> letters[2:5] = ['C', 'D', 'E']
>>> letters
['a', 'b', 'C', 'D', 'E', 'f', 'g']
>>> # now remove them
>>> letters[2:5] = []
>>> letters
['a', 'b', 'f', 'g']
>>> # clear the list by replacing all the elements with an empty list
>>> letters[:] = []
>>> letters
[]

The built-in function len() also applies to lists:

>>> letters = ['a', 'b', 'c', 'd']
>>> len(letters)
4

It is possible to nest lists (create lists containing other lists), for
example:

>>> a = ['a', 'b', 'c']
>>> n = [1, 2, 3]
>>> x = [a, n]
>>> x
[['a', 'b', 'c'], [1, 2, 3]]
>>> x[0]
['a', 'b', 'c']
>>> x[0][1]
'b'

3.2. First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two
together. For instance, we can write an initial sub-sequence of the Fibonacci
series as follows:

>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
... print b
... a, b = b, a+b
...
1
1
2
3
5
8

This example introduces several new features.

	The first line contains a multiple assignment: the variables a and b
simultaneously get the new values 0 and 1. On the last line this is used again,
demonstrating that the expressions on the right-hand side are all evaluated
first before any of the assignments take place. The right-hand side expressions
are evaluated from the left to the right.

	The while loop executes as long as the condition (here: b < 10)
remains true. In Python, like in C, any non-zero integer value is true; zero is
false. The condition may also be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequences are false. The test
used in the example is a simple comparison. The standard comparison operators
are written the same as in C: < (less than), > (greater than), ==
(equal to), <= (less than or equal to), >= (greater than or equal to)
and != (not equal to).

	The body of the loop is indented: indentation is Python’s way of grouping
statements. At the interactive prompt, you have to type a tab or space(s) for
each indented line. In practice you will prepare more complicated input
for Python with a text editor; all decent text editors have an auto-indent
facility. When a compound statement is entered interactively, it must be
followed by a blank line to indicate completion (since the parser cannot
guess when you have typed the last line). Note that each line within a basic
block must be indented by the same amount.

	The print statement writes the value of the expression(s) it is
given. It differs from just writing the expression you want to write (as we did
earlier in the calculator examples) in the way it handles multiple expressions
and strings. Strings are printed without quotes, and a space is inserted
between items, so you can format things nicely, like this:

>>> i = 256*256
>>> print 'The value of i is', i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>> a, b = 0, 1
>>> while b < 1000:
... print b,
... a, b = b, a+b
...
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if
the last line was not completed.

Footnotes

	[1]	Since ** has higher precedence than -, -3**2 will be
interpreted as -(3**2) and thus result in -9. To avoid this
and get 9, you can use (-3)**2.

	[2]	Unlike other languages, special characters such as \n have the
same meaning with both single ('...') and double ("...") quotes.
The only difference between the two is that within single quotes you don’t
need to escape " (but you have to escape \') and vice versa.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

4. More Control Flow Tools

Besides the while statement just introduced, Python knows the usual
control flow statements known from other languages, with some twists.

4.1. if Statements

Perhaps the most well-known statement type is the if statement. For
example:

>>> x = int(raw_input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... x = 0
... print 'Negative changed to zero'
... elif x == 0:
... print 'Zero'
... elif x == 1:
... print 'Single'
... else:
... print 'More'
...
More

There can be zero or more elif parts, and the else part is
optional. The keyword ‘elif‘ is short for ‘else if’, and is useful
to avoid excessive indentation. An if ... elif ...
elif ... sequence is a substitute for the switch or
case statements found in other languages.

4.2. for Statements

The for statement in Python differs a bit from what you may be used
to in C or Pascal. Rather than always iterating over an arithmetic progression
of numbers (like in Pascal), or giving the user the ability to define both the
iteration step and halting condition (as C), Python’s for statement
iterates over the items of any sequence (a list or a string), in the order that
they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
... print w, len(w)
...
cat 3
window 6
defenestrate 12

If you need to modify the sequence you are iterating over while inside the loop
(for example to duplicate selected items), it is recommended that you first
make a copy. Iterating over a sequence does not implicitly make a copy. The
slice notation makes this especially convenient:

>>> for w in words[:]: # Loop over a slice copy of the entire list.
... if len(w) > 6:
... words.insert(0, w)
...
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']

4.3. The range() Function

If you do need to iterate over a sequence of numbers, the built-in function
range() comes in handy. It generates lists containing arithmetic
progressions:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; range(10) generates
a list of 10 values, the legal indices for items of a sequence of length 10. It
is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the ‘step’):

>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, you can combine range() and
len() as follows:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
... print i, a[i]
...
0 Mary
1 had
2 a
3 little
4 lamb

In most such cases, however, it is convenient to use the enumerate()
function, see Looping Techniques.

4.4. break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the smallest enclosing
for or while loop.

Loop statements may have an else clause; it is executed when the loop
terminates through exhaustion of the list (with for) or when the
condition becomes false (with while), but not when the loop is
terminated by a break statement. This is exemplified by the
following loop, which searches for prime numbers:

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print n, 'equals', x, '*', n/x
... break
... else:
... # loop fell through without finding a factor
... print n, 'is a prime number'
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

(Yes, this is the correct code. Look closely: the else clause belongs to
the for loop, not the if statement.)

When used with a loop, the else clause has more in common with the
else clause of a try statement than it does that of
if statements: a try statement’s else clause runs
when no exception occurs, and a loop’s else clause runs when no break
occurs. For more on the try statement and exceptions, see
Handling Exceptions.

The continue statement, also borrowed from C, continues with the next
iteration of the loop:

>>> for num in range(2, 10):
... if num % 2 == 0:
... print "Found an even number", num
... continue
... print "Found a number", num
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9

4.5. pass Statements

The pass statement does nothing. It can be used when a statement is
required syntactically but the program requires no action. For example:

>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)
...

This is commonly used for creating minimal classes:

>>> class MyEmptyClass:
... pass
...

Another place pass can be used is as a place-holder for a function or
conditional body when you are working on new code, allowing you to keep thinking
at a more abstract level. The pass is silently ignored:

>>> def initlog(*args):
... pass # Remember to implement this!
...

4.6. Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary
boundary:

>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while a < n:
... print a,
... a, b = b, a+b
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be
followed by the function name and the parenthesized list of formal parameters.
The statements that form the body of the function start at the next line, and
must be indented.

The first statement of the function body can optionally be a string literal;
this string literal is the function’s documentation string, or docstring.
(More about docstrings can be found in the section Documentation Strings.)
There are tools which use docstrings to automatically produce online or printed
documentation, or to let the user interactively browse through code; it’s good
practice to include docstrings in code that you write, so make a habit of it.

The execution of a function introduces a new symbol table used for the local
variables of the function. More precisely, all variable assignments in a
function store the value in the local symbol table; whereas variable references
first look in the local symbol table, then in the local symbol tables of
enclosing functions, then in the global symbol table, and finally in the table
of built-in names. Thus, global variables cannot be directly assigned a value
within a function (unless named in a global statement), although they
may be referenced.

The actual parameters (arguments) to a function call are introduced in the local
symbol table of the called function when it is called; thus, arguments are
passed using call by value (where the value is always an object reference,
not the value of the object). [1] When a function calls another function, a new
local symbol table is created for that call.

A function definition introduces the function name in the current symbol table.
The value of the function name has a type that is recognized by the interpreter
as a user-defined function. This value can be assigned to another name which
can then also be used as a function. This serves as a general renaming
mechanism:

>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89

Coming from other languages, you might object that fib is not a function but
a procedure since it doesn’t return a value. In fact, even functions without a
return statement do return a value, albeit a rather boring one. This
value is called None (it’s a built-in name). Writing the value None is
normally suppressed by the interpreter if it would be the only value written.
You can see it if you really want to using print:

>>> fib(0)
>>> print fib(0)
None

It is simple to write a function that returns a list of the numbers of the
Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while a < n:
... result.append(a) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

	The return statement returns with a value from a function.
return without an expression argument returns None. Falling off
the end of a function also returns None.

	The statement result.append(a) calls a method of the list object
result. A method is a function that ‘belongs’ to an object and is named
obj.methodname, where obj is some object (this may be an expression),
and methodname is the name of a method that is defined by the object’s type.
Different types define different methods. Methods of different types may have
the same name without causing ambiguity. (It is possible to define your own
object types and methods, using classes, see Classes)
The method append() shown in the example is defined for list objects; it
adds a new element at the end of the list. In this example it is equivalent to
result = result + [a], but more efficient.

4.7. More on Defining Functions

It is also possible to define functions with a variable number of arguments.
There are three forms, which can be combined.

4.7.1. Default Argument Values

The most useful form is to specify a default value for one or more arguments.
This creates a function that can be called with fewer arguments than it is
defined to allow. For example:

def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):
 while True:
 ok = raw_input(prompt)
 if ok in ('y', 'ye', 'yes'):
 return True
 if ok in ('n', 'no', 'nop', 'nope'):
 return False
 retries = retries - 1
 if retries < 0:
 raise IOError('refusenik user')
 print complaint

This function can be called in several ways:

	giving only the mandatory argument:
ask_ok('Do you really want to quit?')

	giving one of the optional arguments:
ask_ok('OK to overwrite the file?', 2)

	or even giving all arguments:
ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!')

This example also introduces the in keyword. This tests whether or
not a sequence contains a certain value.

The default values are evaluated at the point of function definition in the
defining scope, so that

i = 5

def f(arg=i):
 print arg

i = 6
f()

will print 5.

Important warning: The default value is evaluated only once. This makes a
difference when the default is a mutable object such as a list, dictionary, or
instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
 L.append(a)
 return L

print f(1)
print f(2)
print f(3)

This will print

[1]
[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can
write the function like this instead:

def f(a, L=None):
 if L is None:
 L = []
 L.append(a)
 return L

4.7.2. Keyword Arguments

Functions can also be called using keyword arguments
of the form kwarg=value. For instance, the following function:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
 print "-- This parrot wouldn't", action,
 print "if you put", voltage, "volts through it."
 print "-- Lovely plumage, the", type
 print "-- It's", state, "!"

accepts one required argument (voltage) and three optional arguments
(state, action, and type). This function can be called in any
of the following ways:

parrot(1000) # 1 positional argument
parrot(voltage=1000) # 1 keyword argument
parrot(voltage=1000000, action='VOOOOOM') # 2 keyword arguments
parrot(action='VOOOOOM', voltage=1000000) # 2 keyword arguments
parrot('a million', 'bereft of life', 'jump') # 3 positional arguments
parrot('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword

but all the following calls would be invalid:

parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument after a keyword argument
parrot(110, voltage=220) # duplicate value for the same argument
parrot(actor='John Cleese') # unknown keyword argument

In a function call, keyword arguments must follow positional arguments.
All the keyword arguments passed must match one of the arguments
accepted by the function (e.g. actor is not a valid argument for the
parrot function), and their order is not important. This also includes
non-optional arguments (e.g. parrot(voltage=1000) is valid too).
No argument may receive a value more than once.
Here’s an example that fails due to this restriction:

>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument 'a'

When a final formal parameter of the form **name is present, it receives a
dictionary (see Mapping Types — dict) containing all keyword arguments except for
those corresponding to a formal parameter. This may be combined with a formal
parameter of the form *name (described in the next subsection) which
receives a tuple containing the positional arguments beyond the formal parameter
list. (*name must occur before **name.) For example, if we define a
function like this:

def cheeseshop(kind, *arguments, **keywords):
 print "-- Do you have any", kind, "?"
 print "-- I'm sorry, we're all out of", kind
 for arg in arguments:
 print arg
 print "-" * 40
 keys = sorted(keywords.keys())
 for kw in keys:
 print kw, ":", keywords[kw]

It could be called like this:

cheeseshop("Limburger", "It's very runny, sir.",
 "It's really very, VERY runny, sir.",
 shopkeeper='Michael Palin',
 client="John Cleese",
 sketch="Cheese Shop Sketch")

and of course it would print:

-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
--
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that the list of keyword argument names is created by sorting the result
of the keywords dictionary’s keys() method before printing its contents;
if this is not done, the order in which the arguments are printed is undefined.

4.7.3. Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be
called with an arbitrary number of arguments. These arguments will be wrapped
up in a tuple (see Tuples and Sequences). Before the variable number of arguments,
zero or more normal arguments may occur.

def write_multiple_items(file, separator, *args):
 file.write(separator.join(args))

4.7.4. Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple
but need to be unpacked for a function call requiring separate positional
arguments. For instance, the built-in range() function expects separate
start and stop arguments. If they are not available separately, write the
function call with the *-operator to unpack the arguments out of a list
or tuple:

>>> range(3, 6) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> range(*args) # call with arguments unpacked from a list
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the **-operator:

>>> def parrot(voltage, state='a stiff', action='voom'):
... print "-- This parrot wouldn't", action,
... print "if you put", voltage, "volts through it.",
... print "E's", state, "!"
...
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !

4.7.5. Lambda Expressions

Small anonymous functions can be created with the lambda keyword.
This function returns the sum of its two arguments: lambda a, b: a+b.
Lambda functions can be used wherever function objects are required. They are
syntactically restricted to a single expression. Semantically, they are just
syntactic sugar for a normal function definition. Like nested function
definitions, lambda functions can reference variables from the containing
scope:

>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

The above example uses a lambda expression to return a function. Another use
is to pass a small function as an argument:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort(key=lambda pair: pair[1])
>>> pairs
[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]

4.7.6. Documentation Strings

There are emerging conventions about the content and formatting of documentation
strings.

The first line should always be a short, concise summary of the object’s
purpose. For brevity, it should not explicitly state the object’s name or type,
since these are available by other means (except if the name happens to be a
verb describing a function’s operation). This line should begin with a capital
letter and end with a period.

If there are more lines in the documentation string, the second line should be
blank, visually separating the summary from the rest of the description. The
following lines should be one or more paragraphs describing the object’s calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in
Python, so tools that process documentation have to strip indentation if
desired. This is done using the following convention. The first non-blank line
after the first line of the string determines the amount of indentation for
the entire documentation string. (We can’t use the first line since it is
generally adjacent to the string’s opening quotes so its indentation is not
apparent in the string literal.) Whitespace “equivalent” to this indentation is
then stripped from the start of all lines of the string. Lines that are
indented less should not occur, but if they occur all their leading whitespace
should be stripped. Equivalence of whitespace should be tested after expansion
of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn't do anything.
... """
... pass
...
>>> print my_function.__doc__
Do nothing, but document it.

 No, really, it doesn't do anything.

4.8. Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a
good time to talk about coding style. Most languages can be written (or more
concise, formatted) in different styles; some are more readable than others.
Making it easy for others to read your code is always a good idea, and adopting
a nice coding style helps tremendously for that.

For Python, PEP 8 [https://www.python.org/dev/peps/pep-0008] has emerged as the style guide that most projects adhere to;
it promotes a very readable and eye-pleasing coding style. Every Python
developer should read it at some point; here are the most important points
extracted for you:

	Use 4-space indentation, and no tabs.

4 spaces are a good compromise between small indentation (allows greater
nesting depth) and large indentation (easier to read). Tabs introduce
confusion, and are best left out.

	Wrap lines so that they don’t exceed 79 characters.

This helps users with small displays and makes it possible to have several
code files side-by-side on larger displays.

	Use blank lines to separate functions and classes, and larger blocks of
code inside functions.

	When possible, put comments on a line of their own.

	Use docstrings.

	Use spaces around operators and after commas, but not directly inside
bracketing constructs: a = f(1, 2) + g(3, 4).

	Name your classes and functions consistently; the convention is to use
CamelCase for classes and lower_case_with_underscores for functions
and methods. Always use self as the name for the first method argument
(see A First Look at Classes for more on classes and methods).

	Don’t use fancy encodings if your code is meant to be used in international
environments. Plain ASCII works best in any case.

Footnotes

	[1]	Actually, call by object reference would be a better description,
since if a mutable object is passed, the caller will see any changes the
callee makes to it (items inserted into a list).

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

5. Data Structures

This chapter describes some things you’ve learned about already in more detail,
and adds some new things as well.

5.1. More on Lists

The list data type has some more methods. Here are all of the methods of list
objects:

	
list.append(x)

	Add an item to the end of the list; equivalent to a[len(a):] = [x].

	
list.extend(L)

	Extend the list by appending all the items in the given list; equivalent to
a[len(a):] = L.

	
list.insert(i, x)

	Insert an item at a given position. The first argument is the index of the
element before which to insert, so a.insert(0, x) inserts at the front of
the list, and a.insert(len(a), x) is equivalent to a.append(x).

	
list.remove(x)

	Remove the first item from the list whose value is x. It is an error if there
is no such item.

	
list.pop([i])

	Remove the item at the given position in the list, and return it. If no index
is specified, a.pop() removes and returns the last item in the list. (The
square brackets around the i in the method signature denote that the parameter
is optional, not that you should type square brackets at that position. You
will see this notation frequently in the Python Library Reference.)

	
list.index(x)

	Return the index in the list of the first item whose value is x. It is an
error if there is no such item.

	
list.count(x)

	Return the number of times x appears in the list.

	
list.sort(cmp=None, key=None, reverse=False)

	Sort the items of the list in place (the arguments can be used for sort
customization, see sorted() for their explanation).

	
list.reverse()

	Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.25), a.count('x')
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]
>>> a.pop()
1234.5
>>> a
[-1, 1, 66.25, 333, 333]

You might have noticed that methods like insert, remove or sort that
only modify the list have no return value printed – they return the default
None. [1] This is a design principle for all mutable data structures in
Python.

5.1.1. Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last
element added is the first element retrieved (“last-in, first-out”). To add an
item to the top of the stack, use append(). To retrieve an item from the
top of the stack, use pop() without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

5.1.2. Using Lists as Queues

It is also possible to use a list as a queue, where the first element added is
the first element retrieved (“first-in, first-out”); however, lists are not
efficient for this purpose. While appends and pops from the end of list are
fast, doing inserts or pops from the beginning of a list is slow (because all
of the other elements have to be shifted by one).

To implement a queue, use collections.deque which was designed to
have fast appends and pops from both ends. For example:

>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
'Eric'
>>> queue.popleft() # The second to arrive now leaves
'John'
>>> queue # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])

5.1.3. Functional Programming Tools

There are three built-in functions that are very useful when used with lists:
filter(), map(), and reduce().

filter(function, sequence) returns a sequence consisting of those items from
the sequence for which function(item) is true. If sequence is a
str, unicode or tuple, the result will be of the
same type; otherwise, it is always a list. For example, to compute a
sequence of numbers divisible by 3 or 5:

>>> def f(x): return x % 3 == 0 or x % 5 == 0
...
>>> filter(f, range(2, 25))
[3, 5, 6, 9, 10, 12, 15, 18, 20, 21, 24]

map(function, sequence) calls function(item) for each of the sequence’s
items and returns a list of the return values. For example, to compute some
cubes:

>>> def cube(x): return x*x*x
...
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many
arguments as there are sequences and is called with the corresponding item from
each sequence (or None if some sequence is shorter than another). For
example:

>>> seq = range(8)
>>> def add(x, y): return x+y
...
>>> map(add, seq, seq)
[0, 2, 4, 6, 8, 10, 12, 14]

reduce(function, sequence) returns a single value constructed by calling the
binary function function on the first two items of the sequence, then on the
result and the next item, and so on. For example, to compute the sum of the
numbers 1 through 10:

>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55

If there’s only one item in the sequence, its value is returned; if the sequence
is empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the
starting value is returned for an empty sequence, and the function is first
applied to the starting value and the first sequence item, then to the result
and the next item, and so on. For example,

>>> def sum(seq):
... def add(x,y): return x+y
... return reduce(add, seq, 0)
...
>>> sum(range(1, 11))
55
>>> sum([])
0

Don’t use this example’s definition of sum(): since summing numbers is
such a common need, a built-in function sum(sequence) is already provided,
and works exactly like this.

5.1.4. List Comprehensions

List comprehensions provide a concise way to create lists.
Common applications are to make new lists where each element is the result of
some operations applied to each member of another sequence or iterable, or to
create a subsequence of those elements that satisfy a certain condition.

For example, assume we want to create a list of squares, like:

>>> squares = []
>>> for x in range(10):
... squares.append(x**2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

We can obtain the same result with:

squares = [x**2 for x in range(10)]

This is also equivalent to squares = map(lambda x: x**2, range(10)),
but it’s more concise and readable.

A list comprehension consists of brackets containing an expression followed
by a for clause, then zero or more for or if
clauses. The result will be a new list resulting from evaluating the expression
in the context of the for and if clauses which follow it.
For example, this listcomp combines the elements of two lists if they are not
equal:

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

and it’s equivalent to:

>>> combs = []
>>> for x in [1,2,3]:
... for y in [3,1,4]:
... if x != y:
... combs.append((x, y))
...
>>> combs
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

Note how the order of the for and if statements is the
same in both these snippets.

If the expression is a tuple (e.g. the (x, y) in the previous example),
it must be parenthesized.

>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
[4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range(6)]
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error is raised
>>> [x, x**2 for x in range(6)]
 File "<stdin>", line 1
 [x, x**2 for x in range(6)]
 ^
SyntaxError: invalid syntax
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,3], [4,5,6], [7,8,9]]
>>> [num for elem in vec for num in elem]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

List comprehensions can contain complex expressions and nested functions:

>>> from math import pi
>>> [str(round(pi, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

5.1.4.1. Nested List Comprehensions

The initial expression in a list comprehension can be any arbitrary expression,
including another list comprehension.

Consider the following example of a 3x4 matrix implemented as a list of
3 lists of length 4:

>>> matrix = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
...]

The following list comprehension will transpose rows and columns:

>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

As we saw in the previous section, the nested listcomp is evaluated in
the context of the for that follows it, so this example is
equivalent to:

>>> transposed = []
>>> for i in range(4):
... transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

which, in turn, is the same as:

>>> transposed = []
>>> for i in range(4):
... # the following 3 lines implement the nested listcomp
... transposed_row = []
... for row in matrix:
... transposed_row.append(row[i])
... transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

In the real world, you should prefer built-in functions to complex flow statements.
The zip() function would do a great job for this use case:

>>> zip(*matrix)
[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

See Unpacking Argument Lists for details on the asterisk in this line.

5.2. The del statement

There is a way to remove an item from a list given its index instead of its
value: the del statement. This differs from the pop() method
which returns a value. The del statement can also be used to remove
slices from a list or clear the entire list (which we did earlier by assignment
of an empty list to the slice). For example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

del can also be used to delete entire variables:

>>> del a

Referencing the name a hereafter is an error (at least until another value
is assigned to it). We’ll find other uses for del later.

5.3. Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and
slicing operations. They are two examples of sequence data types (see
Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange). Since Python is an evolving language, other sequence data
types may be added. There is also another standard sequence data type: the
tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:
... t[0] = 88888
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> # but they can contain mutable objects:
... v = ([1, 2, 3], [3, 2, 1])
>>> v
([1, 2, 3], [3, 2, 1])

As you see, on output tuples are always enclosed in parentheses, so that nested
tuples are interpreted correctly; they may be input with or without surrounding
parentheses, although often parentheses are necessary anyway (if the tuple is
part of a larger expression). It is not possible to assign to the individual
items of a tuple, however it is possible to create tuples which contain mutable
objects, such as lists.

Though tuples may seem similar to lists, they are often used in different
situations and for different purposes.
Tuples are immutable, and usually contain a heterogeneous sequence of
elements that are accessed via unpacking (see later in this section) or indexing
(or even by attribute in the case of namedtuples).
Lists are mutable, and their elements are usually homogeneous and are
accessed by iterating over the list.

A special problem is the construction of tuples containing 0 or 1 items: the
syntax has some extra quirks to accommodate these. Empty tuples are constructed
by an empty pair of parentheses; a tuple with one item is constructed by
following a value with a comma (it is not sufficient to enclose a single value
in parentheses). Ugly, but effective. For example:

>>> empty = ()
>>> singleton = 'hello', # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)

The statement t = 12345, 54321, 'hello!' is an example of tuple packing:
the values 12345, 54321 and 'hello!' are packed together in a tuple.
The reverse operation is also possible:

>>> x, y, z = t

This is called, appropriately enough, sequence unpacking and works for any
sequence on the right-hand side. Sequence unpacking requires the list of
variables on the left to have the same number of elements as the length of the
sequence. Note that multiple assignment is really just a combination of tuple
packing and sequence unpacking.

5.4. Sets

Python also includes a data type for sets. A set is an unordered collection
with no duplicate elements. Basic uses include membership testing and
eliminating duplicate entries. Set objects also support mathematical operations
like union, intersection, difference, and symmetric difference.

Curly braces or the set() function can be used to create sets. Note: to
create an empty set you have to use set(), not {}; the latter creates an
empty dictionary, a data structure that we discuss in the next section.

Here is a brief demonstration:

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> fruit = set(basket) # create a set without duplicates
>>> fruit
set(['orange', 'pear', 'apple', 'banana'])
>>> 'orange' in fruit # fast membership testing
True
>>> 'crabgrass' in fruit
False

>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
set(['a', 'r', 'b', 'c', 'd'])
>>> a - b # letters in a but not in b
set(['r', 'd', 'b'])
>>> a | b # letters in either a or b
set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
>>> a & b # letters in both a and b
set(['a', 'c'])
>>> a ^ b # letters in a or b but not both
set(['r', 'd', 'b', 'm', 'z', 'l'])

Similarly to list comprehensions, set comprehensions
are also supported:

>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
set(['r', 'd'])

5.5. Dictionaries

Another useful data type built into Python is the dictionary (see
Mapping Types — dict). Dictionaries are sometimes found in other languages as
“associative memories” or “associative arrays”. Unlike sequences, which are
indexed by a range of numbers, dictionaries are indexed by keys, which can be
any immutable type; strings and numbers can always be keys. Tuples can be used
as keys if they contain only strings, numbers, or tuples; if a tuple contains
any mutable object either directly or indirectly, it cannot be used as a key.
You can’t use lists as keys, since lists can be modified in place using index
assignments, slice assignments, or methods like append() and
extend().

It is best to think of a dictionary as an unordered set of key: value pairs,
with the requirement that the keys are unique (within one dictionary). A pair of
braces creates an empty dictionary: {}. Placing a comma-separated list of
key:value pairs within the braces adds initial key:value pairs to the
dictionary; this is also the way dictionaries are written on output.

The main operations on a dictionary are storing a value with some key and
extracting the value given the key. It is also possible to delete a key:value
pair with del. If you store using a key that is already in use, the old
value associated with that key is forgotten. It is an error to extract a value
using a non-existent key.

The keys() method of a dictionary object returns a list of all the keys
used in the dictionary, in arbitrary order (if you want it sorted, just apply
the sorted() function to it). To check whether a single key is in the
dictionary, use the in keyword.

Here is a small example using a dictionary:

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()
['guido', 'irv', 'jack']
>>> 'guido' in tel
True

The dict() constructor builds dictionaries directly from sequences of
key-value pairs:

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'jack': 4098, 'guido': 4127}

In addition, dict comprehensions can be used to create dictionaries from
arbitrary key and value expressions:

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

When the keys are simple strings, it is sometimes easier to specify pairs using
keyword arguments:

>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}

5.6. Looping Techniques

When looping through a sequence, the position index and corresponding value can
be retrieved at the same time using the enumerate() function.

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print i, v
...
0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the entries can be paired
with the zip() function.

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print 'What is your {0}? It is {1}.'.format(q, a)
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward
direction and then call the reversed() function.

>>> for i in reversed(xrange(1,10,2)):
... print i
...
9
7
5
3
1

To loop over a sequence in sorted order, use the sorted() function which
returns a new sorted list while leaving the source unaltered.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print f
...
apple
banana
orange
pear

When looping through dictionaries, the key and corresponding value can be
retrieved at the same time using the iteritems() method.

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.iteritems():
... print k, v
...
gallahad the pure
robin the brave

It is sometimes tempting to change a list while you are looping over it;
however, it is often simpler and safer to create a new list instead.

>>> import math
>>> raw_data = [56.2, float('NaN'), 51.7, 55.3, 52.5, float('NaN'), 47.8]
>>> filtered_data = []
>>> for value in raw_data:
... if not math.isnan(value):
... filtered_data.append(value)
...
>>> filtered_data
[56.2, 51.7, 55.3, 52.5, 47.8]

5.7. More on Conditions

The conditions used in while and if statements can contain any
operators, not just comparisons.

The comparison operators in and not in check whether a value occurs
(does not occur) in a sequence. The operators is and is not compare
whether two objects are really the same object; this only matters for mutable
objects like lists. All comparison operators have the same priority, which is
lower than that of all numerical operators.

Comparisons can be chained. For example, a < b == c tests whether a is
less than b and moreover b equals c.

Comparisons may be combined using the Boolean operators and and or, and
the outcome of a comparison (or of any other Boolean expression) may be negated
with not. These have lower priorities than comparison operators; between
them, not has the highest priority and or the lowest, so that A and
not B or C is equivalent to (A and (not B)) or C. As always, parentheses
can be used to express the desired composition.

The Boolean operators and and or are so-called short-circuit
operators: their arguments are evaluated from left to right, and evaluation
stops as soon as the outcome is determined. For example, if A and C are
true but B is false, A and B and C does not evaluate the expression
C. When used as a general value and not as a Boolean, the return value of a
short-circuit operator is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression
to a variable. For example,

>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = string1 or string2 or string3
>>> non_null
'Trondheim'

Note that in Python, unlike C, assignment cannot occur inside expressions. C
programmers may grumble about this, but it avoids a common class of problems
encountered in C programs: typing = in an expression when == was
intended.

5.8. Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type.
The comparison uses lexicographical ordering: first the first two items are
compared, and if they differ this determines the outcome of the comparison; if
they are equal, the next two items are compared, and so on, until either
sequence is exhausted. If two items to be compared are themselves sequences of
the same type, the lexicographical comparison is carried out recursively. If
all items of two sequences compare equal, the sequences are considered equal.
If one sequence is an initial sub-sequence of the other, the shorter sequence is
the smaller (lesser) one. Lexicographical ordering for strings uses the ASCII
ordering for individual characters. Some examples of comparisons between
sequences of the same type:

(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)

Note that comparing objects of different types is legal. The outcome is
deterministic but arbitrary: the types are ordered by their name. Thus, a list
is always smaller than a string, a string is always smaller than a tuple, etc.
[1] Mixed numeric types are compared according to their numeric value, so 0
equals 0.0, etc.

Footnotes

	[1]	The rules for comparing objects of different types should not be relied upon;
they may change in a future version of the language.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

6. Modules

If you quit from the Python interpreter and enter it again, the definitions you
have made (functions and variables) are lost. Therefore, if you want to write a
somewhat longer program, you are better off using a text editor to prepare the
input for the interpreter and running it with that file as input instead. This
is known as creating a script. As your program gets longer, you may want to
split it into several files for easier maintenance. You may also want to use a
handy function that you’ve written in several programs without copying its
definition into each program.

To support this, Python has a way to put definitions in a file and use them in a
script or in an interactive instance of the interpreter. Such a file is called a
module; definitions from a module can be imported into other modules or into
the main module (the collection of variables that you have access to in a
script executed at the top level and in calculator mode).

A module is a file containing Python definitions and statements. The file name
is the module name with the suffix .py appended. Within a module, the
module’s name (as a string) is available as the value of the global variable
__name__. For instance, use your favorite text editor to create a file
called fibo.py in the current directory with the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
 a, b = 0, 1
 while b < n:
 print b,
 a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
 result = []
 a, b = 0, 1
 while b < n:
 result.append(b)
 a, b = b, a+b
 return result

Now enter the Python interpreter and import this module with the following
command:

>>> import fibo

This does not enter the names of the functions defined in fibo directly in
the current symbol table; it only enters the module name fibo there. Using
the module name you can access the functions:

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1. More on Modules

A module can contain executable statements as well as function definitions.
These statements are intended to initialize the module. They are executed only
the first time the module name is encountered in an import statement. [1]
(They are also run if the file is executed as a script.)

Each module has its own private symbol table, which is used as the global symbol
table by all functions defined in the module. Thus, the author of a module can
use global variables in the module without worrying about accidental clashes
with a user’s global variables. On the other hand, if you know what you are
doing you can touch a module’s global variables with the same notation used to
refer to its functions, modname.itemname.

Modules can import other modules. It is customary but not required to place all
import statements at the beginning of a module (or script, for that
matter). The imported module names are placed in the importing module’s global
symbol table.

There is a variant of the import statement that imports names from a
module directly into the importing module’s symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the
local symbol table (so in the example, fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_).

Note that in general the practice of importing * from a module or package is
frowned upon, since it often causes poorly readable code. However, it is okay to
use it to save typing in interactive sessions.

Note

For efficiency reasons, each module is only imported once per interpreter
session. Therefore, if you change your modules, you must restart the
interpreter – or, if it’s just one module you want to test interactively,
use reload(), e.g. reload(modulename).

6.1.1. Executing modules as scripts

When you run a Python module with

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with
the __name__ set to "__main__". That means that by adding this code at
the end of your module:

if __name__ == "__main__":
 import sys
 fib(int(sys.argv[1]))

you can make the file usable as a script as well as an importable module,
because the code that parses the command line only runs if the module is
executed as the “main” file:

$ python fibo.py 50
1 1 2 3 5 8 13 21 34

If the module is imported, the code is not run:

>>> import fibo
>>>

This is often used either to provide a convenient user interface to a module, or
for testing purposes (running the module as a script executes a test suite).

6.1.2. The Module Search Path

When a module named spam is imported, the interpreter first searches for
a built-in module with that name. If not found, it then searches for a file
named spam.py in a list of directories given by the variable
sys.path. sys.path is initialized from these locations:

	the directory containing the input script (or the current directory).

	PYTHONPATH (a list of directory names, with the same syntax as the
shell variable PATH).

	the installation-dependent default.

After initialization, Python programs can modify sys.path. The
directory containing the script being run is placed at the beginning of the
search path, ahead of the standard library path. This means that scripts in that
directory will be loaded instead of modules of the same name in the library
directory. This is an error unless the replacement is intended. See section
Standard Modules for more information.

6.1.3. “Compiled” Python files

As an important speed-up of the start-up time for short programs that use a lot
of standard modules, if a file called spam.pyc exists in the directory
where spam.py is found, this is assumed to contain an
already-“byte-compiled” version of the module spam. The modification time
of the version of spam.py used to create spam.pyc is recorded in
spam.pyc, and the .pyc file is ignored if these don’t match.

Normally, you don’t need to do anything to create the spam.pyc file.
Whenever spam.py is successfully compiled, an attempt is made to write
the compiled version to spam.pyc. It is not an error if this attempt
fails; if for any reason the file is not written completely, the resulting
spam.pyc file will be recognized as invalid and thus ignored later. The
contents of the spam.pyc file are platform independent, so a Python
module directory can be shared by machines of different architectures.

Some tips for experts:

	When the Python interpreter is invoked with the -O flag, optimized
code is generated and stored in .pyo files. The optimizer currently
doesn’t help much; it only removes assert statements. When
-O is used, all bytecode is optimized; .pyc files are
ignored and .py files are compiled to optimized bytecode.

	Passing two -O flags to the Python interpreter (-OO) will
cause the bytecode compiler to perform optimizations that could in some rare
cases result in malfunctioning programs. Currently only __doc__ strings are
removed from the bytecode, resulting in more compact .pyo files. Since
some programs may rely on having these available, you should only use this
option if you know what you’re doing.

	A program doesn’t run any faster when it is read from a .pyc or
.pyo file than when it is read from a .py file; the only thing
that’s faster about .pyc or .pyo files is the speed with which
they are loaded.

	When a script is run by giving its name on the command line, the bytecode for
the script is never written to a .pyc or .pyo file. Thus, the
startup time of a script may be reduced by moving most of its code to a module
and having a small bootstrap script that imports that module. It is also
possible to name a .pyc or .pyo file directly on the command
line.

	It is possible to have a file called spam.pyc (or spam.pyo
when -O is used) without a file spam.py for the same module.
This can be used to distribute a library of Python code in a form that is
moderately hard to reverse engineer.

	The module compileall can create .pyc files (or .pyo
files when -O is used) for all modules in a directory.

6.2. Standard Modules

Python comes with a library of standard modules, described in a separate
document, the Python Library Reference (“Library Reference” hereafter). Some
modules are built into the interpreter; these provide access to operations that
are not part of the core of the language but are nevertheless built in, either
for efficiency or to provide access to operating system primitives such as
system calls. The set of such modules is a configuration option which also
depends on the underlying platform. For example, the winreg module is only
provided on Windows systems. One particular module deserves some attention:
sys, which is built into every Python interpreter. The variables
sys.ps1 and sys.ps2 define the strings used as primary and secondary
prompts:

>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>> sys.ps1 = 'C> '
C> print 'Yuck!'
Yuck!
C>

These two variables are only defined if the interpreter is in interactive mode.

The variable sys.path is a list of strings that determines the interpreter’s
search path for modules. It is initialized to a default path taken from the
environment variable PYTHONPATH, or from a built-in default if
PYTHONPATH is not set. You can modify it using standard list
operations:

>>> import sys
>>> sys.path.append('/ufs/guido/lib/python')

6.3. The dir() Function

The built-in function dir() is used to find out which names a module
defines. It returns a sorted list of strings:

>>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__name__', '__package__',
 '__stderr__', '__stdin__', '__stdout__', '_clear_type_cache',
 '_current_frames', '_getframe', '_mercurial', 'api_version', 'argv',
 'builtin_module_names', 'byteorder', 'call_tracing', 'callstats',
 'copyright', 'displayhook', 'dont_write_bytecode', 'exc_clear', 'exc_info',
 'exc_traceback', 'exc_type', 'exc_value', 'excepthook', 'exec_prefix',
 'executable', 'exit', 'flags', 'float_info', 'float_repr_style',
 'getcheckinterval', 'getdefaultencoding', 'getdlopenflags',
 'getfilesystemencoding', 'getobjects', 'getprofile', 'getrecursionlimit',
 'getrefcount', 'getsizeof', 'gettotalrefcount', 'gettrace', 'hexversion',
 'long_info', 'maxint', 'maxsize', 'maxunicode', 'meta_path', 'modules',
 'path', 'path_hooks', 'path_importer_cache', 'platform', 'prefix', 'ps1',
 'py3kwarning', 'setcheckinterval', 'setdlopenflags', 'setprofile',
 'setrecursionlimit', 'settrace', 'stderr', 'stdin', 'stdout', 'subversion',
 'version', 'version_info', 'warnoptions']

Without arguments, dir() lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir()
['__builtins__', '__name__', '__package__', 'a', 'fib', 'fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you
want a list of those, they are defined in the standard module
__builtin__:

>>> import __builtin__
>>> dir(__builtin__)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
 'BufferError', 'BytesWarning', 'DeprecationWarning', 'EOFError',
 'Ellipsis', 'EnvironmentError', 'Exception', 'False', 'FloatingPointError',
 'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning',
 'IndentationError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
 'LookupError', 'MemoryError', 'NameError', 'None', 'NotImplemented',
 'NotImplementedError', 'OSError', 'OverflowError',
 'PendingDeprecationWarning', 'ReferenceError', 'RuntimeError',
 'RuntimeWarning', 'StandardError', 'StopIteration', 'SyntaxError',
 'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'True',
 'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',
 'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
 'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning',
 'ZeroDivisionError', '_', '__debug__', '__doc__', '__import__',
 '__name__', '__package__', 'abs', 'all', 'any', 'apply', 'basestring',
 'bin', 'bool', 'buffer', 'bytearray', 'bytes', 'callable', 'chr',
 'classmethod', 'cmp', 'coerce', 'compile', 'complex', 'copyright',
 'credits', 'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval',
 'execfile', 'exit', 'file', 'filter', 'float', 'format', 'frozenset',
 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex', 'id', 'input',
 'int', 'intern', 'isinstance', 'issubclass', 'iter', 'len', 'license',
 'list', 'locals', 'long', 'map', 'max', 'memoryview', 'min', 'next',
 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property', 'quit',
 'range', 'raw_input', 'reduce', 'reload', 'repr', 'reversed', 'round',
 'set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super',
 'tuple', 'type', 'unichr', 'unicode', 'vars', 'xrange', 'zip']

6.4. Packages

Packages are a way of structuring Python’s module namespace by using “dotted
module names”. For example, the module name A.B designates a submodule
named B in a package named A. Just like the use of modules saves the
authors of different modules from having to worry about each other’s global
variable names, the use of dotted module names saves the authors of multi-module
packages like NumPy or the Python Imaging Library from having to worry about
each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform
handling of sound files and sound data. There are many different sound file
formats (usually recognized by their extension, for example: .wav,
.aiff, .au), so you may need to create and maintain a growing
collection of modules for the conversion between the various file formats.
There are also many different operations you might want to perform on sound data
(such as mixing, adding echo, applying an equalizer function, creating an
artificial stereo effect), so in addition you will be writing a never-ending
stream of modules to perform these operations. Here’s a possible structure for
your package (expressed in terms of a hierarchical filesystem):

sound/ Top-level package
 __init__.py Initialize the sound package
 formats/ Subpackage for file format conversions
 __init__.py
 wavread.py
 wavwrite.py
 aiffread.py
 aiffwrite.py
 auread.py
 auwrite.py
 ...
 effects/ Subpackage for sound effects
 __init__.py
 echo.py
 surround.py
 reverse.py
 ...
 filters/ Subpackage for filters
 __init__.py
 equalizer.py
 vocoder.py
 karaoke.py
 ...

When importing the package, Python searches through the directories on
sys.path looking for the package subdirectory.

The __init__.py files are required to make Python treat the directories
as containing packages; this is done to prevent directories with a common name,
such as string, from unintentionally hiding valid modules that occur later
on the module search path. In the simplest case, __init__.py can just be
an empty file, but it can also execute initialization code for the package or
set the __all__ variable, described later.

Users of the package can import individual modules from the package, for
example:

import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with
its full name.

sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from sound.effects import echo

This also loads the submodule echo, and makes it available without its
package prefix, so it can be used as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function
echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a
submodule (or subpackage) of the package, or some other name defined in the
package, like a function, class or variable. The import statement first
tests whether the item is defined in the package; if not, it assumes it is a
module and attempts to load it. If it fails to find it, an ImportError
exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item
except for the last must be a package; the last item can be a module or a
package but can’t be a class or function or variable defined in the previous
item.

6.4.1. Importing * From a Package

Now what happens when the user writes from sound.effects import *? Ideally,
one would hope that this somehow goes out to the filesystem, finds which
submodules are present in the package, and imports them all. This could take a
long time and importing sub-modules might have unwanted side-effects that should
only happen when the sub-module is explicitly imported.

The only solution is for the package author to provide an explicit index of the
package. The import statement uses the following convention: if a package’s
__init__.py code defines a list named __all__, it is taken to be the
list of module names that should be imported when from package import * is
encountered. It is up to the package author to keep this list up-to-date when a
new version of the package is released. Package authors may also decide not to
support it, if they don’t see a use for importing * from their package. For
example, the file sound/effects/__init__.py could contain the following
code:

__all__ = ["echo", "surround", "reverse"]

This would mean that from sound.effects import * would import the three
named submodules of the sound package.

If __all__ is not defined, the statement from sound.effects import *
does not import all submodules from the package sound.effects into the
current namespace; it only ensures that the package sound.effects has
been imported (possibly running any initialization code in __init__.py)
and then imports whatever names are defined in the package. This includes any
names defined (and submodules explicitly loaded) by __init__.py. It
also includes any submodules of the package that were explicitly loaded by
previous import statements. Consider this code:

import sound.effects.echo
import sound.effects.surround
from sound.effects import *

In this example, the echo and surround modules are imported in the
current namespace because they are defined in the sound.effects package
when the from...import statement is executed. (This also works when
__all__ is defined.)

Although certain modules are designed to export only names that follow certain
patterns when you use import *, it is still considered bad practise in
production code.

Remember, there is nothing wrong with using from Package import
specific_submodule! In fact, this is the recommended notation unless the
importing module needs to use submodules with the same name from different
packages.

6.4.2. Intra-package References

The submodules often need to refer to each other. For example, the
surround module might use the echo module. In fact, such
references are so common that the import statement first looks in the
containing package before looking in the standard module search path. Thus, the
surround module can simply use import echo or from echo import
echofilter. If the imported module is not found in the current package (the
package of which the current module is a submodule), the import
statement looks for a top-level module with the given name.

When packages are structured into subpackages (as with the sound package
in the example), you can use absolute imports to refer to submodules of siblings
packages. For example, if the module sound.filters.vocoder needs to use
the echo module in the sound.effects package, it can use from
sound.effects import echo.

Starting with Python 2.5, in addition to the implicit relative imports described
above, you can write explicit relative imports with the from module import
name form of import statement. These explicit relative imports use leading
dots to indicate the current and parent packages involved in the relative
import. From the surround module for example, you might use:

from . import echo
from .. import formats
from ..filters import equalizer

Note that both explicit and implicit relative imports are based on the name of
the current module. Since the name of the main module is always "__main__",
modules intended for use as the main module of a Python application should
always use absolute imports.

6.4.3. Packages in Multiple Directories

Packages support one more special attribute, __path__. This is
initialized to be a list containing the name of the directory holding the
package’s __init__.py before the code in that file is executed. This
variable can be modified; doing so affects future searches for modules and
subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of
modules found in a package.

Footnotes

	[1]	In fact function definitions are also ‘statements’ that are ‘executed’; the
execution of a module-level function definition enters the function name in
the module’s global symbol table.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

7. Input and Output

There are several ways to present the output of a program; data can be printed
in a human-readable form, or written to a file for future use. This chapter will
discuss some of the possibilities.

7.1. Fancier Output Formatting

So far we’ve encountered two ways of writing values: expression statements and
the print statement. (A third way is using the write() method
of file objects; the standard output file can be referenced as sys.stdout.
See the Library Reference for more information on this.)

Often you’ll want more control over the formatting of your output than simply
printing space-separated values. There are two ways to format your output; the
first way is to do all the string handling yourself; using string slicing and
concatenation operations you can create any layout you can imagine. The
string types have some methods that perform useful operations for padding
strings to a given column width; these will be discussed shortly. The second
way is to use the str.format() method.

The string module contains a Template class which offers
yet another way to substitute values into strings.

One question remains, of course: how do you convert values to strings? Luckily,
Python has ways to convert any value to a string: pass it to the repr()
or str() functions.

The str() function is meant to return representations of values which are
fairly human-readable, while repr() is meant to generate representations
which can be read by the interpreter (or will force a SyntaxError if
there is no equivalent syntax). For objects which don’t have a particular
representation for human consumption, str() will return the same value as
repr(). Many values, such as numbers or structures like lists and
dictionaries, have the same representation using either function. Strings and
floating point numbers, in particular, have two distinct representations.

Some examples:

>>> s = 'Hello, world.'
>>> str(s)
'Hello, world.'
>>> repr(s)
"'Hello, world.'"
>>> str(1.0/7.0)
'0.142857142857'
>>> repr(1.0/7.0)
'0.14285714285714285'
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'
>>> print s
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = repr(hello)
>>> print hellos
'hello, world\n'
>>> # The argument to repr() may be any Python object:
... repr((x, y, ('spam', 'eggs')))
"(32.5, 40000, ('spam', 'eggs'))"

Here are two ways to write a table of squares and cubes:

>>> for x in range(1, 11):
... print repr(x).rjust(2), repr(x*x).rjust(3),
... # Note trailing comma on previous line
... print repr(x*x*x).rjust(4)
...
 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125
 6 36 216
 7 49 343
 8 64 512
 9 81 729
10 100 1000

>>> for x in range(1,11):
... print '{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x)
...
 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125
 6 36 216
 7 49 343
 8 64 512
 9 81 729
10 100 1000

(Note that in the first example, one space between each column was added by the
way print works: it always adds spaces between its arguments.)

This example demonstrates the str.rjust() method of string
objects, which right-justifies a string in a field of a given width by padding
it with spaces on the left. There are similar methods str.ljust() and
str.center(). These methods do not write anything, they just return a
new string. If the input string is too long, they don’t truncate it, but
return it unchanged; this will mess up your column lay-out but that’s usually
better than the alternative, which would be lying about a value. (If you
really want truncation you can always add a slice operation, as in
x.ljust(n)[:n].)

There is another method, str.zfill(), which pads a numeric string on the
left with zeros. It understands about plus and minus signs:

>>> '12'.zfill(5)
'00012'
>>> '-3.14'.zfill(7)
'-003.14'
>>> '3.14159265359'.zfill(5)
'3.14159265359'

Basic usage of the str.format() method looks like this:

>>> print 'We are the {} who say "{}!"'.format('knights', 'Ni')
We are the knights who say "Ni!"

The brackets and characters within them (called format fields) are replaced with
the objects passed into the str.format() method. A number in the
brackets refers to the position of the object passed into the
str.format() method.

>>> print '{0} and {1}'.format('spam', 'eggs')
spam and eggs
>>> print '{1} and {0}'.format('spam', 'eggs')
eggs and spam

If keyword arguments are used in the str.format() method, their values
are referred to by using the name of the argument.

>>> print 'This {food} is {adjective}.'.format(
... food='spam', adjective='absolutely horrible')
This spam is absolutely horrible.

Positional and keyword arguments can be arbitrarily combined:

>>> print 'The story of {0}, {1}, and {other}.'.format('Bill', 'Manfred',
... other='Georg')
The story of Bill, Manfred, and Georg.

'!s' (apply str()) and '!r' (apply repr()) can be used to
convert the value before it is formatted.

>>> import math
>>> print 'The value of PI is approximately {}.'.format(math.pi)
The value of PI is approximately 3.14159265359.
>>> print 'The value of PI is approximately {!r}.'.format(math.pi)
The value of PI is approximately 3.141592653589793.

An optional ':' and format specifier can follow the field name. This allows
greater control over how the value is formatted. The following example
rounds Pi to three places after the decimal.

>>> import math
>>> print 'The value of PI is approximately {0:.3f}.'.format(math.pi)
The value of PI is approximately 3.142.

Passing an integer after the ':' will cause that field to be a minimum
number of characters wide. This is useful for making tables pretty.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
... print '{0:10} ==> {1:10d}'.format(name, phone)
...
Jack ==> 4098
Dcab ==> 7678
Sjoerd ==> 4127

If you have a really long format string that you don’t want to split up, it
would be nice if you could reference the variables to be formatted by name
instead of by position. This can be done by simply passing the dict and using
square brackets '[]' to access the keys

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print ('Jack: {0[Jack]:d}; Sjoerd: {0[Sjoerd]:d}; '
... 'Dcab: {0[Dcab]:d}'.format(table))
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This could also be done by passing the table as keyword arguments with the ‘**’
notation.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print 'Jack: {Jack:d}; Sjoerd: {Sjoerd:d}; Dcab: {Dcab:d}'.format(**table)
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the built-in function
vars(), which returns a dictionary containing all local variables.

For a complete overview of string formatting with str.format(), see
Format String Syntax.

7.1.1. Old string formatting

The % operator can also be used for string formatting. It interprets the
left argument much like a sprintf()-style format string to be applied
to the right argument, and returns the string resulting from this formatting
operation. For example:

>>> import math
>>> print 'The value of PI is approximately %5.3f.' % math.pi
The value of PI is approximately 3.142.

More information can be found in the String Formatting Operations section.

7.2. Reading and Writing Files

open() returns a file object, and is most commonly used with two
arguments: open(filename, mode).

>>> f = open('workfile', 'w')
>>> print f
<open file 'workfile', mode 'w' at 80a0960>

The first argument is a string containing the filename. The second argument is
another string containing a few characters describing the way in which the file
will be used. mode can be 'r' when the file will only be read, 'w'
for only writing (an existing file with the same name will be erased), and
'a' opens the file for appending; any data written to the file is
automatically added to the end. 'r+' opens the file for both reading and
writing. The mode argument is optional; 'r' will be assumed if it’s
omitted.

On Windows, 'b' appended to the mode opens the file in binary mode, so there
are also modes like 'rb', 'wb', and 'r+b'. Python on Windows makes
a distinction between text and binary files; the end-of-line characters in text
files are automatically altered slightly when data is read or written. This
behind-the-scenes modification to file data is fine for ASCII text files, but
it’ll corrupt binary data like that in JPEG or EXE files. Be
very careful to use binary mode when reading and writing such files. On Unix,
it doesn’t hurt to append a 'b' to the mode, so you can use it
platform-independently for all binary files.

7.2.1. Methods of File Objects

The rest of the examples in this section will assume that a file object called
f has already been created.

To read a file’s contents, call f.read(size), which reads some quantity of
data and returns it as a string. size is an optional numeric argument. When
size is omitted or negative, the entire contents of the file will be read and
returned; it’s your problem if the file is twice as large as your machine’s
memory. Otherwise, at most size bytes are read and returned. If the end of
the file has been reached, f.read() will return an empty string ("").

>>> f.read()
'This is the entire file.\n'
>>> f.read()
''

f.readline() reads a single line from the file; a newline character (\n)
is left at the end of the string, and is only omitted on the last line of the
file if the file doesn’t end in a newline. This makes the return value
unambiguous; if f.readline() returns an empty string, the end of the file
has been reached, while a blank line is represented by '\n', a string
containing only a single newline.

>>> f.readline()
'This is the first line of the file.\n'
>>> f.readline()
'Second line of the file\n'
>>> f.readline()
''

For reading lines from a file, you can loop over the file object. This is memory
efficient, fast, and leads to simple code:

>>> for line in f:
 print line,

This is the first line of the file.
Second line of the file

If you want to read all the lines of a file in a list you can also use
list(f) or f.readlines().

f.write(string) writes the contents of string to the file, returning
None.

>>> f.write('This is a test\n')

To write something other than a string, it needs to be converted to a string
first:

>>> value = ('the answer', 42)
>>> s = str(value)
>>> f.write(s)

f.tell() returns an integer giving the file object’s current position in the
file, measured in bytes from the beginning of the file. To change the file
object’s position, use f.seek(offset, from_what). The position is computed
from adding offset to a reference point; the reference point is selected by
the from_what argument. A from_what value of 0 measures from the beginning
of the file, 1 uses the current file position, and 2 uses the end of the file as
the reference point. from_what can be omitted and defaults to 0, using the
beginning of the file as the reference point.

>>> f = open('workfile', 'r+')
>>> f.write('0123456789abcdef')
>>> f.seek(5) # Go to the 6th byte in the file
>>> f.read(1)
'5'
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)
'd'

When you’re done with a file, call f.close() to close it and free up any
system resources taken up by the open file. After calling f.close(),
attempts to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: I/O operation on closed file

It is good practice to use the with keyword when dealing with file
objects. This has the advantage that the file is properly closed after its
suite finishes, even if an exception is raised on the way. It is also much
shorter than writing equivalent try-finally blocks:

>>> with open('workfile', 'r') as f:
... read_data = f.read()
>>> f.closed
True

File objects have some additional methods, such as isatty() and
truncate() which are less frequently used; consult the Library
Reference for a complete guide to file objects.

7.2.2. Saving structured data with json

Strings can easily be written to and read from a file. Numbers take a bit more
effort, since the read() method only returns strings, which will have to
be passed to a function like int(), which takes a string like '123'
and returns its numeric value 123. When you want to save more complex data
types like nested lists and dictionaries, parsing and serializing by hand
becomes complicated.

Rather than having users constantly writing and debugging code to save
complicated data types to files, Python allows you to use the popular data
interchange format called JSON (JavaScript Object Notation) [http://json.org]. The standard module called json can take Python
data hierarchies, and convert them to string representations; this process is
called serializing. Reconstructing the data from the string representation
is called deserializing. Between serializing and deserializing, the
string representing the object may have been stored in a file or data, or
sent over a network connection to some distant machine.

Note

The JSON format is commonly used by modern applications to allow for data
exchange. Many programmers are already familiar with it, which makes
it a good choice for interoperability.

If you have an object x, you can view its JSON string representation with a
simple line of code:

>>> json.dumps([1, 'simple', 'list'])
'[1, "simple", "list"]'

Another variant of the dumps() function, called dump(),
simply serializes the object to a file. So if f is a file object
opened for writing, we can do this:

json.dump(x, f)

To decode the object again, if f is a file object which has
been opened for reading:

x = json.load(f)

This simple serialization technique can handle lists and dictionaries, but
serializing arbitrary class instances in JSON requires a bit of extra effort.
The reference for the json module contains an explanation of this.

See also

pickle - the pickle module

Contrary to JSON, pickle is a protocol which allows
the serialization of arbitrarily complex Python objects. As such, it is
specific to Python and cannot be used to communicate with applications
written in other languages. It is also insecure by default:
deserializing pickle data coming from an untrusted source can execute
arbitrary code, if the data was crafted by a skilled attacker.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

8. Errors and Exceptions

Until now error messages haven’t been more than mentioned, but if you have tried
out the examples you have probably seen some. There are (at least) two
distinguishable kinds of errors: syntax errors and exceptions.

8.1. Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of
complaint you get while you are still learning Python:

>>> while True print 'Hello world'
 File "<stdin>", line 1, in ?
 while True print 'Hello world'
 ^
SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at
the earliest point in the line where the error was detected. The error is
caused by (or at least detected at) the token preceding the arrow: in the
example, the error is detected at the keyword print, since a colon
(':') is missing before it. File name and line number are printed so you
know where to look in case the input came from a script.

8.2. Exceptions

Even if a statement or expression is syntactically correct, it may cause an
error when an attempt is made to execute it. Errors detected during execution
are called exceptions and are not unconditionally fatal: you will soon learn
how to handle them in Python programs. Most exceptions are not handled by
programs, however, and result in error messages as shown here:

>>> 10 * (1/0)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects

The last line of the error message indicates what happened. Exceptions come in
different types, and the type is printed as part of the message: the types in
the example are ZeroDivisionError, NameError and TypeError.
The string printed as the exception type is the name of the built-in exception
that occurred. This is true for all built-in exceptions, but need not be true
for user-defined exceptions (although it is a useful convention). Standard
exception names are built-in identifiers (not reserved keywords).

The rest of the line provides detail based on the type of exception and what
caused it.

The preceding part of the error message shows the context where the exception
happened, in the form of a stack traceback. In general it contains a stack
traceback listing source lines; however, it will not display lines read from
standard input.

Built-in Exceptions lists the built-in exceptions and their meanings.

8.3. Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the
following example, which asks the user for input until a valid integer has been
entered, but allows the user to interrupt the program (using Control-C or
whatever the operating system supports); note that a user-generated interruption
is signalled by raising the KeyboardInterrupt exception.

>>> while True:
... try:
... x = int(raw_input("Please enter a number: "))
... break
... except ValueError:
... print "Oops! That was no valid number. Try again..."
...

The try statement works as follows.

	First, the try clause (the statement(s) between the try and
except keywords) is executed.

	If no exception occurs, the except clause is skipped and execution of the
try statement is finished.

	If an exception occurs during execution of the try clause, the rest of the
clause is skipped. Then if its type matches the exception named after the
except keyword, the except clause is executed, and then execution
continues after the try statement.

	If an exception occurs which does not match the exception named in the except
clause, it is passed on to outer try statements; if no handler is
found, it is an unhandled exception and execution stops with a message as
shown above.

A try statement may have more than one except clause, to specify
handlers for different exceptions. At most one handler will be executed.
Handlers only handle exceptions that occur in the corresponding try clause, not
in other handlers of the same try statement. An except clause may
name multiple exceptions as a parenthesized tuple, for example:

... except (RuntimeError, TypeError, NameError):
... pass

Note that the parentheses around this tuple are required, because
except ValueError, e: was the syntax used for what is normally
written as except ValueError as e: in modern Python (described
below). The old syntax is still supported for backwards compatibility.
This means except RuntimeError, TypeError is not equivalent to
except (RuntimeError, TypeError): but to except RuntimeError as
TypeError: which is not what you want.

The last except clause may omit the exception name(s), to serve as a wildcard.
Use this with extreme caution, since it is easy to mask a real programming error
in this way! It can also be used to print an error message and then re-raise
the exception (allowing a caller to handle the exception as well):

import sys

try:
 f = open('myfile.txt')
 s = f.readline()
 i = int(s.strip())
except IOError as e:
 print "I/O error({0}): {1}".format(e.errno, e.strerror)
except ValueError:
 print "Could not convert data to an integer."
except:
 print "Unexpected error:", sys.exc_info()[0]
 raise

The try ... except statement has an optional else
clause, which, when present, must follow all except clauses. It is useful for
code that must be executed if the try clause does not raise an exception. For
example:

for arg in sys.argv[1:]:
 try:
 f = open(arg, 'r')
 except IOError:
 print 'cannot open', arg
 else:
 print arg, 'has', len(f.readlines()), 'lines'
 f.close()

The use of the else clause is better than adding additional code to
the try clause because it avoids accidentally catching an exception
that wasn’t raised by the code being protected by the try ...
except statement.

When an exception occurs, it may have an associated value, also known as the
exception’s argument. The presence and type of the argument depend on the
exception type.

The except clause may specify a variable after the exception name (or tuple).
The variable is bound to an exception instance with the arguments stored in
instance.args. For convenience, the exception instance defines
__str__() so the arguments can be printed directly without having to
reference .args.

One may also instantiate an exception first before raising it and add any
attributes to it as desired.

>>> try:
... raise Exception('spam', 'eggs')
... except Exception as inst:
... print type(inst) # the exception instance
... print inst.args # arguments stored in .args
... print inst # __str__ allows args to be printed directly
... x, y = inst.args
... print 'x =', x
... print 'y =', y
...
<type 'exceptions.Exception'>
('spam', 'eggs')
('spam', 'eggs')
x = spam
y = eggs

If an exception has an argument, it is printed as the last part (‘detail’) of
the message for unhandled exceptions.

Exception handlers don’t just handle exceptions if they occur immediately in the
try clause, but also if they occur inside functions that are called (even
indirectly) in the try clause. For example:

>>> def this_fails():
... x = 1/0
...
>>> try:
... this_fails()
... except ZeroDivisionError as detail:
... print 'Handling run-time error:', detail
...
Handling run-time error: integer division or modulo by zero

8.4. Raising Exceptions

The raise statement allows the programmer to force a specified
exception to occur. For example:

>>> raise NameError('HiThere')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
NameError: HiThere

The sole argument to raise indicates the exception to be raised.
This must be either an exception instance or an exception class (a class that
derives from Exception).

If you need to determine whether an exception was raised but don’t intend to
handle it, a simpler form of the raise statement allows you to
re-raise the exception:

>>> try:
... raise NameError('HiThere')
... except NameError:
... print 'An exception flew by!'
... raise
...
An exception flew by!
Traceback (most recent call last):
 File "<stdin>", line 2, in ?
NameError: HiThere

8.5. User-defined Exceptions

Programs may name their own exceptions by creating a new exception class (see
Classes for more about Python classes). Exceptions should typically
be derived from the Exception class, either directly or indirectly. For
example:

>>> class MyError(Exception):
... def __init__(self, value):
... self.value = value
... def __str__(self):
... return repr(self.value)
...
>>> try:
... raise MyError(2*2)
... except MyError as e:
... print 'My exception occurred, value:', e.value
...
My exception occurred, value: 4
>>> raise MyError('oops!')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
__main__.MyError: 'oops!'

In this example, the default __init__() of Exception has been
overridden. The new behavior simply creates the value attribute. This
replaces the default behavior of creating the args attribute.

Exception classes can be defined which do anything any other class can do, but
are usually kept simple, often only offering a number of attributes that allow
information about the error to be extracted by handlers for the exception. When
creating a module that can raise several distinct errors, a common practice is
to create a base class for exceptions defined by that module, and subclass that
to create specific exception classes for different error conditions:

class Error(Exception):
 """Base class for exceptions in this module."""
 pass

class InputError(Error):
 """Exception raised for errors in the input.

 Attributes:
 expr -- input expression in which the error occurred
 msg -- explanation of the error
 """

 def __init__(self, expr, msg):
 self.expr = expr
 self.msg = msg

class TransitionError(Error):
 """Raised when an operation attempts a state transition that's not
 allowed.

 Attributes:
 prev -- state at beginning of transition
 next -- attempted new state
 msg -- explanation of why the specific transition is not allowed
 """

 def __init__(self, prev, next, msg):
 self.prev = prev
 self.next = next
 self.msg = msg

Most exceptions are defined with names that end in “Error,” similar to the
naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may
occur in functions they define. More information on classes is presented in
chapter Classes.

8.6. Defining Clean-up Actions

The try statement has another optional clause which is intended to
define clean-up actions that must be executed under all circumstances. For
example:

>>> try:
... raise KeyboardInterrupt
... finally:
... print 'Goodbye, world!'
...
Goodbye, world!
KeyboardInterrupt
Traceback (most recent call last):
 File "<stdin>", line 2, in ?

A finally clause is always executed before leaving the try
statement, whether an exception has occurred or not. When an exception has
occurred in the try clause and has not been handled by an
except clause (or it has occurred in a except or
else clause), it is re-raised after the finally clause has
been executed. The finally clause is also executed “on the way out”
when any other clause of the try statement is left via a
break, continue or return statement. A more
complicated example (having except and finally clauses in
the same try statement works as of Python 2.5):

>>> def divide(x, y):
... try:
... result = x / y
... except ZeroDivisionError:
... print "division by zero!"
... else:
... print "result is", result
... finally:
... print "executing finally clause"
...
>>> divide(2, 1)
result is 2
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 3, in divide
TypeError: unsupported operand type(s) for /: 'str' and 'str'

As you can see, the finally clause is executed in any event. The
TypeError raised by dividing two strings is not handled by the
except clause and therefore re-raised after the finally
clause has been executed.

In real world applications, the finally clause is useful for
releasing external resources (such as files or network connections), regardless
of whether the use of the resource was successful.

8.7. Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object
is no longer needed, regardless of whether or not the operation using the object
succeeded or failed. Look at the following example, which tries to open a file
and print its contents to the screen.

for line in open("myfile.txt"):
 print line,

The problem with this code is that it leaves the file open for an indeterminate
amount of time after the code has finished executing. This is not an issue in
simple scripts, but can be a problem for larger applications. The
with statement allows objects like files to be used in a way that
ensures they are always cleaned up promptly and correctly.

with open("myfile.txt") as f:
 for line in f:
 print line,

After the statement is executed, the file f is always closed, even if a
problem was encountered while processing the lines. Other objects which provide
predefined clean-up actions will indicate this in their documentation.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

9. Classes

Compared with other programming languages, Python’s class mechanism adds classes
with a minimum of new syntax and semantics. It is a mixture of the class
mechanisms found in C++ and Modula-3. Python classes provide all the standard
features of Object Oriented Programming: the class inheritance mechanism allows
multiple base classes, a derived class can override any methods of its base
class or classes, and a method can call the method of a base class with the same
name. Objects can contain arbitrary amounts and kinds of data. As is true for
modules, classes partake of the dynamic nature of Python: they are created at
runtime, and can be modified further after creation.

In C++ terminology, normally class members (including the data members) are
public (except see below Private Variables and Class-local References), and all member functions are
virtual. As in Modula-3, there are no shorthands for referencing the object’s
members from its methods: the method function is declared with an explicit first
argument representing the object, which is provided implicitly by the call. As
in Smalltalk, classes themselves are objects. This provides semantics for
importing and renaming. Unlike C++ and Modula-3, built-in types can be used as
base classes for extension by the user. Also, like in C++, most built-in
operators with special syntax (arithmetic operators, subscripting etc.) can be
redefined for class instances.

(Lacking universally accepted terminology to talk about classes, I will make
occasional use of Smalltalk and C++ terms. I would use Modula-3 terms, since
its object-oriented semantics are closer to those of Python than C++, but I
expect that few readers have heard of it.)

9.1. A Word About Names and Objects

Objects have individuality, and multiple names (in multiple scopes) can be bound
to the same object. This is known as aliasing in other languages. This is
usually not appreciated on a first glance at Python, and can be safely ignored
when dealing with immutable basic types (numbers, strings, tuples). However,
aliasing has a possibly surprising effect on the semantics of Python code
involving mutable objects such as lists, dictionaries, and most other types.
This is usually used to the benefit of the program, since aliases behave like
pointers in some respects. For example, passing an object is cheap since only a
pointer is passed by the implementation; and if a function modifies an object
passed as an argument, the caller will see the change — this eliminates the
need for two different argument passing mechanisms as in Pascal.

9.2. Python Scopes and Namespaces

Before introducing classes, I first have to tell you something about Python’s
scope rules. Class definitions play some neat tricks with namespaces, and you
need to know how scopes and namespaces work to fully understand what’s going on.
Incidentally, knowledge about this subject is useful for any advanced Python
programmer.

Let’s begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are currently
implemented as Python dictionaries, but that’s normally not noticeable in any
way (except for performance), and it may change in the future. Examples of
namespaces are: the set of built-in names (containing functions such as abs(), and
built-in exception names); the global names in a module; and the local names in
a function invocation. In a sense the set of attributes of an object also form
a namespace. The important thing to know about namespaces is that there is
absolutely no relation between names in different namespaces; for instance, two
different modules may both define a function maximize without confusion —
users of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot — for
example, in the expression z.real, real is an attribute of the object
z. Strictly speaking, references to names in modules are attribute
references: in the expression modname.funcname, modname is a module
object and funcname is an attribute of it. In this case there happens to be
a straightforward mapping between the module’s attributes and the global names
defined in the module: they share the same namespace! [1]

Attributes may be read-only or writable. In the latter case, assignment to
attributes is possible. Module attributes are writable: you can write
modname.the_answer = 42. Writable attributes may also be deleted with the
del statement. For example, del modname.the_answer will remove
the attribute the_answer from the object named by modname.

Namespaces are created at different moments and have different lifetimes. The
namespace containing the built-in names is created when the Python interpreter
starts up, and is never deleted. The global namespace for a module is created
when the module definition is read in; normally, module namespaces also last
until the interpreter quits. The statements executed by the top-level
invocation of the interpreter, either read from a script file or interactively,
are considered part of a module called __main__, so they have their own
global namespace. (The built-in names actually also live in a module; this is
called __builtin__.)

The local namespace for a function is created when the function is called, and
deleted when the function returns or raises an exception that is not handled
within the function. (Actually, forgetting would be a better way to describe
what actually happens.) Of course, recursive invocations each have their own
local namespace.

A scope is a textual region of a Python program where a namespace is directly
accessible. “Directly accessible” here means that an unqualified reference to a
name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any
time during execution, there are at least three nested scopes whose namespaces
are directly accessible:

	the innermost scope, which is searched first, contains the local names

	the scopes of any enclosing functions, which are searched starting with the
nearest enclosing scope, contains non-local, but also non-global names

	the next-to-last scope contains the current module’s global names

	the outermost scope (searched last) is the namespace containing built-in names

If a name is declared global, then all references and assignments go directly to
the middle scope containing the module’s global names. Otherwise, all variables
found outside of the innermost scope are read-only (an attempt to write to such
a variable will simply create a new local variable in the innermost scope,
leaving the identically named outer variable unchanged).

Usually, the local scope references the local names of the (textually) current
function. Outside functions, the local scope references the same namespace as
the global scope: the module’s namespace. Class definitions place yet another
namespace in the local scope.

It is important to realize that scopes are determined textually: the global
scope of a function defined in a module is that module’s namespace, no matter
from where or by what alias the function is called. On the other hand, the
actual search for names is done dynamically, at run time — however, the
language definition is evolving towards static name resolution, at “compile”
time, so don’t rely on dynamic name resolution! (In fact, local variables are
already determined statically.)

A special quirk of Python is that – if no global statement is in
effect – assignments to names always go into the innermost scope. Assignments
do not copy data — they just bind names to objects. The same is true for
deletions: the statement del x removes the binding of x from the
namespace referenced by the local scope. In fact, all operations that introduce
new names use the local scope: in particular, import statements and
function definitions bind the module or function name in the local scope. (The
global statement can be used to indicate that particular variables
live in the global scope.)

9.3. A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some
new semantics.

9.3.1. Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
 <statement-1>
 .
 .
 .
 <statement-N>

Class definitions, like function definitions (def statements) must be
executed before they have any effect. (You could conceivably place a class
definition in a branch of an if statement, or inside a function.)

In practice, the statements inside a class definition will usually be function
definitions, but other statements are allowed, and sometimes useful — we’ll
come back to this later. The function definitions inside a class normally have
a peculiar form of argument list, dictated by the calling conventions for
methods — again, this is explained later.

When a class definition is entered, a new namespace is created, and used as the
local scope — thus, all assignments to local variables go into this new
namespace. In particular, function definitions bind the name of the new
function here.

When a class definition is left normally (via the end), a class object is
created. This is basically a wrapper around the contents of the namespace
created by the class definition; we’ll learn more about class objects in the
next section. The original local scope (the one in effect just before the class
definition was entered) is reinstated, and the class object is bound here to the
class name given in the class definition header (ClassName in the
example).

9.3.2. Class Objects

Class objects support two kinds of operations: attribute references and
instantiation.

Attribute references use the standard syntax used for all attribute references
in Python: obj.name. Valid attribute names are all the names that were in
the class’s namespace when the class object was created. So, if the class
definition looked like this:

class MyClass:
 """A simple example class"""
 i = 12345

 def f(self):
 return 'hello world'

then MyClass.i and MyClass.f are valid attribute references, returning
an integer and a function object, respectively. Class attributes can also be
assigned to, so you can change the value of MyClass.i by assignment.
__doc__ is also a valid attribute, returning the docstring belonging to
the class: "A simple example class".

Class instantiation uses function notation. Just pretend that the class
object is a parameterless function that returns a new instance of the class.
For example (assuming the above class):

x = MyClass()

creates a new instance of the class and assigns this object to the local
variable x.

The instantiation operation (“calling” a class object) creates an empty object.
Many classes like to create objects with instances customized to a specific
initial state. Therefore a class may define a special method named
__init__(), like this:

def __init__(self):
 self.data = []

When a class defines an __init__() method, class instantiation
automatically invokes __init__() for the newly-created class instance. So
in this example, a new, initialized instance can be obtained by:

x = MyClass()

Of course, the __init__() method may have arguments for greater
flexibility. In that case, arguments given to the class instantiation operator
are passed on to __init__(). For example,

>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0, -4.5)
>>> x.r, x.i
(3.0, -4.5)

9.3.3. Instance Objects

Now what can we do with instance objects? The only operations understood by
instance objects are attribute references. There are two kinds of valid
attribute names, data attributes and methods.

data attributes correspond to “instance variables” in Smalltalk, and to “data
members” in C++. Data attributes need not be declared; like local variables,
they spring into existence when they are first assigned to. For example, if
x is the instance of MyClass created above, the following piece of
code will print the value 16, without leaving a trace:

x.counter = 1
while x.counter < 10:
 x.counter = x.counter * 2
print x.counter
del x.counter

The other kind of instance attribute reference is a method. A method is a
function that “belongs to” an object. (In Python, the term method is not unique
to class instances: other object types can have methods as well. For example,
list objects have methods called append, insert, remove, sort, and so on.
However, in the following discussion, we’ll use the term method exclusively to
mean methods of class instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition,
all attributes of a class that are function objects define corresponding
methods of its instances. So in our example, x.f is a valid method
reference, since MyClass.f is a function, but x.i is not, since
MyClass.i is not. But x.f is not the same thing as MyClass.f — it
is a method object, not a function object.

9.3.4. Method Objects

Usually, a method is called right after it is bound:

x.f()

In the MyClass example, this will return the string 'hello world'.
However, it is not necessary to call a method right away: x.f is a method
object, and can be stored away and called at a later time. For example:

xf = x.f
while True:
 print xf()

will continue to print hello world until the end of time.

What exactly happens when a method is called? You may have noticed that
x.f() was called without an argument above, even though the function
definition for f() specified an argument. What happened to the argument?
Surely Python raises an exception when a function that requires an argument is
called without any — even if the argument isn’t actually used...

Actually, you may have guessed the answer: the special thing about methods is
that the object is passed as the first argument of the function. In our
example, the call x.f() is exactly equivalent to MyClass.f(x). In
general, calling a method with a list of n arguments is equivalent to calling
the corresponding function with an argument list that is created by inserting
the method’s object before the first argument.

If you still don’t understand how methods work, a look at the implementation can
perhaps clarify matters. When an instance attribute is referenced that isn’t a
data attribute, its class is searched. If the name denotes a valid class
attribute that is a function object, a method object is created by packing
(pointers to) the instance object and the function object just found together in
an abstract object: this is the method object. When the method object is called
with an argument list, a new argument list is constructed from the instance
object and the argument list, and the function object is called with this new
argument list.

9.3.5. Class and Instance Variables

Generally speaking, instance variables are for data unique to each instance
and class variables are for attributes and methods shared by all instances
of the class:

class Dog:

 kind = 'canine' # class variable shared by all instances

 def __init__(self, name):
 self.name = name # instance variable unique to each instance

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.kind # shared by all dogs
'canine'
>>> e.kind # shared by all dogs
'canine'
>>> d.name # unique to d
'Fido'
>>> e.name # unique to e
'Buddy'

As discussed in A Word About Names and Objects, shared data can have possibly surprising
effects with involving mutable objects such as lists and dictionaries.
For example, the tricks list in the following code should not be used as a
class variable because just a single list would be shared by all Dog
instances:

class Dog:

 tricks = [] # mistaken use of a class variable

 def __init__(self, name):
 self.name = name

 def add_trick(self, trick):
 self.tricks.append(trick)

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.add_trick('roll over')
>>> e.add_trick('play dead')
>>> d.tricks # unexpectedly shared by all dogs
['roll over', 'play dead']

Correct design of the class should use an instance variable instead:

class Dog:

 def __init__(self, name):
 self.name = name
 self.tricks = [] # creates a new empty list for each dog

 def add_trick(self, trick):
 self.tricks.append(trick)

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.add_trick('roll over')
>>> e.add_trick('play dead')
>>> d.tricks
['roll over']
>>> e.tricks
['play dead']

9.4. Random Remarks

Data attributes override method attributes with the same name; to avoid
accidental name conflicts, which may cause hard-to-find bugs in large programs,
it is wise to use some kind of convention that minimizes the chance of
conflicts. Possible conventions include capitalizing method names, prefixing
data attribute names with a small unique string (perhaps just an underscore), or
using verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users
(“clients”) of an object. In other words, classes are not usable to implement
pure abstract data types. In fact, nothing in Python makes it possible to
enforce data hiding — it is all based upon convention. (On the other hand,
the Python implementation, written in C, can completely hide implementation
details and control access to an object if necessary; this can be used by
extensions to Python written in C.)

Clients should use data attributes with care — clients may mess up invariants
maintained by the methods by stamping on their data attributes. Note that
clients may add data attributes of their own to an instance object without
affecting the validity of the methods, as long as name conflicts are avoided —
again, a naming convention can save a lot of headaches here.

There is no shorthand for referencing data attributes (or other methods!) from
within methods. I find that this actually increases the readability of methods:
there is no chance of confusing local variables and instance variables when
glancing through a method.

Often, the first argument of a method is called self. This is nothing more
than a convention: the name self has absolutely no special meaning to
Python. Note, however, that by not following the convention your code may be
less readable to other Python programmers, and it is also conceivable that a
class browser program might be written that relies upon such a convention.

Any function object that is a class attribute defines a method for instances of
that class. It is not necessary that the function definition is textually
enclosed in the class definition: assigning a function object to a local
variable in the class is also ok. For example:

Function defined outside the class
def f1(self, x, y):
 return min(x, x+y)

class C:
 f = f1

 def g(self):
 return 'hello world'

 h = g

Now f, g and h are all attributes of class C that refer to
function objects, and consequently they are all methods of instances of
C — h being exactly equivalent to g. Note that this practice
usually only serves to confuse the reader of a program.

Methods may call other methods by using method attributes of the self
argument:

class Bag:
 def __init__(self):
 self.data = []

 def add(self, x):
 self.data.append(x)

 def addtwice(self, x):
 self.add(x)
 self.add(x)

Methods may reference global names in the same way as ordinary functions. The
global scope associated with a method is the module containing its
definition. (A class is never used as a global scope.) While one
rarely encounters a good reason for using global data in a method, there are
many legitimate uses of the global scope: for one thing, functions and modules
imported into the global scope can be used by methods, as well as functions and
classes defined in it. Usually, the class containing the method is itself
defined in this global scope, and in the next section we’ll find some good
reasons why a method would want to reference its own class.

Each value is an object, and therefore has a class (also called its type).
It is stored as object.__class__.

9.5. Inheritance

Of course, a language feature would not be worthy of the name “class” without
supporting inheritance. The syntax for a derived class definition looks like
this:

class DerivedClassName(BaseClassName):
 <statement-1>
 .
 .
 .
 <statement-N>

The name BaseClassName must be defined in a scope containing the
derived class definition. In place of a base class name, other arbitrary
expressions are also allowed. This can be useful, for example, when the base
class is defined in another module:

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class.
When the class object is constructed, the base class is remembered. This is
used for resolving attribute references: if a requested attribute is not found
in the class, the search proceeds to look in the base class. This rule is
applied recursively if the base class itself is derived from some other class.

There’s nothing special about instantiation of derived classes:
DerivedClassName() creates a new instance of the class. Method references
are resolved as follows: the corresponding class attribute is searched,
descending down the chain of base classes if necessary, and the method reference
is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods
have no special privileges when calling other methods of the same object, a
method of a base class that calls another method defined in the same base class
may end up calling a method of a derived class that overrides it. (For C++
programmers: all methods in Python are effectively virtual.)

An overriding method in a derived class may in fact want to extend rather than
simply replace the base class method of the same name. There is a simple way to
call the base class method directly: just call BaseClassName.methodname(self,
arguments). This is occasionally useful to clients as well. (Note that this
only works if the base class is accessible as BaseClassName in the global
scope.)

Python has two built-in functions that work with inheritance:

	Use isinstance() to check an instance’s type: isinstance(obj, int)
will be True only if obj.__class__ is int or some class
derived from int.

	Use issubclass() to check class inheritance: issubclass(bool, int)
is True since bool is a subclass of int. However,
issubclass(unicode, str) is False since unicode is not a
subclass of str (they only share a common ancestor,
basestring).

9.5.1. Multiple Inheritance

Python supports a limited form of multiple inheritance as well. A class
definition with multiple base classes looks like this:

class DerivedClassName(Base1, Base2, Base3):
 <statement-1>
 .
 .
 .
 <statement-N>

For old-style classes, the only rule is depth-first, left-to-right. Thus, if an
attribute is not found in DerivedClassName, it is searched in
Base1, then (recursively) in the base classes of Base1, and
only if it is not found there, it is searched in Base2, and so on.

(To some people breadth first — searching Base2 and Base3
before the base classes of Base1 — looks more natural. However, this
would require you to know whether a particular attribute of Base1 is
actually defined in Base1 or in one of its base classes before you can
figure out the consequences of a name conflict with an attribute of
Base2. The depth-first rule makes no differences between direct and
inherited attributes of Base1.)

For new-style classes, the method resolution order changes dynamically
to support cooperative calls to super(). This approach is known in some
other multiple-inheritance languages as call-next-method and is more powerful
than the super call found in single-inheritance languages.

With new-style classes, dynamic ordering is necessary because all cases of
multiple inheritance exhibit one or more diamond relationships (where at
least one of the parent classes can be accessed through multiple paths from the
bottommost class). For example, all new-style classes inherit from
object, so any case of multiple inheritance provides more than one path
to reach object. To keep the base classes from being accessed more
than once, the dynamic algorithm linearizes the search order in a way that
preserves the left-to-right ordering specified in each class, that calls each
parent only once, and that is monotonic (meaning that a class can be subclassed
without affecting the precedence order of its parents). Taken together, these
properties make it possible to design reliable and extensible classes with
multiple inheritance. For more detail, see
https://www.python.org/download/releases/2.3/mro/.

9.6. Private Variables and Class-local References

“Private” instance variables that cannot be accessed except from inside an
object don’t exist in Python. However, there is a convention that is followed
by most Python code: a name prefixed with an underscore (e.g. _spam) should
be treated as a non-public part of the API (whether it is a function, a method
or a data member). It should be considered an implementation detail and subject
to change without notice.

Since there is a valid use-case for class-private members (namely to avoid name
clashes of names with names defined by subclasses), there is limited support for
such a mechanism, called name mangling. Any identifier of the form
__spam (at least two leading underscores, at most one trailing underscore)
is textually replaced with _classname__spam, where classname is the
current class name with leading underscore(s) stripped. This mangling is done
without regard to the syntactic position of the identifier, as long as it
occurs within the definition of a class.

Name mangling is helpful for letting subclasses override methods without
breaking intraclass method calls. For example:

class Mapping:
 def __init__(self, iterable):
 self.items_list = []
 self.__update(iterable)

 def update(self, iterable):
 for item in iterable:
 self.items_list.append(item)

 __update = update # private copy of original update() method

class MappingSubclass(Mapping):

 def update(self, keys, values):
 # provides new signature for update()
 # but does not break __init__()
 for item in zip(keys, values):
 self.items_list.append(item)

Note that the mangling rules are designed mostly to avoid accidents; it still is
possible to access or modify a variable that is considered private. This can
even be useful in special circumstances, such as in the debugger.

Notice that code passed to exec, eval() or execfile() does not
consider the classname of the invoking class to be the current class; this is
similar to the effect of the global statement, the effect of which is
likewise restricted to code that is byte-compiled together. The same
restriction applies to getattr(), setattr() and delattr(), as well
as when referencing __dict__ directly.

9.7. Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C
“struct”, bundling together a few named data items. An empty class definition
will do nicely:

class Employee:
 pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be
passed a class that emulates the methods of that data type instead. For
instance, if you have a function that formats some data from a file object, you
can define a class with methods read() and readline() that get the
data from a string buffer instead, and pass it as an argument.

Instance method objects have attributes, too: m.im_self is the instance
object with the method m(), and m.im_func is the function object
corresponding to the method.

9.8. Exceptions Are Classes Too

User-defined exceptions are identified by classes as well. Using this mechanism
it is possible to create extensible hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

raise Class, instance

raise instance

In the first form, instance must be an instance of Class or of a
class derived from it. The second form is a shorthand for:

raise instance.__class__, instance

A class in an except clause is compatible with an exception if it is
the same class or a base class thereof (but not the other way around — an
except clause listing a derived class is not compatible with a base class). For
example, the following code will print B, C, D in that order:

class B:
 pass
class C(B):
 pass
class D(C):
 pass

for c in [B, C, D]:
 try:
 raise c()
 except D:
 print "D"
 except C:
 print "C"
 except B:
 print "B"

Note that if the except clauses were reversed (with except B first), it
would have printed B, B, B — the first matching except clause is triggered.

When an error message is printed for an unhandled exception, the exception’s
class name is printed, then a colon and a space, and finally the instance
converted to a string using the built-in function str().

9.9. Iterators

By now you have probably noticed that most container objects can be looped over
using a for statement:

for element in [1, 2, 3]:
 print element
for element in (1, 2, 3):
 print element
for key in {'one':1, 'two':2}:
 print key
for char in "123":
 print char
for line in open("myfile.txt"):
 print line,

This style of access is clear, concise, and convenient. The use of iterators
pervades and unifies Python. Behind the scenes, the for statement
calls iter() on the container object. The function returns an iterator
object that defines the method next() which accesses elements
in the container one at a time. When there are no more elements,
next() raises a StopIteration exception which tells the
for loop to terminate.
This example shows how it all works:

>>> s = 'abc'
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> it.next()
'a'
>>> it.next()
'b'
>>> it.next()
'c'
>>> it.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 it.next()
StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add
iterator behavior to your classes. Define an __iter__() method which
returns an object with a next() method. If the class
defines next(), then __iter__() can just return self:

class Reverse:
 """Iterator for looping over a sequence backwards."""
 def __init__(self, data):
 self.data = data
 self.index = len(data)

 def __iter__(self):
 return self

 def next(self):
 if self.index == 0:
 raise StopIteration
 self.index = self.index - 1
 return self.data[self.index]

>>> rev = Reverse('spam')
>>> iter(rev)
<__main__.Reverse object at 0x00A1DB50>
>>> for char in rev:
... print char
...
m
a
p
s

9.10. Generators

Generators are a simple and powerful tool for creating iterators. They
are written like regular functions but use the yield statement
whenever they want to return data. Each time next() is called on it, the
generator resumes where it left off (it remembers all the data values and which
statement was last executed). An example shows that generators can be trivially
easy to create:

def reverse(data):
 for index in range(len(data)-1, -1, -1):
 yield data[index]

>>> for char in reverse('golf'):
... print char
...
f
l
o
g

Anything that can be done with generators can also be done with class-based
iterators as described in the previous section. What makes generators so
compact is that the __iter__() and next() methods
are created automatically.

Another key feature is that the local variables and execution state are
automatically saved between calls. This made the function easier to write and
much more clear than an approach using instance variables like self.index
and self.data.

In addition to automatic method creation and saving program state, when
generators terminate, they automatically raise StopIteration. In
combination, these features make it easy to create iterators with no more effort
than writing a regular function.

9.11. Generator Expressions

Some simple generators can be coded succinctly as expressions using a syntax
similar to list comprehensions but with parentheses instead of brackets. These
expressions are designed for situations where the generator is used right away
by an enclosing function. Generator expressions are more compact but less
versatile than full generator definitions and tend to be more memory friendly
than equivalent list comprehensions.

Examples:

>>> sum(i*i for i in range(10)) # sum of squares
285

>>> xvec = [10, 20, 30]
>>> yvec = [7, 5, 3]
>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = dict((x, sin(x*pi/180)) for x in range(0, 91))

>>> unique_words = set(word for line in page for word in line.split())

>>> valedictorian = max((student.gpa, student.name) for student in graduates)

>>> data = 'golf'
>>> list(data[i] for i in range(len(data)-1,-1,-1))
['f', 'l', 'o', 'g']

Footnotes

	[1]	Except for one thing. Module objects have a secret read-only attribute called
__dict__ which returns the dictionary used to implement the module’s
namespace; the name __dict__ is an attribute but not a global name.
Obviously, using this violates the abstraction of namespace implementation, and
should be restricted to things like post-mortem debuggers.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

10. Brief Tour of the Standard Library

10.1. Operating System Interface

The os module provides dozens of functions for interacting with the
operating system:

>>> import os
>>> os.getcwd() # Return the current working directory
'C:\\Python26'
>>> os.chdir('/server/accesslogs') # Change current working directory
>>> os.system('mkdir today') # Run the command mkdir in the system shell
0

Be sure to use the import os style instead of from os import *. This
will keep os.open() from shadowing the built-in open() function which
operates much differently.

The built-in dir() and help() functions are useful as interactive
aids for working with large modules like os:

>>> import os
>>> dir(os)
<returns a list of all module functions>
>>> help(os)
<returns an extensive manual page created from the module's docstrings>

For daily file and directory management tasks, the shutil module provides
a higher level interface that is easier to use:

>>> import shutil
>>> shutil.copyfile('data.db', 'archive.db')
>>> shutil.move('/build/executables', 'installdir')

10.2. File Wildcards

The glob module provides a function for making file lists from directory
wildcard searches:

>>> import glob
>>> glob.glob('*.py')
['primes.py', 'random.py', 'quote.py']

10.3. Command Line Arguments

Common utility scripts often need to process command line arguments. These
arguments are stored in the sys module’s argv attribute as a list. For
instance the following output results from running python demo.py one two
three at the command line:

>>> import sys
>>> print sys.argv
['demo.py', 'one', 'two', 'three']

The getopt module processes sys.argv using the conventions of the Unix
getopt() function. More powerful and flexible command line processing is
provided by the argparse module.

10.4. Error Output Redirection and Program Termination

The sys module also has attributes for stdin, stdout, and stderr.
The latter is useful for emitting warnings and error messages to make them
visible even when stdout has been redirected:

>>> sys.stderr.write('Warning, log file not found starting a new one\n')
Warning, log file not found starting a new one

The most direct way to terminate a script is to use sys.exit().

10.5. String Pattern Matching

The re module provides regular expression tools for advanced string
processing. For complex matching and manipulation, regular expressions offer
succinct, optimized solutions:

>>> import re
>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')
['foot', 'fell', 'fastest']
>>> re.sub(r'(\b[a-z]+) \1', r'\1', 'cat in the the hat')
'cat in the hat'

When only simple capabilities are needed, string methods are preferred because
they are easier to read and debug:

>>> 'tea for too'.replace('too', 'two')
'tea for two'

10.6. Mathematics

The math module gives access to the underlying C library functions for
floating point math:

>>> import math
>>> math.cos(math.pi / 4.0)
0.70710678118654757
>>> math.log(1024, 2)
10.0

The random module provides tools for making random selections:

>>> import random
>>> random.choice(['apple', 'pear', 'banana'])
'apple'
>>> random.sample(xrange(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
>>> random.random() # random float
0.17970987693706186
>>> random.randrange(6) # random integer chosen from range(6)
4

10.7. Internet Access

There are a number of modules for accessing the internet and processing internet
protocols. Two of the simplest are urllib2 for retrieving data from URLs
and smtplib for sending mail:

>>> import urllib2
>>> for line in urllib2.urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl'):
... if 'EST' in line or 'EDT' in line: # look for Eastern Time
... print line

Nov. 25, 09:43:32 PM EST

>>> import smtplib
>>> server = smtplib.SMTP('localhost')
>>> server.sendmail('soothsayer@example.org', 'jcaesar@example.org',
... """To: jcaesar@example.org
... From: soothsayer@example.org
...
... Beware the Ides of March.
... """)
>>> server.quit()

(Note that the second example needs a mailserver running on localhost.)

10.8. Dates and Times

The datetime module supplies classes for manipulating dates and times in
both simple and complex ways. While date and time arithmetic is supported, the
focus of the implementation is on efficient member extraction for output
formatting and manipulation. The module also supports objects that are timezone
aware.

>>> # dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today()
>>> now
datetime.date(2003, 12, 2)
>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'

>>> # dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday
>>> age.days
14368

10.9. Data Compression

Common data archiving and compression formats are directly supported by modules
including: zlib, gzip, bz2, zipfile and
tarfile.

>>> import zlib
>>> s = 'witch which has which witches wrist watch'
>>> len(s)
41
>>> t = zlib.compress(s)
>>> len(t)
37
>>> zlib.decompress(t)
'witch which has which witches wrist watch'
>>> zlib.crc32(s)
226805979

10.10. Performance Measurement

Some Python users develop a deep interest in knowing the relative performance of
different approaches to the same problem. Python provides a measurement tool
that answers those questions immediately.

For example, it may be tempting to use the tuple packing and unpacking feature
instead of the traditional approach to swapping arguments. The timeit
module quickly demonstrates a modest performance advantage:

>>> from timeit import Timer
>>> Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()
0.57535828626024577
>>> Timer('a,b = b,a', 'a=1; b=2').timeit()
0.54962537085770791

In contrast to timeit‘s fine level of granularity, the profile and
pstats modules provide tools for identifying time critical sections in
larger blocks of code.

10.11. Quality Control

One approach for developing high quality software is to write tests for each
function as it is developed and to run those tests frequently during the
development process.

The doctest module provides a tool for scanning a module and validating
tests embedded in a program’s docstrings. Test construction is as simple as
cutting-and-pasting a typical call along with its results into the docstring.
This improves the documentation by providing the user with an example and it
allows the doctest module to make sure the code remains true to the
documentation:

def average(values):
 """Computes the arithmetic mean of a list of numbers.

 >>> print average([20, 30, 70])
 40.0
 """
 return sum(values, 0.0) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module,
but it allows a more comprehensive set of tests to be maintained in a separate
file:

import unittest

class TestStatisticalFunctions(unittest.TestCase):

 def test_average(self):
 self.assertEqual(average([20, 30, 70]), 40.0)
 self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
 with self.assertRaises(ZeroDivisionError):
 average([])
 with self.assertRaises(TypeError):
 average(20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12. Batteries Included

Python has a “batteries included” philosophy. This is best seen through the
sophisticated and robust capabilities of its larger packages. For example:

	The xmlrpclib and SimpleXMLRPCServer modules make implementing
remote procedure calls into an almost trivial task. Despite the modules
names, no direct knowledge or handling of XML is needed.

	The email package is a library for managing email messages, including
MIME and other RFC 2822-based message documents. Unlike smtplib and
poplib which actually send and receive messages, the email package has
a complete toolset for building or decoding complex message structures
(including attachments) and for implementing internet encoding and header
protocols.

	The xml.dom and xml.sax packages provide robust support for
parsing this popular data interchange format. Likewise, the csv module
supports direct reads and writes in a common database format. Together, these
modules and packages greatly simplify data interchange between Python
applications and other tools.

	Internationalization is supported by a number of modules including
gettext, locale, and the codecs package.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

11. Brief Tour of the Standard Library – Part II

This second tour covers more advanced modules that support professional
programming needs. These modules rarely occur in small scripts.

11.1. Output Formatting

The repr module provides a version of repr() customized for
abbreviated displays of large or deeply nested containers:

>>> import repr
>>> repr.repr(set('supercalifragilisticexpialidocious'))
"set(['a', 'c', 'd', 'e', 'f', 'g', ...])"

The pprint module offers more sophisticated control over printing both
built-in and user defined objects in a way that is readable by the interpreter.
When the result is longer than one line, the “pretty printer” adds line breaks
and indentation to more clearly reveal data structure:

>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
... 'yellow'], 'blue']]]
...
>>> pprint.pprint(t, width=30)
[[[['black', 'cyan'],
 'white',
 ['green', 'red']],
 [['magenta', 'yellow'],
 'blue']]]

The textwrap module formats paragraphs of text to fit a given screen
width:

>>> import textwrap
>>> doc = """The wrap() method is just like fill() except that it returns
... a list of strings instead of one big string with newlines to separate
... the wrapped lines."""
...
>>> print textwrap.fill(doc, width=40)
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

The locale module accesses a database of culture specific data formats.
The grouping attribute of locale’s format function provides a direct way of
formatting numbers with group separators:

>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
'English_United States.1252'
>>> conv = locale.localeconv() # get a mapping of conventions
>>> x = 1234567.8
>>> locale.format("%d", x, grouping=True)
'1,234,567'
>>> locale.format_string("%s%.*f", (conv['currency_symbol'],
... conv['frac_digits'], x), grouping=True)
'$1,234,567.80'

11.2. Templating

The string module includes a versatile Template class
with a simplified syntax suitable for editing by end-users. This allows users
to customize their applications without having to alter the application.

The format uses placeholder names formed by $ with valid Python identifiers
(alphanumeric characters and underscores). Surrounding the placeholder with
braces allows it to be followed by more alphanumeric letters with no intervening
spaces. Writing $$ creates a single escaped $:

>>> from string import Template
>>> t = Template('${village}folk send $$10 to $cause.')
>>> t.substitute(village='Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'

The substitute() method raises a KeyError when a
placeholder is not supplied in a dictionary or a keyword argument. For
mail-merge style applications, user supplied data may be incomplete and the
safe_substitute() method may be more appropriate —
it will leave placeholders unchanged if data is missing:

>>> t = Template('Return the $item to $owner.')
>>> d = dict(item='unladen swallow')
>>> t.substitute(d)
Traceback (most recent call last):
 ...
KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'

Template subclasses can specify a custom delimiter. For example, a batch
renaming utility for a photo browser may elect to use percent signs for
placeholders such as the current date, image sequence number, or file format:

>>> import time, os.path
>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename(Template):
... delimiter = '%'
>>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format): ')
Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f

>>> t = BatchRename(fmt)
>>> date = time.strftime('%d%b%y')
>>> for i, filename in enumerate(photofiles):
... base, ext = os.path.splitext(filename)
... newname = t.substitute(d=date, n=i, f=ext)
... print '{0} --> {1}'.format(filename, newname)

img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

Another application for templating is separating program logic from the details
of multiple output formats. This makes it possible to substitute custom
templates for XML files, plain text reports, and HTML web reports.

11.3. Working with Binary Data Record Layouts

The struct module provides pack() and
unpack() functions for working with variable length binary
record formats. The following example shows
how to loop through header information in a ZIP file without using the
zipfile module. Pack codes "H" and "I" represent two and four
byte unsigned numbers respectively. The "<" indicates that they are
standard size and in little-endian byte order:

import struct

data = open('myfile.zip', 'rb').read()
start = 0
for i in range(3): # show the first 3 file headers
 start += 14
 fields = struct.unpack('<IIIHH', data[start:start+16])
 crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

 start += 16
 filename = data[start:start+filenamesize]
 start += filenamesize
 extra = data[start:start+extra_size]
 print filename, hex(crc32), comp_size, uncomp_size

 start += extra_size + comp_size # skip to the next header

11.4. Multi-threading

Threading is a technique for decoupling tasks which are not sequentially
dependent. Threads can be used to improve the responsiveness of applications
that accept user input while other tasks run in the background. A related use
case is running I/O in parallel with computations in another thread.

The following code shows how the high level threading module can run
tasks in background while the main program continues to run:

import threading, zipfile

class AsyncZip(threading.Thread):
 def __init__(self, infile, outfile):
 threading.Thread.__init__(self)
 self.infile = infile
 self.outfile = outfile

 def run(self):
 f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
 f.write(self.infile)
 f.close()
 print 'Finished background zip of: ', self.infile

background = AsyncZip('mydata.txt', 'myarchive.zip')
background.start()
print 'The main program continues to run in foreground.'

background.join() # Wait for the background task to finish
print 'Main program waited until background was done.'

The principal challenge of multi-threaded applications is coordinating threads
that share data or other resources. To that end, the threading module provides
a number of synchronization primitives including locks, events, condition
variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that
are difficult to reproduce. So, the preferred approach to task coordination is
to concentrate all access to a resource in a single thread and then use the
Queue module to feed that thread with requests from other threads.
Applications using Queue.Queue objects for inter-thread communication
and coordination are easier to design, more readable, and more reliable.

11.5. Logging

The logging module offers a full featured and flexible logging system.
At its simplest, log messages are sent to a file or to sys.stderr:

import logging
logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf')
logging.error('Error occurred')
logging.critical('Critical error -- shutting down')

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output
is sent to standard error. Other output options include routing messages
through email, datagrams, sockets, or to an HTTP Server. New filters can select
different routing based on message priority: DEBUG,
INFO, WARNING, ERROR,
and CRITICAL.

The logging system can be configured directly from Python or can be loaded from
a user editable configuration file for customized logging without altering the
application.

11.6. Weak References

Python does automatic memory management (reference counting for most objects and
garbage collection to eliminate cycles). The memory is freed shortly
after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need
to track objects only as long as they are being used by something else.
Unfortunately, just tracking them creates a reference that makes them permanent.
The weakref module provides tools for tracking objects without creating a
reference. When the object is no longer needed, it is automatically removed
from a weakref table and a callback is triggered for weakref objects. Typical
applications include caching objects that are expensive to create:

>>> import weakref, gc
>>> class A:
... def __init__(self, value):
... self.value = value
... def __repr__(self):
... return str(self.value)
...
>>> a = A(10) # create a reference
>>> d = weakref.WeakValueDictionary()
>>> d['primary'] = a # does not create a reference
>>> d['primary'] # fetch the object if it is still alive
10
>>> del a # remove the one reference
>>> gc.collect() # run garbage collection right away
0
>>> d['primary'] # entry was automatically removed
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 d['primary'] # entry was automatically removed
 File "C:/python26/lib/weakref.py", line 46, in __getitem__
 o = self.data[key]()
KeyError: 'primary'

11.7. Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However,
sometimes there is a need for alternative implementations with different
performance trade-offs.

The array module provides an array() object that is like
a list that stores only homogeneous data and stores it more compactly. The
following example shows an array of numbers stored as two byte unsigned binary
numbers (typecode "H") rather than the usual 16 bytes per entry for regular
lists of Python int objects:

>>> from array import array
>>> a = array('H', [4000, 10, 700, 22222])
>>> sum(a)
26932
>>> a[1:3]
array('H', [10, 700])

The collections module provides a deque() object
that is like a list with faster appends and pops from the left side but slower
lookups in the middle. These objects are well suited for implementing queues
and breadth first tree searches:

>>> from collections import deque
>>> d = deque(["task1", "task2", "task3"])
>>> d.append("task4")
>>> print "Handling", d.popleft()
Handling task1

unsearched = deque([starting_node])
def breadth_first_search(unsearched):
 node = unsearched.popleft()
 for m in gen_moves(node):
 if is_goal(m):
 return m
 unsearched.append(m)

In addition to alternative list implementations, the library also offers other
tools such as the bisect module with functions for manipulating sorted
lists:

>>> import bisect
>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
>>> bisect.insort(scores, (300, 'ruby'))
>>> scores
[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

The heapq module provides functions for implementing heaps based on
regular lists. The lowest valued entry is always kept at position zero. This
is useful for applications which repeatedly access the smallest element but do
not want to run a full list sort:

>>> from heapq import heapify, heappop, heappush
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> heapify(data) # rearrange the list into heap order
>>> heappush(data, -5) # add a new entry
>>> [heappop(data) for i in range(3)] # fetch the three smallest entries
[-5, 0, 1]

11.8. Decimal Floating Point Arithmetic

The decimal module offers a Decimal datatype for
decimal floating point arithmetic. Compared to the built-in float
implementation of binary floating point, the class is especially helpful for

	financial applications and other uses which require exact decimal
representation,

	control over precision,

	control over rounding to meet legal or regulatory requirements,

	tracking of significant decimal places, or

	applications where the user expects the results to match calculations done by
hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different
results in decimal floating point and binary floating point. The difference
becomes significant if the results are rounded to the nearest cent:

>>> from decimal import *
>>> x = Decimal('0.70') * Decimal('1.05')
>>> x
Decimal('0.7350')
>>> x.quantize(Decimal('0.01')) # round to nearest cent
Decimal('0.74')
>>> round(.70 * 1.05, 2) # same calculation with floats
0.73

The Decimal result keeps a trailing zero, automatically
inferring four place significance from multiplicands with two place
significance. Decimal reproduces mathematics as done by hand and avoids
issues that can arise when binary floating point cannot exactly represent
decimal quantities.

Exact representation enables the Decimal class to perform
modulo calculations and equality tests that are unsuitable for binary floating
point:

>>> Decimal('1.00') % Decimal('.10')
Decimal('0.00')
>>> 1.00 % 0.10
0.09999999999999995

>>> sum([Decimal('0.1')]*10) == Decimal('1.0')
True
>>> sum([0.1]*10) == 1.0
False

The decimal module provides arithmetic with as much precision as needed:

>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857')

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

12. What Now?

Reading this tutorial has probably reinforced your interest in using Python —
you should be eager to apply Python to solving your real-world problems. Where
should you go to learn more?

This tutorial is part of Python’s documentation set. Some other documents in
the set are:

	The Python Standard Library:

You should browse through this manual, which gives complete (though terse)
reference material about types, functions, and the modules in the standard
library. The standard Python distribution includes a lot of additional code.
There are modules to read Unix mailboxes, retrieve documents via HTTP, generate
random numbers, parse command-line options, write CGI programs, compress data,
and many other tasks. Skimming through the Library Reference will give you an
idea of what’s available.

	Installing Python Modules (Legacy version) explains how to install external modules written by other
Python users.

	The Python Language Reference: A detailed explanation of Python’s syntax and
semantics. It’s heavy reading, but is useful as a complete guide to the
language itself.

More Python resources:

	https://www.python.org: The major Python Web site. It contains code,
documentation, and pointers to Python-related pages around the Web. This Web
site is mirrored in various places around the world, such as Europe, Japan, and
Australia; a mirror may be faster than the main site, depending on your
geographical location.

	https://docs.python.org: Fast access to Python’s documentation.

	https://pypi.python.org/pypi: The Python Package Index, previously also nicknamed
the Cheese Shop, is an index of user-created Python modules that are available
for download. Once you begin releasing code, you can register it here so that
others can find it.

	https://code.activestate.com/recipes/langs/python/: The Python Cookbook is a
sizable collection of code examples, larger modules, and useful scripts.
Particularly notable contributions are collected in a book also titled Python
Cookbook (O’Reilly & Associates, ISBN 0-596-00797-3.)

For Python-related questions and problem reports, you can post to the newsgroup
comp.lang.python, or send them to the mailing list at
python-list@python.org. The newsgroup and mailing list are gatewayed, so
messages posted to one will automatically be forwarded to the other. There are
around 120 postings a day (with peaks up to several hundred), asking (and
answering) questions, suggesting new features, and announcing new modules.
Before posting, be sure to check the list of Frequently Asked Questions (also called the FAQ). Mailing list
archives are available at https://mail.python.org/pipermail/. The FAQ answers
many of the questions that come up again and again, and may already contain the
solution for your problem.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

13. Interactive Input Editing and History Substitution

Some versions of the Python interpreter support editing of the current input
line and history substitution, similar to facilities found in the Korn shell and
the GNU Bash shell. This is implemented using the GNU Readline [https://tiswww.case.edu/php/chet/readline/rltop.html] library,
which supports Emacs-style and vi-style editing. This library has its own
documentation which I won’t duplicate here; however, the basics are easily
explained. The interactive editing and history described here are optionally
available in the Unix and Cygwin versions of the interpreter.

This chapter does not document the editing facilities of Mark Hammond’s
PythonWin package or the Tk-based environment, IDLE, distributed with Python.
The command line history recall which operates within DOS boxes on NT and some
other DOS and Windows flavors is yet another beast.

13.1. Line Editing

If supported, input line editing is active whenever the interpreter prints a
primary or secondary prompt. The current line can be edited using the
conventional Emacs control characters. The most important of these are:
C-A (Control-A) moves the cursor to the beginning of the line, C-E
to the end, C-B moves it one position to the left, C-F to the
right. Backspace erases the character to the left of the cursor, C-D the
character to its right. C-K kills (erases) the rest of the line to the
right of the cursor, C-Y yanks back the last killed string.
C-underscore undoes the last change you made; it can be repeated for
cumulative effect.

13.2. History Substitution

History substitution works as follows. All non-empty input lines issued are
saved in a history buffer, and when a new prompt is given you are positioned on
a new line at the bottom of this buffer. C-P moves one line up (back) in
the history buffer, C-N moves one down. Any line in the history buffer
can be edited; an asterisk appears in front of the prompt to mark a line as
modified. Pressing the Return key passes the current line to the
interpreter. C-R starts an incremental reverse search; C-S starts
a forward search.

13.3. Key Bindings

The key bindings and some other parameters of the Readline library can be
customized by placing commands in an initialization file called
~/.inputrc. Key bindings have the form

key-name: function-name

or

"string": function-name

and options can be set with

set option-name value

For example:

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:
Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for Tab in Python is to insert a Tab
character instead of Readline’s default filename completion function. If you
insist, you can override this by putting

Tab: complete

in your ~/.inputrc. (Of course, this makes it harder to type indented
continuation lines if you’re accustomed to using Tab for that purpose.)

Automatic completion of variable and module names is optionally available. To
enable it in the interpreter’s interactive mode, add the following to your
startup file: [1]

import rlcompleter, readline
readline.parse_and_bind('tab: complete')

This binds the Tab key to the completion function, so hitting the
Tab key twice suggests completions; it looks at Python statement names,
the current local variables, and the available module names. For dotted
expressions such as string.a, it will evaluate the expression up to the
final '.' and then suggest completions from the attributes of the resulting
object. Note that this may execute application-defined code if an object with a
__getattr__() method is part of the expression.

A more capable startup file might look like this example. Note that this
deletes the names it creates once they are no longer needed; this is done since
the startup file is executed in the same namespace as the interactive commands,
and removing the names avoids creating side effects in the interactive
environment. You may find it convenient to keep some of the imported modules,
such as os, which turn out to be needed in most sessions with the
interpreter.

Add auto-completion and a stored history file of commands to your Python
interactive interpreter. Requires Python 2.0+, readline. Autocomplete is
bound to the Esc key by default (you can change it - see readline docs).
#
Store the file in ~/.pystartup, and set an environment variable to point
to it: "export PYTHONSTARTUP=~/.pystartup" in bash.

import atexit
import os
import readline
import rlcompleter

historyPath = os.path.expanduser("~/.pyhistory")

def save_history(historyPath=historyPath):
 import readline
 readline.write_history_file(historyPath)

if os.path.exists(historyPath):
 readline.read_history_file(historyPath)

atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath

13.4. Alternatives to the Interactive Interpreter

This facility is an enormous step forward compared to earlier versions of the
interpreter; however, some wishes are left: It would be nice if the proper
indentation were suggested on continuation lines (the parser knows if an indent
token is required next). The completion mechanism might use the interpreter’s
symbol table. A command to check (or even suggest) matching parentheses,
quotes, etc., would also be useful.

One alternative enhanced interactive interpreter that has been around for quite
some time is IPython [http://ipython.scipy.org/], which features tab completion, object exploration and
advanced history management. It can also be thoroughly customized and embedded
into other applications. Another similar enhanced interactive environment is
bpython [http://www.bpython-interpreter.org/].

Footnotes

	[1]	Python will execute the contents of a file identified by the
PYTHONSTARTUP environment variable when you start an interactive
interpreter. To customize Python even for non-interactive mode, see
The Customization Modules.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

14. Floating Point Arithmetic: Issues and Limitations

Floating-point numbers are represented in computer hardware as base 2 (binary)
fractions. For example, the decimal fraction

0.125

has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction

0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only
real difference being that the first is written in base 10 fractional notation,
and the second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as binary
fractions. A consequence is that, in general, the decimal floating-point
numbers you enter are only approximated by the binary floating-point numbers
actually stored in the machine.

The problem is easier to understand at first in base 10. Consider the fraction
1/3. You can approximate that as a base 10 fraction:

0.3

or, better,

0.33

or, better,

0.333

and so on. No matter how many digits you’re willing to write down, the result
will never be exactly 1/3, but will be an increasingly better approximation of
1/3.

In the same way, no matter how many base 2 digits you’re willing to use, the
decimal value 0.1 cannot be represented exactly as a base 2 fraction. In base
2, 1/10 is the infinitely repeating fraction

0.0001100110011001100110011001100110011001100110011...

Stop at any finite number of bits, and you get an approximation.

On a typical machine running Python, there are 53 bits of precision available
for a Python float, so the value stored internally when you enter the decimal
number 0.1 is the binary fraction

0.00011001100110011001100110011001100110011001100110011010

which is close to, but not exactly equal to, 1/10.

It’s easy to forget that the stored value is an approximation to the original
decimal fraction, because of the way that floats are displayed at the
interpreter prompt. Python only prints a decimal approximation to the true
decimal value of the binary approximation stored by the machine. If Python
were to print the true decimal value of the binary approximation stored for
0.1, it would have to display

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

That is more digits than most people find useful, so Python keeps the number
of digits manageable by displaying a rounded value instead

>>> 0.1
0.1

It’s important to realize that this is, in a real sense, an illusion: the value
in the machine is not exactly 1/10, you’re simply rounding the display of the
true machine value. This fact becomes apparent as soon as you try to do
arithmetic with these values

>>> 0.1 + 0.2
0.30000000000000004

Note that this is in the very nature of binary floating-point: this is not a
bug in Python, and it is not a bug in your code either. You’ll see the same
kind of thing in all languages that support your hardware’s floating-point
arithmetic (although some languages may not display the difference by
default, or in all output modes).

Other surprises follow from this one. For example, if you try to round the
value 2.675 to two decimal places, you get this

>>> round(2.675, 2)
2.67

The documentation for the built-in round() function says that it rounds
to the nearest value, rounding ties away from zero. Since the decimal fraction
2.675 is exactly halfway between 2.67 and 2.68, you might expect the result
here to be (a binary approximation to) 2.68. It’s not, because when the
decimal string 2.675 is converted to a binary floating-point number, it’s
again replaced with a binary approximation, whose exact value is

2.67499999999999982236431605997495353221893310546875

Since this approximation is slightly closer to 2.67 than to 2.68, it’s rounded
down.

If you’re in a situation where you care which way your decimal halfway-cases
are rounded, you should consider using the decimal module.
Incidentally, the decimal module also provides a nice way to “see” the
exact value that’s stored in any particular Python float

>>> from decimal import Decimal
>>> Decimal(2.675)
Decimal('2.67499999999999982236431605997495353221893310546875')

Another consequence is that since 0.1 is not exactly 1/10, summing ten values
of 0.1 may not yield exactly 1.0, either:

>>> sum = 0.0
>>> for i in range(10):
... sum += 0.1
...
>>> sum
0.9999999999999999

Binary floating-point arithmetic holds many surprises like this. The problem
with “0.1” is explained in precise detail below, in the “Representation Error”
section. See The Perils of Floating Point [http://www.lahey.com/float.htm]
for a more complete account of other common surprises.

As that says near the end, “there are no easy answers.” Still, don’t be unduly
wary of floating-point! The errors in Python float operations are inherited
from the floating-point hardware, and on most machines are on the order of no
more than 1 part in 2**53 per operation. That’s more than adequate for most
tasks, but you do need to keep in mind that it’s not decimal arithmetic, and
that every float operation can suffer a new rounding error.

While pathological cases do exist, for most casual use of floating-point
arithmetic you’ll see the result you expect in the end if you simply round the
display of your final results to the number of decimal digits you expect. For
fine control over how a float is displayed see the str.format() method’s
format specifiers in Format String Syntax.

14.1. Representation Error

This section explains the “0.1” example in detail, and shows how you can
perform an exact analysis of cases like this yourself. Basic familiarity with
binary floating-point representation is assumed.

Representation error refers to the fact that some (most, actually)
decimal fractions cannot be represented exactly as binary (base 2) fractions.
This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many
others) often won’t display the exact decimal number you expect:

>>> 0.1 + 0.2
0.30000000000000004

Why is that? 1/10 and 2/10 are not exactly representable as a binary
fraction. Almost all machines today (July 2010) use IEEE-754 floating point
arithmetic, and almost all platforms map Python floats to IEEE-754 “double
precision”. 754 doubles contain 53 bits of precision, so on input the computer
strives to convert 0.1 to the closest fraction it can of the form J/2**N
where J is an integer containing exactly 53 bits. Rewriting

1 / 10 ~= J / (2**N)

as

J ~= 2**N / 10

and recalling that J has exactly 53 bits (is >= 2**52 but < 2**53),
the best value for N is 56:

>>> 2**52
4503599627370496
>>> 2**53
9007199254740992
>>> 2**56/10
7205759403792793

That is, 56 is the only value for N that leaves J with exactly 53 bits.
The best possible value for J is then that quotient rounded:

>>> q, r = divmod(2**56, 10)
>>> r
6

Since the remainder is more than half of 10, the best approximation is obtained
by rounding up:

>>> q+1
7205759403792794

Therefore the best possible approximation to 1/10 in 754 double precision is
that over 2**56, or

7205759403792794 / 72057594037927936

Note that since we rounded up, this is actually a little bit larger than 1/10;
if we had not rounded up, the quotient would have been a little bit smaller
than 1/10. But in no case can it be exactly 1/10!

So the computer never “sees” 1/10: what it sees is the exact fraction given
above, the best 754 double approximation it can get:

>>> .1 * 2**56
7205759403792794.0

If we multiply that fraction by 10**30, we can see the (truncated) value of
its 30 most significant decimal digits:

>>> 7205759403792794 * 10**30 // 2**56
100000000000000005551115123125L

meaning that the exact number stored in the computer is approximately equal to
the decimal value 0.100000000000000005551115123125. In versions prior to
Python 2.7 and Python 3.1, Python rounded this value to 17 significant digits,
giving ‘0.10000000000000001’. In current versions, Python displays a value
based on the shortest decimal fraction that rounds correctly back to the true
binary value, resulting simply in ‘0.1’.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

15. Appendix

15.1. Interactive Mode

15.1.1. Error Handling

When an error occurs, the interpreter prints an error message and a stack trace.
In interactive mode, it then returns to the primary prompt; when input came from
a file, it exits with a nonzero exit status after printing the stack trace.
(Exceptions handled by an except clause in a try statement
are not errors in this context.) Some errors are unconditionally fatal and
cause an exit with a nonzero exit; this applies to internal inconsistencies and
some cases of running out of memory. All error messages are written to the
standard error stream; normal output from executed commands is written to
standard output.

Typing the interrupt character (usually Control-C or Delete) to the primary or
secondary prompt cancels the input and returns to the primary prompt. [1]
Typing an interrupt while a command is executing raises the
KeyboardInterrupt exception, which may be handled by a try
statement.

15.1.2. Executable Python Scripts

On BSD’ish Unix systems, Python scripts can be made directly executable, like
shell scripts, by putting the line

#!/usr/bin/env python

(assuming that the interpreter is on the user’s PATH) at the beginning
of the script and giving the file an executable mode. The #! must be the
first two characters of the file. On some platforms, this first line must end
with a Unix-style line ending ('\n'), not a Windows ('\r\n') line
ending. Note that the hash, or pound, character, '#', is used to start a
comment in Python.

The script can be given an executable mode, or permission, using the
chmod command.

$ chmod +x myscript.py

On Windows systems, there is no notion of an “executable mode”. The Python
installer automatically associates .py files with python.exe so that
a double-click on a Python file will run it as a script. The extension can
also be .pyw, in that case, the console window that normally appears is
suppressed.

15.1.3. The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard
commands executed every time the interpreter is started. You can do this by
setting an environment variable named PYTHONSTARTUP to the name of a
file containing your start-up commands. This is similar to the .profile
feature of the Unix shells.

This file is only read in interactive sessions, not when Python reads commands
from a script, and not when /dev/tty is given as the explicit source of
commands (which otherwise behaves like an interactive session). It is executed
in the same namespace where interactive commands are executed, so that objects
that it defines or imports can be used without qualification in the interactive
session. You can also change the prompts sys.ps1 and sys.ps2 in this
file.

If you want to read an additional start-up file from the current directory, you
can program this in the global start-up file using code like if
os.path.isfile('.pythonrc.py'): exec(open('.pythonrc.py').read()).
If you want to use the startup file in a script, you must do this explicitly
in the script:

import os
filename = os.environ.get('PYTHONSTARTUP')
if filename and os.path.isfile(filename):
 with open(filename) as fobj:
 startup_file = fobj.read()
 exec(startup_file)

15.1.4. The Customization Modules

Python provides two hooks to let you customize it: sitecustomize and
usercustomize. To see how it works, you need first to find the location
of your user site-packages directory. Start Python and run this code:

>>> import site
>>> site.getusersitepackages()
'/home/user/.local/lib/python2.7/site-packages'

Now you can create a file named usercustomize.py in that directory and
put anything you want in it. It will affect every invocation of Python, unless
it is started with the -s option to disable the automatic import.

sitecustomize works in the same way, but is typically created by an
administrator of the computer in the global site-packages directory, and is
imported before usercustomize. See the documentation of the site
module for more details.

Footnotes

	[1]	A problem with the GNU Readline package may prevent this.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Tutorial

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	7. String Services

7.9. unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines
character properties for all Unicode characters. The data in this database is
based on the UnicodeData.txt file version 5.2.0 which is publicly
available from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File
Format 5.2.0 (see http://www.unicode.org/reports/tr44/tr44-4.html).
It defines the following functions:

	
unicodedata.lookup(name)

	Look up character by name. If a character with the given name is found, return
the corresponding Unicode character. If not found, KeyError is raised.

	
unicodedata.name(unichr[, default])

	Returns the name assigned to the Unicode character unichr as a string. If no
name is defined, default is returned, or, if not given, ValueError is
raised.

	
unicodedata.decimal(unichr[, default])

	Returns the decimal value assigned to the Unicode character unichr as integer.
If no such value is defined, default is returned, or, if not given,
ValueError is raised.

	
unicodedata.digit(unichr[, default])

	Returns the digit value assigned to the Unicode character unichr as integer.
If no such value is defined, default is returned, or, if not given,
ValueError is raised.

	
unicodedata.numeric(unichr[, default])

	Returns the numeric value assigned to the Unicode character unichr as float.
If no such value is defined, default is returned, or, if not given,
ValueError is raised.

	
unicodedata.category(unichr)

	Returns the general category assigned to the Unicode character unichr as
string.

	
unicodedata.bidirectional(unichr)

	Returns the bidirectional class assigned to the Unicode character unichr as
string. If no such value is defined, an empty string is returned.

	
unicodedata.combining(unichr)

	Returns the canonical combining class assigned to the Unicode character unichr
as integer. Returns 0 if no combining class is defined.

	
unicodedata.east_asian_width(unichr)

	Returns the east asian width assigned to the Unicode character unichr as
string.

New in version 2.4.

	
unicodedata.mirrored(unichr)

	Returns the mirrored property assigned to the Unicode character unichr as
integer. Returns 1 if the character has been identified as a “mirrored”
character in bidirectional text, 0 otherwise.

	
unicodedata.decomposition(unichr)

	Returns the character decomposition mapping assigned to the Unicode character
unichr as string. An empty string is returned in case no such mapping is
defined.

	
unicodedata.normalize(form, unistr)

	Return the normal form form for the Unicode string unistr. Valid values for
form are ‘NFC’, ‘NFKC’, ‘NFD’, and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string,
based on the definition of canonical equivalence and compatibility equivalence.
In Unicode, several characters can be expressed in various way. For example, the
character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as
the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D.
Normal form D (NFD) is also known as canonical decomposition, and translates
each character into its decomposed form. Normal form C (NFC) first applies a
canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on
compatibility equivalence. In Unicode, certain characters are supported which
normally would be unified with other characters. For example, U+2160 (ROMAN
NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character
sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e.
replace all compatibility characters with their equivalents. The normal form KC
(NFKC) first applies the compatibility decomposition, followed by the canonical
composition.

Even if two unicode strings are normalized and look the same to
a human reader, if one has combining characters and the other
doesn’t, they may not compare equal.

New in version 2.3.

In addition, the module exposes the following constant:

	
unicodedata.unidata_version

	The version of the Unicode database used in this module.

New in version 2.3.

	
unicodedata.ucd_3_2_0

	This is an object that has the same methods as the entire module, but uses the
Unicode database version 3.2 instead, for applications that require this
specific version of the Unicode database (such as IDNA).

New in version 2.5.

Examples:

>>> import unicodedata
>>> unicodedata.lookup('LEFT CURLY BRACKET')
u'{'
>>> unicodedata.name(u'/')
'SOLIDUS'
>>> unicodedata.decimal(u'9')
9
>>> unicodedata.decimal(u'a')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: not a decimal
>>> unicodedata.category(u'A') # 'L'etter, 'u'ppercase
'Lu'
>>> unicodedata.bidirectional(u'\u0660') # 'A'rabic, 'N'umber
'AN'

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	7. String Services

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.2. io — Core tools for working with streams

New in version 2.6.

The io module provides the Python interfaces to stream handling.
Under Python 2.x, this is proposed as an alternative to the built-in
file object, but in Python 3.x it is the default interface to
access files and streams.

Note

Since this module has been designed primarily for Python 3.x, you have to
be aware that all uses of “bytes” in this document refer to the
str type (of which bytes is an alias), and all uses
of “text” refer to the unicode type. Furthermore, those two
types are not interchangeable in the io APIs.

At the top of the I/O hierarchy is the abstract base class IOBase. It
defines the basic interface to a stream. Note, however, that there is no
separation between reading and writing to streams; implementations are allowed
to raise an IOError if they do not support a given operation.

Extending IOBase is RawIOBase which deals simply with the
reading and writing of raw bytes to a stream. FileIO subclasses
RawIOBase to provide an interface to files in the machine’s
file system.

BufferedIOBase deals with buffering on a raw byte stream
(RawIOBase). Its subclasses, BufferedWriter,
BufferedReader, and BufferedRWPair buffer streams that are
readable, writable, and both readable and writable.
BufferedRandom provides a buffered interface to random access
streams. BytesIO is a simple stream of in-memory bytes.

Another IOBase subclass, TextIOBase, deals with
streams whose bytes represent text, and handles encoding and decoding
from and to unicode strings. TextIOWrapper, which extends
it, is a buffered text interface to a buffered raw stream
(BufferedIOBase). Finally, StringIO is an in-memory
stream for unicode text.

Argument names are not part of the specification, and only the arguments of
open() are intended to be used as keyword arguments.

15.2.1. Module Interface

	
io.DEFAULT_BUFFER_SIZE

	An int containing the default buffer size used by the module’s buffered I/O
classes. open() uses the file’s blksize (as obtained by
os.stat()) if possible.

	
io.open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True)

	Open file and return a corresponding stream. If the file cannot be opened,
an IOError is raised.

file is either a string giving the pathname (absolute or
relative to the current working directory) of the file to be opened or
an integer file descriptor of the file to be wrapped. (If a file descriptor
is given, it is closed when the returned I/O object is closed, unless
closefd is set to False.)

mode is an optional string that specifies the mode in which the file is
opened. It defaults to 'r' which means open for reading in text mode.
Other common values are 'w' for writing (truncating the file if it
already exists), and 'a' for appending (which on some Unix systems,
means that all writes append to the end of the file regardless of the
current seek position). In text mode, if encoding is not specified the
encoding used is platform dependent. (For reading and writing raw bytes use
binary mode and leave encoding unspecified.) The available modes are:

	Character
	Meaning

	'r'
	open for reading (default)

	'w'
	open for writing, truncating the file first

	'a'
	open for writing, appending to the end of the file if it exists

	'b'
	binary mode

	't'
	text mode (default)

	'+'
	open a disk file for updating (reading and writing)

	'U'
	universal newlines mode (for backwards compatibility; should
not be used in new code)

The default mode is 'rt' (open for reading text). For binary random
access, the mode 'w+b' opens and truncates the file to 0 bytes, while
'r+b' opens the file without truncation.

Python distinguishes between files opened in binary and text modes, even when
the underlying operating system doesn’t. Files opened in binary mode
(including 'b' in the mode argument) return contents as bytes
objects without any decoding. In text mode (the default, or when 't' is
included in the mode argument), the contents of the file are returned as
unicode strings, the bytes having been first decoded using a
platform-dependent encoding or using the specified encoding if given.

buffering is an optional integer used to set the buffering policy.
Pass 0 to switch buffering off (only allowed in binary mode), 1 to select
line buffering (only usable in text mode), and an integer > 1 to indicate
the size of a fixed-size chunk buffer. When no buffering argument is
given, the default buffering policy works as follows:

	Binary files are buffered in fixed-size chunks; the size of the buffer
is chosen using a heuristic trying to determine the underlying device’s
“block size” and falling back on DEFAULT_BUFFER_SIZE.
On many systems, the buffer will typically be 4096 or 8192 bytes long.

	“Interactive” text files (files for which isatty() returns True)
use line buffering. Other text files use the policy described above
for binary files.

encoding is the name of the encoding used to decode or encode the file.
This should only be used in text mode. The default encoding is platform
dependent (whatever locale.getpreferredencoding() returns), but any
encoding supported by Python can be used. See the codecs module for
the list of supported encodings.

errors is an optional string that specifies how encoding and decoding
errors are to be handled–this cannot be used in binary mode. Pass
'strict' to raise a ValueError exception if there is an encoding
error (the default of None has the same effect), or pass 'ignore' to
ignore errors. (Note that ignoring encoding errors can lead to data loss.)
'replace' causes a replacement marker (such as '?') to be inserted
where there is malformed data. When writing, 'xmlcharrefreplace'
(replace with the appropriate XML character reference) or
'backslashreplace' (replace with backslashed escape sequences) can be
used. Any other error handling name that has been registered with
codecs.register_error() is also valid.

newline controls how universal newlines works (it only applies to
text mode). It can be None, '', '\n', '\r', and '\r\n'.
It works as follows:

	On input, if newline is None, universal newlines mode is enabled.
Lines in the input can end in '\n', '\r', or '\r\n', and these
are translated into '\n' before being returned to the caller. If it is
'', universal newlines mode is enabled, but line endings are returned to
the caller untranslated. If it has any of the other legal values, input
lines are only terminated by the given string, and the line ending is
returned to the caller untranslated.

	On output, if newline is None, any '\n' characters written are
translated to the system default line separator, os.linesep. If
newline is '', no translation takes place. If newline is any of
the other legal values, any '\n' characters written are translated to
the given string.

If closefd is False and a file descriptor rather than a filename was
given, the underlying file descriptor will be kept open when the file is
closed. If a filename is given closefd has no effect and must be True
(the default).

The type of file object returned by the open() function depends on the
mode. When open() is used to open a file in a text mode ('w',
'r', 'wt', 'rt', etc.), it returns a subclass of
TextIOBase (specifically TextIOWrapper). When used to open
a file in a binary mode with buffering, the returned class is a subclass of
BufferedIOBase. The exact class varies: in read binary mode, it
returns a BufferedReader; in write binary and append binary modes,
it returns a BufferedWriter, and in read/write mode, it returns a
BufferedRandom. When buffering is disabled, the raw stream, a
subclass of RawIOBase, FileIO, is returned.

It is also possible to use an unicode or bytes string
as a file for both reading and writing. For unicode strings
StringIO can be used like a file opened in text mode,
and for bytes a BytesIO can be used like a
file opened in a binary mode.

	
exception io.BlockingIOError

	Error raised when blocking would occur on a non-blocking stream. It inherits
IOError.

In addition to those of IOError, BlockingIOError has one
attribute:

	
characters_written

	An integer containing the number of characters written to the stream
before it blocked.

	
exception io.UnsupportedOperation

	An exception inheriting IOError and ValueError that is raised
when an unsupported operation is called on a stream.

15.2.2. I/O Base Classes

	
class io.IOBase

	The abstract base class for all I/O classes, acting on streams of bytes.
There is no public constructor.

This class provides empty abstract implementations for many methods
that derived classes can override selectively; the default
implementations represent a file that cannot be read, written or
seeked.

Even though IOBase does not declare read(), readinto(),
or write() because their signatures will vary, implementations and
clients should consider those methods part of the interface. Also,
implementations may raise a IOError when operations they do not
support are called.

The basic type used for binary data read from or written to a file is
bytes (also known as str). Method arguments may
also be bytearray or memoryview of arrays of bytes.
In some cases, such as readinto(), a writable object
such as bytearray is required.
Text I/O classes work with unicode data.

Changed in version 2.7: Implementations should support memoryview arguments.

Note that calling any method (even inquiries) on a closed stream is
undefined. Implementations may raise IOError in this case.

IOBase (and its subclasses) support the iterator protocol, meaning that an
IOBase object can be iterated over yielding the lines in a stream.
Lines are defined slightly differently depending on whether the stream is
a binary stream (yielding bytes), or a text stream (yielding
unicode strings). See readline() below.

IOBase is also a context manager and therefore supports the
with statement. In this example, file is closed after the
with statement’s suite is finished—even if an exception occurs:

with io.open('spam.txt', 'w') as file:
 file.write(u'Spam and eggs!')

IOBase provides these data attributes and methods:

	
close()

	Flush and close this stream. This method has no effect if the file is
already closed. Once the file is closed, any operation on the file
(e.g. reading or writing) will raise a ValueError.

As a convenience, it is allowed to call this method more than once;
only the first call, however, will have an effect.

	
closed

	True if the stream is closed.

	
fileno()

	Return the underlying file descriptor (an integer) of the stream if it
exists. An IOError is raised if the IO object does not use a file
descriptor.

	
flush()

	Flush the write buffers of the stream if applicable. This does nothing
for read-only and non-blocking streams.

	
isatty()

	Return True if the stream is interactive (i.e., connected to
a terminal/tty device).

	
readable()

	Return True if the stream can be read from. If False, read()
will raise IOError.

	
readline(limit=-1)

	Read and return one line from the stream. If limit is specified, at
most limit bytes will be read.

The line terminator is always b'\n' for binary files; for text files,
the newline argument to open() can be used to select the line
terminator(s) recognized.

	
readlines(hint=-1)

	Read and return a list of lines from the stream. hint can be specified
to control the number of lines read: no more lines will be read if the
total size (in bytes/characters) of all lines so far exceeds hint.

Note that it’s already possible to iterate on file objects using for
line in file: ... without calling file.readlines().

	
seek(offset[, whence])

	Change the stream position to the given byte offset. offset is
interpreted relative to the position indicated by whence. The default
value for whence is SEEK_SET. Values for whence are:

	SEEK_SET or 0 – start of the stream (the default);
offset should be zero or positive

	SEEK_CUR or 1 – current stream position; offset may
be negative

	SEEK_END or 2 – end of the stream; offset is usually
negative

Return the new absolute position.

New in version 2.7: The SEEK_* constants

	
seekable()

	Return True if the stream supports random access. If False,
seek(), tell() and truncate() will raise IOError.

	
tell()

	Return the current stream position.

	
truncate(size=None)

	Resize the stream to the given size in bytes (or the current position
if size is not specified). The current stream position isn’t changed.
This resizing can extend or reduce the current file size. In case of
extension, the contents of the new file area depend on the platform
(on most systems, additional bytes are zero-filled, on Windows they’re
undetermined). The new file size is returned.

	
writable()

	Return True if the stream supports writing. If False,
write() and truncate() will raise IOError.

	
writelines(lines)

	Write a list of lines to the stream. Line separators are not added, so it
is usual for each of the lines provided to have a line separator at the
end.

	
__del__()

	Prepare for object destruction. IOBase provides a default
implementation of this method that calls the instance’s
close() method.

	
class io.RawIOBase

	Base class for raw binary I/O. It inherits IOBase. There is no
public constructor.

Raw binary I/O typically provides low-level access to an underlying OS
device or API, and does not try to encapsulate it in high-level primitives
(this is left to Buffered I/O and Text I/O, described later in this page).

In addition to the attributes and methods from IOBase,
RawIOBase provides the following methods:

	
read(n=-1)

	Read up to n bytes from the object and return them. As a convenience,
if n is unspecified or -1, readall() is called. Otherwise,
only one system call is ever made. Fewer than n bytes may be
returned if the operating system call returns fewer than n bytes.

If 0 bytes are returned, and n was not 0, this indicates end of file.
If the object is in non-blocking mode and no bytes are available,
None is returned.

	
readall()

	Read and return all the bytes from the stream until EOF, using multiple
calls to the stream if necessary.

	
readinto(b)

	Read up to len(b) bytes into b, and return the number
of bytes read. The object b should be a pre-allocated, writable
array of bytes, either bytearray or memoryview.
If the object is in non-blocking mode and no
bytes are available, None is returned.

	
write(b)

	Write b to the underlying raw stream, and return the
number of bytes written. The object b should be an array
of bytes, either bytes, bytearray, or
memoryview. The return value can be less than
len(b), depending on specifics of the underlying raw stream, and
especially if it is in non-blocking mode. None is returned if the
raw stream is set not to block and no single byte could be readily
written to it. The caller may release or mutate b after
this method returns, so the implementation should only access b
during the method call.

	
class io.BufferedIOBase

	Base class for binary streams that support some kind of buffering.
It inherits IOBase. There is no public constructor.

The main difference with RawIOBase is that methods read(),
readinto() and write() will try (respectively) to read as much
input as requested or to consume all given output, at the expense of
making perhaps more than one system call.

In addition, those methods can raise BlockingIOError if the
underlying raw stream is in non-blocking mode and cannot take or give
enough data; unlike their RawIOBase counterparts, they will
never return None.

Besides, the read() method does not have a default
implementation that defers to readinto().

A typical BufferedIOBase implementation should not inherit from a
RawIOBase implementation, but wrap one, like
BufferedWriter and BufferedReader do.

BufferedIOBase provides or overrides these methods and attribute in
addition to those from IOBase:

	
raw

	The underlying raw stream (a RawIOBase instance) that
BufferedIOBase deals with. This is not part of the
BufferedIOBase API and may not exist on some implementations.

	
detach()

	Separate the underlying raw stream from the buffer and return it.

After the raw stream has been detached, the buffer is in an unusable
state.

Some buffers, like BytesIO, do not have the concept of a single
raw stream to return from this method. They raise
UnsupportedOperation.

New in version 2.7.

	
read(n=-1)

	Read and return up to n bytes. If the argument is omitted, None, or
negative, data is read and returned until EOF is reached. An empty bytes
object is returned if the stream is already at EOF.

If the argument is positive, and the underlying raw stream is not
interactive, multiple raw reads may be issued to satisfy the byte count
(unless EOF is reached first). But for interactive raw streams, at most
one raw read will be issued, and a short result does not imply that EOF is
imminent.

A BlockingIOError is raised if the underlying raw stream is in
non blocking-mode, and has no data available at the moment.

	
read1(n=-1)

	Read and return up to n bytes, with at most one call to the underlying
raw stream’s read() method. This can be useful if you
are implementing your own buffering on top of a BufferedIOBase
object.

	
readinto(b)

	Read up to len(b) bytes into b, and return the number of bytes read.
The object b should be a pre-allocated, writable array of bytes,
either bytearray or memoryview.

Like read(), multiple reads may be issued to the underlying raw
stream, unless the latter is ‘interactive’.

A BlockingIOError is raised if the underlying raw stream is in
non blocking-mode, and has no data available at the moment.

	
write(b)

	Write b, and return the number of bytes written
(always equal to len(b), since if the write fails
an IOError will be raised). The object b should be
an array of bytes, either bytes, bytearray,
or memoryview. Depending on the actual
implementation, these bytes may be readily written to the underlying
stream, or held in a buffer for performance and latency reasons.

When in non-blocking mode, a BlockingIOError is raised if the
data needed to be written to the raw stream but it couldn’t accept
all the data without blocking.

The caller may release or mutate b after this method returns,
so the implementation should only access b during the method call.

15.2.3. Raw File I/O

	
class io.FileIO(name, mode='r', closefd=True)

	FileIO represents an OS-level file containing bytes data.
It implements the RawIOBase interface (and therefore the
IOBase interface, too).

The name can be one of two things:

	a string representing the path to the file which will be opened;

	an integer representing the number of an existing OS-level file descriptor
to which the resulting FileIO object will give access.

The mode can be 'r', 'w' or 'a' for reading (default), writing,
or appending. The file will be created if it doesn’t exist when opened for
writing or appending; it will be truncated when opened for writing. Add a
'+' to the mode to allow simultaneous reading and writing.

The read() (when called with a positive argument), readinto()
and write() methods on this class will only make one system call.

In addition to the attributes and methods from IOBase and
RawIOBase, FileIO provides the following data
attributes and methods:

	
mode

	The mode as given in the constructor.

	
name

	The file name. This is the file descriptor of the file when no name is
given in the constructor.

15.2.4. Buffered Streams

Buffered I/O streams provide a higher-level interface to an I/O device
than raw I/O does.

	
class io.BytesIO([initial_bytes])

	A stream implementation using an in-memory bytes buffer. It inherits
BufferedIOBase.

The optional argument initial_bytes is a bytes object that
contains initial data.

BytesIO provides or overrides these methods in addition to those
from BufferedIOBase and IOBase:

	
getvalue()

	Return bytes containing the entire contents of the buffer.

	
read1()

	In BytesIO, this is the same as read().

	
class io.BufferedReader(raw, buffer_size=DEFAULT_BUFFER_SIZE)

	A buffer providing higher-level access to a readable, sequential
RawIOBase object. It inherits BufferedIOBase.
When reading data from this object, a larger amount of data may be
requested from the underlying raw stream, and kept in an internal buffer.
The buffered data can then be returned directly on subsequent reads.

The constructor creates a BufferedReader for the given readable
raw stream and buffer_size. If buffer_size is omitted,
DEFAULT_BUFFER_SIZE is used.

BufferedReader provides or overrides these methods in addition to
those from BufferedIOBase and IOBase:

	
peek([n])

	Return bytes from the stream without advancing the position. At most one
single read on the raw stream is done to satisfy the call. The number of
bytes returned may be less or more than requested.

	
read([n])

	Read and return n

 16.1. select — Waiting for I/O completion

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	16. Optional Operating System Services

16.1. select — Waiting for I/O completion

This module provides access to the select() and poll() functions
available in most operating systems, epoll() available on Linux 2.5+ and
kqueue() available on most BSD.
Note that on Windows, it only works for sockets; on other operating systems,
it also works for other file types (in particular, on Unix, it works on pipes).
It cannot be used on regular files to determine whether a file has grown since
it was last read.

The module defines the following:

	
exception select.error

	The exception raised when an error occurs. The accompanying value is a pair
containing the numeric error code from errno and the corresponding
string, as would be printed by the C function perror().

	
select.epoll([sizehint=-1])

	(Only supported on Linux 2.5.44 and newer.) Returns an edge polling object,
which can be used as Edge or Level Triggered interface for I/O events; see
section Edge and Level Trigger Polling (epoll) Objects below for the methods supported by epolling
objects.

New in version 2.6.

	
select.poll()

	(Not supported by all operating systems.) Returns a polling object, which
supports registering and unregistering file descriptors, and then polling them
for I/O events; see section Polling Objects below for the methods supported
by polling objects.

	
select.kqueue()

	(Only supported on BSD.) Returns a kernel queue object; see section
Kqueue Objects below for the methods supported by kqueue objects.

New in version 2.6.

	
select.kevent(ident, filter=KQ_FILTER_READ, flags=KQ_EV_ADD, fflags=0, data=0, udata=0)

	(Only supported on BSD.) Returns a kernel event object; see section
Kevent Objects below for the methods supported by kevent objects.

New in version 2.6.

	
select.select(rlist, wlist, xlist[, timeout])

	This is a straightforward interface to the Unix select() system call.
The first three arguments are sequences of ‘waitable objects’: either
integers representing file descriptors or objects with a parameterless method
named fileno() returning such an integer:

	rlist: wait until ready for reading

	wlist: wait until ready for writing

	xlist: wait for an “exceptional condition” (see the manual page for what
your system considers such a condition)

Empty sequences are allowed, but acceptance of three empty sequences is
platform-dependent. (It is known to work on Unix but not on Windows.) The
optional timeout argument specifies a time-out as a floating point number
in seconds. When the timeout argument is omitted the function blocks until
at least one file descriptor is ready. A time-out value of zero specifies a
poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the
first three arguments. When the time-out is reached without a file descriptor
becoming ready, three empty lists are returned.

Among the acceptable object types in the sequences are Python file objects (e.g.
sys.stdin, or objects returned by open() or os.popen()), socket
objects returned by socket.socket(). You may also define a wrapper
class yourself, as long as it has an appropriate fileno()
method (that really returns a file descriptor, not just a random integer).

Note

File objects on Windows are not acceptable, but sockets are. On Windows,
the underlying select() function is provided by the WinSock
library, and does not handle file descriptors that don’t originate from
WinSock.

	
select.PIPE_BUF

	Files reported as ready for writing by select(), poll() or
similar interfaces in this module are guaranteed to not block on a write
of up to PIPE_BUF bytes.
This value is guaranteed by POSIX to be at least 512. Availability: Unix.

New in version 2.7.

16.1.1. Edge and Level Trigger Polling (epoll) Objects

http://linux.die.net/man/4/epoll

eventmask

	Constant
	Meaning

	EPOLLIN
	Available for read

	EPOLLOUT
	Available for write

	EPOLLPRI
	Urgent data for read

	EPOLLERR
	Error condition happened on the assoc. fd

	EPOLLHUP
	Hang up happened on the assoc. fd

	EPOLLET
	Set Edge Trigger behavior, the default is
Level Trigger behavior

	EPOLLONESHOT
	Set one-shot behavior. After one event is
pulled out, the fd is internally disabled

	EPOLLRDNORM
	Equivalent to EPOLLIN

	EPOLLRDBAND
	Priority data band can be read.

	EPOLLWRNORM
	Equivalent to EPOLLOUT

	EPOLLWRBAND
	Priority data may be written.

	EPOLLMSG
	Ignored.

	
epoll.close()

	Close the control file descriptor of the epoll object.

	
epoll.fileno()

	Return the file descriptor number of the control fd.

	
epoll.fromfd(fd)

	Create an epoll object from a given file descriptor.

	
epoll.register(fd[, eventmask])

	Register a fd descriptor with the epoll object.

Note

Registering a file descriptor that’s already registered raises an
IOError – contrary to Polling Objects‘s register.

	
epoll.modify(fd, eventmask)

	Modify a register file descriptor.

	
epoll.unregister(fd)

	Remove a registered file descriptor from the epoll object.

	
epoll.poll([timeout=-1[, maxevents=-1]])

	Wait for events. timeout in seconds (float)

16.1.2. Polling Objects

The poll() system call, supported on most Unix systems, provides better
scalability for network servers that service many, many clients at the same
time. poll() scales better because the system call only requires listing
the file descriptors of interest, while select() builds a bitmap, turns
on bits for the fds of interest, and then afterward the whole bitmap has to be
linearly scanned again. select() is O(highest file descriptor), while
poll() is O(number of file descriptors).

	
poll.register(fd[, eventmask])

	Register a file descriptor with the polling object. Future calls to the
poll() method will then check whether the file descriptor has any
pending I/O events. fd can be either an integer, or an object with a
fileno() method that returns an integer. File objects
implement fileno(), so they can also be used as the argument.

eventmask is an optional bitmask describing the type of events you want to
check for, and can be a combination of the constants POLLIN,
POLLPRI, and POLLOUT, described in the table below. If not
specified, the default value used will check for all 3 types of events.

	Constant
	Meaning

	POLLIN
	There is data to read

	POLLPRI
	There is urgent data to read

	POLLOUT
	Ready for output: writing will not block

	POLLERR
	Error condition of some sort

	POLLHUP
	Hung up

	POLLNVAL
	Invalid request: descriptor not open

Registering a file descriptor that’s already registered is not an error, and has
the same effect as registering the descriptor exactly once.

	
poll.modify(fd, eventmask)

	Modifies an already registered fd. This has the same effect as
register(fd, eventmask). Attempting to modify a file descriptor
that was never registered causes an IOError exception with errno
ENOENT to be raised.

New in version 2.6.

	
poll.unregister(fd)

	Remove a file descriptor being tracked by a polling object. Just like the
register() method, fd can be an integer or an object with a
fileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered causes a
KeyError exception to be raised.

	
poll.poll([timeout])

	Polls the set of registered file descriptors, and returns a possibly-empty list
containing (fd, event) 2-tuples for the descriptors that have events or
errors to report. fd is the file descriptor, and event is a bitmask with
bits set for the reported events for that descriptor — POLLIN for
waiting input, POLLOUT to indicate that the descriptor can be written
to, and so forth. An empty list indicates that the call timed out and no file
descriptors had any events to report. If timeout is given, it specifies the
length of time in milliseconds which the system will wait for events before
returning. If timeout is omitted, negative, or None, the call will
block until there is an event for this poll object.

16.1.3. Kqueue Objects

	
kqueue.close()

	Close the control file descriptor of the kqueue object.

	
kqueue.fileno()

	Return the file descriptor number of the control fd.

	
kqueue.fromfd(fd)

	Create a kqueue object from a given file descriptor.

	
kqueue.control(changelist, max_events[, timeout=None]) eventlist

	Low level interface to kevent

	changelist must be an iterable of kevent object or None

	max_events must be 0 or a positive integer

	timeout in seconds (floats possible)

16.1.4. Kevent Objects

https://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

	
kevent.ident

	Value used to identify the event. The interpretation depends on the filter
but it’s usually the file descriptor. In the constructor ident can either
be an int or an object with a fileno() function. kevent stores the integer
internally.

	
kevent.filter

	Name of the kernel filter.

	Constant
	Meaning

	KQ_FILTER_READ
	Takes a descriptor and returns whenever
there is data available to read

	KQ_FILTER_WRITE
	Takes a descriptor and returns whenever
there is data available to write

	KQ_FILTER_AIO
	AIO requests

	KQ_FILTER_VNODE
	Returns when one or more of the requested
events watched in fflag occurs

	KQ_FILTER_PROC
	Watch for events on a process id

	KQ_FILTER_NETDEV
	Watch for events on a network device
[not available on Mac OS X]

	KQ_FILTER_SIGNAL
	Returns whenever the watched signal is
delivered to the process

	KQ_FILTER_TIMER
	Establishes an arbitrary timer

	
kevent.flags

	Filter action.

	Constant
	Meaning

	KQ_EV_ADD
	Adds or modifies an event

	KQ_EV_DELETE
	Removes an event from the queue

	KQ_EV_ENABLE
	Permitscontrol() to returns the event

	KQ_EV_DISABLE
	Disablesevent

	KQ_EV_ONESHOT
	Removes event after first occurrence

	KQ_EV_CLEAR
	Reset the state after an event is retrieved

	KQ_EV_SYSFLAGS
	internal event

	KQ_EV_FLAG1
	internal event

	KQ_EV_EOF
	Filter specific EOF condition

	KQ_EV_ERROR
	See return values

	
kevent.fflags

	Filter specific flags.

KQ_FILTER_READ and KQ_FILTER_WRITE filter flags:

	Constant
	Meaning

	KQ_NOTE_LOWAT
	low water mark of a socket buffer

KQ_FILTER_VNODE filter flags:

	Constant
	Meaning

	KQ_NOTE_DELETE
	unlink() was called

	KQ_NOTE_WRITE
	a write occurred

	KQ_NOTE_EXTEND
	the file was extended

	KQ_NOTE_ATTRIB
	an attribute was changed

	KQ_NOTE_LINK
	the link count has changed

	KQ_NOTE_RENAME
	the file was renamed

	KQ_NOTE_REVOKE
	access to the file was revoked

KQ_FILTER_PROC filter flags:

	Constant
	Meaning

	KQ_NOTE_EXIT
	the process has exited

	KQ_NOTE_FORK
	the process has called fork()

	KQ_NOTE_EXEC
	the process has executed a new process

	KQ_NOTE_PCTRLMASK
	internal filter flag

	KQ_NOTE_PDATAMASK
	internal filter flag

	KQ_NOTE_TRACK
	follow a process across fork()

	KQ_NOTE_CHILD
	returned on the child process for
NOTE_TRACK

	KQ_NOTE_TRACKERR
	unable to attach to a child

KQ_FILTER_NETDEV filter flags (not available on Mac OS X):

	Constant
	Meaning

	KQ_NOTE_LINKUP
	link is up

	KQ_NOTE_LINKDOWN
	link is down

	KQ_NOTE_LINKINV
	link state is invalid

	
kevent.data

	Filter specific data.

	
kevent.udata

	User defined value.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	16. Optional Operating System Services

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 17.5. popen2 — Subprocesses with accessible I/O streams

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	17. Interprocess Communication and Networking

17.5. popen2 — Subprocesses with accessible I/O streams

Deprecated since version 2.6: This module is obsolete. Use the subprocess module. Check
especially the Replacing Older Functions with the subprocess Module section.

This module allows you to spawn processes and connect to their
input/output/error pipes and obtain their return codes under Unix and Windows.

The subprocess module provides more powerful facilities for spawning new
processes and retrieving their results. Using the subprocess module is
preferable to using the popen2 module.

The primary interface offered by this module is a trio of factory functions.
For each of these, if bufsize is specified, it specifies the buffer size for
the I/O pipes. mode, if provided, should be the string 'b' or 't'; on
Windows this is needed to determine whether the file objects should be opened in
binary or text mode. The default value for mode is 't'.

On Unix, cmd may be a sequence, in which case arguments will be passed
directly to the program without shell intervention (as with os.spawnv()).
If cmd is a string it will be passed to the shell (as with os.system()).

The only way to retrieve the return codes for the child processes is by using
the poll() or wait() methods on the Popen3 and
Popen4 classes; these are only available on Unix. This information is
not available when using the popen2(), popen3(), and popen4()
functions, or the equivalent functions in the os module. (Note that the
tuples returned by the os module’s functions are in a different order
from the ones returned by the popen2 module.)

	
popen2.popen2(cmd[, bufsize[, mode]])

	Executes cmd as a sub-process. Returns the file objects (child_stdout,
child_stdin).

	
popen2.popen3(cmd[, bufsize[, mode]])

	Executes cmd as a sub-process. Returns the file objects (child_stdout,
child_stdin, child_stderr).

	
popen2.popen4(cmd[, bufsize[, mode]])

	Executes cmd as a sub-process. Returns the file objects
(child_stdout_and_stderr, child_stdin).

New in version 2.0.

On Unix, a class defining the objects returned by the factory functions is also
available. These are not used for the Windows implementation, and are not
available on that platform.

	
class popen2.Popen3(cmd[, capturestderr[, bufsize]])

	This class represents a child process. Normally, Popen3 instances are
created using the popen2() and popen3() factory functions described
above.

If not using one of the helper functions to create Popen3 objects, the
parameter cmd is the shell command to execute in a sub-process. The
capturestderr flag, if true, specifies that the object should capture standard
error output of the child process. The default is false. If the bufsize
parameter is specified, it specifies the size of the I/O buffers to/from the
child process.

	
class popen2.Popen4(cmd[, bufsize])

	Similar to Popen3, but always captures standard error into the same
file object as standard output. These are typically created using
popen4().

New in version 2.0.

17.5.1. Popen3 and Popen4 Objects

Instances of the Popen3 and Popen4 classes have the following
methods:

	
Popen3.poll()

	Returns -1 if child process hasn’t completed yet, or its status code
(see wait()) otherwise.

	
Popen3.wait()

	Waits for and returns the status code of the child process. The status code
encodes both the return code of the process and information about whether it
exited using the exit() system call or died due to a signal. Functions
to help interpret the status code are defined in the os module; see
section Process Management for the W*() family of functions.

The following attributes are also available:

	
Popen3.fromchild

	A file object that provides output from the child process. For Popen4
instances, this will provide both the standard output and standard error
streams.

	
Popen3.tochild

	A file object that provides input to the child process.

	
Popen3.childerr

	A file object that provides error output from the child process, if
capturestderr was true for the constructor, otherwise None. This will
always be None for Popen4 instances.

	
Popen3.pid

	The process ID of the child process.

17.5.2. Flow Control Issues

Any time you are working with any form of inter-process communication, control
flow needs to be carefully thought out. This remains the case with the file
objects provided by this module (or the os module equivalents).

When reading output from a child process that writes a lot of data to standard
error while the parent is reading from the child’s standard output, a deadlock
can occur. A similar situation can occur with other combinations of reads and
writes. The essential factors are that more than _PC_PIPE_BUF bytes
are being written by one process in a blocking fashion, while the other process
is reading from the first process, also in a blocking fashion.

There are several ways to deal with this situation.

The simplest application change, in many cases, will be to follow this model in
the parent process:

import popen2

r, w, e = popen2.popen3('python slave.py')
e.readlines()
r.readlines()
r.close()
e.close()
w.close()

with code like this in the child:

import os
import sys

note that each of these print statements
writes a single long string

print >>sys.stderr, 400 * 'this is a test\n'
os.close(sys.stderr.fileno())
print >>sys.stdout, 400 * 'this is another test\n'

In particular, note that sys.stderr must be closed after writing all data,
or readlines() won’t return. Also note that os.close() must be
used, as sys.stderr.close() won’t close stderr (otherwise assigning to
sys.stderr will silently close it, so no further errors can be printed).

Applications which need to support a more general approach should integrate I/O
over pipes with their select() loops, or use separate threads to read each
of the individual files provided by whichever popen*() function or
Popen* class was used.

See also

	Module subprocess

	Module for spawning and managing subprocesses.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	17. Interprocess Communication and Networking

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 18.1.5. email.header: Internationalized headers

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

18.1.5. email.header: Internationalized headers

RFC 2822 [https://tools.ietf.org/html/rfc2822.html] is the base standard that describes the format of email messages.
It derives from the older RFC 822 [https://tools.ietf.org/html/rfc822.html] standard which came into widespread use at
a time when most email was composed of ASCII characters only. RFC 2822 [https://tools.ietf.org/html/rfc2822.html] is a
specification written assuming email contains only 7-bit ASCII characters.

Of course, as email has been deployed worldwide, it has become
internationalized, such that language specific character sets can now be used in
email messages. The base standard still requires email messages to be
transferred using only 7-bit ASCII characters, so a slew of RFCs have been
written describing how to encode email containing non-ASCII characters into
RFC 2822 [https://tools.ietf.org/html/rfc2822.html]-compliant format. These RFCs include RFC 2045 [https://tools.ietf.org/html/rfc2045.html], RFC 2046 [https://tools.ietf.org/html/rfc2046.html],
RFC 2047 [https://tools.ietf.org/html/rfc2047.html], and RFC 2231 [https://tools.ietf.org/html/rfc2231.html]. The email package supports these standards
in its email.header and email.charset modules.

If you want to include non-ASCII characters in your email headers, say in the
Subject or To fields, you should use the
Header class and assign the field in the Message
object to an instance of Header instead of using a string for the header
value. Import the Header class from the email.header module.
For example:

>>> from email.message import Message
>>> from email.header import Header
>>> msg = Message()
>>> h = Header('p\xf6stal', 'iso-8859-1')
>>> msg['Subject'] = h
>>> print msg.as_string()
Subject: =?iso-8859-1?q?p=F6stal?=

Notice here how we wanted the Subject field to contain a non-ASCII
character? We did this by creating a Header instance and passing in
the character set that the byte string was encoded in. When the subsequent
Message instance was flattened, the Subject
field was properly RFC 2047 [https://tools.ietf.org/html/rfc2047.html] encoded. MIME-aware mail readers would show this
header using the embedded ISO-8859-1 character.

New in version 2.2.2.

Here is the Header class description:

	
class email.header.Header([s[, charset[, maxlinelen[, header_name[, continuation_ws[, errors]]]]]])

	Create a MIME-compliant header that can contain strings in different character
sets.

Optional s is the initial header value. If None (the default), the
initial header value is not set. You can later append to the header with
append() method calls. s may be a byte string or a Unicode string, but
see the append() documentation for semantics.

Optional charset serves two purposes: it has the same meaning as the charset
argument to the append() method. It also sets the default character set
for all subsequent append() calls that omit the charset argument. If
charset is not provided in the constructor (the default), the us-ascii
character set is used both as s‘s initial charset and as the default for
subsequent append() calls.

The maximum line length can be specified explicitly via maxlinelen. For
splitting the first line to a shorter value (to account for the field header
which isn’t included in s, e.g. Subject) pass in the name of the
field in header_name. The default maxlinelen is 76, and the default value
for header_name is None, meaning it is not taken into account for the
first line of a long, split header.

Optional continuation_ws must be RFC 2822 [https://tools.ietf.org/html/rfc2822.html]-compliant folding whitespace,
and is usually either a space or a hard tab character. This character will be
prepended to continuation lines. continuation_ws defaults to a single
space character (” ”).

Optional errors is passed straight through to the append() method.

	
append(s[, charset[, errors]])

	Append the string s to the MIME header.

Optional charset, if given, should be a Charset
instance (see email.charset) or the name of a character set, which
will be converted to a Charset instance. A value
of None (the default) means that the charset given in the constructor
is used.

s may be a byte string or a Unicode string. If it is a byte string
(i.e. isinstance(s, str) is true), then charset is the encoding of
that byte string, and a UnicodeError will be raised if the string
cannot be decoded with that character set.

If s is a Unicode string, then charset is a hint specifying the
character set of the characters in the string. In this case, when
producing an RFC 2822 [https://tools.ietf.org/html/rfc2822.html]-compliant header using RFC 2047 [https://tools.ietf.org/html/rfc2047.html] rules, the
Unicode string will be encoded using the following charsets in order:
us-ascii, the charset hint, utf-8. The first character set to
not provoke a UnicodeError is used.

Optional errors is passed through to any unicode() or
unicode.encode() call, and defaults to “strict”.

	
encode([splitchars])

	Encode a message header into an RFC-compliant format, possibly wrapping
long lines and encapsulating non-ASCII parts in base64 or quoted-printable
encodings. Optional splitchars is a string containing characters to
split long ASCII lines on, in rough support of RFC 2822 [https://tools.ietf.org/html/rfc2822.html]‘s highest
level syntactic breaks. This doesn’t affect RFC 2047 [https://tools.ietf.org/html/rfc2047.html] encoded lines.

The Header class also provides a number of methods to support
standard operators and built-in functions.

	
__str__()

	A synonym for Header.encode(). Useful for str(aHeader).

	
__unicode__()

	A helper for the built-in unicode() function. Returns the header as
a Unicode string.

	
__eq__(other)

	This method allows you to compare two Header instances for
equality.

	
__ne__(other)

	This method allows you to compare two Header instances for
inequality.

The email.header module also provides the following convenient functions.

	
email.header.decode_header(header)

	Decode a message header value without converting the character set. The header
value is in header.

This function returns a list of (decoded_string, charset) pairs containing
each of the decoded parts of the header. charset is None for non-encoded
parts of the header, otherwise a lower case string containing the name of the
character set specified in the encoded string.

Here’s an example:

>>> from email.header import decode_header
>>> decode_header('=?iso-8859-1?q?p=F6stal?=')
[('p\xf6stal', 'iso-8859-1')]

	
email.header.make_header(decoded_seq[, maxlinelen[, header_name[, continuation_ws]]])

	Create a Header instance from a sequence of pairs as returned by
decode_header().

decode_header() takes a header value string and returns a sequence of
pairs of the format (decoded_string, charset) where charset is the name of
the character set.

This function takes one of those sequence of pairs and returns a Header
instance. Optional maxlinelen, header_name, and continuation_ws are as in
the Header constructor.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 19.7. xml.etree.ElementTree — The ElementTree XML API

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.7. xml.etree.ElementTree — The ElementTree XML API

New in version 2.5.

Source code: Lib/xml/etree/ElementTree.py [https://hg.python.org/cpython/file/2.7/Lib/xml/etree/ElementTree.py]

The Element type is a flexible container object, designed to store
hierarchical data structures in memory. The type can be described as a cross
between a list and a dictionary.

Warning

The xml.etree.ElementTree module is not secure against
maliciously constructed data. If you need to parse untrusted or
unauthenticated data see XML vulnerabilities.

Each element has a number of properties associated with it:

	a tag which is a string identifying what kind of data this element represents
(the element type, in other words).

	a number of attributes, stored in a Python dictionary.

	a text string.

	an optional tail string.

	a number of child elements, stored in a Python sequence

To create an element instance, use the Element constructor or the
SubElement() factory function.

The ElementTree class can be used to wrap an element structure, and
convert it from and to XML.

A C implementation of this API is available as xml.etree.cElementTree.

See http://effbot.org/zone/element-index.htm for tutorials and links to other
docs. Fredrik Lundh’s page is also the location of the development version of
the xml.etree.ElementTree.

Changed in version 2.7: The ElementTree API is updated to 1.3. For more information, see
Introducing ElementTree 1.3 [http://effbot.org/zone/elementtree-13-intro.htm].

19.7.1. Tutorial

This is a short tutorial for using xml.etree.ElementTree (ET in
short). The goal is to demonstrate some of the building blocks and basic
concepts of the module.

19.7.1.1. XML tree and elements

XML is an inherently hierarchical data format, and the most natural way to
represent it is with a tree. ET has two classes for this purpose -
ElementTree represents the whole XML document as a tree, and
Element represents a single node in this tree. Interactions with
the whole document (reading and writing to/from files) are usually done
on the ElementTree level. Interactions with a single XML element
and its sub-elements are done on the Element level.

19.7.1.2. Parsing XML

We’ll be using the following XML document as the sample data for this section:

<?xml version="1.0"?>
<data>
 <country name="Liechtenstein">
 <rank>1</rank>
 <year>2008</year>
 <gdppc>141100</gdppc>
 <neighbor name="Austria" direction="E"/>
 <neighbor name="Switzerland" direction="W"/>
 </country>
 <country name="Singapore">
 <rank>4</rank>
 <year>2011</year>
 <gdppc>59900</gdppc>
 <neighbor name="Malaysia" direction="N"/>
 </country>
 <country name="Panama">
 <rank>68</rank>
 <year>2011</year>
 <gdppc>13600</gdppc>
 <neighbor name="Costa Rica" direction="W"/>
 <neighbor name="Colombia" direction="E"/>
 </country>
</data>

We have a number of ways to import the data. Reading the file from disk:

import xml.etree.ElementTree as ET
tree = ET.parse('country_data.xml')
root = tree.getroot()

Reading the data from a string:

root = ET.fromstring(country_data_as_string)

fromstring() parses XML from a string directly into an Element,
which is the root element of the parsed tree. Other parsing functions may
create an ElementTree. Check the documentation to be sure.

As an Element, root has a tag and a dictionary of attributes:

>>> root.tag
'data'
>>> root.attrib
{}

It also has children nodes over which we can iterate:

>>> for child in root:
... print child.tag, child.attrib
...
country {'name': 'Liechtenstein'}
country {'name': 'Singapore'}
country {'name': 'Panama'}

Children are nested, and we can access specific child nodes by index:

>>> root[0][1].text
'2008'

19.7.1.3. Finding interesting elements

Element has some useful methods that help iterate recursively over all
the sub-tree below it (its children, their children, and so on). For example,
Element.iter():

>>> for neighbor in root.iter('neighbor'):
... print neighbor.attrib
...
{'name': 'Austria', 'direction': 'E'}
{'name': 'Switzerland', 'direction': 'W'}
{'name': 'Malaysia', 'direction': 'N'}
{'name': 'Costa Rica', 'direction': 'W'}
{'name': 'Colombia', 'direction': 'E'}

Element.findall() finds only elements with a tag which are direct
children of the current element. Element.find() finds the first child
with a particular tag, and Element.text accesses the element’s text
content. Element.get() accesses the element’s attributes:

>>> for country in root.findall('country'):
... rank = country.find('rank').text
... name = country.get('name')
... print name, rank
...
Liechtenstein 1
Singapore 4
Panama 68

More sophisticated specification of which elements to look for is possible by
using XPath.

19.7.1.4. Modifying an XML File

ElementTree provides a simple way to build XML documents and write them to files.
The ElementTree.write() method serves this purpose.

Once created, an Element object may be manipulated by directly changing
its fields (such as Element.text), adding and modifying attributes
(Element.set() method), as well as adding new children (for example
with Element.append()).

Let’s say we want to add one to each country’s rank, and add an updated
attribute to the rank element:

>>> for rank in root.iter('rank'):
... new_rank = int(rank.text) + 1
... rank.text = str(new_rank)
... rank.set('updated', 'yes')
...
>>> tree.write('output.xml')

Our XML now looks like this:

<?xml version="1.0"?>
<data>
 <country name="Liechtenstein">
 <rank updated="yes">2</rank>
 <year>2008</year>
 <gdppc>141100</gdppc>
 <neighbor name="Austria" direction="E"/>
 <neighbor name="Switzerland" direction="W"/>
 </country>
 <country name="Singapore">
 <rank updated="yes">5</rank>
 <year>2011</year>
 <gdppc>59900</gdppc>
 <neighbor name="Malaysia" direction="N"/>
 </country>
 <country name="Panama">
 <rank updated="yes">69</rank>
 <year>2011</year>
 <gdppc>13600</gdppc>
 <neighbor name="Costa Rica" direction="W"/>
 <neighbor name="Colombia" direction="E"/>
 </country>
</data>

We can remove elements using Element.remove(). Let’s say we want to
remove all countries with a rank higher than 50:

>>> for country in root.findall('country'):
... rank = int(country.find('rank').text)
... if rank > 50:
... root.remove(country)
...
>>> tree.write('output.xml')

Our XML now looks like this:

<?xml version="1.0"?>
<data>
 <country name="Liechtenstein">
 <rank updated="yes">2</rank>
 <year>2008</year>
 <gdppc>141100</gdppc>
 <neighbor name="Austria" direction="E"/>
 <neighbor name="Switzerland" direction="W"/>
 </country>
 <country name="Singapore">
 <rank updated="yes">5</rank>
 <year>2011</year>
 <gdppc>59900</gdppc>
 <neighbor name="Malaysia" direction="N"/>
 </country>
</data>

19.7.1.5. Building XML documents

The SubElement() function also provides a convenient way to create new
sub-elements for a given element:

>>> a = ET.Element('a')
>>> b = ET.SubElement(a, 'b')
>>> c = ET.SubElement(a, 'c')
>>> d = ET.SubElement(c, 'd')
>>> ET.dump(a)
<a><c><d /></c>

19.7.1.6. Parsing XML with Namespaces

If the XML input has namespaces [https://en.wikipedia.org/wiki/XML_namespace], tags and attributes
with prefixes in the form prefix:sometag get expanded to
{uri}sometag where the prefix is replaced by the full URI.
Also, if there is a default namespace [https://www.w3.org/TR/2006/REC-xml-names-20060816/#defaulting],
that full URI gets prepended to all of the non-prefixed tags.

Here is an XML example that incorporates two namespaces, one with the
prefix “fictional” and the other serving as the default namespace:

<?xml version="1.0"?>
<actors xmlns:fictional="http://characters.example.com"
 xmlns="http://people.example.com">
 <actor>
 <name>John Cleese</name>
 <fictional:character>Lancelot</fictional:character>
 <fictional:character>Archie Leach</fictional:character>
 </actor>
 <actor>
 <name>Eric Idle</name>
 <fictional:character>Sir Robin</fictional:character>
 <fictional:character>Gunther</fictional:character>
 <fictional:character>Commander Clement</fictional:character>
 </actor>
</actors>

One way to search and explore this XML example is to manually add the
URI to every tag or attribute in the xpath of a
find() or findall():

root = fromstring(xml_text)
for actor in root.findall('{http://people.example.com}actor'):
 name = actor.find('{http://people.example.com}name')
 print name.text
 for char in actor.findall('{http://characters.example.com}character'):
 print ' |-->', char.text

A better way to search the namespaced XML example is to create a
dictionary with your own prefixes and use those in the search functions:

ns = {'real_person': 'http://people.example.com',
 'role': 'http://characters.example.com'}

for actor in root.findall('real_person:actor', ns):
 name = actor.find('real_person:name', ns)
 print name.text
 for char in actor.findall('role:character', ns):
 print ' |-->', char.text

These two approaches both output:

John Cleese
 |--> Lancelot
 |--> Archie Leach
Eric Idle
 |--> Sir Robin
 |--> Gunther
 |--> Commander Clement

19.7.1.7. Additional resources

See http://effbot.org/zone/element-index.htm for tutorials and links to other
docs.

19.7.2. XPath support

This module provides limited support for
XPath expressions [https://www.w3.org/TR/xpath] for locating elements in a
tree. The goal is to support a small subset of the abbreviated syntax; a full
XPath engine is outside the scope of the module.

19.7.2.1. Example

Here’s an example that demonstrates some of the XPath capabilities of the
module. We’ll be using the countrydata XML document from the
Parsing XML section:

import xml.etree.ElementTree as ET

root = ET.fromstring(countrydata)

Top-level elements
root.findall(".")

All 'neighbor' grand-children of 'country' children of the top-level
elements
root.findall("./country/neighbor")

Nodes with name='Singapore' that have a 'year' child
root.findall(".//year/..[@name='Singapore']")

'year' nodes that are children of nodes with name='Singapore'
root.findall(".//*[@name='Singapore']/year")

All 'neighbor' nodes that are the second child of their parent
root.findall(".//neighbor[2]")

19.7.2.2. Supported XPath syntax

	Syntax
	Meaning

	tag
	Selects all child elements with the given tag.
For example, spam selects all child elements
named spam, and spam/egg selects all
grandchildren named egg in all children named
spam.

	*
	Selects all child elements. For example, */egg
selects all grandchildren named egg.

	.
	Selects the current node. This is mostly useful
at the beginning of the path, to indicate that it’s
a relative path.

	//
	Selects all subelements, on all levels beneath the
current element. For example, .//egg selects
all egg elements in the entire tree.

	..
	Selects the parent element.

	[@attrib]
	Selects all elements that have the given attribute.

	[@attrib='value']
	Selects all elements for which the given attribute
has the given value. The value cannot contain
quotes.

	[tag]
	Selects all elements that have a child named
tag. Only immediate children are supported.

	[tag='text']
	Selects all elements that have a child named
tag whose complete text content, including
descendants, equals the given text.

	[position]
	Selects all elements that are located at the given
position. The position can be either an integer
(1 is the first position), the expression last()
(for the last position), or a position relative to
the last position (e.g. last()-1).

Predicates (expressions within square brackets) must be preceded by a tag
name, an asterisk, or another predicate. position predicates must be
preceded by a tag name.

19.7.3. Reference

19.7.3.1. Functions

	
xml.etree.ElementTree.Comment(text=None)

	Comment element factory. This factory function creates a special element
that will be serialized as an XML comment by the standard serializer. The
comment string can be either a bytestring or a Unicode string. text is a
string containing the comment string. Returns an element instance
representing a comment.

	
xml.etree.ElementTree.dump(elem)

	Writes an element tree or element structure to sys.stdout. This function
should be used for debugging only.

The exact output format is implementation dependent. In this version, it’s
written as an ordinary XML file.

elem is an element tree or an individual element.

	
xml.etree.ElementTree.fromstring(text)

	Parses an XML section from a string constant. Same as XML(). text
is a string containing XML data. Returns an Element instance.

	
xml.etree.ElementTree.fromstringlist(sequence, parser=None)

	Parses an XML document from a sequence of string fragments. sequence is a
list or other sequence containing XML data fragments. parser is an
optional parser instance. If not given, the standard XMLParser
parser is used. Returns an Element instance.

New in version 2.7.

	
xml.etree.ElementTree.iselement(element)

	Checks if an object appears to be a valid element object. element is an
element instance. Returns a true value if this is an element object.

	
xml.etree.ElementTree.iterparse(source, events=None, parser=None)

	Parses an XML section into an element tree incrementally, and reports what’s
going on to the user. source is a filename or file object containing XML
data. events is a list of events to report back. If omitted, only “end”
events are reported. parser is an optional parser instance. If not
given, the standard XMLParser parser is used. parser is not
supported by cElementTree. Returns an iterator providing
(event, elem) pairs.

Note

iterparse() only guarantees that it has seen the “>”
character of a starting tag when it emits a “start” event, so the
attributes are defined, but the contents of the text and tail attributes
are undefined at that point. The same applies to the element children;
they may or may not be present.

If you need a fully populated element, look for “end” events instead.

	
xml.etree.ElementTree.parse(source, parser=None)

	Parses an XML section into an element tree. source is a filename or file
object containing XML data. parser is an optional parser instance. If
not given, the standard XMLParser parser is used. Returns an
ElementTree instance.

	
xml.etree.ElementTree.ProcessingInstruction(target, text=None)

	PI element factory. This factory function creates a special element that
will be serialized as an XML processing instruction. target is a string
containing the PI target. text is a string containing the PI contents, if
given. Returns an element instance, representing a processing instruction.

	
xml.etree.ElementTree.register_namespace(prefix, uri)

	Registers a namespace prefix. The registry is global, and any existing
mapping for either the given prefix or the namespace URI will be removed.
prefix is a namespace prefix. uri is a namespace uri. Tags and
attributes in this namespace will be serialized with the given prefix, if at
all possible.

New in version 2.7.

	
xml.etree.ElementTree.SubElement(parent, tag, attrib={}, **extra)

	Subelement factory. This function creates an element instance, and appends
it to an existing element.

The element name, attribute names, and attribute values can be either
bytestrings or Unicode strings. parent is the parent element. tag is
the subelement name. attrib is an optional dictionary, containing element
attributes. extra contains additional attributes, given as keyword
arguments. Returns an element instance.

	
xml.etree.ElementTree.tostring(element, encoding="us-ascii", method="xml")

	Generates a string representation of an XML element, including all
subelements. element is an Element instance. encoding [1] is
the output encoding (default is US-ASCII). method is either "xml",
"html" or "text" (default is "xml"). Returns an encoded string
containing the XML data.

	
xml.etree.ElementTree.tostringlist(element, encoding="us-ascii", method="xml")

	Generates a string representation of an XML element, including all
subelements. element is an Element instance. encoding [1] is
the output encoding (default is US-ASCII). method is either "xml",
"html" or "text" (default is "xml"). Returns a list of encoded
strings containing the XML data. It does not guarantee any specific
sequence, except that "".join(tostringlist(element)) ==
tostring(element).

New in version 2.7.

	
xml.etree.ElementTree.XML(text, parser=None)

	Parses an XML section from a string constant. This function can be used to
embed “XML literals” in Python code. text is a string containing XML
data. parser is an optional parser instance. If not given, the standard
XMLParser parser is used. Returns an Element instance.

	
xml.etree.ElementTree.XMLID(text, parser=None)

	Parses an XML section from a string constant, and also returns a dictionary
which maps from element id:s to elements. text is a string containing XML
data. parser is an optional parser instance. If not given, the standard
XMLParser parser is used. Returns a tuple containing an
Element instance and a dictionary.

19.7.3.2. Element Objects

	
class xml.etree.ElementTree.Element(tag, attrib={}, **extra)

	Element class. This class defines the Element interface, and provides a
reference implementation of this interface.

The element name, attribute names, and attribute values can be either
bytestrings or Unicode strings. tag is the element name. attrib is
an optional dictionary, containing element attributes. extra contains
additional attributes, given as keyword arguments.

	
tag

	A string identifying what kind of data this element represents (the
element type, in other words).

	
text

	
tail

	These attributes can be used to hold additional data associated with
the element. Their values are usually strings but may be any
application-specific object. If the element is created from
an XML file, the text attribute holds either the text between
the element’s start tag and its first child or end tag, or None, and
the tail attribute holds either the text between the element’s
end tag and the next tag, or None. For the XML data

<a>1<c>2<d/>3</c>4

the a element has None for both text and tail attributes,
the b element has text "1" and tail "4",
the c element has text "2" and tail None,
and the d element has text None and tail "3".

To collect the inner text of an element, see itertext(), for
example "".join(element.itertext()).

Applications may store arbitrary objects in these attributes.

	
attrib

	A dictionary containing the element’s attributes. Note that while the
attrib value is always a real mutable Python dictionary, an ElementTree
implementation may choose to use another internal representation, and
create the dictionary only if someone asks for it. To take advantage of
such implementations, use the dictionary methods below whenever possible.

The following dictionary-like methods work on the element attributes.

	
clear()

	Resets an element. This function removes all subelements, clears all
attributes, and sets the text and tail attributes to None.

	
get(key, default=None)

	Gets the element attribute named key.

Returns the attribute value, or default if the attribute was not found.

	
items()

	Returns the element attributes as a sequence of (name, value) pairs. The
attributes are returned in an arbitrary order.

	
keys()

	Returns the elements attribute names as a list. The names are returned
in an arbitrary order.

	
set(key, value)

	Set the attribute key on the element to value.

The following methods work on the element’s children (subelements).

	
append(subelement)

	Adds the element subelement to the end of this elements internal list
of subelements.

	
extend(subelements)

	Appends subelements from a sequence object with zero or more elements.
Raises AssertionError if a subelement is not a valid object.

New in version 2.7.

	
find(match)

	Finds the first subelement matching match. match may be a tag name
or path. Returns an element instance or None.

	
findall(match)

	Finds all matching subelements, by tag name or path. Returns a list
containing all matching elements in document order.

	
findtext(match, default=None)

	Finds text for the first subelement matching match. match may be
a tag name or path. Returns the text content of the first matching
element, or default if no element was found. Note that if the matching
element has no text content an empty string is returned.

	
getchildren()

	
Deprecated since version 2.7: Use list(elem) or iteration.

	
getiterator(tag=None)

	
Deprecated since version 2.7: Use method Element.iter() instead.

	
insert(index, element)

	Inserts a subelement at the given position in this element.

	
iter(tag=None)

	Creates a tree iterator with the current element as the root.
The iterator iterates over this element and all elements below it, in
document (depth first) order. If tag is not None or '*', only
elements whose tag equals tag are returned from the iterator. If the
tree structure is modified during iteration, the result is undefined.

New in version 2.7.

	
iterfind(match)

	Finds all matching subelements, by tag name or path. Returns an iterable
yielding all matching elements in document order.

New in version 2.7.

	
itertext()

	Creates a text iterator. The iterator loops over this element and all
subelements, in document order, and returns all inner text.

New in version 2.7.

	
makeelement(tag, attrib)

	Creates a new element object of the same type as this element. Do not
call this method, use the SubElement() factory function instead.

	
remove(subelement)

	Removes subelement from the element. Unlike the find* methods this
method compares elements based on the instance identity, not on tag value
or contents.

Element objects also support the following sequence type methods
for working with subelements: __delitem__(),
__getitem__(), __setitem__(),
__len__().

Caution: Elements with no subelements will test as False. This behavior
will change in future versions. Use specific len(elem) or elem is
None test instead.

element = root.find('foo')

if not element: # careful!
 print "element not found, or element has no subelements"

if element is None:
 print "element not found"

19.7.3.3. ElementTree Objects

	
class xml.etree.ElementTree.ElementTree(element=None, file=None)

	ElementTree wrapper class. This class represents an entire element
hierarchy, and adds some extra support for serialization to and from
standard XML.

element is the root element. The tree is initialized with the contents
of the XML file if given.

	
_setroot(element)

	Replaces the root element for this tree. This discards the current
contents of the tree, and replaces it with the given element. Use with
care. element is an element instance.

	
find(match)

	Same as Element.find(), starting at the root of the tree.

	
findall(match)

	Same as Element.findall(), starting at the root of the tree.

	
findtext(match, default=None)

	Same as Element.findtext(), starting at the root of the tree.

	
getiterator(tag=None)

	
Deprecated since version 2.7: Use method ElementTree.iter() instead.

	
getroot()

	Returns the root element for this tree.

	
iter(tag=None)

	Creates and returns a tree iterator for the root element. The iterator
loops over all elements in this tree, in section order. tag is the tag
to look for (default is to return all elements).

	
iterfind(match)

	Finds all matching subelements, by tag name or path. Same as
getroot().iterfind(match). Returns an iterable yielding all matching
elements in document order.

New in version 2.7.

	
parse(source, parser=None)

	Loads an external XML section into this element tree. source is a file
name or file object. parser is an optional parser instance. If not
given, the standard XMLParser parser is used. Returns the section
root element.

	
write(file, encoding="us-ascii", xml_declaration=None, default_namespace=None, method="xml")

	Writes the element tree to a file, as XML. file is a file name, or a
file object opened for writing. encoding [1] is the output encoding
(default is US-ASCII). xml_declaration controls if an XML declaration
should be added to the file. Use False for never, True for always, None
for only if not US-ASCII or UTF-8 (default is None). default_namespace
sets the default XML namespace (for “xmlns”). method is either
"xml", "html" or "text" (default is "xml"). Returns an
encoded string.

This is the XML file that is going to be manipulated:

<html>
 <head>
 <title>Example page</title>
 </head>
 <body>
 <p>Moved to example.org
 or example.com.</p>
 </body>
</html>

Example of changing the attribute “target” of every link in first paragraph:

>>> from xml.etree.ElementTree import ElementTree
>>> tree = ElementTree()
>>> tree.parse("index.xhtml")
<Element 'html' at 0xb77e6fac>
>>> p = tree.find("body/p") # Finds first occurrence of tag p in body
>>> p
<Element 'p' at 0xb77ec26c>
>>> links = list(p.iter("a")) # Returns list of all links
>>> links
[<Element 'a' at 0xb77ec2ac>, <Element 'a' at 0xb77ec1cc>]
>>> for i in links: # Iterates through all found links
... i.attrib["target"] = "blank"
...
>>> tree.write("output.xhtml")

19.7.3.4. QName Objects

	
class xml.etree.ElementTree.QName(text_or_uri, tag=None)

	QName wrapper. This can be used to wrap a QName attribute value, in order
to get proper namespace handling on output. text_or_uri is a string
containing the QName value, in the form {uri}local, or, if the tag argument
is given, the URI part of a QName. If tag is given, the first argument is
interpreted as a URI, and this argument is interpreted as a local name.
QName instances are opaque.

19.7.3.5. TreeBuilder Objects

	
class xml.etree.ElementTree.TreeBuilder(element_factory=None)

	Generic element structure builder. This builder converts a sequence of
start, data, and end method calls to a well-formed element structure. You
can use this class to build an element structure using a custom XML parser,
or a parser for some other XML-like format. The element_factory is called
to create new Element instances when given.

	
close()

	Flushes the builder buffers, and returns the toplevel document
element. Returns an Element instance.

	
data(data)

	Adds text to the current element. data is a string. This should be
either a bytestring, or a Unicode string.

	
end(tag)

	Closes the current element. tag is the element name. Returns the
closed element.

	
start(tag, attrs)

	Opens a new element. tag is the element name. attrs is a dictionary
containing element attributes. Returns the opened element.

In addition, a custom TreeBuilder object can provide the
following method:

	
doctype(name, pubid, system)

	Handles a doctype declaration. name is the doctype name. pubid is
the public identifier. system is the system identifier. This method
does not exist on the default TreeBuilder class.

New in version 2.7.

19.7.3.6. XMLParser Objects

	
class xml.etree.ElementTree.XMLParser(html=0, target=None, encoding=None)

	Element structure builder for XML source data, based on the expat
parser. html are predefined HTML entities. This flag is not supported by
the current implementation. target is the target object. If omitted, the
builder uses an instance of the standard TreeBuilder class. encoding [1]
is optional. If given, the value overrides the encoding specified in the
XML file.

	
close()

	Finishes feeding data to the parser. Returns an element structure.

	
doctype(name, pubid, system)

	
Deprecated since version 2.7: Define the TreeBuilder.doctype() method on a custom TreeBuilder
target.

	
feed(data)

	Feeds data to the parser. data is encoded data.

XMLParser.feed() calls target‘s start() method
for each opening tag, its end() method for each closing tag,
and data is processed by method data(). XMLParser.close()
calls target‘s method close().
XMLParser can be used not only for building a tree structure.
This is an example of counting the maximum depth of an XML file:

>>> from xml.etree.ElementTree import XMLParser
>>> class MaxDepth: # The target object of the parser
... maxDepth = 0
... depth = 0
... def start(self, tag, attrib): # Called for each opening tag.
... self.depth += 1
... if self.depth > self.maxDepth:
... self.maxDepth = self.depth
... def end(self, tag): # Called for each closing tag.
... self.depth -= 1
... def data(self, data):
... pass # We do not need to do anything with data.
... def close(self): # Called when all data has been parsed.
... return self.maxDepth
...
>>> target = MaxDepth()
>>> parser = XMLParser(target=target)
>>> exampleXml = """
... <a>
...
...
...
... <c>
... <d>
... </d>
... </c>
...
... """
>>> parser.feed(exampleXml)
>>> parser.close()
4

Footnotes

	[1]	The encoding string included in XML output should conform to the
appropriate standards. For example, “UTF-8” is valid, but “UTF8” is
not. See https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
and https://www.iana.org/assignments/character-sets/character-sets.xhtml.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 20.9. poplib — POP3 protocol client

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.9. poplib — POP3 protocol client

Source code: Lib/poplib.py [https://hg.python.org/cpython/file/2.7/Lib/poplib.py]

This module defines a class, POP3, which encapsulates a connection to a
POP3 server and implements the protocol as defined in RFC 1725 [https://tools.ietf.org/html/rfc1725.html]. The
POP3 class supports both the minimal and optional command sets.
Additionally, this module provides a class POP3_SSL, which provides
support for connecting to POP3 servers that use SSL as an underlying protocol
layer.

Note that POP3, though widely supported, is obsolescent. The implementation
quality of POP3 servers varies widely, and too many are quite poor. If your
mailserver supports IMAP, you would be better off using the
imaplib.IMAP4 class, as IMAP servers tend to be better implemented.

The poplib module provides two classes:

	
class poplib.POP3(host[, port[, timeout]])

	This class implements the actual POP3 protocol. The connection is created when
the instance is initialized. If port is omitted, the standard POP3 port (110)
is used. The optional timeout parameter specifies a timeout in seconds for the
connection attempt (if not specified, the global default timeout setting will
be used).

Changed in version 2.6: timeout was added.

	
class poplib.POP3_SSL(host[, port[, keyfile[, certfile]]])

	This is a subclass of POP3 that connects to the server over an SSL
encrypted socket. If port is not specified, 995, the standard POP3-over-SSL
port is used. keyfile and certfile are also optional - they can contain a
PEM formatted private key and certificate chain file for the SSL connection.

New in version 2.4.

One exception is defined as an attribute of the poplib module:

	
exception poplib.error_proto

	Exception raised on any errors from this module (errors from socket
module are not caught). The reason for the exception is passed to the
constructor as a string.

See also

	Module imaplib

	The standard Python IMAP module.

	Frequently Asked Questions About Fetchmail [http://www.catb.org/~esr/fetchmail/fetchmail-FAQ.html]

	The FAQ for the fetchmail POP/IMAP client collects information on
POP3 server variations and RFC noncompliance that may be useful if you need to
write an application based on the POP protocol.

20.9.1. POP3 Objects

All POP3 commands are represented by methods of the same name, in lower-case;
most return the response text sent by the server.

An POP3 instance has the following methods:

	
POP3.set_debuglevel(level)

	Set the instance’s debugging level. This controls the amount of debugging
output printed. The default, 0, produces no debugging output. A value of
1 produces a moderate amount of debugging output, generally a single line
per request. A value of 2 or higher produces the maximum amount of
debugging output, logging each line sent and received on the control connection.

	
POP3.getwelcome()

	Returns the greeting string sent by the POP3 server.

	
POP3.user(username)

	Send user command, response should indicate that a password is required.

	
POP3.pass_(password)

	Send password, response includes message count and mailbox size. Note: the
mailbox on the server is locked until quit() is called.

	
POP3.apop(user, secret)

	Use the more secure APOP authentication to log into the POP3 server.

	
POP3.rpop(user)

	Use RPOP authentication (similar to UNIX r-commands) to log into POP3 server.

	
POP3.stat()

	Get mailbox status. The result is a tuple of 2 integers: (message count,
mailbox size).

	
POP3.list([which])

	Request message list, result is in the form (response, ['mesg_num octets',
...], octets). If which is set, it is the message to list.

	
POP3.retr(which)

	Retrieve whole message number which, and set its seen flag. Result is in form
(response, ['line', ...], octets).

	
POP3.dele(which)

	Flag message number which for deletion. On most servers deletions are not
actually performed until QUIT (the major exception is Eudora QPOP, which
deliberately violates the RFCs by doing pending deletes on any disconnect).

	
POP3.rset()

	Remove any deletion marks for the mailbox.

	
POP3.noop()

	Do nothing. Might be used as a keep-alive.

	
POP3.quit()

	Signoff: commit changes, unlock mailbox, drop connection.

	
POP3.top(which, howmuch)

	Retrieves the message header plus howmuch lines of the message after the
header of message number which. Result is in form (response, ['line', ...],
octets).

The POP3 TOP command this method uses, unlike the RETR command, doesn’t set the
message’s seen flag; unfortunately, TOP is poorly specified in the RFCs and is
frequently broken in off-brand servers. Test this method by hand against the
POP3 servers you will use before trusting it.

	
POP3.uidl([which])

	Return message digest (unique id) list. If which is specified, result contains
the unique id for that message in the form 'response mesgnum uid, otherwise
result is list (response, ['mesgnum uid', ...], octets).

Instances of POP3_SSL have no additional methods. The interface of this
subclass is identical to its parent.

20.9.2. POP3 Example

Here is a minimal example (without error checking) that opens a mailbox and
retrieves and prints all messages:

import getpass, poplib

M = poplib.POP3('localhost')
M.user(getpass.getuser())
M.pass_(getpass.getpass())
numMessages = len(M.list()[1])
for i in range(numMessages):
 for j in M.retr(i+1)[1]:
 print j

At the end of the module, there is a test section that contains a more extensive
example of usage.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 20.14. telnetlib — Telnet client

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.14. telnetlib — Telnet client

Source code: Lib/telnetlib.py [https://hg.python.org/cpython/file/2.7/Lib/telnetlib.py]

The telnetlib module provides a Telnet class that implements the
Telnet protocol. See RFC 854 [https://tools.ietf.org/html/rfc854.html] for details about the protocol. In addition, it
provides symbolic constants for the protocol characters (see below), and for the
telnet options. The symbolic names of the telnet options follow the definitions
in arpa/telnet.h, with the leading TELOPT_ removed. For symbolic names
of options which are traditionally not included in arpa/telnet.h, see the
module source itself.

The symbolic constants for the telnet commands are: IAC, DONT, DO, WONT, WILL,
SE (Subnegotiation End), NOP (No Operation), DM (Data Mark), BRK (Break), IP
(Interrupt process), AO (Abort output), AYT (Are You There), EC (Erase
Character), EL (Erase Line), GA (Go Ahead), SB (Subnegotiation Begin).

	
class telnetlib.Telnet([host[, port[, timeout]]])

	Telnet represents a connection to a Telnet server. The instance is
initially not connected by default; the open() method must be used to
establish a connection. Alternatively, the host name and optional port
number can be passed to the constructor, to, in which case the connection to
the server will be established before the constructor returns. The optional
timeout parameter specifies a timeout in seconds for blocking operations
like the connection attempt (if not specified, the global default timeout
setting will be used).

Do not reopen an already connected instance.

This class has many read_*() methods. Note that some of them raise
EOFError when the end of the connection is read, because they can return
an empty string for other reasons. See the individual descriptions below.

Changed in version 2.6: timeout was added.

See also

	RFC 854 [https://tools.ietf.org/html/rfc854.html] - Telnet Protocol Specification

	Definition of the Telnet protocol.

20.14.1. Telnet Objects

Telnet instances have the following methods:

	
Telnet.read_until(expected[, timeout])

	Read until a given string, expected, is encountered or until timeout seconds
have passed.

When no match is found, return whatever is available instead, possibly the empty
string. Raise EOFError if the connection is closed and no cooked data is
available.

	
Telnet.read_all()

	Read all data until EOF; block until connection closed.

	
Telnet.read_some()

	Read at least one byte of cooked data unless EOF is hit. Return '' if EOF is
hit. Block if no data is immediately available.

	
Telnet.read_very_eager()

	Read everything that can be without blocking in I/O (eager).

Raise EOFError if connection closed and no cooked data available. Return
'' if no cooked data available otherwise. Do not block unless in the midst
of an IAC sequence.

	
Telnet.read_eager()

	Read readily available data.

Raise EOFError if connection closed and no cooked data available. Return
'' if no cooked data available otherwise. Do not block unless in the midst
of an IAC sequence.

	
Telnet.read_lazy()

	Process and return data already in the queues (lazy).

Raise EOFError if connection closed and no data available. Return ''
if no cooked data available otherwise. Do not block unless in the midst of an
IAC sequence.

	
Telnet.read_very_lazy()

	Return any data available in the cooked queue (very lazy).

Raise EOFError if connection closed and no data available. Return ''
if no cooked data available otherwise. This method never blocks.

	
Telnet.read_sb_data()

	Return the data collected between a SB/SE pair (suboption begin/end). The
callback should access these data when it was invoked with a SE command.
This method never blocks.

New in version 2.3.

	
Telnet.open(host[, port[, timeout]])

	Connect to a host. The optional second argument is the port number, which
defaults to the standard Telnet port (23). The optional timeout parameter
specifies a timeout in seconds for blocking operations like the connection
attempt (if not specified, the global default timeout setting will be used).

Do not try to reopen an already connected instance.

Changed in version 2.6: timeout was added.

	
Telnet.msg(msg[, *args])

	Print a debug message when the debug level is > 0. If extra arguments are
present, they are substituted in the message using the standard string
formatting operator.

	
Telnet.set_debuglevel(debuglevel)

	Set the debug level. The higher the value of debuglevel, the more debug
output you get (on sys.stdout).

	
Telnet.close()

	Close the connection.

	
Telnet.get_socket()

	Return the socket object used internally.

	
Telnet.fileno()

	Return the file descriptor of the socket object used internally.

	
Telnet.write(buffer)

	Write a string to the socket, doubling any IAC characters. This can block if the
connection is blocked. May raise socket.error if the connection is
closed.

	
Telnet.interact()

	Interaction function, emulates a very dumb Telnet client.

	
Telnet.mt_interact()

	Multithreaded version of interact().

	
Telnet.expect(list[, timeout])

	Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either compiled
(regex objects) or uncompiled (strings). The optional second
argument is a timeout, in seconds; the default is to block indefinitely.

Return a tuple of three items: the index in the list of the first regular
expression that matches; the match object returned; and the text read up till
and including the match.

If end of file is found and no text was read, raise EOFError. Otherwise,
when nothing matches, return (-1, None, text) where text is the text
received so far (may be the empty string if a timeout happened).

If a regular expression ends with a greedy match (such as .*) or if more
than one expression can match the same input, the results are
non-deterministic, and may depend on the I/O timing.

	
Telnet.set_option_negotiation_callback(callback)

	Each time a telnet option is read on the input flow, this callback (if set) is
called with the following parameters: callback(telnet socket, command
(DO/DONT/WILL/WONT), option). No other action is done afterwards by telnetlib.

20.14.2. Telnet Example

A simple example illustrating typical use:

import getpass
import sys
import telnetlib

HOST = "localhost"
user = raw_input("Enter your remote account: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until("login: ")
tn.write(user + "\n")
if password:
 tn.read_until("Password: ")
 tn.write(password + "\n")

tn.write("ls\n")
tn.write("exit\n")

print tn.read_all()

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 20.19. SimpleHTTPServer — Simple HTTP request handler

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.19. SimpleHTTPServer — Simple HTTP request handler

Note

The SimpleHTTPServer module has been merged into http.server in
Python 3. The 2to3 tool will automatically adapt imports when
converting your sources to Python 3.

The SimpleHTTPServer module defines a single class,
SimpleHTTPRequestHandler, which is interface-compatible with
BaseHTTPServer.BaseHTTPRequestHandler.

The SimpleHTTPServer module defines the following class:

	
class SimpleHTTPServer.SimpleHTTPRequestHandler(request, client_address, server)

	This class serves files from the current directory and below, directly
mapping the directory structure to HTTP requests.

A lot of the work, such as parsing the request, is done by the base class
BaseHTTPServer.BaseHTTPRequestHandler. This class implements the
do_GET() and do_HEAD() functions.

The following are defined as class-level attributes of
SimpleHTTPRequestHandler:

	
server_version

	

This will be "SimpleHTTP/" + __version__, where __version__ is
defined at the module level.

	
extensions_map

	A dictionary mapping suffixes into MIME types. The default is
signified by an empty string, and is considered to be
application/octet-stream. The mapping is used case-insensitively,
and so should contain only lower-cased keys.

The SimpleHTTPRequestHandler class defines the following methods:

	
do_HEAD()

	This method serves the 'HEAD' request type: it sends the headers it
would send for the equivalent GET request. See the do_GET()
method for a more complete explanation of the possible headers.

	
do_GET()

	The request is mapped to a local file by interpreting the request as a
path relative to the current working directory.

If the request was mapped to a directory, the directory is checked for a
file named index.html or index.htm (in that order). If found, the
file’s contents are returned; otherwise a directory listing is generated
by calling the list_directory() method. This method uses
os.listdir() to scan the directory, and returns a 404 error
response if the listdir() fails.

If the request was mapped to a file, it is opened and the contents are
returned. Any IOError exception in opening the requested file is
mapped to a 404, 'File not found' error. Otherwise, the content
type is guessed by calling the guess_type() method, which in turn
uses the extensions_map variable.

A 'Content-type:' header with the guessed content type is output,
followed by a 'Content-Length:' header with the file’s size and a
'Last-Modified:' header with the file’s modification time.

Then follows a blank line signifying the end of the headers, and then the
contents of the file are output. If the file’s MIME type starts with
text/ the file is opened in text mode; otherwise binary mode is used.

The test() function in the SimpleHTTPServer module is an
example which creates a server using the SimpleHTTPRequestHandler
as the Handler.

New in version 2.5: The 'Last-Modified' header.

The SimpleHTTPServer module can be used in the following manner in order
to set up a very basic web server serving files relative to the current
directory.

import SimpleHTTPServer
import SocketServer

PORT = 8000

Handler = SimpleHTTPServer.SimpleHTTPRequestHandler

httpd = SocketServer.TCPServer(("", PORT), Handler)

print "serving at port", PORT
httpd.serve_forever()

The SimpleHTTPServer module can also be invoked directly using the
-m switch of the interpreter with a port number argument.
Similar to the previous example, this serves the files relative to the
current directory.

python -m SimpleHTTPServer 8000

See also

	Module BaseHTTPServer

	Base class implementation for Web server and request handler.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 21. Multimedia Services

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

21. Multimedia Services

The modules described in this chapter implement various algorithms or interfaces
that are mainly useful for multimedia applications. They are available at the
discretion of the installation. Here’s an overview:

	21.1. audioop — Manipulate raw audio data

	21.2. imageop — Manipulate raw image data

	21.3. aifc — Read and write AIFF and AIFC files

	21.4. sunau — Read and write Sun AU files
	21.4.1. AU_read Objects

	21.4.2. AU_write Objects

	21.5. wave — Read and write WAV files
	21.5.1. Wave_read Objects

	21.5.2. Wave_write Objects

	21.6. chunk — Read IFF chunked data

	21.7. colorsys — Conversions between color systems

	21.8. imghdr — Determine the type of an image

	21.9. sndhdr — Determine type of sound file

	21.10. ossaudiodev — Access to OSS-compatible audio devices
	21.10.1. Audio Device Objects

	21.10.2. Mixer Device Objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 21.9. sndhdr — Determine type of sound file

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	21. Multimedia Services

21.9. sndhdr — Determine type of sound file

Source code: Lib/sndhdr.py [https://hg.python.org/cpython/file/2.7/Lib/sndhdr.py]

The sndhdr provides utility functions which attempt to determine the type
of sound data which is in a file. When these functions are able to determine
what type of sound data is stored in a file, they return a tuple (type,
sampling_rate, channels, frames, bits_per_sample). The value for type
indicates the data type and will be one of the strings 'aifc', 'aiff',
'au', 'hcom', 'sndr', 'sndt', 'voc', 'wav', '8svx',
'sb', 'ub', or 'ul'. The sampling_rate will be either the actual
value or 0 if unknown or difficult to decode. Similarly, channels will be
either the number of channels or 0 if it cannot be determined or if the
value is difficult to decode. The value for frames will be either the number
of frames or -1. The last item in the tuple, bits_per_sample, will either
be the sample size in bits or 'A' for A-LAW or 'U' for u-LAW.

	
sndhdr.what(filename)

	Determines the type of sound data stored in the file filename using
whathdr(). If it succeeds, returns a tuple as described above, otherwise
None is returned.

	
sndhdr.whathdr(filename)

	Determines the type of sound data stored in a file based on the file header.
The name of the file is given by filename. This function returns a tuple as
described above on success, or None.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	21. Multimedia Services

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 22. Internationalization

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

22. Internationalization

The modules described in this chapter help you write software that is
independent of language and locale by providing mechanisms for selecting a
language to be used in program messages or by tailoring output to match local
conventions.

The list of modules described in this chapter is:

	22.1. gettext — Multilingual internationalization services
	22.1.1. GNU gettext API

	22.1.2. Class-based API
	22.1.2.1. The NullTranslations class

	22.1.2.2. The GNUTranslations class

	22.1.2.3. Solaris message catalog support

	22.1.2.4. The Catalog constructor

	22.1.3. Internationalizing your programs and modules
	22.1.3.1. Localizing your module

	22.1.3.2. Localizing your application

	22.1.3.3. Changing languages on the fly

	22.1.3.4. Deferred translations

	22.1.3.5. gettext() vs. lgettext()

	22.1.4. Acknowledgements

	22.2. locale — Internationalization services
	22.2.1. Background, details, hints, tips and caveats

	22.2.2. For extension writers and programs that embed Python

	22.2.3. Access to message catalogs

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 26.7. trace — Trace or track Python statement execution

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	26. Debugging and Profiling

26.7. trace — Trace or track Python statement execution

Source code: Lib/trace.py [https://hg.python.org/cpython/file/2.7/Lib/trace.py]

The trace module allows you to trace program execution, generate
annotated statement coverage listings, print caller/callee relationships and
list functions executed during a program run. It can be used in another program
or from the command line.

26.7.1. Command-Line Usage

The trace module can be invoked from the command line. It can be as
simple as

python -m trace --count -C . somefile.py ...

The above will execute somefile.py and generate annotated listings of
all Python modules imported during the execution into the current directory.

	
--help

	Display usage and exit.

	
--version

	Display the version of the module and exit.

26.7.1.1. Main options

At least one of the following options must be specified when invoking
trace. The --listfuncs option is mutually exclusive with
the --trace and --count options. When
--listfuncs is provided, neither --count nor
--trace are accepted, and vice versa.

	
-c, --count

	Produce a set of annotated listing files upon program completion that shows
how many times each statement was executed. See also
--coverdir, --file and
--no-report below.

	
-t, --trace

	Display lines as they are executed.

	
-l, --listfuncs

	Display the functions executed by running the program.

	
-r, --report

	Produce an annotated list from an earlier program run that used the
--count and --file option. This does not
execute any code.

	
-T, --trackcalls

	Display the calling relationships exposed by running the program.

26.7.1.2. Modifiers

	
-f, --file=<file>

	Name of a file to accumulate counts over several tracing runs. Should be
used with the --count option.

	
-C, --coverdir=<dir>

	Directory where the report files go. The coverage report for
package.module is written to file dir/package/module.cover.

	
-m, --missing

	When generating annotated listings, mark lines which were not executed with
>>>>>>.

	
-s, --summary

	When using --count or --report, write a brief
summary to stdout for each file processed.

	
-R, --no-report

	Do not generate annotated listings. This is useful if you intend to make
several runs with --count, and then produce a single set of
annotated listings at the end.

	
-g, --timing

	Prefix each line with the time since the program started. Only used while
tracing.

26.7.1.3. Filters

These options may be repeated multiple times.

	
--ignore-module=<mod>

	Ignore each of the given module names and its submodules (if it is a
package). The argument can be a list of names separated by a comma.

	
--ignore-dir=<dir>

	Ignore all modules and packages in the named directory and subdirectories.
The argument can be a list of directories separated by os.pathsep.

26.7.2. Programmatic Interface

	
class trace.Trace([count=1[, trace=1[, countfuncs=0[, countcallers=0[, ignoremods=()[, ignoredirs=()[, infile=None[, outfile=None[, timing=False]]]]]]]]])

	Create an object to trace execution of a single statement or expression. All
parameters are optional. count enables counting of line numbers. trace
enables line execution tracing. countfuncs enables listing of the
functions called during the run. countcallers enables call relationship
tracking. ignoremods is a list of modules or packages to ignore.
ignoredirs is a list of directories whose modules or packages should be
ignored. infile is the name of the file from which to read stored count
information. outfile is the name of the file in which to write updated
count information. timing enables a timestamp relative to when tracing was
started to be displayed.

	
run(cmd)

	Execute the command and gather statistics from the execution with
the current tracing parameters. cmd must be a string or code object,
suitable for passing into exec().

	
runctx(cmd, globals=None, locals=None)

	Execute the command and gather statistics from the execution with the
current tracing parameters, in the defined global and local
environments. If not defined, globals and locals default to empty
dictionaries.

	
runfunc(func, *args, **kwds)

	Call func with the given arguments under control of the Trace
object with the current tracing parameters.

	
results()

	Return a CoverageResults object that contains the cumulative
results of all previous calls to run, runctx and runfunc
for the given Trace instance. Does not reset the accumulated
trace results.

	
class trace.CoverageResults

	A container for coverage results, created by Trace.results(). Should
not be created directly by the user.

	
update(other)

	Merge in data from another CoverageResults object.

	
write_results([show_missing=True[, summary=False[, coverdir=None]]])

	Write coverage results. Set show_missing to show lines that had no
hits. Set summary to include in the output the coverage summary per
module. coverdir specifies the directory into which the coverage
result files will be output. If None, the results for each source
file are placed in its directory.

A simple example demonstrating the use of the programmatic interface:

import sys
import trace

create a Trace object, telling it what to ignore, and whether to
do tracing or line-counting or both.
tracer = trace.Trace(
 ignoredirs=[sys.prefix, sys.exec_prefix],
 trace=0,
 count=1)

run the new command using the given tracer
tracer.run('main()')

make a report, placing output in the current directory
r = tracer.results()
r.write_results(show_missing=True, coverdir=".")

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	26. Debugging and Profiling

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 28.1. sys — System-specific parameters and functions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	28. Python Runtime Services

28.1. sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the
interpreter and to functions that interact strongly with the interpreter. It is
always available.

	
sys.argv

	The list of command line arguments passed to a Python script. argv[0] is the
script name (it is operating system dependent whether this is a full pathname or
not). If the command was executed using the -c command line option to
the interpreter, argv[0] is set to the string '-c'. If no script name
was passed to the Python interpreter, argv[0] is the empty string.

To loop over the standard input, or the list of files given on the
command line, see the fileinput module.

	
sys.byteorder

	An indicator of the native byte order. This will have the value 'big' on
big-endian (most-significant byte first) platforms, and 'little' on
little-endian (least-significant byte first) platforms.

New in version 2.0.

	
sys.builtin_module_names

	A tuple of strings giving the names of all modules that are compiled into this
Python interpreter. (This information is not available in any other way —
modules.keys() only lists the imported modules.)

	
sys.call_tracing(func, args)

	Call func(*args), while tracing is enabled. The tracing state is saved,
and restored afterwards. This is intended to be called from a debugger from
a checkpoint, to recursively debug some other code.

	
sys.copyright

	A string containing the copyright pertaining to the Python interpreter.

	
sys._clear_type_cache()

	Clear the internal type cache. The type cache is used to speed up attribute
and method lookups. Use the function only to drop unnecessary references
during reference leak debugging.

This function should be used for internal and specialized purposes only.

New in version 2.6.

	
sys._current_frames()

	Return a dictionary mapping each thread’s identifier to the topmost stack frame
currently active in that thread at the time the function is called. Note that
functions in the traceback module can build the call stack given such a
frame.

This is most useful for debugging deadlock: this function does not require the
deadlocked threads’ cooperation, and such threads’ call stacks are frozen for as
long as they remain deadlocked. The frame returned for a non-deadlocked thread
may bear no relationship to that thread’s current activity by the time calling
code examines the frame.

This function should be used for internal and specialized purposes only.

New in version 2.5.

	
sys.dllhandle

	Integer specifying the handle of the Python DLL. Availability: Windows.

	
sys.displayhook(value)

	If value is not None, this function prints it to sys.stdout, and saves
it in __builtin__._.

sys.displayhook is called on the result of evaluating an expression
entered in an interactive Python session. The display of these values can be
customized by assigning another one-argument function to sys.displayhook.

	
sys.dont_write_bytecode

	If this is true, Python won’t try to write .pyc or .pyo files on the
import of source modules. This value is initially set to True or
False depending on the -B command line option and the
PYTHONDONTWRITEBYTECODE environment variable, but you can set it
yourself to control bytecode file generation.

New in version 2.6.

	
sys.excepthook(type, value, traceback)

	This function prints out a given traceback and exception to sys.stderr.

When an exception is raised and uncaught, the interpreter calls
sys.excepthook with three arguments, the exception class, exception
instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just
before the program exits. The handling of such top-level exceptions can be
customized by assigning another three-argument function to sys.excepthook.

	
sys.__displayhook__

	
sys.__excepthook__

	These objects contain the original values of displayhook and excepthook
at the start of the program. They are saved so that displayhook and
excepthook can be restored in case they happen to get replaced with broken
objects.

	
sys.exc_info()

	This function returns a tuple of three values that give information about the
exception that is currently being handled. The information returned is specific
both to the current thread and to the current stack frame. If the current stack
frame is not handling an exception, the information is taken from the calling
stack frame, or its caller, and so on until a stack frame is found that is
handling an exception. Here, “handling an exception” is defined as “executing
or having executed an except clause.” For any stack frame, only information
about the most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containing three
None values is returned. Otherwise, the values returned are (type, value,
traceback). Their meaning is: type gets the exception type of the exception
being handled (a class object); value gets the exception parameter (its
associated value or the second argument to raise, which is
always a class instance if the exception type is a class object); traceback
gets a traceback object (see the Reference Manual) which encapsulates the call
stack at the point where the exception originally occurred.

If exc_clear() is called, this function will return three None values
until either another exception is raised in the current thread or the execution
stack returns to a frame where another exception is being handled.

Warning

Assigning the traceback return value to a local variable in a function that is
handling an exception will cause a circular reference. This will prevent
anything referenced by a local variable in the same function or by the traceback
from being garbage collected. Since most functions don’t need access to the
traceback, the best solution is to use something like exctype, value =
sys.exc_info()[:2] to extract only the exception type and value. If you do
need the traceback, make sure to delete it after use (best done with a
try ... finally statement) or to call exc_info() in
a function that does not itself handle an exception.

Note

Beginning with Python 2.2, such cycles are automatically reclaimed when garbage
collection is enabled and they become unreachable, but it remains more efficient
to avoid creating cycles.

	
sys.exc_clear()

	This function clears all information relating to the current or last exception
that occurred in the current thread. After calling this function,
exc_info() will return three None values until another exception is
raised in the current thread or the execution stack returns to a frame where
another exception is being handled.

This function is only needed in only a few obscure situations. These include
logging and error handling systems that report information on the last or
current exception. This function can also be used to try to free resources and
trigger object finalization, though no guarantee is made as to what objects will
be freed, if any.

New in version 2.3.

	
sys.exc_type

	
sys.exc_value

	
sys.exc_traceback

	
Deprecated since version 1.5: Use exc_info() instead.

Since they are global variables, they are not specific to the current thread, so
their use is not safe in a multi-threaded program. When no exception is being
handled, exc_type is set to None and the other two are undefined.

	
sys.exec_prefix

	A string giving the site-specific directory prefix where the platform-dependent
Python files are installed; by default, this is also '/usr/local'. This can
be set at build time with the --exec-prefix argument to the
configure script. Specifically, all configuration files (e.g. the
pyconfig.h header file) are installed in the directory
exec_prefix/lib/pythonX.Y/config, and shared library modules are
installed in exec_prefix/lib/pythonX.Y/lib-dynload, where X.Y
is the version number of Python, for example 2.7.

	
sys.executable

	A string giving the absolute path of the executable binary for the Python
interpreter, on systems where this makes sense. If Python is unable to retrieve
the real path to its executable, sys.executable will be an empty string
or None.

	
sys.exit([arg])

	Exit from Python. This is implemented by raising the SystemExit
exception, so cleanup actions specified by finally clauses of try
statements are honored, and it is possible to intercept the exit attempt at
an outer level.

The optional argument arg can be an integer giving the exit status
(defaulting to zero), or another type of object. If it is an integer, zero
is considered “successful termination” and any nonzero value is considered
“abnormal termination” by shells and the like. Most systems require it to be
in the range 0-127, and produce undefined results otherwise. Some systems
have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command
line syntax errors and 1 for all other kind of errors. If another type of
object is passed, None is equivalent to passing zero, and any other
object is printed to stderr and results in an exit code of 1. In
particular, sys.exit("some error message") is a quick way to exit a
program when an error occurs.

Since exit() ultimately “only” raises an exception, it will only exit
the process when called from the main thread, and the exception is not
intercepted.

	
sys.exitfunc

	This value is not actually defined by the module, but can be set by the user (or
by a program) to specify a clean-up action at program exit. When set, it should
be a parameterless function. This function will be called when the interpreter
exits. Only one function may be installed in this way; to allow multiple
functions which will be called at termination, use the atexit module.

Note

The exit function is not called when the program is killed by a signal, when a
Python fatal internal error is detected, or when os._exit() is called.

Deprecated since version 2.4: Use atexit instead.

	
sys.flags

	The struct sequence flags exposes the status of command line flags. The
attributes are read only.

	attribute
	flag

	debug
	-d

	py3k_warning
	-3

	division_warning
	-Q

	division_new
	-Qnew

	inspect
	-i

	interactive
	-i

	optimize
	-O or -OO

	dont_write_bytecode
	-B

	no_user_site
	-s

	no_site
	-S

	ignore_environment
	-E

	tabcheck
	-t or -tt

	verbose
	-v

	unicode
	-U

	bytes_warning
	-b

	hash_randomization
	-R

New in version 2.6.

New in version 2.7.3: The hash_randomization attribute.

	
sys.float_info

	A structseq holding information about the float type. It contains low level
information about the precision and internal representation. The values
correspond to the various floating-point constants defined in the standard
header file float.h for the ‘C’ programming language; see section
5.2.4.2.2 of the 1999 ISO/IEC C standard [C99], ‘Characteristics of
floating types’, for details.

	attribute
	float.h macro
	explanation

	epsilon
	DBL_EPSILON
	difference between 1 and the least value greater
than 1 that is representable as a float

	dig
	DBL_DIG
	maximum number of decimal digits that can be
faithfully represented in a float; see below

	mant_dig
	DBL_MANT_DIG
	float precision: the number of base-radix
digits in the significand of a float

	max
	DBL_MAX
	maximum representable finite float

	max_exp
	DBL_MAX_EXP
	maximum integer e such that radix**(e-1) is
a representable finite float

	max_10_exp
	DBL_MAX_10_EXP
	maximum integer e such that 10**e is in the
range of representable finite floats

	min
	DBL_MIN
	minimum positive normalized float

	min_exp
	DBL_MIN_EXP
	minimum integer e such that radix**(e-1) is
a normalized float

	min_10_exp
	DBL_MIN_10_EXP
	minimum integer e such that 10**e is a
normalized float

	radix
	FLT_RADIX
	radix of exponent representation

	rounds
	FLT_ROUNDS
	integer constant representing the rounding mode
used for arithmetic operations. This reflects
the value of the system FLT_ROUNDS macro at
interpreter startup time. See section 5.2.4.2.2
of the C99 standard for an explanation of the
possible values and their meanings.

The attribute sys.float_info.dig needs further explanation. If
s is any string representing a decimal number with at most
sys.float_info.dig significant digits, then converting s to a
float and back again will recover a string representing the same decimal
value:

>>> import sys
>>> sys.float_info.dig
15
>>> s = '3.14159265358979' # decimal string with 15 significant digits
>>> format(float(s), '.15g') # convert to float and back -> same value
'3.14159265358979'

But for strings with more than sys.float_info.dig significant digits,
this isn’t always true:

>>> s = '9876543211234567' # 16 significant digits is too many!
>>> format(float(s), '.16g') # conversion changes value
'9876543211234568'

New in version 2.6.

	
sys.float_repr_style

	A string indicating how the repr() function behaves for
floats. If the string has value 'short' then for a finite
float x, repr(x) aims to produce a short string with the
property that float(repr(x)) == x. This is the usual behaviour
in Python 2.7 and later. Otherwise, float_repr_style has value
'legacy' and repr(x) behaves in the same way as it did in
versions of Python prior to 2.7.

New in version 2.7.

	
sys.getcheckinterval()

	Return the interpreter’s “check interval”; see setcheckinterval().

New in version 2.3.

	
sys.getdefaultencoding()

	Return the name of the current default string encoding used by the Unicode
implementation.

New in version 2.0.

	
sys.getdlopenflags()

	Return the current value of the flags that are used for dlopen() calls.
The flag constants are defined in the dl and DLFCN modules.
Availability: Unix.

New in version 2.2.

	
sys.getfilesystemencoding()

	Return the name of the encoding used to convert Unicode filenames into system
file names, or None if the system default encoding is used. The result value
depends on the operating system:

	On Mac OS X, the encoding is 'utf-8'.

	On Unix, the encoding is the user’s preference according to the result of
nl_langinfo(CODESET), or None if the nl_langinfo(CODESET)
failed.

	On Windows NT+, file names are Unicode natively, so no conversion is
performed. getfilesystemencoding() still returns 'mbcs', as
this is the encoding that applications should use when they explicitly
want to convert Unicode strings to byte strings that are equivalent when
used as file names.

	On Windows 9x, the encoding is 'mbcs'.

New in version 2.3.

	
sys.getrefcount(object)

	Return the reference count of the object. The count returned is generally one
higher than you might expect, because it includes the (temporary) reference as
an argument to getrefcount().

	
sys.getrecursionlimit()

	Return the current value of the recursion limit, the maximum depth of the Python
interpreter stack. This limit prevents infinite recursion from causing an
overflow of the C stack and crashing Python. It can be set by
setrecursionlimit().

	
sys.getsizeof(object[, default])

	Return the size of an object in bytes. The object can be any type of
object. All built-in objects will return correct results, but this
does not have to hold true for third-party extensions as it is implementation
specific.

If given, default will be returned if the object does not provide means to
retrieve the size. Otherwise a TypeError will be raised.

getsizeof() calls the object’s __sizeof__ method and adds an
additional garbage collector overhead if the object is managed by the garbage
collector.

New in version 2.6.

	
sys._getframe([depth])

	Return a frame object from the call stack. If optional integer depth is
given, return the frame object that many calls below the top of the stack. If
that is deeper than the call stack, ValueError is raised. The default
for depth is zero, returning the frame at the top of the call stack.

CPython implementation detail: This function should be used for internal and specialized purposes only.
It is not guaranteed to exist in all implementations of Python.

	
sys.getprofile()

	Get the profiler function as set by setprofile().

New in version 2.6.

	
sys.gettrace()

	Get the trace function as set by settrace().

CPython implementation detail: The gettrace() function is intended only for implementing debuggers,
profilers, coverage tools and the like. Its behavior is part of the
implementation platform, rather than part of the language definition, and
thus may not be available in all Python implementations.

New in version 2.6.

	
sys.getwindowsversion()

	Return a named tuple describing the Windows version
currently running. The named elements are major, minor,
build, platform, service_pack, service_pack_minor,
service_pack_major, suite_mask, and product_type.
service_pack contains a string while all other values are
integers. The components can also be accessed by name, so
sys.getwindowsversion()[0] is equivalent to
sys.getwindowsversion().major. For compatibility with prior
versions, only the first 5 elements are retrievable by indexing.

platform may be one of the following values:

	Constant
	Platform

	0 (VER_PLATFORM_WIN32s)
	Win32s on Windows 3.1

	1 (VER_PLATFORM_WIN32_WINDOWS)
	Windows 95/98/ME

	2 (VER_PLATFORM_WIN32_NT)
	Windows NT/2000/XP/x64

	3 (VER_PLATFORM_WIN32_CE)
	Windows CE

product_type may be one of the following values:

	Constant
	Meaning

	1 (VER_NT_WORKSTATION)
	The system is a workstation.

	2 (VER_NT_DOMAIN_CONTROLLER)
	The system is a domain
controller.

	3 (VER_NT_SERVER)
	The system is a server, but not
a domain controller.

This function wraps the Win32 GetVersionEx() function; see the
Microsoft documentation on OSVERSIONINFOEX() for more information
about these fields.

Availability: Windows.

New in version 2.3.

Changed in version 2.7: Changed to a named tuple and added service_pack_minor,
service_pack_major, suite_mask, and product_type.

	
sys.hexversion

	The version number encoded as a single integer. This is guaranteed to increase
with each version, including proper support for non-production releases. For
example, to test that the Python interpreter is at least version 1.5.2, use:

if sys.hexversion >= 0x010502F0:
 # use some advanced feature
 ...
else:
 # use an alternative implementation or warn the user
 ...

This is called hexversion since it only really looks meaningful when viewed
as the result of passing it to the built-in hex() function. The
version_info value may be used for a more human-friendly encoding of the
same information.

The hexversion is a 32-bit number with the following layout:

	Bits (big endian order)
	Meaning

	1-8
	PY_MAJOR_VERSION (the 2 in
2.1.0a3)

	9-16
	PY_MINOR_VERSION (the 1 in
2.1.0a3)

	17-24
	PY_MICRO_VERSION (the 0 in
2.1.0a3)

	25-28
	PY_RELEASE_LEVEL (0xA for alpha,
0xB for beta, 0xC for release
candidate and 0xF for final)

	29-32
	PY_RELEASE_SERIAL (the 3 in
2.1.0a3, zero for final releases)

Thus 2.1.0a3 is hexversion 0x020100a3.

New in version 1.5.2.

	
sys.long_info

	A struct sequence that holds information about Python’s
internal representation of integers. The attributes are read only.

	Attribute
	Explanation

	bits_per_digit
	number of bits held in each digit. Python
integers are stored internally in base
2**long_info.bits_per_digit

	sizeof_digit
	size in bytes of the C type used to
represent a digit

New in version 2.7.

	
sys.last_type

	
sys.last_value

	
sys.last_traceback

	These three variables are not always defined; they are set when an exception is
not handled and the interpreter prints an error message and a stack traceback.
Their intended use is to allow an interactive user to import a debugger module
and engage in post-mortem debugging without having to re-execute the command
that caused the error. (Typical use is import pdb; pdb.pm() to enter the
post-mortem debugger; see chapter pdb — The Python Debugger for
more information.)

The meaning of the variables is the same as that of the return values from
exc_info() above. (Since there is only one interactive thread,
thread-safety is not a concern for these variables, unlike for exc_type
etc.)

	
sys.maxint

	The largest positive integer supported by Python’s regular integer type. This
is at least 2**31-1. The largest negative integer is -maxint-1 — the
asymmetry results from the use of 2’s complement binary arithmetic.

	
sys.maxsize

	The largest positive integer supported by the platform’s Py_ssize_t type,
and thus the maximum size lists, strings, dicts, and many other containers
can have.

	
sys.maxunicode

	An integer giving the largest supported code point for a Unicode character. The
value of this depends on the configuration option that specifies whether Unicode
characters are stored as UCS-2 or UCS-4.

	
sys.meta_path

	A list of finder objects that have their find_module()
methods called to see if one of the objects can find the module to be
imported. The find_module() method is called at least with the
absolute name of the module being imported. If the module to be imported is
contained in package then the parent package’s __path__ attribute
is passed in as a second argument. The method returns None if
the module cannot be found, else returns a loader.

sys.meta_path is searched before any implicit default finders or
sys.path.

See PEP 302 [https://www.python.org/dev/peps/pep-0302] for the original specification.

	
sys.modules

	This is a dictionary that maps module names to modules which have already been
loaded. This can be manipulated to force reloading of modules and other tricks.
Note that removing a module from this dictionary is not the same as calling
reload() on the corresponding module object.

	
sys.path

	A list of strings that specifies the search path for modules. Initialized from
the environment variable PYTHONPATH, plus an installation-dependent
default.

As initialized upon program startup, the first item of this list, path[0],
is the directory containing the script that was used to invoke the Python
interpreter. If the script directory is not available (e.g. if the interpreter
is invoked interactively or if the script is read from standard input),
path[0] is the empty string, which directs Python to search modules in the
current directory first. Notice that the script directory is inserted before
the entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.

Changed in version 2.3: Unicode strings are no longer ignored.

See also

Module site This describes how to use .pth files to extend
sys.path.

	
sys.path_hooks

	A list of callables that take a path argument to try to create a
finder for the path. If a finder can be created, it is to be
returned by the callable, else raise ImportError.

Originally specified in PEP 302 [https://www.python.org/dev/peps/pep-0302].

	
sys.path_importer_cache

	A dictionary acting as a cache for finder objects. The keys are
paths that have been passed to sys.path_hooks and the values are
the finders that are found. If a path is a valid file system path but no
explicit finder is found on sys.path_hooks then None is
stored to represent the implicit default finder should be used. If the path
is not an existing path then imp.NullImporter is set.

Originally specified in PEP 302 [https://www.python.org/dev/peps/pep-0302].

	
sys.platform

	This string contains a platform identifier that can be used to append
platform-specific components to sys.path, for instance.

For most Unix systems, this is the lowercased OS name as returned by uname
-s with the first part of the version as returned by uname -r appended,
e.g. 'sunos5', at the time when Python was built. Unless you want to
test for a specific system version, it is therefore recommended to use the
following idiom:

if sys.platform.startswith('freebsd'):
 # FreeBSD-specific code here...
elif sys.platform.startswith('linux'):
 # Linux-specific code here...

Changed in version 2.7.3: Since lots of code check for sys.platform == 'linux2', and there is
no essential change between Linux 2.x and 3.x, sys.platform is always
set to 'linux2', even on Linux 3.x. In Python 3.3 and later, the
value will always be set to 'linux', so it is recommended to always
use the startswith idiom presented above.

For other systems, the values are:

	System
	platform value

	Linux (2.x and 3.x)
	'linux2'

	Windows
	'win32'

	Windows/Cygwin
	'cygwin'

	Mac OS X
	'darwin'

	OS/2
	'os2'

	OS/2 EMX
	'os2emx'

	RiscOS
	'riscos'

	AtheOS
	'atheos'

See also

os.name has a coarser granularity. os.uname() gives
system-dependent version information.

The platform module provides detailed checks for the
system’s identity.

	
sys.prefix

	A string giving the site-specific directory prefix where the platform
independent Python files are installed; by default, this is the string
'/usr/local'. This can be set at build time with the --prefix
argument to the configure script. The main collection of Python
library modules is installed in the directory prefix/lib/pythonX.Y
while the platform independent header files (all except pyconfig.h) are
stored in prefix/include/pythonX.Y, where X.Y is the version
number of Python, for example 2.7.

	
sys.ps1

	
sys.ps2

	Strings specifying the primary and secondary prompt of the interpreter. These
are only defined if the interpreter is in interactive mode. Their initial
values in this case are '>>> ' and '... '. If a non-string object is
assigned to either variable, its str() is re-evaluated each time the
interpreter prepares to read a new interactive command; this can be used to
implement a dynamic prompt.

	
sys.py3kwarning

	Bool containing the status of the Python 3 warning flag. It’s True
when Python is started with the -3 option. (This should be considered
read-only; setting it to a different value doesn’t have an effect on
Python 3 warnings.)

New in version 2.6.

	
sys.setcheckinterval(interval)

	Set the interpreter’s “check interval”. This integer value determines how often
the interpreter checks for periodic things such as thread switches and signal
handlers. The default is 100, meaning the check is performed every 100
Python virtual instructions. Setting it to a larger value may increase
performance for programs using threads. Setting it to a value <= 0 checks
every virtual instruction, maximizing responsiveness as well as overhead.

	
sys.setdefaultencoding(name)

	Set the current default string encoding used by the Unicode implementation. If
name does not match any available encoding, LookupError is raised.
This function is only intended to be used by the site module
implementation and, where needed, by sitecustomize. Once used by the
site module, it is removed from the sys module’s namespace.

New in version 2.0.

	
sys.setdlopenflags(n)

	Set the flags used by the interpreter for dlopen() calls, such as when
the interpreter loads extension modules. Among other things, this will enable a
lazy resolving of symbols when importing a module, if called as
sys.setdlopenflags(0). To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD_NOW | dl.RTLD_GLOBAL). Symbolic names for the
flag modules can be either found in the dl module, or in the DLFCN
module. If DLFCN is not available, it can be generated from
/usr/include/dlfcn.h using the h2py script. Availability:
Unix.

New in version 2.2.

	
sys.setprofile(profilefunc)

	Set the system’s profile function, which allows you to implement a Python source
code profiler in Python. See chapter The Python Profilers for more information on the
Python profiler. The system’s profile function is called similarly to the
system’s trace function (see settrace()), but it isn’t called for each
executed line of code (only on call and return, but the return event is reported
even when an exception has been set). The function is thread-specific, but
there is no way for the profiler to know about context switches between threads,
so it does not make sense to use this in the presence of multiple threads. Also,
its return value is not used, so it can simply return None.

	
sys.setrecursionlimit(limit)

	Set the maximum depth of the Python interpreter stack to limit. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing
Python.

The highest possible limit is platform-dependent. A user may need to set the
limit higher when she has a program that requires deep recursion and a platform
that supports a higher limit. This should be done with care, because a too-high
limit can lead to a crash.

	
sys.settrace(tracefunc)

	Set the system’s trace function, which allows you to implement a Python
source code debugger in Python. The function is thread-specific; for a
debugger to support multiple threads, it must be registered using
settrace() for each thread being debugged.

Trace functions should have three arguments: frame, event, and
arg. frame is the current stack frame. event is a string: 'call',
'line', 'return', 'exception', 'c_call', 'c_return', or
'c_exception'. arg depends on the event type.

The trace function is invoked (with event set to 'call') whenever a new
local scope is entered; it should return a reference to a local trace
function to be used that scope, or None if the scope shouldn’t be traced.

The local trace function should return a reference to itself (or to another
function for further tracing in that scope), or None to turn off tracing
in that scope.

The events have the following meaning:

	'call'

	A function is called (or some other code block entered). The
global trace function is called; arg is None; the return value
specifies the local trace function.

	'line'

	The interpreter is about to execute a new line of code or re-execute the
condition of a loop. The local trace function is called; arg is
None; the return value specifies the new local trace function. See
Objects/lnotab_notes.txt for a detailed explanation of how this
works.

	'return'

	A function (or other code block) is about to return. The local trace
function is called; arg is the value that will be returned, or None
if the event is caused by an exception being raised. The trace function’s
return value is ignored.

	'exception'

	An exception has occurred. The local trace function is called; arg is a
tuple (exception, value, traceback); the return value specifies the
new local trace function.

	'c_call'

	A C function is about to be called. This may be an extension function or
a built-in. arg is the C function object.

	'c_return'

	A C function has returned. arg is the C function object.

	'c_exception'

	A C function has raised an exception. arg is the C function object.

Note that as an exception is propagated down the chain of callers, an
'exception' event is generated at each level.

For more information on code and frame objects, refer to The standard type hierarchy.

CPython implementation detail: The settrace() function is intended only for implementing debuggers,
profilers, coverage tools and the like. Its behavior is part of the
implementation platform, rather than part of the language definition, and
thus may not be available in all Python implementations.

	
sys.settscdump(on_flag)

	Activate dumping of VM measurements using the Pentium timestamp counter, if
on_flag is true. Deactivate these dumps if on_flag is off. The function is
available only if Python was compiled with --with-tsc. To understand
the output of this dump, read Python/ceval.c in the Python sources.

New in version 2.4.

CPython implementation detail: This function is intimately bound to CPython implementation details and
thus not likely to be implemented elsewhere.

	
sys.stdin

	
sys.stdout

	
sys.stderr

	File objects corresponding to the interpreter’s standard input, output and error
streams. stdin is used for all interpreter input except for scripts but
including calls to input() and raw_input(). stdout is used for
the output of print and expression statements and for the
prompts of input() and raw_input(). The interpreter’s own prompts
and (almost all of) its error messages go to stderr. stdout and
stderr needn’t be built-in file objects: any object is acceptable as long
as it has a write() method that takes a string argument. (Changing these
objects doesn’t affect the standard I/O streams of processes executed by
os.popen(), os.system() or the exec*() family of functions in
the os module.)

	
sys.__stdin__

	
sys.__stdout__

	
sys.__stderr__

	These objects contain the original values of stdin, stderr and
stdout at the start of the program. They are used during finalization,
and could be useful to print to the actual standard stream no matter if the
sys.std* object has been redirected.

It can also be used to restore the actual files to known working file objects
in case they have been overwritten with a broken object. However, the
preferred way to do this is to explicitly save the previous stream before
replacing it, and restore the saved object.

	
sys.subversion

	A triple (repo, branch, version) representing the Subversion information of the
Python interpreter. repo is the name of the repository, 'CPython'.
branch is a string of one of the forms 'trunk', 'branches/name' or
'tags/name'. version is the output of svnversion, if the interpreter
was built from a Subversion checkout; it contains the revision number (range)
and possibly a trailing ‘M’ if there were local modifications. If the tree was
exported (or svnversion was not available), it is the revision of
Include/patchlevel.h if the branch is a tag. Otherwise, it is None.

New in version 2.5.

Note

Python is now developed [https://docs.python.org/devguide/] using
Mercurial. In recent Python 2.7 bugfix releases, subversion
therefore contains placeholder information. It is removed in Python
3.3.

	
sys.tracebacklimit

	When this variable is set to an integer value, it determines the maximum number
of levels of traceback information printed when an unhandled exception occurs.
The default is 1000. When set to 0 or less, all traceback information
is suppressed and only the exception type and value are printed.

	
sys.version

	A string containing the version number of the Python interpreter plus additional
information on the build number and compiler used. This string is displayed
when the interactive interpreter is started. Do not extract version information
out of it, rather, use version_info and the functions provided by the
platform module.

	
sys.api_version

	The C API version for this interpreter. Programmers may find this useful when
debugging version conflicts between Python and extension modules.

New in version 2.3.

	
sys.version_info

	A tuple containing the five components of the version number: major, minor,
micro, releaselevel, and serial. All values except releaselevel are
integers; the release level is 'alpha', 'beta', 'candidate', or
'final'. The version_info value corresponding to the Python version 2.0
is (2, 0, 0, 'final', 0). The components can also be accessed by name,
so sys.version_info[0] is equivalent to sys.version_info.major
and so on.

New in version 2.0.

Changed in version 2.7: Added named component attributes

	
sys.warnoptions

	This is an implementation detail of the warnings framework; do not modify this
value. Refer to the warnings module for more information on the warnings
framework.

	
sys.winver

	The version number used to form registry keys on Windows platforms. This is
stored as string resource 1000 in the Python DLL. The value is normally the
first three characters of version. It is provided in the sys
module for informational purposes; modifying this value has no effect on the
registry keys used by Python. Availability: Windows.

Citations

	[C99]	ISO/IEC 9899:1999. “Programming languages – C.” A public draft of this standard is available at http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	28. Python Runtime Services

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 37.8. Mac OS Toolbox Modules

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	37. Mac OS X specific services

37.8. Mac OS Toolbox Modules

These are a set of modules that provide interfaces to various legacy Mac OS toolboxes.
If applicable the module will define a number of Python objects for the various
structures declared by the toolbox, and operations will be implemented as
methods of the object. Other operations will be implemented as functions in the
module. Not all operations possible in C will also be possible in Python
(callbacks are often a problem), and parameters will occasionally be different
in Python (input and output buffers, especially). All methods and functions
have a __doc__ string describing their arguments and return values, and
for additional description you are referred to Inside Macintosh [http://developer.apple.com/legacy/mac/library/#documentation/macos8/mac8.html] or similar works.

These modules all live in a package called Carbon. Despite that name they
are not all part of the Carbon framework: CF is really in the CoreFoundation
framework and Qt is in the QuickTime framework. The normal use pattern is

from Carbon import AE

Note

Most of the OS X APIs that these modules use are deprecated or removed
in recent versions of OS X. Many are not available when Python is
executing in 64-bit mode. The Carbon modules have been removed in
Python 3. You should avoid using them in Python 2.

37.8.1. Carbon.AE — Apple Events

37.8.2. Carbon.AH — Apple Help

37.8.3. Carbon.App — Appearance Manager

37.8.4. Carbon.Appearance — Appearance Manager constants

37.8.5. Carbon.CF — Core Foundation

The CFBase, CFArray, CFData, CFDictionary, CFString and
CFURL objects are supported, some only partially.

37.8.6. Carbon.CG — Core Graphics

37.8.7. Carbon.CarbonEvt — Carbon Event Manager

37.8.8. Carbon.CarbonEvents — Carbon Event Manager constants

37.8.9. Carbon.Cm — Component Manager

37.8.10. Carbon.Components — Component Manager constants

37.8.11. Carbon.ControlAccessor — Control Manager accssors

37.8.12. Carbon.Controls — Control Manager constants

37.8.13. Carbon.CoreFounation — CoreFounation constants

37.8.14. Carbon.CoreGraphics — CoreGraphics constants

37.8.15. Carbon.Ctl — Control Manager

37.8.16. Carbon.Dialogs — Dialog Manager constants

37.8.17. Carbon.Dlg — Dialog Manager

37.8.18. Carbon.Drag — Drag and Drop Manager

37.8.19. Carbon.Dragconst — Drag and Drop Manager constants

37.8.20. Carbon.Events — Event Manager constants

37.8.21. Carbon.Evt — Event Manager

37.8.22. Carbon.File — File Manager

37.8.23. Carbon.Files — File Manager constants

37.8.24. Carbon.Fm — Font Manager

37.8.25. Carbon.Folder — Folder Manager

37.8.26. Carbon.Folders — Folder Manager constants

37.8.27. Carbon.Fonts — Font Manager constants

37.8.28. Carbon.Help — Help Manager

37.8.29. Carbon.IBCarbon — Carbon InterfaceBuilder

37.8.30. Carbon.IBCarbonRuntime — Carbon InterfaceBuilder constants

37.8.31. Carbon.Icn — Carbon Icon Manager

37.8.32. Carbon.Icons — Carbon Icon Manager constants

37.8.33. Carbon.Launch — Carbon Launch Services

37.8.34. Carbon.LaunchServices — Carbon Launch Services constants

37.8.35. Carbon.List — List Manager

37.8.36. Carbon.Lists — List Manager constants

37.8.37. Carbon.MacHelp — Help Manager constants

37.8.38. Carbon.MediaDescr — Parsers and generators for Quicktime Media descriptors

37.8.39. Carbon.Menu — Menu Manager

37.8.40. Carbon.Menus — Menu Manager constants

37.8.41. Carbon.Mlte — MultiLingual Text Editor

37.8.42. Carbon.OSA — Carbon OSA Interface

37.8.43. Carbon.OSAconst — Carbon OSA Interface constants

37.8.44. Carbon.QDOffscreen — QuickDraw Offscreen constants

37.8.45. Carbon.Qd — QuickDraw

37.8.46. Carbon.Qdoffs — QuickDraw Offscreen

37.8.47. Carbon.Qt — QuickTime

37.8.48. Carbon.QuickDraw — QuickDraw constants

37.8.49. Carbon.QuickTime — QuickTime constants

37.8.50. Carbon.Res — Resource Manager and Handles

37.8.51. Carbon.Resources — Resource Manager and Handles constants

37.8.52. Carbon.Scrap — Scrap Manager

This module is only fully available on Mac OS 9 and earlier under classic PPC
MacPython. Very limited functionality is available under Carbon MacPython.

The Scrap Manager supports the simplest form of cut & paste operations on the
Macintosh. It can be use for both inter- and intra-application clipboard
operations.

The Scrap module provides low-level access to the functions of the Scrap
Manager. It contains the following functions:

	
Carbon.Scrap.InfoScrap()

	Return current information about the scrap. The information is encoded as a
tuple containing the fields (size, handle, count, state, path).

	Field
	Meaning

	size
	Size of the scrap in bytes.

	handle
	Resource object representing the scrap.

	count
	Serial number of the scrap contents.

	state
	Integer; positive if in memory, 0 if on
disk, negative if uninitialized.

	path
	Filename of the scrap when stored on disk.

See also

	Scrap Manager [http://developer.apple.com/legacy/mac/library/documentation/mac/MoreToolbox/MoreToolbox-109.html]

	Apple’s documentation for the Scrap Manager gives a lot of useful information
about using the Scrap Manager in applications.

37.8.53. Carbon.Snd — Sound Manager

37.8.54. Carbon.Sound — Sound Manager constants

37.8.55. Carbon.TE — TextEdit

37.8.56. Carbon.TextEdit — TextEdit constants

37.8.57. Carbon.Win — Window Manager

37.8.58. Carbon.Windows — Window Manager constants

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 	The Python Standard Library

 	37. Mac OS X specific services

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Glossary

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

Glossary

	>>>

	The default Python prompt of the interactive shell. Often seen for code
examples which can be executed interactively in the interpreter.

	...

	The default Python prompt of the interactive shell when entering code for
an indented code block or within a pair of matching left and right
delimiters (parentheses, square brackets or curly braces).

	2to3

	A tool that tries to convert Python 2.x code to Python 3.x code by
handling most of the incompatibilities which can be detected by parsing the
source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone
entry point is provided as Tools/scripts/2to3. See
2to3 - Automated Python 2 to 3 code translation.

	abstract base class

	Abstract base classes complement duck-typing by
providing a way to define interfaces when other techniques like
hasattr() would be clumsy or subtly wrong (for example with
magic methods). ABCs introduce virtual
subclasses, which are classes that don’t inherit from a class but are
still recognized by isinstance() and issubclass(); see the
abc module documentation. Python comes with many built-in ABCs for
data structures (in the collections module), numbers (in the
numbers module), and streams (in the io module). You can
create your own ABCs with the abc module.

	argument

	A value passed to a function (or method) when calling the
function. There are two types of arguments:

	keyword argument: an argument preceded by an identifier (e.g.
name=) in a function call or passed as a value in a dictionary
preceded by **. For example, 3 and 5 are both keyword
arguments in the following calls to complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

	positional argument: an argument that is not a keyword argument.
Positional arguments can appear at the beginning of an argument list
and/or be passed as elements of an iterable preceded by *.
For example, 3 and 5 are both positional arguments in the
following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body.
See the Calls section for the rules governing this assignment.
Syntactically, any expression can be used to represent an argument; the
evaluated value is assigned to the local variable.

See also the parameter glossary entry and the FAQ question on
the difference between arguments and parameters.

	attribute

	A value associated with an object which is referenced by name using
dotted expressions. For example, if an object o has an attribute
a it would be referenced as o.a.

	BDFL

	Benevolent Dictator For Life, a.k.a. Guido van Rossum [https://www.python.org/~guido/], Python’s creator.

	bytes-like object

	An object that supports the buffer protocol,
like str, bytearray or memoryview.
Bytes-like objects can be used for various operations that expect
binary data, such as compression, saving to a binary file or sending
over a socket. Some operations need the binary data to be mutable,
in which case not all bytes-like objects can apply.

	bytecode

	Python source code is compiled into bytecode, the internal representation
of a Python program in the CPython interpreter. The bytecode is also
cached in .pyc and .pyo files so that executing the same file is
faster the second time (recompilation from source to bytecode can be
avoided). This “intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to
each bytecode. Do note that bytecodes are not expected to work between
different Python virtual machines, nor to be stable between Python
releases.

A list of bytecode instructions can be found in the documentation for
the dis module.

	class

	A template for creating user-defined objects. Class definitions
normally contain method definitions which operate on instances of the
class.

	classic class

	Any class which does not inherit from object. See
new-style class. Classic classes have been removed in Python 3.

	coercion

	The implicit conversion of an instance of one type to another during an
operation which involves two arguments of the same type. For example,
int(3.15) converts the floating point number to the integer 3, but
in 3+4.5, each argument is of a different type (one int, one float),
and both must be converted to the same type before they can be added or it
will raise a TypeError. Coercion between two operands can be
performed with the coerce built-in function; thus, 3+4.5 is
equivalent to calling operator.add(*coerce(3, 4.5)) and results in
operator.add(3.0, 4.5). Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the
programmer, e.g., float(3)+4.5 rather than just 3+4.5.

	complex number

	An extension of the familiar real number system in which all numbers are
expressed as a sum of a real part and an imaginary part. Imaginary
numbers are real multiples of the imaginary unit (the square root of
-1), often written i in mathematics or j in
engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a
j suffix, e.g., 3+1j. To get access to complex equivalents of the
math module, use cmath. Use of complex numbers is a fairly
advanced mathematical feature. If you’re not aware of a need for them,
it’s almost certain you can safely ignore them.

	context manager

	An object which controls the environment seen in a with
statement by defining __enter__() and __exit__() methods.
See PEP 343 [https://www.python.org/dev/peps/pep-0343].

	CPython

	The canonical implementation of the Python programming language, as
distributed on python.org [https://www.python.org]. The term “CPython”
is used when necessary to distinguish this implementation from others
such as Jython or IronPython.

	decorator

	A function returning another function, usually applied as a function
transformation using the @wrapper syntax. Common examples for
decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two
function definitions are semantically equivalent:

def f(...):
 ...
f = staticmethod(f)

@staticmethod
def f(...):
 ...

The same concept exists for classes, but is less commonly used there. See
the documentation for function definitions and
class definitions for more about decorators.

	descriptor

	Any new-style object which defines the methods __get__(),
__set__(), or __delete__(). When a class attribute is a
descriptor, its special binding behavior is triggered upon attribute
lookup. Normally, using a.b to get, set or delete an attribute looks up
the object named b in the class dictionary for a, but if b is a
descriptor, the respective descriptor method gets called. Understanding
descriptors is a key to a deep understanding of Python because they are
the basis for many features including functions, methods, properties,
class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see Implementing Descriptors.

	dictionary

	An associative array, where arbitrary keys are mapped to values. The
keys can be any object with __hash__() and __eq__() methods.
Called a hash in Perl.

	dictionary view

	The objects returned from dict.viewkeys(), dict.viewvalues(),
and dict.viewitems() are called dictionary views. They provide a dynamic
view on the dictionary’s entries, which means that when the dictionary
changes, the view reflects these changes. To force the
dictionary view to become a full list use list(dictview). See
Dictionary view objects.

	docstring

	A string literal which appears as the first expression in a class,
function or module. While ignored when the suite is executed, it is
recognized by the compiler and put into the __doc__ attribute
of the enclosing class, function or module. Since it is available via
introspection, it is the canonical place for documentation of the
object.

	duck-typing

	A programming style which does not look at an object’s type to determine
if it has the right interface; instead, the method or attribute is simply
called or used (“If it looks like a duck and quacks like a duck, it
must be a duck.”) By emphasizing interfaces rather than specific types,
well-designed code improves its flexibility by allowing polymorphic
substitution. Duck-typing avoids tests using type() or
isinstance(). (Note, however, that duck-typing can be complemented
with abstract base classes.) Instead, it
typically employs hasattr() tests or EAFP programming.

	EAFP

	Easier to ask for forgiveness than permission. This common Python coding
style assumes the existence of valid keys or attributes and catches
exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except
statements. The technique contrasts with the LBYL style
common to many other languages such as C.

	expression

	A piece of syntax which can be evaluated to some value. In other words,
an expression is an accumulation of expression elements like literals,
names, attribute access, operators or function calls which all return a
value. In contrast to many other languages, not all language constructs
are expressions. There are also statements which cannot be used
as expressions, such as print or if. Assignments
are also statements, not expressions.

	extension module

	A module written in C or C++, using Python’s C API to interact with the
core and with user code.

	file object

	An object exposing a file-oriented API (with methods such as
read() or write()) to an underlying resource. Depending
on the way it was created, a file object can mediate access to a real
on-disk file or to another type of storage or communication device
(for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or
streams.

There are actually three categories of file objects: raw binary files,
buffered binary files and text files. Their interfaces are defined in the
io module. The canonical way to create a file object is by using
the open() function.

	file-like object

	A synonym for file object.

	finder

	An object that tries to find the loader for a module. It must
implement a method named find_module(). See PEP 302 [https://www.python.org/dev/peps/pep-0302] for
details.

	floor division

	Mathematical division that rounds down to nearest integer. The floor
division operator is //. For example, the expression 11 // 4
evaluates to 2 in contrast to the 2.75 returned by float true
division. Note that (-11) // 4 is -3 because that is -2.75
rounded downward. See PEP 238 [https://www.python.org/dev/peps/pep-0238].

	function

	A series of statements which returns some value to a caller. It can also
be passed zero or more arguments which may be used in
the execution of the body. See also parameter, method,
and the Function definitions section.

	__future__

	A pseudo-module which programmers can use to enable new language features
which are not compatible with the current interpreter. For example, the
expression 11/4 currently evaluates to 2. If the module in which
it is executed had enabled true division by executing:

from __future__ import division

the expression 11/4 would evaluate to 2.75. By importing the
__future__ module and evaluating its variables, you can see when a
new feature was first added to the language and when it will become the
default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

	garbage collection

	The process of freeing memory when it is not used anymore. Python
performs garbage collection via reference counting and a cyclic garbage
collector that is able to detect and break reference cycles.

	generator

	A function which returns an iterator. It looks like a normal function
except that it contains yield statements for producing a series
of values usable in a for-loop or that can be retrieved one at a time with
the next() function. Each yield temporarily suspends
processing, remembering the location execution state (including local
variables and pending try-statements). When the generator resumes, it
picks-up where it left-off (in contrast to functions which start fresh on
every invocation).

	generator expression

	An expression that returns an iterator. It looks like a normal expression
followed by a for expression defining a loop variable, range,
and an optional if expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

	GIL

	See global interpreter lock.

	global interpreter lock

	The mechanism used by the CPython interpreter to assure that
only one thread executes Python bytecode at a time.
This simplifies the CPython implementation by making the object model
(including critical built-in types such as dict) implicitly
safe against concurrent access. Locking the entire interpreter
makes it easier for the interpreter to be multi-threaded, at the
expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party,
are designed so as to release the GIL when doing computationally-intensive
tasks such as compression or hashing. Also, the GIL is always released
when doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks
shared data at a much finer granularity) have not been successful
because performance suffered in the common single-processor case. It
is believed that overcoming this performance issue would make the
implementation much more complicated and therefore costlier to maintain.

	hashable

	An object is hashable if it has a hash value which never changes during
its lifetime (it needs a __hash__() method), and can be compared to
other objects (it needs an __eq__() or __cmp__() method).
Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member,
because these data structures use the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable
containers (such as lists or dictionaries) are. Objects which are
instances of user-defined classes are hashable by default; they all
compare unequal (except with themselves), and their hash value is derived
from their id().

	IDLE

	An Integrated Development Environment for Python. IDLE is a basic editor
and interpreter environment which ships with the standard distribution of
Python.

	immutable

	An object with a fixed value. Immutable objects include numbers, strings and
tuples. Such an object cannot be altered. A new object has to
be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key
in a dictionary.

	integer division

	Mathematical division discarding any remainder. For example, the
expression 11/4 currently evaluates to 2 in contrast to the
2.75 returned by float division. Also called floor division.
When dividing two integers the outcome will always be another integer
(having the floor function applied to it). However, if one of the operands
is another numeric type (such as a float), the result will be
coerced (see coercion) to a common type. For example, an integer
divided by a float will result in a float value, possibly with a decimal
fraction. Integer division can be forced by using the // operator
instead of the / operator. See also __future__.

	importing

	The process by which Python code in one module is made available to
Python code in another module.

	importer

	An object that both finds and loads a module; both a
finder and loader object.

	interactive

	Python has an interactive interpreter which means you can enter
statements and expressions at the interpreter prompt, immediately
execute them and see their results. Just launch python with no
arguments (possibly by selecting it from your computer’s main
menu). It is a very powerful way to test out new ideas or inspect
modules and packages (remember help(x)).

	interpreted

	Python is an interpreted language, as opposed to a compiled one,
though the distinction can be blurry because of the presence of the
bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run.
Interpreted languages typically have a shorter development/debug cycle
than compiled ones, though their programs generally also run more
slowly. See also interactive.

	iterable

	An object capable of returning its members one at a time. Examples of
iterables include all sequence types (such as list, str,
and tuple) and some non-sequence types like dict
and file and objects of any classes you define
with an __iter__() or __getitem__() method. Iterables can be
used in a for loop and in many other places where a sequence is
needed (zip(), map(), ...). When an iterable object is passed
as an argument to the built-in function iter(), it returns an
iterator for the object. This iterator is good for one pass over the set
of values. When using iterables, it is usually not necessary to call
iter() or deal with iterator objects yourself. The for
statement does that automatically for you, creating a temporary unnamed
variable to hold the iterator for the duration of the loop. See also
iterator, sequence, and generator.

	iterator

	An object representing a stream of data. Repeated calls to the iterator’s
next() method return successive items in the stream. When no more
data are available a StopIteration exception is raised instead. At
this point, the iterator object is exhausted and any further calls to its
next() method just raise StopIteration again. Iterators are
required to have an __iter__() method that returns the iterator
object itself so every iterator is also iterable and may be used in most
places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a
list) produces a fresh new iterator each time you pass it to the
iter() function or use it in a for loop. Attempting this
with an iterator will just return the same exhausted iterator object used
in the previous iteration pass, making it appear like an empty container.

More information can be found in Iterator Types.

	key function

	A key function or collation function is a callable that returns a value
used for sorting or ordering. For example, locale.strxfrm() is
used to produce a sort key that is aware of locale specific sort
conventions.

A number of tools in Python accept key functions to control how elements
are ordered or grouped. They include min(), max(),
sorted(), list.sort(), heapq.nsmallest(),
heapq.nlargest(), and itertools.groupby().

There are several ways to create a key function. For example. the
str.lower() method can serve as a key function for case insensitive
sorts. Alternatively, an ad-hoc key function can be built from a
lambda expression such as lambda r: (r[0], r[2]). Also,
the operator module provides three key function constructors:
attrgetter(), itemgetter(), and
methodcaller(). See the Sorting HOW TO for examples of how to create and use key functions.

	keyword argument

	See argument.

	lambda

	An anonymous inline function consisting of a single expression
which is evaluated when the function is called. The syntax to create
a lambda function is lambda [arguments]: expression

	LBYL

	Look before you leap. This coding style explicitly tests for
pre-conditions before making calls or lookups. This style contrasts with
the EAFP approach and is characterized by the presence of many
if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a
race condition between “the looking” and “the leaping”. For example, the
code, if key in mapping: return mapping[key] can fail if another
thread removes key from mapping after the test, but before the lookup.
This issue can be solved with locks or by using the EAFP approach.

	list

	A built-in Python sequence. Despite its name it is more akin
to an array in other languages than to a linked list since access to
elements are O(1).

	list comprehension

	A compact way to process all or part of the elements in a sequence and
return a list with the results. result = ["0x%02x" % x for x in
range(256) if x % 2 == 0] generates a list of strings containing
even hex numbers (0x..) in the range from 0 to 255. The if
clause is optional. If omitted, all elements in range(256) are
processed.

	loader

	An object that loads a module. It must define a method named
load_module(). A loader is typically returned by a
finder. See PEP 302 [https://www.python.org/dev/peps/pep-0302] for details.

	mapping

	A container object that supports arbitrary key lookups and implements the
methods specified in the Mapping or
MutableMapping
abstract base classes. Examples
include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

	metaclass

	The class of a class. Class definitions create a class name, a class
dictionary, and a list of base classes. The metaclass is responsible for
taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python
special is that it is possible to create custom metaclasses. Most users
never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute
access, adding thread-safety, tracking object creation, implementing
singletons, and many other tasks.

More information can be found in Customizing class creation.

	method

	A function which is defined inside a class body. If called as an attribute
of an instance of that class, the method will get the instance object as
its first argument (which is usually called self).
See function and nested scope.

	method resolution order

	Method Resolution Order is the order in which base classes are searched
for a member during lookup. See The Python 2.3 Method Resolution Order [https://www.python.org/download/releases/2.3/mro/] for details of the
algorithm used by the Python interpreter since the 2.3 release.

	module

	An object that serves as an organizational unit of Python code. Modules
have a namespace containing arbitrary Python objects. Modules are loaded
into Python by the process of importing.

See also package.

	MRO

	See method resolution order.

	mutable

	Mutable objects can change their value but keep their id(). See
also immutable.

	named tuple

	Any tuple-like class whose indexable elements are also accessible using
named attributes (for example, time.localtime() returns a
tuple-like object where the year is accessible either with an
index such as t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time,
or it can be created with a regular class definition. A full featured
named tuple can also be created with the factory function
collections.namedtuple(). The latter approach automatically
provides extra features such as a self-documenting representation like
Employee(name='jones', title='programmer').

	namespace

	The place where a variable is stored. Namespaces are implemented as
dictionaries. There are the local, global and built-in namespaces as well
as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions
__builtin__.open() and os.open() are distinguished by their
namespaces. Namespaces also aid readability and maintainability by making
it clear which module implements a function. For instance, writing
random.seed() or itertools.izip() makes it clear that those
functions are implemented by the random and itertools
modules, respectively.

	nested scope

	The ability to refer to a variable in an enclosing definition. For
instance, a function defined inside another function can refer to
variables in the outer function. Note that nested scopes work only for
reference and not for assignment which will always write to the innermost
scope. In contrast, local variables both read and write in the innermost
scope. Likewise, global variables read and write to the global namespace.

	new-style class

	Any class which inherits from object. This includes all built-in
types like list and dict. Only new-style classes can
use Python’s newer, versatile features like __slots__,
descriptors, properties, and __getattribute__().

More information can be found in New-style and classic classes.

	object

	Any data with state (attributes or value) and defined behavior
(methods). Also the ultimate base class of any new-style
class.

	package

	A Python module which can contain submodules or recursively,
subpackages. Technically, a package is a Python module with an
__path__ attribute.

	parameter

	A named entity in a function (or method) definition that
specifies an argument (or in some cases, arguments) that the
function can accept. There are four types of parameters:

	positional-or-keyword: specifies an argument that can be passed
either positionally or as a keyword argument. This is the default kind of parameter, for example foo
and bar in the following:

def func(foo, bar=None): ...

	positional-only: specifies an argument that can be supplied only
by position. Python has no syntax for defining positional-only
parameters. However, some built-in functions have positional-only
parameters (e.g. abs()).

	var-positional: specifies that an arbitrary sequence of
positional arguments can be provided (in addition to any positional
arguments already accepted by other parameters). Such a parameter can
be defined by prepending the parameter name with *, for example
args in the following:

def func(*args, **kwargs): ...

	var-keyword: specifies that arbitrarily many keyword arguments
can be provided (in addition to any keyword arguments already accepted
by other parameters). Such a parameter can be defined by prepending
the parameter name with **, for example kwargs in the example
above.

Parameters can specify both optional and required arguments, as well as
default values for some optional arguments.

See also the argument glossary entry, the FAQ question on
the difference between arguments and parameters, and the Function definitions section.

	positional argument

	See argument.

	Python 3000

	Nickname for the Python 3.x release line (coined long ago when the release
of version 3 was something in the distant future.) This is also
abbreviated “Py3k”.

	Pythonic

	An idea or piece of code which closely follows the most common idioms
of the Python language, rather than implementing code using concepts
common to other languages. For example, a common idiom in Python is
to loop over all elements of an iterable using a for
statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
 print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
 print piece

	reference count

	The number of references to an object. When the reference count of an
object drops to zero, it is deallocated. Reference counting is
generally not visible to Python code, but it is a key element of the
CPython implementation. The sys module defines a
getrefcount() function that programmers can call to return the
reference count for a particular object.

	__slots__

	A declaration inside a new-style class that saves memory by
pre-declaring space for instance attributes and eliminating instance
dictionaries. Though popular, the technique is somewhat tricky to get
right and is best reserved for rare cases where there are large numbers of
instances in a memory-critical application.

	sequence

	An iterable which supports efficient element access using integer
indices via the __getitem__() special method and defines a
len() method that returns the length of the sequence.
Some built-in sequence types are list, str,
tuple, and unicode. Note that dict also
supports __getitem__() and __len__(), but is considered a
mapping rather than a sequence because the lookups use arbitrary
immutable keys rather than integers.

	slice

	An object usually containing a portion of a sequence. A slice is
created using the subscript notation, [] with colons between numbers
when several are given, such as in variable_name[1:3:5]. The bracket
(subscript) notation uses slice objects internally (or in older
versions, __getslice__() and __setslice__()).

	special method

	A method that is called implicitly by Python to execute a certain
operation on a type, such as addition. Such methods have names starting
and ending with double underscores. Special methods are documented in
Special method names.

	statement

	A statement is part of a suite (a “block” of code). A statement is either
an expression or one of several constructs with a keyword, such
as if, while or for.

	struct sequence

	A tuple with named elements. Struct sequences expose an interface similiar
to named tuple in that elements can either be accessed either by
index or as an attribute. However, they do not have any of the named tuple
methods like _make() or
_asdict(). Examples of struct sequences
include sys.float_info and the return value of os.stat().

	triple-quoted string

	A string which is bound by three instances of either a quotation mark
(”) or an apostrophe (‘). While they don’t provide any functionality
not available with single-quoted strings, they are useful for a number
of reasons. They allow you to include unescaped single and double
quotes within a string and they can span multiple lines without the
use of the continuation character, making them especially useful when
writing docstrings.

	type

	The type of a Python object determines what kind of object it is; every
object has a type. An object’s type is accessible as its
__class__ attribute or can be retrieved with
type(obj).

	universal newlines

	A manner of interpreting text streams in which all of the following are
recognized as ending a line: the Unix end-of-line convention '\n',
the Windows convention '\r\n', and the old Macintosh convention
'\r'. See PEP 278 [https://www.python.org/dev/peps/pep-0278] and PEP 3116 [https://www.python.org/dev/peps/pep-3116], as well as
str.splitlines() for an additional use.

	virtual environment

	A cooperatively isolated runtime environment that allows Python users
and applications to install and upgrade Python distribution packages
without interfering with the behaviour of other Python applications
running on the same system.

	virtual machine

	A computer defined entirely in software. Python’s virtual machine
executes the bytecode emitted by the bytecode compiler.

	Zen of Python

	Listing of Python design principles and philosophies that are helpful in
understanding and using the language. The listing can be found by typing
“import this” at the interactive prompt.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 About these documents

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

About these documents

These documents are generated from reStructuredText [http://docutils.sourceforge.net/rst.html] sources by Sphinx [http://sphinx-doc.org/], a
document processor specifically written for the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer
effort, just like Python itself. If you want to contribute, please take a
look at the Reporting Bugs page for information on how to do so. New
volunteers are always welcome!

Many thanks go to:

	Fred L. Drake, Jr., the creator of the original Python documentation toolset
and writer of much of the content;

	the Docutils [http://docutils.sourceforge.net/] project for creating
reStructuredText and the Docutils suite;

	Fredrik Lundh for his Alternative Python Reference [http://effbot.org/zone/pyref.htm] project from which Sphinx got many good
ideas.

Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard
library, and the Python documentation. See Misc/ACKS [https://hg.python.org/cpython/file/2.7/Misc/ACKS] in the Python
source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community
that Python has such wonderful documentation – Thank You!

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Reporting Bugs

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

Reporting Bugs

Python is a mature programming language which has established a reputation for
stability. In order to maintain this reputation, the developers would like to
know of any deficiencies you find in Python.

Documentation bugs

If you find a bug in this documentation or would like to propose an improvement,
please submit a bug report on the tracker. If you
have a suggestion how to fix it, include that as well.

If you’re short on time, you can also email documentation bug reports to
docs@python.org (behavioral bugs can be sent to python-list@python.org).
‘docs@’ is a mailing list run by volunteers; your request will be noticed,
though it may take a while to be processed.

See also

Documentation bugs [https://bugs.python.org/issue?@filter=status&@filter=components&components=4&status=1&@columns=id,activity,title,status&@sort=-activity] on the Python issue tracker

Using the Python issue tracker

Bug reports for Python itself should be submitted via the Python Bug Tracker
(https://bugs.python.org/). The bug tracker offers a Web form which allows
pertinent information to be entered and submitted to the developers.

The first step in filing a report is to determine whether the problem has
already been reported. The advantage in doing so, aside from saving the
developers time, is that you learn what has been done to fix it; it may be that
the problem has already been fixed for the next release, or additional
information is needed (in which case you are welcome to provide it if you can!).
To do this, search the bug database using the search box on the top of the page.

If the problem you’re reporting is not already in the bug tracker, go back to
the Python Bug Tracker and log in. If you don’t already have a tracker account,
select the “Register” link or, if you use OpenID, one of the OpenID provider
logos in the sidebar. It is not possible to submit a bug report anonymously.

Being now logged in, you can submit a bug. Select the “Create New” link in the
sidebar to open the bug reporting form.

The submission form has a number of fields. For the “Title” field, enter a
very short description of the problem; less than ten words is good. In the
“Type” field, select the type of your problem; also select the “Component” and
“Versions” to which the bug relates.

In the “Comment” field, describe the problem in detail, including what you
expected to happen and what did happen. Be sure to include whether any
extension modules were involved, and what hardware and software platform you
were using (including version information as appropriate).

Each bug report will be assigned to a developer who will determine what needs to
be done to correct the problem. You will receive an update each time action is
taken on the bug.

See also

	How to Report Bugs Effectively [http://www.chiark.greenend.org.uk/~sgtatham/bugs.html]

	Article which goes into some detail about how to create a useful bug report.
This describes what kind of information is useful and why it is useful.

	Bug Writing Guidelines [https://developer.mozilla.org/en-US/docs/Mozilla/QA/Bug_writing_guidelines]

	Information about writing a good bug report. Some of this is specific to the
Mozilla project, but describes general good practices.

Getting started contributing to Python yourself

Beyond just reporting bugs that you find, you are also welcome to submit
patches to fix them. You can find more information on how to get started
patching Python in the Python Developer’s Guide [https://docs.python.org/devguide/]. If you have questions,
the core-mentorship mailing list [https://mail.python.org/mailman/listinfo/core-mentorship/] is a friendly place to get answers to
any and all questions pertaining to the process of fixing issues in Python.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Copyright

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

Copyright

Python and this documentation is:

Copyright © 2001-2016 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights
reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 History and License

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

History and License

History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum (CWI, see https://www.cwi.nl/) in the Netherlands as a
successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National
Research Initiatives (CNRI, see https://www.cnri.reston.va.us/) in Reston,
Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to
form the BeOpen PythonLabs team. In October of the same year, the PythonLabs
team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see
https://www.python.org/psf/) was formed, a non-profit organization created
specifically to own Python-related Intellectual Property. Zope Corporation is a
sponsoring member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open
Source Definition). Historically, most, but not all, Python releases have also
been GPL-compatible; the table below summarizes the various releases.

	Release
	Derived from
	Year
	Owner
	GPL compatible?

	0.9.0 thru 1.2
	n/a
	1991-1995
	CWI
	yes

	1.3 thru 1.5.2
	1.2
	1995-1999
	CNRI
	yes

	1.6
	1.5.2
	2000
	CNRI
	no

	2.0
	1.6
	2000
	BeOpen.com
	no

	1.6.1
	1.6
	2001
	CNRI
	no

	2.1
	2.0+1.6.1
	2001
	PSF
	no

	2.0.1
	2.0+1.6.1
	2001
	PSF
	yes

	2.1.1
	2.1+2.0.1
	2001
	PSF
	yes

	2.1.2
	2.1.1
	2002
	PSF
	yes

	2.1.3
	2.1.2
	2002
	PSF
	yes

	2.2 and above
	2.1.1
	2001-now
	PSF
	yes

Note

GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All
Python licenses, unlike the GPL, let you distribute a modified version without
making your changes open source. The GPL-compatible licenses make it possible to
combine Python with other software that is released under the GPL; the others
don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to
make these releases possible.

Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.7.12

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and
 the Individual or Organization ("Licensee") accessing and otherwise using Python
 2.7.12 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
 grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
 analyze, test, perform and/or display publicly, prepare derivative works,
 distribute, and otherwise use Python 2.7.12 alone or in any derivative
 version, provided, however, that PSF's License Agreement and PSF's notice of
 copyright, i.e., "Copyright © 2001-2016 Python Software Foundation; All Rights
 Reserved" are retained in Python 2.7.12 alone or in any derivative version
 prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
 incorporates Python 2.7.12 or any part thereof, and wants to make the
 derivative work available to others as provided herein, then Licensee hereby
 agrees to include in any such work a brief summary of the changes made to Python
 2.7.12.

4. PSF is making Python 2.7.12 available to Licensee on an "AS IS" basis.
 PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
 EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
 WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
 USE OF PYTHON 2.7.12 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.12
 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
 MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.12, OR ANY DERIVATIVE
 THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
 its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship
 of agency, partnership, or joint venture between PSF and Licensee. This License
 Agreement does not grant permission to use PSF trademarks or trade name in a
 trademark sense to endorse or promote products or services of Licensee, or any
 third party.

8. By copying, installing or otherwise using Python 2.7.12, Licensee agrees
 to be bound by the terms and conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
 160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
 ("Licensee") accessing and otherwise using this software in source or binary
 form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
 BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
 to reproduce, analyze, test, perform and/or display publicly, prepare derivative
 works, distribute, and otherwise use the Software alone or in any derivative
 version, provided, however, that the BeOpen Python License is retained in the
 Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
 BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
 EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
 WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
 USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
 ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
 MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
 ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
 its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
 by the law of the State of California, excluding conflict of law provisions.
 Nothing in this License Agreement shall be deemed to create any relationship of
 agency, partnership, or joint venture between BeOpen and Licensee. This License
 Agreement does not grant permission to use BeOpen trademarks or trade names in a
 trademark sense to endorse or promote products or services of Licensee, or any
 third party. As an exception, the "BeOpen Python" logos available at
 http://www.pythonlabs.com/logos.html may be used according to the permissions
 granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
 bound by the terms and conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
 Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
 ("CNRI"), and the Individual or Organization ("Licensee") accessing and
 otherwise using Python 1.6.1 software in source or binary form and its
 associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
 grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
 analyze, test, perform and/or display publicly, prepare derivative works,
 distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
 provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
 i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
 Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
 prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
 Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
 is made available subject to the terms and conditions in CNRI's License
 Agreement. This Agreement together with Python 1.6.1 may be located on the
 Internet using the following unique, persistent identifier (known as a handle):
 1895.22/1013. This Agreement may also be obtained from a proxy server on the
 Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
 incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
 work available to others as provided herein, then Licensee hereby agrees to
 include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
 MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
 BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
 OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
 PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
 ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
 MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
 THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
 its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
 law of the United States, including without limitation the federal copyright
 law, and, to the extent such U.S. federal law does not apply, by the law of the
 Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
 Notwithstanding the foregoing, with regard to derivative works based on Python
 1.6.1 that incorporate non-separable material that was previously distributed
 under the GNU General Public License (GPL), the law of the Commonwealth of
 Virginia shall govern this License Agreement only as to issues arising under or
 with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
 this License Agreement shall be deemed to create any relationship of agency,
 partnership, or joint venture between CNRI and Licensee. This License Agreement
 does not grant permission to use CNRI trademarks or trade name in a trademark
 sense to endorse or promote products or services of Licensee, or any third
 party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
 or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
 conditions of this License Agreement.

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements
for third-party software incorporated in the Python distribution.

Mersenne Twister

The _random module includes code based on a download from
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html. The following are
the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 3. The names of its contributors may not be used to endorse or promote
 products derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

Sockets

The socket module uses the functions, getaddrinfo(), and
getnameinfo(), which are coded in separate source files from the WIDE
Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. Neither the name of the project nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Floating point exception control

The source for the fpectl module includes the following notice:

 / Copyright (c) 1996. \
| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
 \ endorsement purposes. /

MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at
 http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
 references to Ghostscript; clarified derivation from RFC 1321;
 now handles byte order either statically or dynamically.
1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);
 added conditionalization for C++ compilation from Martin
 Purschke <purschke@bnl.gov>.
1999-05-03 lpd Original version.

Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

 All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

 All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.
 All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion
 between ascii and binary. This results in a 1000-fold speedup. The C
 version is still 5 times faster, though.
- Arguments more compliant with Python standard

XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

 The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and
strtod for conversion of C doubles to and from strings, is derived
from the file of the same name by David M. Gay, currently available
from http://www.netlib.org/fp/. The original file, as retrieved on
March 16, 2009, contains the following copyright and licensing
notice:

/**
 *
 * The author of this software is David M. Gay.
 *
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose without fee is hereby granted, provided that this entire notice
 * is included in all copies of any software which is or includes a copy
 * or modification of this software and in all copies of the supporting
 * documentation for such software.
 *
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 *
 ***/

OpenSSL

The modules hashlib, posix, ssl, crypt use
the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for
Python may include a copy of the OpenSSL libraries, so we include a copy
of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

 /* ==
 * Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

Original SSLeay License

 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the rouines from the library
 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 * the apps directory (application code) you must include an acknowledgement:
 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed. i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

expat

The pyexpat extension is built using an included copy of the expat
sources unless the build is configured --with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
 and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

libffi

The _ctypes extension is built using an included copy of the libffi
sources unless the build is configured --with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

zlib

The zlib extension is built using an included copy of the zlib
sources if the zlib version found on the system is too old to be
used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 Python Module Index

 _ |
 a |
 b |
 c |
 d |
 e |
 f |
 g |
 h |
 i |
 j |
 k |
 l |
 m |
 n |
 o |
 p |
 q |
 r |
 s |
 t |
 u |
 v |
 w |
 x |
 z

 			

 		
 _	

 	
 	
 __builtin__	
 The module that provides the built-in namespace.

 	
 	
 __future__	
 Future statement definitions

 	
 	
 __main__	
 The environment where the top-level script is run.

 	
 	
 _winreg (Windows)	
 Routines and objects for manipulating the Windows registry.

 			

 		
 a	

 	
 	
 abc	
 Abstract base classes according to PEP 3119.

 	
 	
 aepack (Mac)	Deprecated:
 Conversion between Python variables and AppleEvent data containers.

 	
 	
 aetools (Mac)	Deprecated:
 Basic support for sending Apple Events

 	
 	
 aetypes (Mac)	Deprecated:
 Python representation of the Apple Event Object Model.

 	
 	
 aifc	
 Read and write audio files in AIFF or AIFC format.

 	
 	
 al (IRIX)	Deprecated:
 Audio functions on the SGI.

 	
 	
 AL (IRIX)	Deprecated:
 Constants used with the al module.

 	
 	
 anydbm	
 Generic interface to DBM-style database modules.

 	
 	
 applesingle (Mac)	Deprecated:
 Rudimentary decoder for AppleSingle format files.

 	
 	
 argparse	
 Command-line option and argument parsing library.

 	
 	
 array	
 Space efficient arrays of uniformly typed numeric values.

 	
 	
 ast	
 Abstract Syntax Tree classes and manipulation.

 	
 	
 asynchat	
 Support for asynchronous command/response protocols.

 	
 	
 asyncore	
 A base class for developing asynchronous socket handling
services.

 	
 	
 atexit	
 Register and execute cleanup functions.

 	
 	
 audioop	
 Manipulate raw audio data.

 	
 	
 autoGIL (Mac)	Deprecated:
 Global Interpreter Lock handling in event loops.

 			

 		
 b	

 	
 	
 base64	
 RFC 3548: Base16, Base32, Base64 Data Encodings

 	
 	
 BaseHTTPServer	
 Basic HTTP server (base class for SimpleHTTPServer and CGIHTTPServer).

 	
 	
 Bastion	Deprecated:
 Providing restricted access to objects.

 	
 	
 bdb	
 Debugger framework.

 	
 	
 binascii	
 Tools for converting between binary and various ASCII-encoded binary
representations.

 	
 	
 binhex	
 Encode and decode files in binhex4 format.

 	
 	
 bisect	
 Array bisection algorithms for binary searching.

 	
 	
 bsddb	
 Interface to Berkeley DB database library

 	
 	
 buildtools (Mac)	Deprecated:
 Helper module for BuildApplet, BuildApplication and macfreeze.

 	
 	
 bz2	
 Interface to compression and decompression routines compatible with bzip2.

 			

 		
 c	

 	
 	
 calendar	
 Functions for working with calendars, including some emulation of the Unix cal
program.

 	[image: -]
 	
 Carbon	

 	
 	
 Carbon.AE (Mac)	Deprecated:
 Interface to the Apple Events toolbox.

 	
 	
 Carbon.AH (Mac)	Deprecated:
 Interface to the Apple Help manager.

 	
 	
 Carbon.App (Mac)	Deprecated:
 Interface to the Appearance Manager.

 	
 	
 Carbon.Appearance (Mac)	Deprecated:
 Constant definitions for the interface to the Appearance Manager.

 	
 	
 Carbon.CarbonEvents (Mac)	Deprecated:
 Constants for the interface to the Carbon Event Manager.

 	
 	
 Carbon.CarbonEvt (Mac)	Deprecated:
 Interface to the Carbon Event Manager.

 	
 	
 Carbon.CF (Mac)	Deprecated:
 Interface to the Core Foundation.

 	
 	
 Carbon.CG (Mac)	Deprecated:
 Interface to Core Graphics.

 	
 	
 Carbon.Cm (Mac)	Deprecated:
 Interface to the Component Manager.

 	
 	
 Carbon.Components (Mac)	Deprecated:
 Constants for the interface to the Component Manager.

 	
 	
 Carbon.ControlAccessor (Mac)	Deprecated:
 Accessor functions for the interface to the Control Manager.

 	
 	
 Carbon.Controls (Mac)	Deprecated:
 Constants for the interface to the Control Manager.

 	
 	
 Carbon.CoreFounation (Mac)	Deprecated:
 Constants for the interface to CoreFoundation.

 	
 	
 Carbon.CoreGraphics (Mac)	Deprecated:
 Constants for the interface to CoreGraphics.

 	
 	
 Carbon.Ctl (Mac)	Deprecated:
 Interface to the Control Manager.

 	
 	
 Carbon.Dialogs (Mac)	Deprecated:
 Constants for the interface to the Dialog Manager.

 	
 	
 Carbon.Dlg (Mac)	Deprecated:
 Interface to the Dialog Manager.

 	
 	
 Carbon.Drag (Mac)	Deprecated:
 Interface to the Drag and Drop Manager.

 	
 	
 Carbon.Dragconst (Mac)	Deprecated:
 Constants for the interface to the Drag and Drop Manager.

 	
 	
 Carbon.Events (Mac)	Deprecated:
 Constants for the interface to the classic Event Manager.

 	
 	
 Carbon.Evt (Mac)	Deprecated:
 Interface to the classic Event Manager.

 	
 	
 Carbon.File (Mac)	Deprecated:
 Interface to the File Manager.

 	
 	
 Carbon.Files (Mac)	Deprecated:
 Constants for the interface to the File Manager.

 	
 	
 Carbon.Fm (Mac)	Deprecated:
 Interface to the Font Manager.

 	
 	
 Carbon.Folder (Mac)	Deprecated:
 Interface to the Folder Manager.

 	
 	
 Carbon.Folders (Mac)	Deprecated:
 Constants for the interface to the Folder Manager.

 	
 	
 Carbon.Fonts (Mac)	Deprecated:
 Constants for the interface to the Font Manager.

 	
 	
 Carbon.Help (Mac)	Deprecated:
 Interface to the Carbon Help Manager.

 	
 	
 Carbon.IBCarbon (Mac)	Deprecated:
 Interface to the Carbon InterfaceBuilder support libraries.

 	
 	
 Carbon.IBCarbonRuntime (Mac)	Deprecated:
 Constants for the interface to the Carbon InterfaceBuilder support libraries.

 	
 	
 Carbon.Icns (Mac)	Deprecated:
 Interface to the Carbon Icon Manager

 	
 	
 Carbon.Icons (Mac)	Deprecated:
 Constants for the interface to the Carbon Icon Manager

 	
 	
 Carbon.Launch (Mac)	Deprecated:
 Interface to the Carbon Launch Services.

 	
 	
 Carbon.LaunchServices (Mac)	Deprecated:
 Constants for the interface to the Carbon Launch Services.

 	
 	
 Carbon.List (Mac)	Deprecated:
 Interface to the List Manager.

 	
 	
 Carbon.Lists (Mac)	Deprecated:
 Constants for the interface to the List Manager.

 	
 	
 Carbon.MacHelp (Mac)	Deprecated:
 Constants for the interface to the Carbon Help Manager.

 	
 	
 Carbon.MediaDescr (Mac)	Deprecated:
 Parsers and generators for Quicktime Media descriptors

 	
 	
 Carbon.Menu (Mac)	Deprecated:
 Interface to the Menu Manager.

 	
 	
 Carbon.Menus (Mac)	Deprecated:
 Constants for the interface to the Menu Manager.

 	
 	
 Carbon.Mlte (Mac)	Deprecated:
 Interface to the MultiLingual Text Editor.

 	
 	
 Carbon.OSA (Mac)	Deprecated:
 Interface to the Carbon OSA Library.

 	
 	
 Carbon.OSAconst (Mac)	Deprecated:
 Constants for the interface to the Carbon OSA Library.

 	
 	
 Carbon.Qd (Mac)	Deprecated:
 Interface to the QuickDraw toolbox.

 	
 	
 Carbon.Qdoffs (Mac)	Deprecated:
 Interface to the QuickDraw Offscreen APIs.

 	
 	
 Carbon.QDOffscreen (Mac)	Deprecated:
 Constants for the interface to the QuickDraw Offscreen APIs.

 	
 	
 Carbon.Qt (Mac)	Deprecated:
 Interface to the QuickTime toolbox.

 	
 	
 Carbon.QuickDraw (Mac)	Deprecated:
 Constants for the interface to the QuickDraw toolbox.

 	
 	
 Carbon.QuickTime (Mac)	Deprecated:
 Constants for the interface to the QuickTime toolbox.

 	
 	
 Carbon.Res (Mac)	Deprecated:
 Interface to the Resource Manager and Handles.

 	
 	
 Carbon.Resources (Mac)	Deprecated:
 Constants for the interface to the Resource Manager and Handles.

 	
 	
 Carbon.Scrap (Mac)	Deprecated:
 The Scrap Manager provides basic services for implementing cut & paste and
clipboard operations.

 	
 	
 Carbon.Snd (Mac)	Deprecated:
 Interface to the Sound Manager.

 	
 	
 Carbon.Sound (Mac)	Deprecated:
 Constants for the interface to the Sound Manager.

 	
 	
 Carbon.TE (Mac)	Deprecated:
 Interface to TextEdit.

 	
 	
 Carbon.TextEdit (Mac)	Deprecated:
 Constants for the interface to TextEdit.

 	
 	
 Carbon.Win (Mac)	Deprecated:
 Interface to the Window Manager.

 	
 	
 Carbon.Windows (Mac)	Deprecated:
 Constants for the interface to the Window Manager.

 	
 	
 cd (IRIX)	Deprecated:
 Interface to the CD-ROM on Silicon Graphics systems.

 	
 	
 cfmfile (Mac)	Deprecated:
 Code Fragment Resource module.

 	
 	
 cgi	
 Helpers for running Python scripts via the Common Gateway Interface.

 	
 	
 CGIHTTPServer	
 This module provides a request handler for HTTP servers which can run CGI
scripts.

 	
 	
 cgitb	
 Configurable traceback handler for CGI scripts.

 	
 	
 chunk	
 Module to read IFF chunks.

 	
 	
 cmath	
 Mathematical functions for complex numbers.

 	
 	
 cmd	
 Build line-oriented command interpreters.

 	
 	
 code	
 Facilities to implement read-eval-print loops.

 	
 	
 codecs	
 Encode and decode data and streams.

 	
 	
 codeop	
 Compile (possibly incomplete) Python code.

 	
 	
 collections	
 High-performance datatypes

 	
 	
 ColorPicker (Mac)	Deprecated:
 Interface to the standard color selection dialog.

 	
 	
 colorsys	
 Conversion functions between RGB and other color systems.

 	
 	
 commands (Unix)	Deprecated:
 Utility functions for running external commands.

 	
 	
 compileall	
 Tools for byte-compiling all Python source files in a directory tree.

 	[image: -]
 	
 compiler	Deprecated:
 Python code compiler written in Python.

 	
 	
 compiler.ast	

 	
 	
 compiler.visitor	

 	
 	
 ConfigParser	
 Configuration file parser.

 	
 	
 contextlib	
 Utilities for with-statement contexts.

 	
 	
 Cookie	
 Support for HTTP state management (cookies).

 	
 	
 cookielib	
 Classes for automatic handling of HTTP cookies.

 	
 	
 copy	
 Shallow and deep copy operations.

 	
 	
 copy_reg	
 Register pickle support functions.

 	
 	
 cPickle	
 Faster version of pickle, but not subclassable.

 	
 	
 cProfile	

 	
 	
 crypt (Unix)	
 The crypt() function used to check Unix passwords.

 	
 	
 cStringIO	
 Faster version of StringIO, but not subclassable.

 	
 	
 csv	
 Write and read tabular data to and from delimited files.

 	
 	
 ctypes	
 A foreign function library for Python.

 	[image: -]
 	
 curses (Unix)	
 An interface to the curses library, providing portable terminal
handling.

 	
 	
 curses.ascii	
 Constants and set-membership functions for ASCII characters.

 	
 	
 curses.panel	
 A panel stack extension that adds depth to curses windows.

 	
 	
 curses.textpad	
 Emacs-like input editing in a curses window.

 			

 		
 d	

 	
 	
 datetime	
 Basic date and time types.

 	
 	
 dbhash	
 DBM-style interface to the BSD database library.

 	
 	
 dbm (Unix)	
 The standard "database" interface, based on ndbm.

 	
 	
 decimal	
 Implementation of the General Decimal Arithmetic Specification.

 	
 	
 DEVICE (IRIX)	Deprecated:
 Constants used with the gl module.

 	
 	
 difflib	
 Helpers for computing differences between objects.

 	
 	
 dircache	Deprecated:
 Return directory listing, with cache mechanism.

 	
 	
 dis	
 Disassembler for Python bytecode.

 	[image: -]
 	
 distutils	
 Support for building and installing Python modules into an
existing Python installation.

 	
 	
 distutils.archive_util	
 Utility functions for creating archive files (tarballs, zip files, ...)

 	
 	
 distutils.bcppcompiler	

 	
 	
 distutils.ccompiler	
 Abstract CCompiler class

 	
 	
 distutils.cmd	
 This module provides the abstract base class Command. This class
is subclassed by the modules in the distutils.command subpackage.

 	
 	
 distutils.command	
 This subpackage contains one module for each standard Distutils command.

 	
 	
 distutils.command.bdist	
 Build a binary installer for a package

 	
 	
 distutils.command.bdist_dumb	
 Build a "dumb" installer - a simple archive of files

 	
 	
 distutils.command.bdist_msi	
 Build a binary distribution as a Windows MSI file

 	
 	
 distutils.command.bdist_packager	
 Abstract base class for packagers

 	
 	
 distutils.command.bdist_rpm	
 Build a binary distribution as a Redhat RPM and SRPM

 	
 	
 distutils.command.bdist_wininst	
 Build a Windows installer

 	
 	
 distutils.command.build	
 Build all files of a package

 	
 	
 distutils.command.build_clib	
 Build any C libraries in a package

 	
 	
 distutils.command.build_ext	
 Build any extensions in a package

 	
 	
 distutils.command.build_py	
 Build the .py/.pyc files of a package

 	
 	
 distutils.command.build_scripts	
 Build the scripts of a package

 	
 	
 distutils.command.check	
 Check the metadata of a package

 	
 	
 distutils.command.clean	
 Clean a package build area

 	
 	
 distutils.command.config	
 Perform package configuration

 	
 	
 distutils.command.install	
 Install a package

 	
 	
 distutils.command.install_data	
 Install data files from a package

 	
 	
 distutils.command.install_headers	
 Install C/C++ header files from a package

 	
 	
 distutils.command.install_lib	
 Install library files from a package

 	
 	
 distutils.command.install_scripts	
 Install script files from a package

 	
 	
 distutils.command.register	
 Register a module with the Python Package Index

 	
 	
 distutils.command.sdist	
 Build a source distribution

 	
 	
 distutils.core	
 The core Distutils functionality

 	
 	
 distutils.cygwinccompiler	

 	
 	
 distutils.debug	
 Provides the debug flag for distutils

 	
 	
 distutils.dep_util	
 Utility functions for simple dependency checking

 	
 	
 distutils.dir_util	
 Utility functions for operating on directories and directory trees

 	
 	
 distutils.dist	
 Provides the Distribution class, which represents the module distribution being
built/installed/distributed

 	
 	
 distutils.emxccompiler	
 OS/2 EMX Compiler support

 	
 	
 distutils.errors	
 Provides standard distutils exceptions

 	
 	
 distutils.extension	
 Provides the Extension class, used to describe C/C++ extension modules in setup
scripts

 	
 	
 distutils.fancy_getopt	
 Additional getopt functionality

 	
 	
 distutils.file_util	
 Utility functions for operating on single files

 	
 	
 distutils.filelist	
 The FileList class, used for poking about the file system and
building lists of files.

 	
 	
 distutils.log	
 A simple logging mechanism, 282-style

 	
 	
 distutils.msvccompiler	
 Microsoft Compiler

 	
 	
 distutils.spawn	
 Provides the spawn() function

 	
 	
 distutils.sysconfig	
 Low-level access to configuration information of the Python interpreter.

 	
 	
 distutils.text_file	
 provides the TextFile class, a simple interface to text files

 	
 	
 distutils.unixccompiler	
 UNIX C Compiler

 	
 	
 distutils.util	
 Miscellaneous other utility functions

 	
 	
 distutils.version	
 implements classes that represent module version numbers.

 	
 	
 dl (Unix)	Deprecated:
 Call C functions in shared objects.

 	
 	
 doctest	
 Test pieces of code within docstrings.

 	
 	
 DocXMLRPCServer	
 Self-documenting XML-RPC server implementation.

 	
 	
 dumbdbm	
 Portable implementation of the simple DBM interface.

 	
 	
 dummy_thread	
 Drop-in replacement for the thread module.

 	
 	
 dummy_threading	
 Drop-in replacement for the threading module.

 			

 		
 e	

 	
 	
 EasyDialogs (Mac)	Deprecated:
 Basic Macintosh dialogs.

 	[image: -]
 	
 email	
 Package supporting the parsing, manipulating, and generating email messages,
including MIME documents.

 	
 	
 email.charset	
 Character Sets

 	
 	
 email.encoders	
 Encoders for email message payloads.

 	
 	
 email.errors	
 The exception classes used by the email package.

 	
 	
 email.generator	
 Generate flat text email messages from a message structure.

 	
 	
 email.header	
 Representing non-ASCII headers

 	
 	
 email.iterators	
 Iterate over a message object tree.

 	
 	
 email.message	
 The base class representing email messages.

 	
 	
 email.mime	
 Build MIME messages.

 	
 	
 email.parser	
 Parse flat text email messages to produce a message object structure.

 	
 	
 email.utils	
 Miscellaneous email package utilities.

 	[image: -]
 	
 encodings	

 	
 	
 encodings.idna	
 Internationalized Domain Names implementation

 	
 	
 encodings.utf_8_sig	
 UTF-8 codec with BOM signature

 	
 	
 ensurepip	
 Bootstrapping the ``pip`` installer into an existing Python
installation or virtual environment.

 	
 	
 errno	
 Standard errno system symbols.

 	
 	
 exceptions	
 Standard exception classes.

 			

 		
 f	

 	
 	
 fcntl (Unix)	
 The fcntl() and ioctl() system calls.

 	
 	
 filecmp	
 Compare files efficiently.

 	
 	
 fileinput	
 Loop over standard input or a list of files.

 	
 	
 findertools (Mac)	
 Wrappers around the finder's Apple Events interface.

 	
 	
 FL (IRIX)	Deprecated:
 Constants used with the fl module.

 	
 	
 fl (IRIX)	Deprecated:
 FORMS library for applications with graphical user interfaces.

 	
 	
 flp (IRIX)	Deprecated:
 Functions for loading stored FORMS designs.

 	
 	
 fm (IRIX)	Deprecated:
 Font Manager interface for SGI workstations.

 	
 	
 fnmatch	
 Unix shell style filename pattern matching.

 	
 	
 formatter	
 Generic output formatter and device interface.

 	
 	
 fpectl (Unix)	
 Provide control for floating point exception handling.

 	
 	
 fpformat	Deprecated:
 General floating point formatting functions.

 	
 	
 fractions	
 Rational numbers.

 	
 	
 FrameWork (Mac)	Deprecated:
 Interactive application framework.

 	
 	
 ftplib	
 FTP protocol client (requires sockets).

 	
 	
 functools	
 Higher-order functions and operations on callable objects.

 	
 	
 future_builtins	

 			

 		
 g	

 	
 	
 gc	
 Interface to the cycle-detecting garbage collector.

 	
 	
 gdbm (Unix)	
 GNU's reinterpretation of dbm.

 	
 	
 gensuitemodule (Mac)	
 Create a stub package from an OSA dictionary

 	
 	
 getopt	
 Portable parser for command line options; support both short and long option
names.

 	
 	
 getpass	
 Portable reading of passwords and retrieval of the userid.

 	
 	
 gettext	
 Multilingual internationalization services.

 	
 	
 gl (IRIX)	Deprecated:
 Functions from the Silicon Graphics Graphics Library.

 	
 	
 GL (IRIX)	Deprecated:
 Constants used with the gl module.

 	
 	
 glob	
 Unix shell style pathname pattern expansion.

 	
 	
 grp (Unix)	
 The group database (getgrnam() and friends).

 	
 	
 gzip	
 Interfaces for gzip compression and decompression using file objects.

 			

 		
 h	

 	
 	
 hashlib	
 Secure hash and message digest algorithms.

 	
 	
 heapq	
 Heap queue algorithm (a.k.a. priority queue).

 	
 	
 hmac	
 Keyed-Hashing for Message Authentication (HMAC) implementation

 	[image: -]
 	
 hotshot	
 High performance logging profiler, mostly written in C.

 	
 	
 hotshot.stats	
 Statistical analysis for Hotshot

 	
 	
 htmlentitydefs	
 Definitions of HTML general entities.

 	
 	
 htmllib	Deprecated:
 A parser for HTML documents.

 	
 	
 HTMLParser	
 A simple parser that can handle HTML and XHTML.

 	
 	
 httplib	
 HTTP and HTTPS protocol client (requires sockets).

 			

 		
 i	

 	
 	
 ic (Mac)	Deprecated:
 Access to the Mac OS X Internet Config.

 	
 	
 icopen (Mac)	Deprecated:
 Internet Config replacement for open().

 	
 	
 imageop	Deprecated:
 Manipulate raw image data.

 	
 	
 imaplib	
 IMAP4 protocol client (requires sockets).

 	
 	
 imgfile (IRIX)	Deprecated:
 Support for SGI imglib files.

 	
 	
 imghdr	
 Determine the type of image contained in a file or byte stream.

 	
 	
 imp	
 Access the implementation of the import statement.

 	
 	
 importlib	
 Convenience wrappers for __import__

 	
 	
 imputil	Deprecated:
 Manage and augment the import process.

 	
 	
 inspect	
 Extract information and source code from live objects.

 	
 	
 io	
 Core tools for working with streams.

 	
 	
 itertools	
 Functions creating iterators for efficient looping.

 			

 		
 j	

 	
 	
 jpeg (IRIX)	Deprecated:
 Read and write image files in compressed JPEG format.

 	
 	
 json	
 Encode and decode the JSON format.

 			

 		
 k	

 	
 	
 keyword	
 Test whether a string is a keyword in Python.

 			

 		
 l	

 	
 	
 lib2to3	
 the 2to3 library

 	
 	
 linecache	
 This module provides random access to individual lines from text files.

 	
 	
 locale	
 Internationalization services.

 	[image: -]
 	
 logging	
 Flexible event logging system for applications.

 	
 	
 logging.config	
 Configuration of the logging module.

 	
 	
 logging.handlers	
 Handlers for the logging module.

 			

 		
 m	

 	
 	
 macerrors (Mac)	Deprecated:
 Constant definitions for many Mac OS error codes.

 	
 	
 MacOS (Mac)	Deprecated:
 Access to Mac OS-specific interpreter features.

 	
 	
 macostools (Mac)	Deprecated:
 Convenience routines for file manipulation.

 	
 	
 macpath	
 Mac OS 9 path manipulation functions.

 	
 	
 macresource (Mac)	Deprecated:
 Locate script resources.

 	
 	
 mailbox	
 Manipulate mailboxes in various formats

 	
 	
 mailcap	
 Mailcap file handling.

 	
 	
 marshal	
 Convert Python objects to streams of bytes and back (with different
constraints).

 	
 	
 math	
 Mathematical functions (sin() etc.).

 	
 	
 md5	Deprecated:
 RSA's MD5 message digest algorithm.

 	
 	
 mhlib	Deprecated:
 Manipulate MH mailboxes from Python.

 	
 	
 mimetools	Deprecated:
 Tools for parsing MIME-style message bodies.

 	
 	
 mimetypes	
 Mapping of filename extensions to MIME types.

 	
 	
 MimeWriter	Deprecated:
 Write MIME format files.

 	
 	
 mimify	Deprecated:
 Mimification and unmimification of mail messages.

 	
 	
 MiniAEFrame (Mac)	
 Support to act as an Open Scripting Architecture (OSA) server ("Apple Events").

 	
 	
 mmap	
 Interface to memory-mapped files for Unix and Windows.

 	
 	
 modulefinder	
 Find modules used by a script.

 	
 	
 msilib (Windows)	
 Creation of Microsoft Installer files, and CAB files.

 	
 	
 msvcrt (Windows)	
 Miscellaneous useful routines from the MS VC++ runtime.

 	
 	
 multifile	Deprecated:
 Support for reading files which contain distinct parts, such as some MIME data.

 	[image: -]
 	
 multiprocessing	
 Process-based "threading" interface.

 	
 	
 multiprocessing.connection	
 API for dealing with sockets.

 	
 	
 multiprocessing.dummy	
 Dumb wrapper around threading.

 	
 	
 multiprocessing.managers	
 Share data between process with shared objects.

 	
 	
 multiprocessing.pool	
 Create pools of processes.

 	
 	
 multiprocessing.sharedctypes	
 Allocate ctypes objects from shared memory.

 	
 	
 mutex	Deprecated:
 Lock and queue for mutual exclusion.

 			

 		
 n	

 	
 	
 Nav (Mac)	Deprecated:
 Interface to Navigation Services.

 	
 	
 netrc	
 Loading of .netrc files.

 	
 	
 new	Deprecated:
 Interface to the creation of runtime implementation objects.

 	
 	
 nis (Unix)	
 Interface to Sun's NIS (Yellow Pages) library.

 	
 	
 nntplib	
 NNTP protocol client (requires sockets).

 	
 	
 numbers	
 Numeric abstract base classes (Complex, Real, Integral, etc.).

 			

 		
 o	

 	
 	
 operator	
 Functions corresponding to the standard operators.

 	
 	
 optparse	Deprecated:
 Command-line option parsing library.

 	[image: -]
 	
 os	
 Miscellaneous operating system interfaces.

 	
 	
 os.path	
 Operations on pathnames.

 	
 	
 ossaudiodev (Linux, FreeBSD)	
 Access to OSS-compatible audio devices.

 			

 		
 p	

 	
 	
 parser	
 Access parse trees for Python source code.

 	
 	
 pdb	
 The Python debugger for interactive interpreters.

 	
 	
 pickle	
 Convert Python objects to streams of bytes and back.

 	
 	
 pickletools	
 Contains extensive comments about the pickle protocols and pickle-machine
opcodes, as well as some useful functions.

 	
 	
 pipes (Unix)	
 A Python interface to Unix shell pipelines.

 	
 	
 PixMapWrapper (Mac)	Deprecated:
 Wrapper for PixMap objects.

 	
 	
 pkgutil	
 Utilities for the import system.

 	
 	
 platform	
 Retrieves as much platform identifying data as possible.

 	
 	
 plistlib	
 Generate and parse Mac OS X plist files.

 	
 	
 popen2	Deprecated:
 Subprocesses with accessible standard I/O streams.

 	
 	
 poplib	
 POP3 protocol client (requires sockets).

 	
 	
 posix (Unix)	
 The most common POSIX system calls (normally used via module os).

 	
 	
 posixfile (Unix)	Deprecated:
 A file-like object with support for locking.

 	
 	
 pprint	
 Data pretty printer.

 	
 	
 profile	
 Python source profiler.

 	
 	
 pstats	
 Statistics object for use with the profiler.

 	
 	
 pty (Linux)	
 Pseudo-Terminal Handling for Linux.

 	
 	
 pwd (Unix)	
 The password database (getpwnam() and friends).

 	
 	
 py_compile	
 Generate byte-code files from Python source files.

 	
 	
 pyclbr	
 Supports information extraction for a Python class browser.

 	
 	
 pydoc	
 Documentation generator and online help system.

 			

 		
 q	

 	
 	
 Queue	
 A synchronized queue class.

 	
 	
 quopri	
 Encode and decode files using the MIME quoted-printable encoding.

 			

 		
 r	

 	
 	
 random	
 Generate pseudo-random numbers with various common distributions.

 	
 	
 re	
 Regular expression operations.

 	
 	
 readline (Unix)	
 GNU readline support for Python.

 	
 	
 resource (Unix)	
 An interface to provide resource usage information on the current process.

 	
 	
 rexec	Deprecated:
 Basic restricted execution framework.

 	
 	
 rfc822	Deprecated:
 Parse 2822 style mail messages.

 	
 	
 rlcompleter	
 Python identifier completion, suitable for the GNU readline library.

 	
 	
 robotparser	
 Loads a robots.txt file and answers questions about
fetchability of other URLs.

 	
 	
 runpy	
 Locate and run Python modules without importing them first.

 			

 		
 s	

 	
 	
 sched	
 General purpose event scheduler.

 	
 	
 ScrolledText (Tk)	
 Text widget with a vertical scroll bar.

 	
 	
 select	
 Wait for I/O completion on multiple streams.

 	
 	
 sets	Deprecated:
 Implementation of sets of unique elements.

 	
 	
 sgmllib	Deprecated:
 Only as much of an SGML parser as needed to parse HTML.

 	
 	
 sha	Deprecated:
 NIST's secure hash algorithm, SHA.

 	
 	
 shelve	
 Python object persistence.

 	
 	
 shlex	
 Simple lexical analysis for Unix shell-like languages.

 	
 	
 shutil	
 High-level file operations, including copying.

 	
 	
 signal	
 Set handlers for asynchronous events.

 	
 	
 SimpleHTTPServer	
 This module provides a basic request handler for HTTP servers.

 	
 	
 SimpleXMLRPCServer	
 Basic XML-RPC server implementation.

 	
 	
 site	
 Module responsible for site-specific configuration.

 	
 	
 smtpd	
 A SMTP server implementation in Python.

 	
 	
 smtplib	
 SMTP protocol client (requires sockets).

 	
 	
 sndhdr	
 Determine type of a sound file.

 	
 	
 socket	
 Low-level networking interface.

 	
 	
 SocketServer	
 A framework for network servers.

 	
 	
 spwd (Unix)	
 The shadow password database (getspnam() and friends).

 	
 	
 sqlite3	
 A DB-API 2.0 implementation using SQLite 3.x.

 	
 	
 ssl	
 TLS/SSL wrapper for socket objects

 	
 	
 stat	
 Utilities for interpreting the results of os.stat(), os.lstat() and os.fstat().

 	
 	
 statvfs	Deprecated:
 Constants for interpreting the result of os.statvfs().

 	
 	
 string	
 Common string operations.

 	
 	
 StringIO	
 Read and write strings as if they were files.

 	
 	
 stringprep	
 String preparation, as per RFC 3453

 	
 	
 struct	
 Interpret strings as packed binary data.

 	
 	
 subprocess	
 Subprocess management.

 	
 	
 sunau	
 Provide an interface to the Sun AU sound format.

 	
 	
 SUNAUDIODEV (SunOS)	Deprecated:
 Constants for use with sunaudiodev.

 	
 	
 sunaudiodev (SunOS)	Deprecated:
 Access to Sun audio hardware.

 	
 	
 symbol	
 Constants representing internal nodes of the parse tree.

 	
 	
 symtable	
 Interface to the compiler's internal symbol tables.

 	
 	
 sys	
 Access system-specific parameters and functions.

 	
 	
 sysconfig	
 Python's configuration information

 	
 	
 syslog (Unix)	
 An interface to the Unix syslog library routines.

 			

 		
 t	

 	
 	
 tabnanny	
 Tool for detecting white space related problems in Python source files in a
directory tree.

 	
 	
 tarfile	
 Read and write tar-format archive files.

 	
 	
 telnetlib	
 Telnet client class.

 	
 	
 tempfile	
 Generate temporary files and directories.

 	
 	
 termios (Unix)	
 POSIX style tty control.

 	[image: -]
 	
 test	
 Regression tests package containing the testing suite for Python.

 	
 	
 test.test_support	
 Support for Python regression tests.

 	
 	
 textwrap	
 Text wrapping and filling

 	
 	
 thread	
 Create multiple threads of control within one interpreter.

 	
 	
 threading	
 Higher-level threading interface.

 	
 	
 time	
 Time access and conversions.

 	
 	
 timeit	
 Measure the execution time of small code snippets.

 	
 	
 Tix	
 Tk Extension Widgets for Tkinter

 	
 	
 Tkinter	
 Interface to Tcl/Tk for graphical user interfaces

 	
 	
 token	
 Constants representing terminal nodes of the parse tree.

 	
 	
 tokenize	
 Lexical scanner for Python source code.

 	
 	
 trace	
 Trace or track Python statement execution.

 	
 	
 traceback	
 Print or retrieve a stack traceback.

 	
 	
 ttk	
 Tk themed widget set

 	
 	
 tty (Unix)	
 Utility functions that perform common terminal control operations.

 	
 	
 turtle	
 Turtle graphics for Tk

 	
 	
 types	
 Names for built-in types.

 			

 		
 u	

 	
 	
 unicodedata	
 Access the Unicode Database.

 	
 	
 unittest	
 Unit testing framework for Python.

 	
 	
 urllib	
 Open an arbitrary network resource by URL (requires sockets).

 	
 	
 urllib2	
 Next generation URL opening library.

 	
 	
 urlparse	
 Parse URLs into or assemble them from components.

 	
 	
 user	Deprecated:
 A standard way to reference user-specific modules.

 	
 	
 UserDict	
 Class wrapper for dictionary objects.

 	
 	
 UserList	
 Class wrapper for list objects.

 	
 	
 UserString	
 Class wrapper for string objects.

 	
 	
 uu	
 Encode and decode files in uuencode format.

 	
 	
 uuid	
 UUID objects (universally unique identifiers) according to RFC 4122

 			

 		
 v	

 	
 	
 videoreader (Mac)	Deprecated:
 Read QuickTime movies frame by frame for further processing.

 			

 		
 w	

 	
 	
 W (Mac)	Deprecated:
 Widgets for the Mac, built on top of FrameWork.

 	
 	
 warnings	
 Issue warning messages and control their disposition.

 	
 	
 wave	
 Provide an interface to the WAV sound format.

 	
 	
 weakref	
 Support for weak references and weak dictionaries.

 	
 	
 webbrowser	
 Easy-to-use controller for Web browsers.

 	
 	
 whichdb	
 Guess which DBM-style module created a given database.

 	
 	
 winsound (Windows)	
 Access to the sound-playing machinery for Windows.

 	[image: -]
 	
 wsgiref	
 WSGI Utilities and Reference Implementation.

 	
 	
 wsgiref.handlers	
 WSGI server/gateway base classes.

 	
 	
 wsgiref.headers	
 WSGI response header tools.

 	
 	
 wsgiref.simple_server	
 A simple WSGI HTTP server.

 	
 	
 wsgiref.util	
 WSGI environment utilities.

 	
 	
 wsgiref.validate	
 WSGI conformance checker.

 			

 		
 x	

 	
 	
 xdrlib	
 Encoders and decoders for the External Data Representation (XDR).

 	[image: -]
 	
 xml	
 Package containing XML processing modules

 	
 	
 xml.dom	
 Document Object Model API for Python.

 	
 	
 xml.dom.minidom	
 Minimal Document Object Model (DOM) implementation.

 	
 	
 xml.dom.pulldom	
 Support for building partial DOM trees from SAX events.

 	
 	
 xml.etree.ElementTree	
 Implementation of the ElementTree API.

 	
 	
 xml.parsers.expat	
 An interface to the Expat non-validating XML parser.

 	
 	
 xml.sax	
 Package containing SAX2 base classes and convenience functions.

 	
 	
 xml.sax.handler	
 Base classes for SAX event handlers.

 	
 	
 xml.sax.saxutils	
 Convenience functions and classes for use with SAX.

 	
 	
 xml.sax.xmlreader	
 Interface which SAX-compliant XML parsers must implement.

 	
 	
 xmlrpclib	
 XML-RPC client access.

 			

 		
 z	

 	
 	
 zipfile	
 Read and write ZIP-format archive files.

 	
 	
 zipimport	
 support for importing Python modules from ZIP archives.

 	
 	
 zlib	
 Low-level interface to compression and decompression routines compatible with
gzip.

 Navigation

 	
 index

 	
 modules |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

 Index

 Navigation

 	
 index

 	
 modules |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 Index

 Index pages by letter:

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

 Full index on one page
 (can be huge)

 Navigation

 	
 index

 	
 modules |

 	[image:]

 	Python

 	
 Python 2.7.12 documentation

 Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-H.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – H

 		

 		halfdelay() (in module curses)

 		handle an exception

 		handle() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		

 		(SocketServer.BaseRequestHandler method)

 		(logging.Handler method)

 		(logging.Logger method)

 		(logging.NullHandler method)

 		(wsgiref.simple_server.WSGIRequestHandler method)

 		handle_accept() (asyncore.dispatcher method)

 		handle_charref() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_close() (asyncore.dispatcher method)

 		handle_comment() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_connect() (asyncore.dispatcher method)

 		handle_data() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_decl() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_endtag() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_entityref() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_error() (asyncore.dispatcher method)

 		

 		(SocketServer.BaseServer method)

 		handle_expt() (asyncore.dispatcher method)

 		handle_image() (htmllib.HTMLParser method)

 		handle_one_request() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		handle_pi() (HTMLParser.HTMLParser method)

 		handle_read() (asyncore.dispatcher method)

 		handle_request() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SocketServer.BaseServer method)

 		handle_startendtag() (HTMLParser.HTMLParser method)

 		handle_starttag() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_timeout() (SocketServer.BaseServer method)

 		handle_write() (asyncore.dispatcher method)

 		handleError() (logging.Handler method)

 		

 		(logging.handlers.SocketHandler method)

 		
 handler

 		

 		exception

 		handler() (in module cgitb)

 		HAS_ALPN (in module ssl)

 		has_children() (symtable.SymbolTable method)

 		has_colors() (in module curses)

 		has_data() (urllib2.Request method)

 		HAS_ECDH (in module ssl)

 		has_exec() (symtable.SymbolTable method)

 		has_extn() (smtplib.SMTP method)

 		has_function() (distutils.ccompiler.CCompiler method)

 		has_header() (csv.Sniffer method)

 		

 		(urllib2.Request method)

 		has_ic() (in module curses)

 		has_il() (in module curses)

 		has_import_star() (symtable.SymbolTable method)

 		has_ipv6 (in module socket)

 		has_key (2to3 fixer)

 		has_key() (bsddb.bsddbobject method)

 		

 		(dict method)

 		(email.message.Message method)

 		(in module curses)

 		(mailbox.Mailbox method)

 		has_nonstandard_attr() (cookielib.Cookie method)

 		HAS_NPN (in module ssl)

 		has_option() (ConfigParser.RawConfigParser method)

 		

 		(optparse.OptionParser method)

 		has_section() (ConfigParser.RawConfigParser method)

 		HAS_SNI (in module ssl)

 		hasattr() (built-in function)

 		hasAttribute() (xml.dom.Element method)

 		hasAttributeNS() (xml.dom.Element method)

 		hasAttributes() (xml.dom.Node method)

 		hasChildNodes() (xml.dom.Node method)

 		hascompare (in module dis)

 		hasconst (in module dis)

 		hasFeature() (xml.dom.DOMImplementation method)

 		hasfree (in module dis)

 		
 hash

 		

 		built-in function, [1], [2]

 		hash character

 		hash() (built-in function)

 		hash.block_size (in module hashlib)

 		hash.digest_size (in module hashlib)

 		hashable, [1]

 		Hashable (class in collections)

 		hashlib (module)

 		hashlib.algorithms (in module hashlib)

 		hashopen() (in module bsddb)

 		hasjabs (in module dis)

 		hasjrel (in module dis)

 		haslocal (in module dis)

 		hasname (in module dis)

 		HAVE_ARGUMENT (opcode)

 		have_unicode (in module test.test_support)

 		head() (nntplib.NNTP method)

 		Header (class in email.header)

 		header_encode() (email.charset.Charset method)

 		header_encoding (email.charset.Charset attribute)

 		header_items() (urllib2.Request method)

 		header_offset (zipfile.ZipInfo attribute)

 		HeaderError

 		HeaderParseError

 		
 headers

 		

 		MIME, [1]

 		headers (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		Headers (class in wsgiref.headers)

 		headers (rfc822.Message attribute)

 		

 		(xmlrpclib.ProtocolError attribute)

 		heading() (in module turtle)

 		

 		(ttk.Treeview method)

 		heapify() (in module heapq)

 		heapmin() (in module msvcrt)

 		heappop() (in module heapq)

 		heappush() (in module heapq)

 		heappushpop() (in module heapq)

 		heapq (module)

 		heapreplace() (in module heapq)

 		helo() (smtplib.SMTP method)

 		
 help

 		

 		built-in function

 		online

 		help (optparse.Option attribute)

 		help() (built-in function)

 		

 		(nntplib.NNTP method)

 		herror

 		
 hex

 		

 		built-in function

 		

 		hex (uuid.UUID attribute)

 		hex() (built-in function)

 		

 		(float method)

 		(in module future_builtins)

 		
 hexadecimal

 		

 		literals

 		hexadecimal literal

 		hexbin() (in module binhex)

 		hexdigest() (hashlib.hash method)

 		

 		(hmac.HMAC method)

 		(md5.md5 method)

 		(sha.sha method)

 		hexdigits (in module string)

 		hexlify() (in module binascii)

 		hexversion (in module sys)

 		hidden() (curses.panel.Panel method)

 		hide() (curses.panel.Panel method)

 		

 		(ttk.Notebook method)

 		hide_cookie2 (cookielib.CookiePolicy attribute)

 		hide_form() (fl.form method)

 		hideturtle() (in module turtle)

 		
 hierarchy

 		

 		type

 		HierarchyRequestErr

 		HIGHEST_PROTOCOL (in module pickle)

 		HKEY_CLASSES_ROOT (in module _winreg)

 		HKEY_CURRENT_CONFIG (in module _winreg)

 		HKEY_CURRENT_USER (in module _winreg)

 		HKEY_DYN_DATA (in module _winreg)

 		HKEY_LOCAL_MACHINE (in module _winreg)

 		HKEY_PERFORMANCE_DATA (in module _winreg)

 		HKEY_USERS (in module _winreg)

 		hline() (curses.window method)

 		HList (class in Tix)

 		hls_to_rgb() (in module colorsys)

 		hmac (module)

 		HOME, [1], [2], [3], [4], [5]

 		home() (in module turtle)

 		HOMEDRIVE, [1]

 		HOMEPATH, [1]

 		hook_compressed() (in module fileinput)

 		hook_encoded() (in module fileinput)

 		hosts (netrc.netrc attribute)

 		hotshot (module)

 		hotshot.stats (module)

 		hour (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		HRESULT (class in ctypes)

 		hStdError (subprocess.STARTUPINFO attribute)

 		hStdInput (subprocess.STARTUPINFO attribute)

 		hStdOutput (subprocess.STARTUPINFO attribute)

 		hsv_to_rgb() (in module colorsys)

 		ht() (in module turtle)

 		HTML, [1], [2]

 		HTMLCalendar (class in calendar)

 		HtmlDiff (class in difflib)

 		HtmlDiff.__init__() (in module difflib)

 		HtmlDiff.make_file() (in module difflib)

 		HtmlDiff.make_table() (in module difflib)

 		htmlentitydefs (module)

 		
 htmllib

 		

 		module

 		htmllib (module)

 		HTMLParseError, [1]

 		HTMLParser (class in htmllib), [1]

 		

 		(class in HTMLParser)

 		(module)

 		htonl() (in module socket)

 		htons() (in module socket)

 		
 HTTP

 		

 		httplib (standard module)

 		protocol, [1], [2], [3], [4]

 		http_error_301() (urllib2.HTTPRedirectHandler method)

 		http_error_302() (urllib2.HTTPRedirectHandler method)

 		http_error_303() (urllib2.HTTPRedirectHandler method)

 		http_error_307() (urllib2.HTTPRedirectHandler method)

 		http_error_401() (urllib2.HTTPBasicAuthHandler method)

 		

 		(urllib2.HTTPDigestAuthHandler method)

 		http_error_407() (urllib2.ProxyBasicAuthHandler method)

 		

 		(urllib2.ProxyDigestAuthHandler method)

 		http_error_auth_reqed() (urllib2.AbstractBasicAuthHandler method)

 		

 		(urllib2.AbstractDigestAuthHandler method)

 		http_error_default() (urllib2.BaseHandler method)

 		http_error_nnn() (urllib2.BaseHandler method)

 		http_open() (urllib2.HTTPHandler method)

 		HTTP_PORT (in module httplib)

 		http_proxy, [1], [2], [3]

 		http_response() (urllib2.HTTPErrorProcessor method)

 		http_version (wsgiref.handlers.BaseHandler attribute)

 		HTTPBasicAuthHandler (class in urllib2)

 		HTTPConnection (class in httplib)

 		HTTPCookieProcessor (class in urllib2)

 		httpd

 		HTTPDefaultErrorHandler (class in urllib2)

 		HTTPDigestAuthHandler (class in urllib2)

 		HTTPError

 		HTTPErrorProcessor (class in urllib2)

 		HTTPException

 		HTTPHandler (class in logging.handlers)

 		

 		(class in urllib2)

 		httplib (module)

 		HTTPMessage (class in httplib)

 		HTTPPasswordMgr (class in urllib2)

 		HTTPPasswordMgrWithDefaultRealm (class in urllib2)

 		HTTPRedirectHandler (class in urllib2)

 		HTTPResponse (class in httplib)

 		https_open() (urllib2.HTTPSHandler method)

 		HTTPS_PORT (in module httplib)

 		https_response() (urllib2.HTTPErrorProcessor method)

 		HTTPSConnection (class in httplib)

 		HTTPServer (class in BaseHTTPServer)

 		HTTPSHandler (class in urllib2)

 		hypertext

 		hypot() (in module math)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-P.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – P

 		

 		P_DETACH (in module os)

 		P_NOWAIT (in module os)

 		P_NOWAITO (in module os)

 		P_OVERLAY (in module os)

 		P_WAIT (in module os)

 		pack() (in module aepack)

 		

 		(in module struct)

 		(mailbox.MH method)

 		(struct.Struct method)

 		pack_array() (xdrlib.Packer method)

 		pack_bytes() (xdrlib.Packer method)

 		pack_double() (xdrlib.Packer method)

 		pack_farray() (xdrlib.Packer method)

 		pack_float() (xdrlib.Packer method)

 		pack_fopaque() (xdrlib.Packer method)

 		pack_fstring() (xdrlib.Packer method)

 		pack_into() (in module struct)

 		

 		(struct.Struct method)

 		pack_list() (xdrlib.Packer method)

 		pack_opaque() (xdrlib.Packer method)

 		pack_string() (xdrlib.Packer method)

 		package, [1], [2]

 		
 package variable

 		

 		__all__

 		Packer (class in xdrlib)

 		packevent() (in module aetools)

 		
 packing

 		

 		binary data

 		packing (widgets)

 		PAGER, [1]

 		pair_content() (in module curses)

 		pair_number() (in module curses)

 		PanedWindow (class in Tix)

 		parameter

 		

 		call semantics

 		difference from argument

 		function definition

 		value, default

 		pardir (in module os)

 		paren (2to3 fixer)

 		parent (urllib2.BaseHandler attribute)

 		parent() (ttk.Treeview method)

 		parenthesized form

 		parentNode (xml.dom.Node attribute)

 		paretovariate() (in module random)

 		parse() (doctest.DocTestParser method)

 		

 		(email.parser.Parser method)

 		(in module ast)

 		(in module cgi)

 		(in module compiler)

 		(in module xml.dom.minidom)

 		(in module xml.dom.pulldom)

 		(in module xml.etree.ElementTree)

 		(in module xml.sax)

 		(robotparser.RobotFileParser method)

 		(string.Formatter method)

 		(xml.etree.ElementTree.ElementTree method)

 		Parse() (xml.parsers.expat.xmlparser method)

 		parse() (xml.sax.xmlreader.XMLReader method)

 		parse_and_bind() (in module readline)

 		parse_args() (argparse.ArgumentParser method)

 		PARSE_COLNAMES (in module sqlite3)

 		parse_config_h() (in module sysconfig)

 		PARSE_DECLTYPES (in module sqlite3)

 		parse_header() (in module cgi)

 		parse_known_args() (argparse.ArgumentParser method)

 		parse_multipart() (in module cgi)

 		parse_qs() (in module cgi)

 		

 		(in module urlparse)

 		parse_qsl() (in module cgi)

 		

 		(in module urlparse)

 		parseaddr() (in module email.utils)

 		

 		(in module rfc822)

 		parsedate() (in module email.utils)

 		

 		(in module rfc822)

 		parsedate_tz() (in module email.utils)

 		

 		(in module rfc822)

 		parseFile() (in module compiler)

 		ParseFile() (xml.parsers.expat.xmlparser method)

 		ParseFlags() (in module imaplib)

 		parser

 		Parser (class in email.parser)

 		parser (module)

 		ParserCreate() (in module xml.parsers.expat)

 		ParserError

 		ParseResult (class in urlparse)

 		parsesequence() (mhlib.Folder method)

 		parsestr() (email.parser.Parser method)

 		parseString() (in module xml.dom.minidom)

 		

 		(in module xml.dom.pulldom)

 		(in module xml.sax)

 		parseurl() (ic.IC method)

 		

 		(in module ic)

 		
 parsing

 		

 		Python source code

 		URL

 		ParsingError

 		partial() (imaplib.IMAP4 method)

 		

 		(in module functools)

 		partition() (str method)

 		
 Pascal

 		

 		language

 		
 pass

 		

 		statement

 		pass_() (poplib.POP3 method)

 		Paste

 		PATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]

 		
 path

 		

 		configuration file

 		module search, [1], [2], [3], [4], [5], [6]

 		operations

 		path (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		

 		(cookielib.Cookie attribute)

 		(in module sys), [1], [2], [3]

 		Path browser

 		path_hooks (in module sys)

 		path_importer_cache (in module sys)

 		path_return_ok() (cookielib.CookiePolicy method)

 		pathconf() (in module os)

 		pathconf_names (in module os)

 		pathname2url() (in module urllib)

 		pathsep (in module os)

 		pattern (re.RegexObject attribute)

 		pause() (in module signal)

 		PAUSED (in module cd)

 		PAX_FORMAT (in module tarfile)

 		pax_headers (tarfile.TarFile attribute)

 		

 		(tarfile.TarInfo attribute)

 		pbkdf2_hmac() (in module hashlib)

 		pd() (in module turtle)

 		Pdb (class in pdb), [1]

 		pdb (module)

 		peek() (io.BufferedReader method)

 		PEM_cert_to_DER_cert() (in module ssl)

 		pen() (in module turtle)

 		pencolor() (in module turtle)

 		PendingDeprecationWarning

 		pendown() (in module turtle)

 		pensize() (in module turtle)

 		penup() (in module turtle)

 		PERCENT (in module token)

 		PERCENTEQUAL (in module token)

 		Performance

 		permutations() (in module itertools)

 		Persist() (msilib.SummaryInformation method)

 		persistence

 		
 persistent

 		

 		objects

 		persistent_id (pickle protocol)

 		persistent_load (pickle protocol)

 		pformat() (in module pprint)

 		

 		(pprint.PrettyPrinter method)

 		phase() (in module cmath)

 		Philbrick, Geoff

 		physical line, [1], [2]

 		pi (in module cmath)

 		

 		(in module math)

 		pick() (in module gl)

 		
 pickle

 		

 		module, [1], [2], [3], [4]

 		pickle (module)

 		pickle() (in module copy_reg)

 		PickleError

 		Pickler (class in pickle)

 		pickletools (module)

 		
 pickling

 		

 		objects

 		PicklingError

 		pid (multiprocessing.Process attribute)

 		

 		(popen2.Popen3 attribute)

 		(subprocess.Popen attribute)

 		PIL (the Python Imaging Library)

 		PIPE (in module subprocess)

 		Pipe() (in module multiprocessing)

 		pipe() (in module os)

 		PIPE_BUF (select.select attribute)

 		pipes (module)

 		PixMapWrapper (module)

 		PKG_DIRECTORY (in module imp)

 		pkgutil (module)

 		
 plain integer

 		

 		object

 		plain integer literal

 		PLAT

 		platform (in module sys), [1]

 		

 		(module)

 		platform() (in module platform)

 		PLAYING (in module cd)

 		PlaySound() (in module winsound)

 		
 plist

 		

 		file

 		plistlib (module)

 		plock() (in module os)

 		plus

 		PLUS (in module token)

 		plus() (decimal.Context method)

 		PLUSEQUAL (in module token)

 		pm() (in module pdb)

 		pnum (in module cd)

 		POINTER() (in module ctypes)

 		pointer() (in module ctypes)

 		polar() (in module cmath)

 		poll() (in module select)

 		

 		(multiprocessing.Connection method)

 		(popen2.Popen3 method)

 		(select.epoll method)

 		(select.poll method)

 		(subprocess.Popen method)

 		pop() (array.array method)

 		

 		(asynchat.fifo method)

 		(collections.deque method)

 		(dict method)

 		(list method)

 		(mailbox.Mailbox method)

 		(multifile.MultiFile method)

 		(set method)

 		
 POP3

 		

 		protocol

 		POP3 (class in poplib)

 		POP3_SSL (class in poplib)

 		pop_alignment() (formatter.formatter method)

 		POP_BLOCK (opcode)

 		pop_font() (formatter.formatter method)

 		POP_JUMP_IF_FALSE (opcode)

 		POP_JUMP_IF_TRUE (opcode)

 		pop_margin() (formatter.formatter method)

 		pop_source() (shlex.shlex method)

 		pop_style() (formatter.formatter method)

 		POP_TOP (opcode)

 		Popen (class in subprocess)

 		popen() (in module os), [1], [2]

 		

 		(in module platform)

 		popen2 (module)

 		popen2() (in module os)

 		

 		(in module popen2)

 		Popen3 (class in popen2)

 		popen3() (in module os)

 		

 		(in module popen2)

 		Popen4 (class in popen2)

 		popen4() (in module os)

 		

 		(in module popen2)

 		popitem() (collections.OrderedDict method)

 		

 		(dict method)

 		(mailbox.Mailbox method)

 		popleft() (collections.deque method)

 		poplib (module)

 		PopupMenu (class in Tix)

 		port (cookielib.Cookie attribute)

 		port_specified (cookielib.Cookie attribute)

 		PortableUnixMailbox (class in mailbox)

 		pos (re.MatchObject attribute)

 		pos() (in module operator)

 		

 		(in module turtle)

 		position() (in module turtle)

 		positional argument

 		
 POSIX

 		

 		I/O control

 		file object

 		threads

 		posix (module)

 		

 		(tarfile.TarFile attribute)

 		posixfile (module)

 		POSIXLY_CORRECT

 		post() (nntplib.NNTP method)

 		

 		(ossaudiodev.oss_audio_device method)

 		post_mortem() (in module pdb)

 		postcmd() (cmd.Cmd method)

 		postloop() (cmd.Cmd method)

 		
 pow

 		

 		built-in function, [1], [2], [3], [4], [5]

 		pow() (built-in function)

 		

 		(in module math)

 		(in module operator)

 		power() (decimal.Context method)

 		pprint (module)

 		pprint() (bdb.Breakpoint method)

 		

 		(in module pprint)

 		(pprint.PrettyPrinter method)

 		prcal() (in module calendar)

 		preamble (email.message.Message attribute)

 		
 precedence

 		

 		operator

 		precmd() (cmd.Cmd method)

 		prefix, [1], [2], [3]

 		PREFIX (in module distutils.sysconfig)

 		prefix (in module sys)

 		

 		(xml.dom.Attr attribute)

 		(xml.dom.Node attribute)

 		(zipimport.zipimporter attribute)

 		PREFIXES (in module site)

 		preloop() (cmd.Cmd method)

 		preorder() (compiler.visitor.ASTVisitor method)

 		prepare_input_source() (in module xml.sax.saxutils)

 		prepend() (pipes.Template method)

 		preprocess() (distutils.ccompiler.CCompiler method)

 		PrettyPrinter (class in pprint)

 		prev() (ttk.Treeview method)

 		previous() (bsddb.bsddbobject method)

 		

 		(dbhash.dbhash method)

 		previousSibling (xml.dom.Node attribute)

 		primary

 		
 print

 		

 		statement, [1], [2]

 		print (2to3 fixer)

 		print() (built-in function)

 		Print() (in module findertools)

 		print_callees() (pstats.Stats method)

 		print_callers() (pstats.Stats method)

 		print_directory() (in module cgi)

 		print_environ() (in module cgi)

 		print_environ_usage() (in module cgi)

 		print_exc() (in module traceback)

 		

 		(timeit.Timer method)

 		print_exception() (in module traceback)

 		PRINT_EXPR (opcode)

 		print_form() (in module cgi)

 		print_help() (argparse.ArgumentParser method)

 		PRINT_ITEM (opcode)

 		PRINT_ITEM_TO (opcode)

 		print_last() (in module traceback)

 		PRINT_NEWLINE (opcode)

 		PRINT_NEWLINE_TO (opcode)

 		print_stack() (in module traceback)

 		print_stats() (profile.Profile method)

 		

 		(pstats.Stats method)

 		print_tb() (in module traceback)

 		print_usage() (argparse.ArgumentParser method)

 		

 		(optparse.OptionParser method)

 		print_version() (optparse.OptionParser method)

 		printable (in module string)

 		printdir() (zipfile.ZipFile method)

 		printf-style formatting

 		PriorityQueue (class in Queue)

 		
 private

 		

 		names

 		prmonth() (calendar.TextCalendar method)

 		

 		(in module calendar)

 		
 procedure

 		

 		call

 		
 process

 		

 		group, [1]

 		id

 		id of parent

 		killing, [1]

 		signalling, [1]

 		Process (class in multiprocessing)

 		process() (logging.LoggerAdapter method)

 		process_message() (smtpd.SMTPServer method)

 		process_request() (SocketServer.BaseServer method)

 		processes, light-weight

 		processfile() (in module gensuitemodule)

 		processfile_fromresource() (in module gensuitemodule)

 		ProcessingInstruction() (in module xml.etree.ElementTree)

 		processingInstruction() (xml.sax.handler.ContentHandler method)

 		ProcessingInstructionHandler() (xml.parsers.expat.xmlparser method)

 		processor time

 		processor() (in module platform)

 		product() (in module itertools)

 		Profile (class in hotshot)

 		

 		(class in profile)

 		profile (module)

 		profile function, [1], [2]

 		profiler, [1]

 		profiling, deterministic

 		program

 		Progressbar (class in ttk)

 		ProgressBar() (in module EasyDialogs)

 		prompt (cmd.Cmd attribute)

 		prompt_user_passwd() (urllib.FancyURLopener method)

 		prompts, interpreter

 		propagate (logging.Logger attribute)

 		property (built-in class)

 		property list

 		property_declaration_handler (in module xml.sax.handler)

 		property_dom_node (in module xml.sax.handler)

 		property_lexical_handler (in module xml.sax.handler)

 		property_xml_string (in module xml.sax.handler)

 		prot_c() (ftplib.FTP_TLS method)

 		prot_p() (ftplib.FTP_TLS method)

 		proto (socket.socket attribute)

 		
 protocol

 		

 		CGI

 		FTP, [1]

 		HTTP, [1], [2], [3], [4]

 		IMAP4

 		IMAP4_SSL

 		IMAP4_stream

 		NNTP

 		POP3

 		SMTP

 		Telnet

 		context management

 		iterator

 		protocol (ssl.SSLContext attribute)

 		PROTOCOL_SSLv2 (in module ssl)

 		PROTOCOL_SSLv23 (in module ssl)

 		PROTOCOL_SSLv3 (in module ssl)

 		PROTOCOL_TLSv1 (in module ssl)

 		PROTOCOL_TLSv1_1 (in module ssl)

 		PROTOCOL_TLSv1_2 (in module ssl)

 		protocol_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		PROTOCOL_VERSION (imaplib.IMAP4 attribute)

 		ProtocolError (class in xmlrpclib)

 		proxy() (in module weakref)

 		proxyauth() (imaplib.IMAP4 method)

 		ProxyBasicAuthHandler (class in urllib2)

 		ProxyDigestAuthHandler (class in urllib2)

 		ProxyHandler (class in urllib2)

 		ProxyType (in module weakref)

 		ProxyTypes (in module weakref)

 		prstr() (in module fm)

 		pryear() (calendar.TextCalendar method)

 		ps1 (in module sys)

 		ps2 (in module sys)

 		pstats (module)

 		pthreads

 		ptime (in module cd)

 		
 pty

 		

 		module

 		pty (module)

 		pu() (in module turtle)

 		publicId (xml.dom.DocumentType attribute)

 		PullDOM (class in xml.dom.pulldom)

 		punctuation (in module string)

 		PureProxy (class in smtpd)

 		purge() (in module re)

 		Purpose.CLIENT_AUTH (in module ssl)

 		Purpose.SERVER_AUTH (in module ssl)

 		push() (asynchat.async_chat method)

 		

 		(asynchat.fifo method)

 		(code.InteractiveConsole method)

 		(multifile.MultiFile method)

 		push_alignment() (formatter.formatter method)

 		push_font() (formatter.formatter method)

 		push_margin() (formatter.formatter method)

 		push_source() (shlex.shlex method)

 		push_style() (formatter.formatter method)

 		push_token() (shlex.shlex method)

 		push_with_producer() (asynchat.async_chat method)

 		pushbutton() (msilib.Dialog method)

 		put() (multiprocessing.multiprocessing.queues.SimpleQueue method)

 		

 		(Queue.Queue method)

 		(multiprocessing.Queue method)

 		put_nowait() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		putch() (in module msvcrt)

 		putenv() (in module os)

 		putheader() (httplib.HTTPConnection method)

 		putp() (in module curses)

 		putrequest() (httplib.HTTPConnection method)

 		putsequences() (mhlib.Folder method)

 		putwch() (in module msvcrt)

 		putwin() (curses.window method)

 		
 pwd

 		

 		module

 		pwd (module)

 		pwd() (ftplib.FTP method)

 		pwlcurve() (in module gl)

 		py3kwarning (in module sys)

 		Py_AddPendingCall (C function)

 		Py_AddPendingCall()

 		Py_AtExit (C function)

 		Py_BEGIN_ALLOW_THREADS

 		

 		(C macro)

 		Py_BLOCK_THREADS (C macro)

 		Py_buffer (C type)

 		Py_buffer.buf (C member)

 		Py_buffer.internal (C member)

 		Py_buffer.itemsize (C member)

 		Py_buffer.ndim (C member)

 		Py_buffer.readonly (C member)

 		Py_buffer.shape (C member)

 		Py_buffer.strides (C member)

 		Py_buffer.suboffsets (C member)

 		Py_BuildValue (C function)

 		Py_CLEAR (C function)

 		py_compile (module)

 		PY_COMPILED (in module imp)

 		Py_CompileString (C function)

 		Py_CompileString(), [1], [2]

 		Py_CompileStringFlags (C function)

 		Py_complex (C type)

 		Py_DECREF (C function)

 		Py_DECREF()

 		Py_END_ALLOW_THREADS

 		

 		(C macro)

 		Py_END_OF_BUFFER (C variable)

 		Py_EndInterpreter (C function)

 		Py_EnterRecursiveCall (C function)

 		Py_eval_input (C variable)

 		Py_Exit (C function)

 		Py_False (C variable)

 		Py_FatalError (C function)

 		Py_FatalError()

 		Py_FdIsInteractive (C function)

 		Py_file_input (C variable)

 		Py_Finalize (C function)

 		Py_Finalize(), [1], [2], [3], [4]

 		Py_FindMethod (C function)

 		PY_FROZEN (in module imp)

 		Py_GetBuildInfo (C function)

 		Py_GetCompiler (C function)

 		Py_GetCopyright (C function)

 		Py_GetExecPrefix (C function)

 		Py_GetExecPrefix()

 		Py_GetPath (C function)

 		Py_GetPath(), [1]

 		Py_GetPlatform (C function)

 		Py_GetPrefix (C function)

 		Py_GetPrefix()

 		Py_GetProgramFullPath (C function)

 		Py_GetProgramFullPath()

 		Py_GetProgramName (C function)

 		Py_GetPythonHome (C function)

 		Py_GetVersion (C function)

 		Py_INCREF (C function)

 		Py_INCREF()

 		Py_Initialize (C function)

 		Py_Initialize(), [1], [2], [3]

 		Py_InitializeEx (C function)

 		Py_InitModule (C function)

 		Py_InitModule3 (C function)

 		Py_InitModule4 (C function)

 		Py_IsInitialized (C function)

 		Py_IsInitialized()

 		Py_LeaveRecursiveCall (C function)

 		Py_Main (C function)

 		Py_NewInterpreter (C function)

 		Py_None (C variable)

 		py_object (class in ctypes)

 		Py_PRINT_RAW

 		Py_REFCNT (C macro)

 		Py_RETURN_FALSE (C macro)

 		Py_RETURN_NONE (C macro)

 		Py_RETURN_TRUE (C macro)

 		Py_SetProgramName (C function)

 		Py_SetProgramName(), [1], [2], [3]

 		Py_SetPythonHome (C function)

 		Py_single_input (C variable)

 		Py_SIZE (C macro)

 		PY_SOURCE (in module imp)

 		PY_SSIZE_T_MAX

 		py_suffix_importer() (in module imputil)

 		Py_TPFLAGS_BASETYPE (built-in variable)

 		Py_TPFLAGS_CHECKTYPES (built-in variable)

 		Py_TPFLAGS_DEFAULT (built-in variable)

 		Py_TPFLAGS_GC (built-in variable)

 		Py_TPFLAGS_HAVE_CLASS (built-in variable)

 		Py_TPFLAGS_HAVE_GC (built-in variable)

 		Py_TPFLAGS_HAVE_GETCHARBUFFER (built-in variable), [1]

 		Py_TPFLAGS_HAVE_INPLACEOPS (built-in variable)

 		Py_TPFLAGS_HAVE_ITER (built-in variable)

 		Py_TPFLAGS_HAVE_RICHCOMPARE (built-in variable)

 		Py_TPFLAGS_HAVE_SEQUENCE_IN (built-in variable)

 		Py_TPFLAGS_HAVE_WEAKREFS (built-in variable)

 		Py_TPFLAGS_HEAPTYPE (built-in variable)

 		Py_TPFLAGS_READY (built-in variable)

 		Py_TPFLAGS_READYING (built-in variable)

 		Py_tracefunc (C type)

 		Py_True (C variable)

 		Py_TYPE (C macro)

 		Py_UNBLOCK_THREADS (C macro)

 		Py_UNICODE (C type)

 		Py_UNICODE_ISALNUM (C function)

 		Py_UNICODE_ISALPHA (C function)

 		Py_UNICODE_ISDECIMAL (C function)

 		Py_UNICODE_ISDIGIT (C function)

 		Py_UNICODE_ISLINEBREAK (C function)

 		Py_UNICODE_ISLOWER (C function)

 		Py_UNICODE_ISNUMERIC (C function)

 		Py_UNICODE_ISSPACE (C function)

 		Py_UNICODE_ISTITLE (C function)

 		Py_UNICODE_ISUPPER (C function)

 		Py_UNICODE_TODECIMAL (C function)

 		Py_UNICODE_TODIGIT (C function)

 		Py_UNICODE_TOLOWER (C function)

 		Py_UNICODE_TONUMERIC (C function)

 		Py_UNICODE_TOTITLE (C function)

 		Py_UNICODE_TOUPPER (C function)

 		Py_VaBuildValue (C function)

 		Py_VISIT (C function)

 		Py_XDECREF (C function)

 		Py_XDECREF()

 		Py_XINCREF (C function)

 		PyAnySet_Check (C function)

 		PyAnySet_CheckExact (C function)

 		PyArg_Parse (C function)

 		PyArg_ParseTuple (C function)

 		PyArg_ParseTuple()

 		PyArg_ParseTupleAndKeywords (C function)

 		PyArg_ParseTupleAndKeywords()

 		PyArg_UnpackTuple (C function)

 		PyArg_VaParse (C function)

 		PyArg_VaParseTupleAndKeywords (C function)

 		PyBool_Check (C function)

 		PyBool_FromLong (C function)

 		PyBuffer_Check (C function)

 		PyBuffer_FillContiguousStrides (C function)

 		PyBuffer_FillInfo (C function)

 		PyBuffer_FromMemory (C function)

 		PyBuffer_FromObject (C function)

 		PyBuffer_FromReadWriteMemory (C function)

 		PyBuffer_FromReadWriteObject (C function)

 		PyBuffer_IsContiguous (C function)

 		PyBuffer_New (C function)

 		PyBuffer_Release (C function)

 		PyBuffer_SizeFromFormat (C function)

 		PyBuffer_Type (C variable)

 		PyBufferObject (C type)

 		PyBufferProcs

 		

 		(C type)

 		PyByteArray_AS_STRING (C function)

 		PyByteArray_AsString (C function)

 		PyByteArray_Check (C function)

 		PyByteArray_CheckExact (C function)

 		PyByteArray_Concat (C function)

 		PyByteArray_FromObject (C function)

 		PyByteArray_FromStringAndSize (C function)

 		PyByteArray_GET_SIZE (C function)

 		PyByteArray_Resize (C function)

 		PyByteArray_Size (C function)

 		PyByteArray_Type (C variable)

 		PyByteArrayObject (C type)

 		PyCallable_Check (C function)

 		PyCallIter_Check (C function)

 		PyCallIter_New (C function)

 		PyCallIter_Type (C variable)

 		PyCapsule (C type)

 		PyCapsule_CheckExact (C function)

 		PyCapsule_Destructor (C type)

 		PyCapsule_GetContext (C function)

 		PyCapsule_GetDestructor (C function)

 		PyCapsule_GetName (C function)

 		PyCapsule_GetPointer (C function)

 		PyCapsule_Import (C function)

 		PyCapsule_IsValid (C function)

 		PyCapsule_New (C function)

 		PyCapsule_SetContext (C function)

 		PyCapsule_SetDestructor (C function)

 		PyCapsule_SetName (C function)

 		PyCapsule_SetPointer (C function)

 		PyCell_Check (C function)

 		PyCell_GET (C function)

 		PyCell_Get (C function)

 		PyCell_New (C function)

 		PyCell_SET (C function)

 		PyCell_Set (C function)

 		PyCell_Type (C variable)

 		PyCellObject (C type)

 		PyCFunction (C type)

 		PyClass_Check (C function)

 		PyClass_IsSubclass (C function)

 		PyClass_Type (C variable)

 		PyClassObject (C type)

 		pyclbr (module)

 		PyCObject (C type)

 		PyCObject_AsVoidPtr (C function)

 		PyCObject_Check (C function)

 		PyCObject_FromVoidPtr (C function)

 		PyCObject_FromVoidPtrAndDesc (C function)

 		PyCObject_GetDesc (C function)

 		PyCObject_SetVoidPtr (C function)

 		PyCode_Check (C function)

 		PyCode_GetNumFree (C function)

 		PyCode_New (C function)

 		PyCode_NewEmpty (C function)

 		PyCode_Type (C variable)

 		PyCodec_BackslashReplaceErrors (C function)

 		PyCodec_Decode (C function)

 		PyCodec_Decoder (C function)

 		PyCodec_Encode (C function)

 		PyCodec_Encoder (C function)

 		PyCodec_IgnoreErrors (C function)

 		PyCodec_IncrementalDecoder (C function)

 		PyCodec_IncrementalEncoder (C function)

 		PyCodec_KnownEncoding (C function)

 		PyCodec_LookupError (C function)

 		PyCodec_Register (C function)

 		PyCodec_RegisterError (C function)

 		PyCodec_ReplaceErrors (C function)

 		PyCodec_StreamReader (C function)

 		PyCodec_StreamWriter (C function)

 		PyCodec_StrictErrors (C function)

 		PyCodec_XMLCharRefReplaceErrors (C function)

 		PyCodeObject (C type)

 		PyCompileError

 		PyCompilerFlags (C type)

 		PyComplex_AsCComplex (C function)

 		PyComplex_Check (C function)

 		PyComplex_CheckExact (C function)

 		PyComplex_FromCComplex (C function)

 		PyComplex_FromDoubles (C function)

 		PyComplex_ImagAsDouble (C function)

 		PyComplex_RealAsDouble (C function)

 		PyComplex_Type (C variable)

 		PyComplexObject (C type)

 		PyDate_Check (C function)

 		PyDate_CheckExact (C function)

 		PyDate_FromDate (C function)

 		PyDate_FromTimestamp (C function)

 		PyDateTime_Check (C function)

 		PyDateTime_CheckExact (C function)

 		PyDateTime_DATE_GET_HOUR (C function)

 		PyDateTime_DATE_GET_MICROSECOND (C function)

 		PyDateTime_DATE_GET_MINUTE (C function)

 		PyDateTime_DATE_GET_SECOND (C function)

 		PyDateTime_FromDateAndTime (C function)

 		PyDateTime_FromTimestamp (C function)

 		PyDateTime_GET_DAY (C function)

 		PyDateTime_GET_MONTH (C function)

 		PyDateTime_GET_YEAR (C function)

 		PyDateTime_TIME_GET_HOUR (C function)

 		PyDateTime_TIME_GET_MICROSECOND (C function)

 		PyDateTime_TIME_GET_MINUTE (C function)

 		PyDateTime_TIME_GET_SECOND (C function)

 		PyDelta_Check (C function)

 		PyDelta_CheckExact (C function)

 		PyDelta_FromDSU (C function)

 		PyDescr_IsData (C function)

 		PyDescr_NewClassMethod (C function)

 		PyDescr_NewGetSet (C function)

 		PyDescr_NewMember (C function)

 		PyDescr_NewMethod (C function)

 		PyDescr_NewWrapper (C function)

 		PyDict_Check (C function)

 		PyDict_CheckExact (C function)

 		PyDict_Clear (C function)

 		PyDict_Contains (C function)

 		PyDict_Copy (C function)

 		PyDict_DelItem (C function)

 		PyDict_DelItemString (C function)

 		PyDict_GetItem (C function)

 		PyDict_GetItemString (C function)

 		PyDict_Items (C function)

 		PyDict_Keys (C function)

 		PyDict_Merge (C function)

 		PyDict_MergeFromSeq2 (C function)

 		PyDict_New (C function)

 		PyDict_Next (C function)

 		PyDict_SetItem (C function)

 		PyDict_SetItemString (C function)

 		PyDict_Size (C function)

 		PyDict_Type (C variable)

 		PyDict_Update (C function)

 		PyDict_Values (C function)

 		PyDictObject (C type)

 		PyDictProxy_New (C function)

 		PyDLL (class in ctypes)

 		pydoc (module)

 		PyErr_BadArgument (C function)

 		PyErr_BadInternalCall (C function)

 		PyErr_CheckSignals (C function)

 		PyErr_Clear (C function)

 		PyErr_Clear(), [1]

 		PyErr_ExceptionMatches (C function)

 		PyErr_ExceptionMatches()

 		PyErr_Fetch (C function)

 		PyErr_Fetch()

 		PyErr_Format (C function)

 		PyErr_GivenExceptionMatches (C function)

 		PyErr_NewException (C function)

 		PyErr_NewExceptionWithDoc (C function)

 		PyErr_NoMemory (C function)

 		PyErr_NormalizeException (C function)

 		PyErr_Occurred (C function)

 		PyErr_Occurred()

 		PyErr_Print (C function)

 		PyErr_PrintEx (C function)

 		PyErr_Restore (C function)

 		PyErr_Restore()

 		PyErr_SetExcFromWindowsErr (C function)

 		PyErr_SetExcFromWindowsErrWithFilename (C function)

 		PyErr_SetExcFromWindowsErrWithFilenameObject (C function)

 		PyErr_SetFromErrno (C function)

 		PyErr_SetFromErrnoWithFilename (C function)

 		PyErr_SetFromErrnoWithFilenameObject (C function)

 		PyErr_SetFromWindowsErr (C function)

 		PyErr_SetFromWindowsErrWithFilename (C function)

 		PyErr_SetFromWindowsErrWithFilenameObject (C function)

 		PyErr_SetInterrupt (C function)

 		PyErr_SetNone (C function)

 		PyErr_SetObject (C function)

 		PyErr_SetString (C function)

 		PyErr_SetString()

 		PyErr_Warn (C function)

 		PyErr_WarnEx (C function)

 		PyErr_WarnExplicit (C function)

 		PyErr_WarnPy3k (C function)

 		PyErr_WriteUnraisable (C function)

 		PyEval_AcquireLock (C function)

 		PyEval_AcquireLock()

 		PyEval_AcquireThread (C function)

 		PyEval_EvalCode (C function)

 		PyEval_EvalCodeEx (C function)

 		PyEval_EvalFrame (C function)

 		PyEval_EvalFrameEx (C function)

 		PyEval_GetBuiltins (C function)

 		PyEval_GetCallStats (C function)

 		PyEval_GetFrame (C function)

 		PyEval_GetFuncDesc (C function)

 		PyEval_GetFuncName (C function)

 		PyEval_GetGlobals (C function)

 		PyEval_GetLocals (C function)

 		PyEval_GetRestricted (C function)

 		PyEval_InitThreads (C function)

 		PyEval_InitThreads()

 		PyEval_MergeCompilerFlags (C function)

 		PyEval_ReInitThreads (C function)

 		PyEval_ReleaseLock (C function)

 		PyEval_ReleaseLock(), [1]

 		PyEval_ReleaseThread (C function)

 		PyEval_ReleaseThread()

 		PyEval_RestoreThread (C function)

 		PyEval_RestoreThread(), [1]

 		PyEval_SaveThread (C function)

 		PyEval_SaveThread(), [1]

 		PyEval_SetProfile (C function)

 		PyEval_SetTrace (C function)

 		PyEval_ThreadsInitialized (C function)

 		PyExc_ArithmeticError

 		PyExc_AssertionError

 		PyExc_AttributeError

 		PyExc_BaseException

 		PyExc_EnvironmentError

 		PyExc_EOFError

 		

 		PyExc_Exception

 		PyExc_FloatingPointError

 		PyExc_ImportError

 		PyExc_IndexError

 		PyExc_IOError

 		PyExc_KeyboardInterrupt

 		PyExc_KeyError

 		PyExc_LookupError

 		PyExc_MemoryError

 		PyExc_NameError

 		PyExc_NotImplementedError

 		PyExc_OSError

 		PyExc_OverflowError

 		PyExc_ReferenceError

 		PyExc_RuntimeError

 		PyExc_StandardError

 		PyExc_SyntaxError

 		PyExc_SystemError

 		PyExc_SystemExit

 		PyExc_TypeError

 		PyExc_ValueError

 		PyExc_WindowsError

 		PyExc_ZeroDivisionError

 		
 pyexpat

 		

 		module

 		PyFile_AsFile (C function)

 		PyFile_Check (C function)

 		PyFile_CheckExact (C function)

 		PyFile_DecUseCount (C function)

 		PyFile_FromFile (C function)

 		PyFile_FromString (C function)

 		PyFile_GetLine (C function)

 		PyFile_IncUseCount (C function)

 		PyFile_Name (C function)

 		PyFile_SetBufSize (C function)

 		PyFile_SetEncoding (C function)

 		PyFile_SetEncodingAndErrors (C function)

 		PyFile_SoftSpace (C function)

 		PyFile_Type (C variable)

 		PyFile_WriteObject (C function)

 		PyFile_WriteString (C function)

 		PyFileObject (C type)

 		PyFloat_AS_DOUBLE (C function)

 		PyFloat_AsDouble (C function)

 		PyFloat_AsReprString (C function)

 		PyFloat_AsString (C function)

 		PyFloat_Check (C function)

 		PyFloat_CheckExact (C function)

 		PyFloat_ClearFreeList (C function)

 		PyFloat_FromDouble (C function)

 		PyFloat_FromString (C function)

 		PyFloat_GetInfo (C function)

 		PyFloat_GetMax (C function)

 		PyFloat_GetMin (C function)

 		PyFloat_Type (C variable)

 		PyFloatObject (C type)

 		PyFrame_GetLineNumber (C function)

 		PyFrozenSet_Check (C function)

 		PyFrozenSet_CheckExact (C function)

 		PyFrozenSet_New (C function)

 		PyFrozenSet_Type (C variable)

 		PyFunction_Check (C function)

 		PyFunction_GetClosure (C function)

 		PyFunction_GetCode (C function)

 		PyFunction_GetDefaults (C function)

 		PyFunction_GetGlobals (C function)

 		PyFunction_GetModule (C function)

 		PyFunction_New (C function)

 		PyFunction_SetClosure (C function)

 		PyFunction_SetDefaults (C function)

 		PyFunction_Type (C variable)

 		PyFunctionObject (C type)

 		PYFUNCTYPE() (in module ctypes)

 		PyGen_Check (C function)

 		PyGen_CheckExact (C function)

 		PyGen_New (C function)

 		PyGen_Type (C variable)

 		PyGenObject (C type)

 		PyGILState_Ensure (C function)

 		PyGILState_GetThisThreadState (C function)

 		PyGILState_Release (C function)

 		PyImport_AddModule (C function)

 		PyImport_AppendInittab (C function)

 		PyImport_Cleanup (C function)

 		PyImport_ExecCodeModule (C function)

 		PyImport_ExecCodeModuleEx (C function)

 		PyImport_ExtendInittab (C function)

 		PyImport_FrozenModules (C variable)

 		PyImport_GetImporter (C function)

 		PyImport_GetMagicNumber (C function)

 		PyImport_GetModuleDict (C function)

 		PyImport_Import (C function)

 		PyImport_ImportFrozenModule (C function)

 		PyImport_ImportModule (C function)

 		PyImport_ImportModuleEx (C function)

 		PyImport_ImportModuleLevel (C function)

 		PyImport_ImportModuleNoBlock (C function)

 		PyImport_ReloadModule (C function)

 		PyIndex_Check (C function)

 		PyInstance_Check (C function)

 		PyInstance_New (C function)

 		PyInstance_NewRaw (C function)

 		PyInstance_Type (C variable)

 		PyInt_AS_LONG (C function)

 		PyInt_AsLong (C function)

 		PyInt_AsSsize_t (C function)

 		PyInt_AsUnsignedLongLongMask (C function)

 		PyInt_AsUnsignedLongMask (C function)

 		PyInt_Check (C function)

 		PyInt_CheckExact (C function)

 		PyInt_ClearFreeList (C function)

 		PyInt_FromLong (C function)

 		PyInt_FromSize_t (C function)

 		PyInt_FromSsize_t (C function)

 		PyInt_FromString (C function)

 		PyInt_GetMax (C function)

 		PyInt_Type (C variable)

 		PyInterpreterState (C type)

 		PyInterpreterState_Clear (C function)

 		PyInterpreterState_Delete (C function)

 		PyInterpreterState_Head (C function)

 		PyInterpreterState_New (C function)

 		PyInterpreterState_Next (C function)

 		PyInterpreterState_ThreadHead (C function)

 		PyIntObject (C type)

 		PyIter_Check (C function)

 		PyIter_Next (C function)

 		PyList_Append (C function)

 		PyList_AsTuple (C function)

 		PyList_Check (C function)

 		PyList_CheckExact (C function)

 		PyList_GET_ITEM (C function)

 		PyList_GET_SIZE (C function)

 		PyList_GetItem (C function)

 		PyList_GetItem()

 		PyList_GetSlice (C function)

 		PyList_Insert (C function)

 		PyList_New (C function)

 		PyList_Reverse (C function)

 		PyList_SET_ITEM (C function)

 		PyList_SetItem (C function)

 		PyList_SetItem()

 		PyList_SetSlice (C function)

 		PyList_Size (C function)

 		PyList_Sort (C function)

 		PyList_Type (C variable)

 		PyListObject (C type)

 		PyLong_AsDouble (C function)

 		PyLong_AsLong (C function)

 		PyLong_AsLongAndOverflow (C function)

 		PyLong_AsLongLong (C function)

 		PyLong_AsLongLongAndOverflow (C function)

 		PyLong_AsSsize_t (C function)

 		PyLong_AsUnsignedLong (C function)

 		PyLong_AsUnsignedLongLong (C function)

 		PyLong_AsUnsignedLongLongMask (C function)

 		PyLong_AsUnsignedLongMask (C function)

 		PyLong_AsVoidPtr (C function)

 		PyLong_Check (C function)

 		PyLong_CheckExact (C function)

 		PyLong_FromDouble (C function)

 		PyLong_FromLong (C function)

 		PyLong_FromLongLong (C function)

 		PyLong_FromSize_t (C function)

 		PyLong_FromSsize_t (C function)

 		PyLong_FromString (C function)

 		PyLong_FromUnicode (C function)

 		PyLong_FromUnsignedLong (C function)

 		PyLong_FromUnsignedLongLong (C function)

 		PyLong_FromVoidPtr (C function)

 		PyLong_Type (C variable)

 		PyLongObject (C type)

 		PyMapping_Check (C function)

 		PyMapping_DelItem (C function)

 		PyMapping_DelItemString (C function)

 		PyMapping_GetItemString (C function)

 		PyMapping_HasKey (C function)

 		PyMapping_HasKeyString (C function)

 		PyMapping_Items (C function)

 		PyMapping_Keys (C function)

 		PyMapping_Length (C function)

 		PyMapping_SetItemString (C function)

 		PyMapping_Size (C function)

 		PyMapping_Values (C function)

 		PyMappingMethods (C type)

 		PyMappingMethods.mp_ass_subscript (C member)

 		PyMappingMethods.mp_length (C member)

 		PyMappingMethods.mp_subscript (C member)

 		PyMarshal_ReadLastObjectFromFile (C function)

 		PyMarshal_ReadLongFromFile (C function)

 		PyMarshal_ReadObjectFromFile (C function)

 		PyMarshal_ReadObjectFromString (C function)

 		PyMarshal_ReadShortFromFile (C function)

 		PyMarshal_WriteLongToFile (C function)

 		PyMarshal_WriteObjectToFile (C function)

 		PyMarshal_WriteObjectToString (C function)

 		PyMem_Del (C function)

 		PyMem_Free (C function)

 		PyMem_Malloc (C function)

 		PyMem_New (C function)

 		PyMem_Realloc (C function)

 		PyMem_Resize (C function)

 		PyMemberDef (C type)

 		PyMemoryView_Check (C function)

 		PyMemoryView_FromBuffer (C function)

 		PyMemoryView_FromObject (C function)

 		PyMemoryView_GET_BUFFER (C function)

 		PyMemoryView_GetContiguous (C function)

 		PyMethod_Check (C function)

 		PyMethod_Class (C function)

 		PyMethod_ClearFreeList (C function)

 		PyMethod_Function (C function)

 		PyMethod_GET_CLASS (C function)

 		PyMethod_GET_FUNCTION (C function)

 		PyMethod_GET_SELF (C function)

 		PyMethod_New (C function)

 		PyMethod_Self (C function)

 		PyMethod_Type (C variable)

 		PyMethodDef (C type)

 		PyModule_AddIntConstant (C function)

 		PyModule_AddIntMacro (C function)

 		PyModule_AddObject (C function)

 		PyModule_AddStringConstant (C function)

 		PyModule_AddStringMacro (C function)

 		PyModule_Check (C function)

 		PyModule_CheckExact (C function)

 		PyModule_GetDict (C function)

 		PyModule_GetFilename (C function)

 		PyModule_GetName (C function)

 		PyModule_New (C function)

 		PyModule_Type (C variable)

 		PyNumber_Absolute (C function)

 		PyNumber_Add (C function)

 		PyNumber_And (C function)

 		PyNumber_AsSsize_t (C function)

 		PyNumber_Check (C function)

 		PyNumber_Coerce (C function)

 		PyNumber_CoerceEx (C function)

 		PyNumber_Divide (C function)

 		PyNumber_Divmod (C function)

 		PyNumber_Float (C function)

 		PyNumber_FloorDivide (C function)

 		PyNumber_Index (C function)

 		PyNumber_InPlaceAdd (C function)

 		PyNumber_InPlaceAnd (C function)

 		PyNumber_InPlaceDivide (C function)

 		PyNumber_InPlaceFloorDivide (C function)

 		PyNumber_InPlaceLshift (C function)

 		PyNumber_InPlaceMultiply (C function)

 		PyNumber_InPlaceOr (C function)

 		PyNumber_InPlacePower (C function)

 		PyNumber_InPlaceRemainder (C function)

 		PyNumber_InPlaceRshift (C function)

 		PyNumber_InPlaceSubtract (C function)

 		PyNumber_InPlaceTrueDivide (C function)

 		PyNumber_InPlaceXor (C function)

 		PyNumber_Int (C function)

 		PyNumber_Invert (C function)

 		PyNumber_Long (C function)

 		PyNumber_Lshift (C function)

 		PyNumber_Multiply (C function)

 		PyNumber_Negative (C function)

 		PyNumber_Or (C function)

 		PyNumber_Positive (C function)

 		PyNumber_Power (C function)

 		PyNumber_Remainder (C function)

 		PyNumber_Rshift (C function)

 		PyNumber_Subtract (C function)

 		PyNumber_ToBase (C function)

 		PyNumber_TrueDivide (C function)

 		PyNumber_Xor (C function)

 		PyNumberMethods (C type)

 		PyNumberMethods.nb_coerce (C member)

 		PyObject (C type)

 		PyObject._ob_next (C member)

 		PyObject._ob_prev (C member)

 		PyObject.ob_refcnt (C member)

 		PyObject.ob_type (C member)

 		PyObject_AsCharBuffer (C function)

 		PyObject_AsFileDescriptor (C function)

 		PyObject_AsReadBuffer (C function)

 		PyObject_AsWriteBuffer (C function)

 		PyObject_Bytes (C function)

 		PyObject_Call (C function)

 		PyObject_CallFunction (C function)

 		PyObject_CallFunctionObjArgs (C function)

 		PyObject_CallMethod (C function)

 		PyObject_CallMethodObjArgs (C function)

 		PyObject_CallObject (C function)

 		PyObject_CallObject()

 		PyObject_CheckBuffer (C function)

 		PyObject_CheckReadBuffer (C function)

 		PyObject_Cmp (C function)

 		PyObject_Compare (C function)

 		PyObject_Del (C function)

 		PyObject_DelAttr (C function)

 		PyObject_DelAttrString (C function)

 		PyObject_DelItem (C function)

 		PyObject_Dir (C function)

 		PyObject_GC_Del (C function)

 		PyObject_GC_New (C function)

 		PyObject_GC_NewVar (C function)

 		PyObject_GC_Resize (C function)

 		PyObject_GC_Track (C function)

 		PyObject_GC_UnTrack (C function)

 		PyObject_GenericGetAttr (C function)

 		PyObject_GenericSetAttr (C function)

 		PyObject_GetAttr (C function)

 		PyObject_GetAttrString (C function)

 		PyObject_GetBuffer (C function)

 		PyObject_GetItem (C function)

 		PyObject_GetIter (C function)

 		PyObject_HasAttr (C function)

 		PyObject_HasAttrString (C function)

 		PyObject_Hash (C function)

 		PyObject_HashNotImplemented (C function)

 		PyObject_HEAD (C macro)

 		PyObject_HEAD_INIT (C macro)

 		PyObject_Init (C function)

 		PyObject_InitVar (C function)

 		PyObject_IsInstance (C function)

 		PyObject_IsSubclass (C function)

 		PyObject_IsTrue (C function)

 		PyObject_Length (C function)

 		PyObject_New (C function)

 		PyObject_NewVar (C function)

 		PyObject_Not (C function)

 		PyObject_Print (C function)

 		PyObject_Repr (C function)

 		PyObject_RichCompare (C function)

 		PyObject_RichCompareBool (C function)

 		PyObject_SetAttr (C function)

 		PyObject_SetAttrString (C function)

 		PyObject_SetItem (C function)

 		PyObject_Size (C function)

 		PyObject_Str (C function)

 		PyObject_Type (C function)

 		PyObject_TypeCheck (C function)

 		PyObject_Unicode (C function)

 		PyObject_VAR_HEAD (C macro)

 		PyOpenGL

 		PyOS_AfterFork (C function)

 		PyOS_ascii_atof (C function)

 		PyOS_ascii_formatd (C function)

 		PyOS_ascii_strtod (C function)

 		PyOS_CheckStack (C function)

 		PyOS_double_to_string (C function)

 		PyOS_getsig (C function)

 		PyOS_setsig (C function)

 		PyOS_snprintf (C function)

 		PyOS_stricmp (C function)

 		PyOS_string_to_double (C function)

 		PyOS_strnicmp (C function)

 		PyOS_vsnprintf (C function)

 		PyParser_SimpleParseFile (C function)

 		PyParser_SimpleParseFileFlags (C function)

 		PyParser_SimpleParseString (C function)

 		PyParser_SimpleParseStringFlags (C function)

 		PyParser_SimpleParseStringFlagsFilename (C function)

 		
 PyPI

 		

 		(see Python Package Index (PyPI))

 		PyProperty_Type (C variable)

 		PyRun_AnyFile (C function)

 		PyRun_AnyFileEx (C function)

 		PyRun_AnyFileExFlags (C function)

 		PyRun_AnyFileFlags (C function)

 		PyRun_File (C function)

 		PyRun_FileEx (C function)

 		PyRun_FileExFlags (C function)

 		PyRun_FileFlags (C function)

 		PyRun_InteractiveLoop (C function)

 		PyRun_InteractiveLoopFlags (C function)

 		PyRun_InteractiveOne (C function)

 		PyRun_InteractiveOneFlags (C function)

 		PyRun_SimpleFile (C function)

 		PyRun_SimpleFileEx (C function)

 		PyRun_SimpleFileExFlags (C function)

 		PyRun_SimpleFileFlags (C function)

 		PyRun_SimpleString (C function)

 		PyRun_SimpleStringFlags (C function)

 		PyRun_String (C function)

 		PyRun_StringFlags (C function)

 		PySeqIter_Check (C function)

 		PySeqIter_New (C function)

 		PySeqIter_Type (C variable)

 		PySequence_Check (C function)

 		PySequence_Concat (C function)

 		PySequence_Contains (C function)

 		PySequence_Count (C function)

 		PySequence_DelItem (C function)

 		PySequence_DelSlice (C function)

 		PySequence_Fast (C function)

 		PySequence_Fast_GET_ITEM (C function)

 		PySequence_Fast_GET_SIZE (C function)

 		PySequence_Fast_ITEMS (C function)

 		PySequence_GetItem (C function)

 		PySequence_GetItem()

 		PySequence_GetSlice (C function)

 		PySequence_Index (C function)

 		PySequence_InPlaceConcat (C function)

 		PySequence_InPlaceRepeat (C function)

 		PySequence_ITEM (C function)

 		PySequence_Length (C function)

 		PySequence_List (C function)

 		PySequence_Repeat (C function)

 		PySequence_SetItem (C function)

 		PySequence_SetSlice (C function)

 		PySequence_Size (C function)

 		PySequence_Tuple (C function)

 		PySequenceMethods (C type)

 		PySequenceMethods.sq_ass_item (C member)

 		PySequenceMethods.sq_concat (C member)

 		PySequenceMethods.sq_contains (C member)

 		PySequenceMethods.sq_inplace_concat (C member)

 		PySequenceMethods.sq_inplace_repeat (C member)

 		PySequenceMethods.sq_item (C member)

 		PySequenceMethods.sq_length (C member)

 		PySequenceMethods.sq_repeat (C member)

 		PySet_Add (C function)

 		PySet_Check (C function)

 		PySet_Clear (C function)

 		PySet_Contains (C function)

 		PySet_Discard (C function)

 		PySet_GET_SIZE (C function)

 		PySet_New (C function)

 		PySet_Pop (C function)

 		PySet_Size (C function)

 		PySet_Type (C variable)

 		PySetObject (C type)

 		PySignal_SetWakeupFd (C function)

 		PySlice_Check (C function)

 		PySlice_GetIndices (C function)

 		PySlice_GetIndicesEx (C function)

 		PySlice_New (C function)

 		PySlice_Type (C variable)

 		PyString_AS_STRING (C function)

 		PyString_AsDecodedObject (C function)

 		PyString_AsEncodedObject (C function)

 		PyString_AsString (C function)

 		PyString_AsStringAndSize (C function)

 		PyString_Check (C function)

 		PyString_CheckExact (C function)

 		PyString_Concat (C function)

 		PyString_ConcatAndDel (C function)

 		PyString_Decode (C function)

 		PyString_Encode (C function)

 		PyString_Format (C function)

 		PyString_FromFormat (C function)

 		PyString_FromFormatV (C function)

 		PyString_FromString (C function)

 		PyString_FromString()

 		PyString_FromStringAndSize (C function)

 		PyString_GET_SIZE (C function)

 		PyString_InternFromString (C function)

 		PyString_InternInPlace (C function)

 		PyString_Size (C function)

 		PyString_Type (C variable)

 		PyStringObject (C type)

 		PySys_AddWarnOption (C function)

 		PySys_GetFile (C function)

 		PySys_GetObject (C function)

 		PySys_ResetWarnOptions (C function)

 		PySys_SetArgv (C function)

 		PySys_SetArgv()

 		PySys_SetArgvEx (C function)

 		PySys_SetArgvEx(), [1]

 		PySys_SetObject (C function)

 		PySys_SetPath (C function)

 		PySys_WriteStderr (C function)

 		PySys_WriteStdout (C function)

 		Python 3000

 		Python Editor

 		
 Python Enhancement Proposals

 		

 		PEP 100

 		PEP 11

 		PEP 205, [1]

 		PEP 207

 		PEP 208

 		PEP 217

 		PEP 218, [1], [2]

 		PEP 227, [1], [2]

 		PEP 229

 		PEP 230, [1]

 		PEP 232

 		PEP 234

 		PEP 236, [1], [2]

 		PEP 237, [1], [2], [3]

 		PEP 238, [1], [2], [3], [4], [5], [6]

 		PEP 241

 		PEP 243

 		PEP 249, [1], [2], [3]

 		PEP 252, [1]

 		PEP 253, [1], [2], [3], [4]

 		PEP 255, [1], [2], [3], [4], [5]

 		PEP 261, [1]

 		PEP 263, [1]

 		PEP 264

 		PEP 273, [1], [2]

 		PEP 275

 		PEP 277

 		PEP 278, [1]

 		PEP 279

 		PEP 282, [1], [2], [3]

 		PEP 285, [1]

 		PEP 288

 		PEP 289, [1], [2]

 		PEP 292, [1]

 		PEP 293

 		PEP 3000

 		PEP 301, [1]

 		PEP 302, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]

 		PEP 305, [1]

 		PEP 307, [1], [2], [3]

 		PEP 308, [1], [2]

 		PEP 309

 		PEP 3100

 		PEP 3101, [1], [2]

 		PEP 3105, [1]

 		PEP 3106

 		PEP 3110

 		PEP 3112, [1]

 		PEP 3116, [1]

 		PEP 3118

 		PEP 3119, [1], [2], [3]

 		PEP 3121

 		PEP 3127

 		PEP 3129

 		PEP 3137

 		PEP 314, [1]

 		PEP 3141, [1], [2]

 		PEP 318, [1], [2]

 		PEP 322, [1]

 		PEP 324, [1]

 		PEP 325

 		PEP 327

 		PEP 328, [1], [2], [3], [4]

 		PEP 331

 		PEP 333, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]

 		PEP 338, [1], [2]

 		PEP 339

 		PEP 341

 		PEP 342, [1], [2], [3], [4], [5]

 		PEP 343, [1], [2], [3], [4], [5], [6]

 		PEP 347

 		PEP 352, [1]

 		PEP 353, [1], [2]

 		PEP 356

 		PEP 357

 		PEP 361

 		PEP 366

 		PEP 370, [1], [2], [3], [4]

 		PEP 371

 		PEP 372

 		PEP 373

 		PEP 378, [1]

 		PEP 389

 		PEP 391

 		PEP 427

 		PEP 434

 		PEP 453, [1], [2], [3]

 		PEP 466, [1], [2], [3]

 		PEP 476, [1]

 		PEP 477, [1]

 		PEP 493, [1]

 		PEP 5, [1]

 		PEP 6

 		PEP 8, [1], [2], [3], [4]

 		Python Imaging Library

 		Python Package Index (PyPI)

 		

 		.pypirc file

 		PYTHON*

 		python_branch() (in module platform)

 		python_build() (in module platform)

 		python_compiler() (in module platform)

 		PYTHON_DOM

 		python_implementation() (in module platform)

 		python_revision() (in module platform)

 		python_version() (in module platform)

 		python_version_tuple() (in module platform)

 		PYTHONCASEOK

 		PYTHONDEBUG

 		PYTHONDOCS

 		PYTHONDONTWRITEBYTECODE, [1], [2], [3]

 		PYTHONDUMPREFS

 		PYTHONHASHSEED, [1]

 		PYTHONHOME, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 		Pythonic

 		PYTHONINSPECT, [1]

 		PYTHONIOENCODING

 		PYTHONNOUSERSITE, [1], [2]

 		PYTHONOPTIMIZE

 		PYTHONPATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]

 		PYTHONSTARTUP, [1], [2], [3], [4], [5], [6]

 		PYTHONUNBUFFERED

 		PYTHONUSERBASE, [1], [2]

 		PYTHONVERBOSE

 		PYTHONWARNINGS, [1], [2]

 		PYTHONY2K, [1], [2]

 		PyThreadState, [1]

 		

 		(C type)

 		PyThreadState_Clear (C function)

 		PyThreadState_Delete (C function)

 		PyThreadState_Get (C function)

 		PyThreadState_GetDict (C function)

 		PyThreadState_New (C function)

 		PyThreadState_Next (C function)

 		PyThreadState_SetAsyncExc (C function)

 		PyThreadState_Swap (C function)

 		PyTime_Check (C function)

 		PyTime_CheckExact (C function)

 		PyTime_FromTime (C function)

 		PyTrace_C_CALL (C variable)

 		PyTrace_C_EXCEPTION (C variable)

 		PyTrace_C_RETURN (C variable)

 		PyTrace_CALL (C variable)

 		PyTrace_EXCEPTION (C variable)

 		PyTrace_LINE (C variable)

 		PyTrace_RETURN (C variable)

 		PyTuple_Check (C function)

 		PyTuple_CheckExact (C function)

 		PyTuple_ClearFreeList (C function)

 		PyTuple_GET_ITEM (C function)

 		PyTuple_GET_SIZE (C function)

 		PyTuple_GetItem (C function)

 		PyTuple_GetSlice (C function)

 		PyTuple_New (C function)

 		PyTuple_Pack (C function)

 		PyTuple_SET_ITEM (C function)

 		PyTuple_SetItem (C function)

 		PyTuple_SetItem()

 		PyTuple_Size (C function)

 		PyTuple_Type (C variable)

 		PyTupleObject (C type)

 		PyType_Check (C function)

 		PyType_CheckExact (C function)

 		PyType_ClearCache (C function)

 		PyType_GenericAlloc (C function)

 		PyType_GenericNew (C function)

 		PyType_HasFeature (C function)

 		PyType_HasFeature()

 		PyType_IS_GC (C function)

 		PyType_IsSubtype (C function)

 		PyType_Modified (C function)

 		PyType_Ready (C function)

 		PyType_Type (C variable)

 		PyTypeObject (C type)

 		PyTypeObject.tp_alloc (C member)

 		PyTypeObject.tp_allocs (C member)

 		PyTypeObject.tp_as_buffer (C member)

 		PyTypeObject.tp_base (C member)

 		PyTypeObject.tp_bases (C member)

 		PyTypeObject.tp_basicsize (C member)

 		PyTypeObject.tp_cache (C member)

 		PyTypeObject.tp_call (C member)

 		PyTypeObject.tp_clear (C member)

 		PyTypeObject.tp_compare (C member)

 		PyTypeObject.tp_dealloc (C member)

 		PyTypeObject.tp_descr_get (C member)

 		PyTypeObject.tp_descr_set (C member)

 		PyTypeObject.tp_dict (C member)

 		PyTypeObject.tp_dictoffset (C member)

 		PyTypeObject.tp_doc (C member)

 		PyTypeObject.tp_flags (C member)

 		PyTypeObject.tp_free (C member)

 		PyTypeObject.tp_frees (C member)

 		PyTypeObject.tp_getattr (C member)

 		PyTypeObject.tp_getattro (C member)

 		PyTypeObject.tp_getset (C member)

 		PyTypeObject.tp_hash (C member)

 		PyTypeObject.tp_init (C member)

 		PyTypeObject.tp_is_gc (C member)

 		PyTypeObject.tp_itemsize (C member)

 		PyTypeObject.tp_iter (C member)

 		PyTypeObject.tp_iternext (C member)

 		PyTypeObject.tp_maxalloc (C member)

 		PyTypeObject.tp_members (C member)

 		PyTypeObject.tp_methods (C member)

 		PyTypeObject.tp_mro (C member)

 		PyTypeObject.tp_name (C member)

 		PyTypeObject.tp_new (C member)

 		PyTypeObject.tp_next (C member)

 		PyTypeObject.tp_print (C member)

 		PyTypeObject.tp_repr (C member)

 		PyTypeObject.tp_richcompare (C member)

 		PyTypeObject.tp_setattr (C member)

 		PyTypeObject.tp_setattro (C member)

 		PyTypeObject.tp_str (C member)

 		PyTypeObject.tp_subclasses (C member)

 		PyTypeObject.tp_traverse (C member)

 		PyTypeObject.tp_weaklist (C member)

 		PyTypeObject.tp_weaklistoffset (C member)

 		PyTZInfo_Check (C function)

 		PyTZInfo_CheckExact (C function)

 		PyUnicode_AS_DATA (C function)

 		PyUnicode_AS_UNICODE (C function)

 		PyUnicode_AsASCIIString (C function)

 		PyUnicode_AsCharmapString (C function)

 		PyUnicode_AsEncodedString (C function)

 		PyUnicode_AsLatin1String (C function)

 		PyUnicode_AsMBCSString (C function)

 		PyUnicode_AsRawUnicodeEscapeString (C function)

 		PyUnicode_AsUnicode (C function)

 		PyUnicode_AsUnicodeEscapeString (C function)

 		PyUnicode_AsUTF16String (C function)

 		PyUnicode_AsUTF32String (C function)

 		PyUnicode_AsUTF8String (C function)

 		PyUnicode_AsWideChar (C function)

 		PyUnicode_Check (C function)

 		PyUnicode_CheckExact (C function)

 		PyUnicode_ClearFreeList (C function)

 		PyUnicode_Compare (C function)

 		PyUnicode_Concat (C function)

 		PyUnicode_Contains (C function)

 		PyUnicode_Count (C function)

 		PyUnicode_Decode (C function)

 		PyUnicode_DecodeASCII (C function)

 		PyUnicode_DecodeCharmap (C function)

 		PyUnicode_DecodeLatin1 (C function)

 		PyUnicode_DecodeMBCS (C function)

 		PyUnicode_DecodeMBCSStateful (C function)

 		PyUnicode_DecodeRawUnicodeEscape (C function)

 		PyUnicode_DecodeUnicodeEscape (C function)

 		PyUnicode_DecodeUTF16 (C function)

 		PyUnicode_DecodeUTF16Stateful (C function)

 		PyUnicode_DecodeUTF32 (C function)

 		PyUnicode_DecodeUTF32Stateful (C function)

 		PyUnicode_DecodeUTF7 (C function)

 		PyUnicode_DecodeUTF7Stateful (C function)

 		PyUnicode_DecodeUTF8 (C function)

 		PyUnicode_DecodeUTF8Stateful (C function)

 		PyUnicode_Encode (C function)

 		PyUnicode_EncodeASCII (C function)

 		PyUnicode_EncodeCharmap (C function)

 		PyUnicode_EncodeLatin1 (C function)

 		PyUnicode_EncodeMBCS (C function)

 		PyUnicode_EncodeRawUnicodeEscape (C function)

 		PyUnicode_EncodeUnicodeEscape (C function)

 		PyUnicode_EncodeUTF16 (C function)

 		PyUnicode_EncodeUTF32 (C function)

 		PyUnicode_EncodeUTF7 (C function)

 		PyUnicode_EncodeUTF8 (C function)

 		PyUnicode_Find (C function)

 		PyUnicode_Format (C function)

 		PyUnicode_FromEncodedObject (C function)

 		PyUnicode_FromFormat (C function)

 		PyUnicode_FromFormatV (C function)

 		PyUnicode_FromObject (C function)

 		PyUnicode_FromString (C function)

 		PyUnicode_FromStringAndSize (C function)

 		PyUnicode_FromUnicode (C function)

 		PyUnicode_FromWideChar (C function)

 		PyUnicode_GET_DATA_SIZE (C function)

 		PyUnicode_GET_SIZE (C function)

 		PyUnicode_GetSize (C function)

 		PyUnicode_Join (C function)

 		PyUnicode_Replace (C function)

 		PyUnicode_RichCompare (C function)

 		PyUnicode_Split (C function)

 		PyUnicode_Splitlines (C function)

 		PyUnicode_Tailmatch (C function)

 		PyUnicode_Translate (C function)

 		PyUnicode_TranslateCharmap (C function)

 		PyUnicode_Type (C variable)

 		PyUnicodeDecodeError_Create (C function)

 		PyUnicodeDecodeError_GetEncoding (C function)

 		PyUnicodeDecodeError_GetEnd (C function)

 		PyUnicodeDecodeError_GetObject (C function)

 		PyUnicodeDecodeError_GetReason (C function)

 		PyUnicodeDecodeError_GetStart (C function)

 		PyUnicodeDecodeError_SetEnd (C function)

 		PyUnicodeDecodeError_SetReason (C function)

 		PyUnicodeDecodeError_SetStart (C function)

 		PyUnicodeEncodeError_Create (C function)

 		PyUnicodeEncodeError_GetEncoding (C function)

 		PyUnicodeEncodeError_GetEnd (C function)

 		PyUnicodeEncodeError_GetObject (C function)

 		PyUnicodeEncodeError_GetReason (C function)

 		PyUnicodeEncodeError_GetStart (C function)

 		PyUnicodeEncodeError_SetEnd (C function)

 		PyUnicodeEncodeError_SetReason (C function)

 		PyUnicodeEncodeError_SetStart (C function)

 		PyUnicodeObject (C type)

 		PyUnicodeTranslateError_Create (C function)

 		PyUnicodeTranslateError_GetEnd (C function)

 		PyUnicodeTranslateError_GetObject (C function)

 		PyUnicodeTranslateError_GetReason (C function)

 		PyUnicodeTranslateError_GetStart (C function)

 		PyUnicodeTranslateError_SetEnd (C function)

 		PyUnicodeTranslateError_SetReason (C function)

 		PyUnicodeTranslateError_SetStart (C function)

 		PyVarObject (C type)

 		PyVarObject.ob_size (C member)

 		PyVarObject_HEAD_INIT (C macro)

 		PyWeakref_Check (C function)

 		PyWeakref_CheckProxy (C function)

 		PyWeakref_CheckRef (C function)

 		PyWeakref_GET_OBJECT (C function)

 		PyWeakref_GetObject (C function)

 		PyWeakref_NewProxy (C function)

 		PyWeakref_NewRef (C function)

 		PyWrapper_New (C function)

 		PyZipFile (class in zipfile)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-Z.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – Z

 		

 		Zen of Python

 		ZeroDivisionError

 		

 		exception

 		zfill() (in module string)

 		

 		(str method)

 		zip (2to3 fixer)

 		zip() (built-in function)

 		

 		(in module future_builtins)

 		ZIP_DEFLATED (in module zipfile)

 		ZIP_STORED (in module zipfile)

 		

 		ZipFile (class in zipfile)

 		zipfile (module)

 		zipimport (module)

 		zipimporter (class in zipimport)

 		ZipImportError

 		ZipInfo (class in zipfile)

 		zlib (module)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-_.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – _

 		

 		__abs__() (in module operator)

 		

 		(object method)

 		__add__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__all__

 		

 		(optional module attribute)

 		(package variable)

 		__and__() (in module operator)

 		

 		(object method)

 		__bases__ (class attribute), [1]

 		
 __builtin__

 		

 		module, [1], [2], [3], [4]

 		__builtin__ (module)

 		__builtins__

 		__call__() (object method), [1]

 		__class__ (instance attribute), [1]

 		__closure__ (function attribute)

 		__cmp__() (instance method)

 		

 		(object method)

 		__code__ (function attribute)

 		__coerce__() (object method)

 		__complex__() (object method)

 		__concat__() (in module operator)

 		__contains__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.Mailbox method)

 		(object method)

 		__copy__() (copy protocol)

 		__debug__

 		

 		(built-in variable)

 		__deepcopy__() (copy protocol)

 		__defaults__ (function attribute)

 		__del__() (io.IOBase method)

 		

 		(object method)

 		__delattr__() (object method)

 		__delete__() (object method)

 		__delitem__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(object method)

 		__delslice__() (in module operator)

 		

 		(object method)

 		__dict__ (class attribute)

 		

 		(function attribute)

 		(instance attribute), [1]

 		(module attribute), [1]

 		(object attribute)

 		__displayhook__ (in module sys)

 		__div__() (in module operator)

 		

 		(object method)

 		__divmod__() (object method)

 		__doc__ (class attribute)

 		

 		(function attribute)

 		(method attribute)

 		(module attribute), [1]

 		__enter__() (_winreg.PyHKEY method)

 		

 		(contextmanager method)

 		(object method)

 		__eq__() (email.charset.Charset method)

 		

 		(email.header.Header method)

 		(in module operator)

 		(instance method)

 		(object method)

 		__excepthook__ (in module sys)

 		__exit__() (_winreg.PyHKEY method)

 		

 		(contextmanager method)

 		(object method)

 		__file__

 		

 		(module attribute), [1], [2]

 		__float__() (object method)

 		__floordiv__() (in module operator)

 		

 		(object method)

 		__format__

 		__format__() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		__future__

 		

 		(module)

 		__ge__() (in module operator)

 		

 		(instance method)

 		(object method)

 		__get__() (object method)

 		__getattr__() (object method)

 		__getattribute__() (object method)

 		__getinitargs__() (object method)

 		__getitem__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.Mailbox method)

 		(mapping object method)

 		(object method)

 		__getnewargs__() (object method)

 		__getslice__() (in module operator)

 		

 		(object method)

 		__getstate__() (object method)

 		__globals__ (function attribute)

 		__gt__() (in module operator)

 		

 		(instance method)

 		(object method)

 		__hash__() (object method)

 		__hex__() (object method)

 		__iadd__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__iand__() (in module operator)

 		

 		(object method)

 		__iconcat__() (in module operator)

 		__idiv__() (in module operator)

 		

 		(object method)

 		__ifloordiv__() (in module operator)

 		

 		(object method)

 		__ilshift__() (in module operator)

 		

 		(object method)

 		__imod__() (in module operator)

 		

 		(object method)

 		
 __import__

 		

 		built-in function

 		__import__() (built-in function)

 		__imul__() (in module operator)

 		

 		(object method)

 		__index__() (in module operator)

 		

 		(object method)

 		__init__() (logging.Handler method)

 		

 		(logging.logging.Formatter method)

 		(object method), [1]

 		__instancecheck__() (class method)

 		__int__() (object method)

 		__inv__() (in module operator)

 		__invert__() (in module operator)

 		

 		(object method)

 		__ior__() (in module operator)

 		

 		(object method)

 		__ipow__() (in module operator)

 		

 		(object method)

 		__irepeat__() (in module operator)

 		__irshift__() (in module operator)

 		

 		(object method)

 		__isub__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__iter__() (container method)

 		

 		(iterator method)

 		(mailbox.Mailbox method)

 		(object method)

 		(unittest.TestSuite method)

 		__itruediv__() (in module operator)

 		

 		(object method)

 		__ixor__() (in module operator)

 		

 		(object method)

 		__le__() (in module operator)

 		

 		(instance method)

 		(object method)

 		__len__() (email.message.Message method)

 		

 		(mailbox.Mailbox method)

 		(mapping object method)

 		(object method)

 		(rfc822.AddressList method)

 		__loader__

 		__long__() (object method)

 		__lshift__() (in module operator)

 		

 		(object method)

 		__lt__() (in module operator)

 		

 		(instance method)

 		(object method)

 		
 __main__

 		

 		module, [1], [2], [3], [4], [5], [6], [7]

 		__main__ (module)

 		__members__ (object attribute)

 		__metaclass__ (built-in variable)

 		__methods__ (object attribute)

 		__missing__()

 		

 		(collections.defaultdict method)

 		(object method)

 		__mod__() (in module operator)

 		

 		(object method)

 		__module__ (class attribute)

 		

 		(function attribute)

 		(method attribute)

 		__mro__ (class attribute)

 		__mul__() (in module operator)

 		

 		(object method)

 		__name__

 		

 		(class attribute), [1]

 		(function attribute)

 		(method attribute)

 		(module attribute), [1], [2]

 		__ne__() (email.charset.Charset method)

 		

 		(email.header.Header method)

 		(in module operator)

 		(instance method)

 		(object method)

 		__neg__() (in module operator)

 		

 		(object method)

 		__new__() (object method)

 		__nonzero__() (object method), [1]

 		__not__() (in module operator)

 		

 		__oct__() (object method)

 		__or__() (in module operator)

 		

 		(object method)

 		__package__

 		__path__, [1]

 		__pos__() (in module operator)

 		

 		(object method)

 		__pow__() (in module operator)

 		

 		(object method)

 		__radd__() (object method)

 		__rand__() (object method)

 		__rcmp__() (object method)

 		__rdiv__() (object method)

 		__rdivmod__() (object method)

 		__reduce__() (object method)

 		__reduce_ex__() (object method)

 		__repeat__() (in module operator)

 		__repr__() (multiprocessing.managers.BaseProxy method)

 		

 		(netrc.netrc method)

 		(object method)

 		__reversed__() (object method)

 		__rfloordiv__() (object method)

 		__rlshift__() (object method)

 		__rmod__() (object method)

 		__rmul__() (object method)

 		__ror__() (object method)

 		__rpow__() (object method)

 		__rrshift__() (object method)

 		__rshift__() (in module operator)

 		

 		(object method)

 		__rsub__() (object method)

 		__rtruediv__() (object method)

 		__rxor__() (object method)

 		__set__() (object method)

 		__setattr__() (object method), [1]

 		__setitem__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(object method)

 		__setslice__() (in module operator)

 		

 		(object method)

 		__setstate__() (object method)

 		__slots__

 		

 		(built-in variable)

 		__stderr__ (in module sys)

 		__stdin__ (in module sys)

 		__stdout__ (in module sys)

 		__str__() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		(email.charset.Charset method)

 		(email.header.Header method)

 		(email.message.Message method)

 		(multiprocessing.managers.BaseProxy method)

 		(object method)

 		(rfc822.AddressList method)

 		__sub__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__subclasscheck__() (class method)

 		__subclasses__() (class method)

 		__subclasshook__() (abc.ABCMeta method)

 		__truediv__() (in module operator)

 		

 		(object method)

 		__unicode__() (email.header.Header method)

 		

 		(object method)

 		__xor__() (in module operator)

 		

 		(object method)

 		anonymous (ctypes.Structure attribute)

 		_asdict() (collections.somenamedtuple method)

 		_b_base_ (ctypes._CData attribute)

 		_b_needsfree_ (ctypes._CData attribute)

 		_callmethod() (multiprocessing.managers.BaseProxy method)

 		_CData (class in ctypes)

 		_clear_type_cache() (in module sys)

 		_current_frames() (in module sys)

 		_exit() (in module os)

 		_fields (ast.AST attribute)

 		

 		(collections.somenamedtuple attribute)

 		fields (ctypes.Structure attribute)

 		_flush() (wsgiref.handlers.BaseHandler method)

 		_frozen (C type)

 		_FuncPtr (class in ctypes)

 		_getframe() (in module sys)

 		_getvalue() (multiprocessing.managers.BaseProxy method)

 		_handle (ctypes.PyDLL attribute)

 		_https_verify_certificates() (in module ssl)

 		_inittab (C type)

 		length (ctypes.Array attribute)

 		
 _locale

 		

 		module

 		_make() (collections.somenamedtuple class method)

 		_makeResult() (unittest.TextTestRunner method)

 		_name (ctypes.PyDLL attribute)

 		_objects (ctypes._CData attribute)

 		pack (ctypes.Structure attribute)

 		_parse() (gettext.NullTranslations method)

 		_Pointer (class in ctypes)

 		_Py_c_diff (C function)

 		_Py_c_neg (C function)

 		_Py_c_pow (C function)

 		_Py_c_prod (C function)

 		_Py_c_quot (C function)

 		_Py_c_sum (C function)

 		_Py_NoneStruct (C variable)

 		_PyImport_FindExtension (C function)

 		_PyImport_Fini (C function)

 		_PyImport_FixupExtension (C function)

 		_PyImport_Init (C function)

 		_PyObject_Del (C function)

 		_PyObject_GC_TRACK (C function)

 		_PyObject_GC_UNTRACK (C function)

 		_PyObject_New (C function)

 		_PyObject_NewVar (C function)

 		_PyString_Resize (C function)

 		_PyTuple_Resize (C function)

 		_quit() (FrameWork.Application method)

 		_replace() (collections.somenamedtuple method)

 		_setroot() (xml.etree.ElementTree.ElementTree method)

 		_SimpleCData (class in ctypes)

 		_start() (aetools.TalkTo method)

 		_structure() (in module email.iterators)

 		type (ctypes._Pointer attribute)

 		

 		(ctypes.Array attribute)

 		_urlopener (in module urllib)

 		_winreg (module)

 		_write() (wsgiref.handlers.BaseHandler method)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-T.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – T

 		

 		T_FMT (in module locale)

 		T_FMT_AMPM (in module locale)

 		tab

 		tab() (ttk.Notebook method)

 		TabError

 		tabnanny (module)

 		tabs() (ttk.Notebook method)

 		
 tabular

 		

 		data

 		tag (xml.etree.ElementTree.Element attribute)

 		tag_bind() (ttk.Treeview method)

 		tag_configure() (ttk.Treeview method)

 		tag_has() (ttk.Treeview method)

 		tagName (xml.dom.Element attribute)

 		tail (xml.etree.ElementTree.Element attribute)

 		takewhile() (in module itertools)

 		TalkTo (class in aetools)

 		tan() (in module cmath)

 		

 		(in module math)

 		tanh() (in module cmath)

 		

 		(in module math)

 		TarError

 		TarFile (class in tarfile), [1]

 		tarfile (module)

 		TarFileCompat (class in tarfile)

 		TarFileCompat.TAR_GZIPPED (in module tarfile)

 		TarFileCompat.TAR_PLAIN (in module tarfile)

 		target

 		

 		deletion

 		list, [1]

 		list assignment

 		list, deletion

 		loop control

 		target (xml.dom.ProcessingInstruction attribute)

 		TarInfo (class in tarfile)

 		task_done() (multiprocessing.JoinableQueue method)

 		

 		(Queue.Queue method)

 		tb_frame (traceback attribute)

 		tb_lasti (traceback attribute)

 		tb_lineno (traceback attribute)

 		tb_lineno() (in module traceback)

 		tb_next (traceback attribute)

 		tcdrain() (in module termios)

 		tcflow() (in module termios)

 		tcflush() (in module termios)

 		tcgetattr() (in module termios)

 		tcgetpgrp() (in module os)

 		Tcl() (in module Tkinter)

 		TCL_LIBRARY

 		TCPServer (class in SocketServer)

 		tcsendbreak() (in module termios)

 		tcsetattr() (in module termios)

 		tcsetpgrp() (in module os)

 		tearDown() (unittest.TestCase method)

 		tearDownClass() (unittest.TestCase method)

 		tee() (in module itertools)

 		tell() (aifc.aifc method), [1]

 		

 		(bz2.BZ2File method)

 		(chunk.Chunk method)

 		(file method)

 		(io.IOBase method)

 		(io.TextIOBase method)

 		(mmap.mmap method)

 		(multifile.MultiFile method)

 		(sunau.AU_read method)

 		(sunau.AU_write method)

 		(wave.Wave_read method)

 		(wave.Wave_write method)

 		Telnet (class in telnetlib)

 		telnetlib (module)

 		TEMP

 		tempdir (in module tempfile)

 		tempfile (module)

 		Template (class in pipes)

 		

 		(class in string)

 		template (in module tempfile)

 		

 		(string.Template attribute)

 		tempnam() (in module os)

 		
 temporary

 		

 		file

 		file name

 		TemporaryFile() (in module tempfile)

 		TERM, [1]

 		termattrs() (in module curses)

 		terminate() (multiprocessing.pool.multiprocessing.Pool method)

 		

 		(multiprocessing.Process method)

 		(subprocess.Popen method)

 		termination model

 		termios (module)

 		termname() (in module curses)

 		
 ternary

 		

 		operator

 		
 test

 		

 		identity

 		membership

 		test (doctest.DocTestFailure attribute)

 		

 		(doctest.UnexpectedException attribute)

 		(module)

 		test() (in module cgi)

 		

 		(mutex.mutex method)

 		test.test_support (module)

 		testandset() (mutex.mutex method)

 		TestCase (class in unittest)

 		TestFailed

 		testfile() (in module doctest)

 		TESTFN (in module test.test_support)

 		TestLoader (class in unittest)

 		testMethodPrefix (unittest.TestLoader attribute)

 		testmod() (in module doctest)

 		TestResult (class in unittest)

 		tests (in module imghdr)

 		testsource() (in module doctest)

 		testsRun (unittest.TestResult attribute)

 		TestSuite (class in unittest)

 		testzip() (zipfile.ZipFile method)

 		text (in module msilib)

 		

 		(xml.etree.ElementTree.Element attribute)

 		text() (msilib.Dialog method)

 		text_factory (sqlite3.Connection attribute)

 		Textbox (class in curses.textpad)

 		TextCalendar (class in calendar)

 		textdomain() (in module gettext)

 		TextFile (class in distutils.text_file)

 		TextIOBase (class in io)

 		TextIOWrapper (class in io)

 		TextTestResult (class in unittest)

 		TextTestRunner (class in unittest)

 		textwrap (module)

 		TextWrapper (class in textwrap)

 		theme_create() (ttk.Style method)

 		theme_names() (ttk.Style method)

 		theme_settings() (ttk.Style method)

 		theme_use() (ttk.Style method)

 		THOUSEP (in module locale)

 		
 thread

 		

 		module

 		Thread (class in threading)

 		thread (module)

 		thread() (imaplib.IMAP4 method)

 		ThreadError

 		threading (module)

 		ThreadingMixIn (class in SocketServer)

 		ThreadingTCPServer (class in SocketServer)

 		ThreadingUDPServer (class in SocketServer)

 		
 threads

 		

 		IRIX

 		POSIX

 		throw (2to3 fixer)

 		throw() (generator method)

 		tie() (in module fl)

 		tigetflag() (in module curses)

 		tigetnum() (in module curses)

 		tigetstr() (in module curses)

 		TILDE (in module token)

 		tilt() (in module turtle)

 		tiltangle() (in module turtle)

 		time (class in datetime)

 		

 		(module)

 		time() (datetime.datetime method)

 		

 		(in module time)

 		Time2Internaldate() (in module imaplib)

 		timedelta (class in datetime)

 		TimedRotatingFileHandler (class in logging.handlers)

 		timegm() (in module calendar)

 		timeit (module)

 		
 timeit command line option

 		

 		-c, --clock

 		-h, --help

 		-n N, --number=N

 		-r N, --repeat=N

 		-s S, --setup=S

 		-t, --time

 		-v, --verbose

 		timeit() (in module timeit)

 		

 		(timeit.Timer method)

 		timeout

 		

 		(SocketServer.BaseServer attribute)

 		timeout() (curses.window method)

 		Timer (class in threading)

 		

 		(class in timeit)

 		times() (in module os)

 		timetuple() (datetime.date method)

 		

 		(datetime.datetime method)

 		timetz() (datetime.datetime method)

 		timezone (in module time)

 		title() (EasyDialogs.ProgressBar method)

 		

 		(in module turtle)

 		(str method)

 		Tix

 		

 		(class in Tix)

 		(module)

 		tix_addbitmapdir() (Tix.tixCommand method)

 		

 		tix_cget() (Tix.tixCommand method)

 		tix_configure() (Tix.tixCommand method)

 		tix_filedialog() (Tix.tixCommand method)

 		tix_getbitmap() (Tix.tixCommand method)

 		tix_getimage() (Tix.tixCommand method)

 		TIX_LIBRARY

 		tix_option_get() (Tix.tixCommand method)

 		tix_resetoptions() (Tix.tixCommand method)

 		tixCommand (class in Tix)

 		Tk

 		

 		(class in Tkinter)

 		Tk Option Data Types

 		TK_LIBRARY

 		Tkinter

 		

 		(module)

 		TList (class in Tix)

 		TLS

 		TMP, [1]

 		TMP_MAX (in module os)

 		TMPDIR, [1]

 		tmpfile() (in module os)

 		tmpnam() (in module os)

 		to_eng_string() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		to_integral() (decimal.Decimal method)

 		to_integral_exact() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		to_integral_value() (decimal.Decimal method)

 		to_sci_string() (decimal.Context method)

 		to_splittable() (email.charset.Charset method)

 		ToASCII() (in module encodings.idna)

 		tobuf() (tarfile.TarInfo method)

 		tobytes() (memoryview method)

 		tochild (popen2.Popen3 attribute)

 		today() (datetime.date class method)

 		

 		(datetime.datetime class method)

 		tofile() (array.array method)

 		tok_name (in module token)

 		token

 		

 		(module)

 		(shlex.shlex attribute)

 		tokeneater() (in module tabnanny)

 		TokenError

 		tokenize (module)

 		tokenize() (in module tokenize)

 		tolist() (array.array method)

 		

 		(memoryview method)

 		(parser.ST method)

 		tomono() (in module audioop)

 		toordinal() (datetime.date method)

 		

 		(datetime.datetime method)

 		top() (curses.panel.Panel method)

 		

 		(poplib.POP3 method)

 		top_panel() (in module curses.panel)

 		toprettyxml() (xml.dom.minidom.Node method)

 		tostereo() (in module audioop)

 		tostring() (array.array method)

 		

 		(in module xml.etree.ElementTree)

 		tostringlist() (in module xml.etree.ElementTree)

 		total_changes (sqlite3.Connection attribute)

 		total_ordering() (in module functools)

 		total_seconds() (datetime.timedelta method)

 		totuple() (parser.ST method)

 		touched() (in module macostools)

 		touchline() (curses.window method)

 		touchwin() (curses.window method)

 		tounicode() (array.array method)

 		ToUnicode() (in module encodings.idna)

 		tovideo() (in module imageop)

 		towards() (in module turtle)

 		toxml() (xml.dom.minidom.Node method)

 		tp_as_mapping (C member)

 		tp_as_number (C member)

 		tp_as_sequence (C member)

 		tparm() (in module curses)

 		
 trace

 		

 		stack

 		Trace (class in trace)

 		trace (module)

 		
 trace command line option

 		

 		--help

 		--ignore-dir=<dir>

 		--ignore-module=<mod>

 		--version

 		-C, --coverdir=<dir>

 		-R, --no-report

 		-T, --trackcalls

 		-c, --count

 		-f, --file=<file>

 		-g, --timing

 		-l, --listfuncs

 		-m, --missing

 		-r, --report

 		-s, --summary

 		-t, --trace

 		trace function, [1], [2]

 		trace() (in module inspect)

 		trace_dispatch() (bdb.Bdb method)

 		
 traceback

 		

 		object, [1], [2], [3], [4]

 		traceback (module)

 		traceback_limit (wsgiref.handlers.BaseHandler attribute)

 		tracebacklimit (in module sys)

 		
 tracebacks

 		

 		in CGI scripts

 		TracebackType (in module types)

 		tracer() (in module turtle), [1]

 		
 trailing

 		

 		comma, [1]

 		transfercmd() (ftplib.FTP method)

 		TransientResource (class in test.test_support)

 		translate() (in module fnmatch)

 		

 		(in module string)

 		(str method)

 		translation() (in module gettext)

 		Transport Layer Security

 		traverseproc (C type)

 		Tree (class in Tix)

 		TreeBuilder (class in xml.etree.ElementTree)

 		Treeview (class in ttk)

 		triangular() (in module random)

 		triple-quoted string, [1]

 		True, [1], [2]

 		true

 		True (built-in variable)

 		truediv() (in module operator)

 		trunc() (in module math), [1]

 		truncate() (file method)

 		

 		(io.IOBase method)

 		
 truth

 		

 		value

 		truth() (in module operator)

 		
 try

 		

 		statement, [1], [2]

 		ttk

 		

 		(module)

 		ttob() (in module imgfile)

 		
 tty

 		

 		I/O control

 		tty (module)

 		ttyname() (in module os)

 		
 tuple

 		

 		built-in function, [1]

 		display

 		empty, [1]

 		object, [1], [2], [3], [4], [5]

 		singleton

 		tuple() (built-in function)

 		tuple2st() (in module parser)

 		tuple_params (2to3 fixer)

 		TupleType (in module types), [1]

 		turnoff_sigfpe() (in module fpectl)

 		turnon_sigfpe() (in module fpectl)

 		Turtle (class in turtle)

 		turtle (module)

 		turtles() (in module turtle)

 		TurtleScreen (class in turtle)

 		turtlesize() (in module turtle)

 		Tutt, Bill

 		type, [1]

 		

 		Boolean

 		built-in function, [1], [2], [3]

 		data

 		hierarchy

 		immutable data

 		object, [1], [2]

 		operations on dictionary

 		operations on list

 		type (built-in class)

 		Type (class in aetypes)

 		type (optparse.Option attribute)

 		

 		(socket.socket attribute)

 		(tarfile.TarInfo attribute)

 		type of an object

 		TYPE_CHECKER (optparse.Option attribute)

 		typeahead() (in module curses)

 		typecode (array.array attribute)

 		TYPED_ACTIONS (optparse.Option attribute)

 		typed_subpart_iterator() (in module email.iterators)

 		TypeError

 		

 		exception

 		
 types

 		

 		built-in

 		module

 		mutable sequence

 		operations on integer

 		operations on mapping

 		operations on numeric

 		operations on sequence, [1]

 		types (2to3 fixer)

 		

 		(module)

 		TYPES (optparse.Option attribute)

 		types, internal

 		types_map (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		types_map_inv (mimetypes.MimeTypes attribute)

 		TypeType (in module types), [1]

 		TZ, [1], [2], [3], [4]

 		tzinfo (class in datetime)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		tzname (in module time)

 		tzname() (datetime.datetime method)

 		

 		(datetime.time method)

 		(datetime.tzinfo method)

 		tzset() (in module time)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-U.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – U

 		

 		U (in module re)

 		u-LAW, [1], [2], [3]

 		ucd_3_2_0 (in module unicodedata)

 		udata (select.kevent attribute)

 		UDPServer (class in SocketServer)

 		UF_APPEND (in module stat)

 		UF_COMPRESSED (in module stat)

 		UF_HIDDEN (in module stat)

 		UF_IMMUTABLE (in module stat)

 		UF_NODUMP (in module stat)

 		UF_NOUNLINK (in module stat)

 		UF_OPAQUE (in module stat)

 		ugettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		uid (tarfile.TarInfo attribute)

 		uid() (imaplib.IMAP4 method)

 		uidl() (poplib.POP3 method)

 		ulaw2lin() (in module audioop)

 		ULONG_MAX

 		umask() (in module os)

 		uname (tarfile.TarInfo attribute)

 		uname() (in module os)

 		

 		(in module platform)

 		
 unary

 		

 		arithmetic operation

 		bitwise operation

 		UNARY_CONVERT (opcode)

 		UNARY_INVERT (opcode)

 		UNARY_NEGATIVE (opcode)

 		UNARY_NOT (opcode)

 		UNARY_POSITIVE (opcode)

 		
 unbinding

 		

 		name

 		UnboundLocalError, [1]

 		UnboundMethodType (in module types)

 		unbuffered I/O

 		
 UNC paths

 		

 		and os.makedirs()

 		unconsumed_tail (zlib.Decompress attribute)

 		unctrl() (in module curses)

 		

 		(in module curses.ascii)

 		undefine_macro() (distutils.ccompiler.CCompiler method)

 		Underflow (class in decimal)

 		undo() (in module turtle)

 		undobufferentries() (in module turtle)

 		undoc_header (cmd.Cmd attribute)

 		unescape() (in module xml.sax.saxutils)

 		UnexpectedException

 		unexpectedSuccesses (unittest.TestResult attribute)

 		unfreeze_form() (fl.form method)

 		ungetch() (in module curses)

 		

 		(in module msvcrt)

 		ungetmouse() (in module curses)

 		ungettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		ungetwch() (in module msvcrt)

 		unhexlify() (in module binascii)

 		
 unichr

 		

 		built-in function

 		unichr() (built-in function)

 		Unicode, [1], [2]

 		

 		database

 		object

 		
 unicode

 		

 		built-in function, [1], [2], [3]

 		object

 		unicode (2to3 fixer)

 		UNICODE (in module re)

 		Unicode Consortium

 		unicode() (built-in function)

 		unicodedata (module)

 		UnicodeDecodeError

 		UnicodeEncodeError

 		UnicodeError

 		UnicodeTranslateError

 		UnicodeType (in module types)

 		UnicodeWarning

 		unidata_version (in module unicodedata)

 		unified_diff() (in module difflib)

 		uniform() (in module random)

 		UnimplementedFileMode

 		uninstall() (imputil.ImportManager method)

 		Union (class in ctypes)

 		union() (set method)

 		unittest (module)

 		
 unittest command line option

 		

 		-b, --buffer

 		-c, --catch

 		-f, --failfast

 		
 unittest-discover command line option

 		

 		-p, --pattern pattern

 		-s, --start-directory directory

 		-t, --top-level-directory directory

 		-v, --verbose

 		universal newlines

 		

 		What's new, [1], [2], [3]

 		bz2.BZ2File class

 		file.newlines attribute

 		io.IncrementalNewlineDecoder class

 		io.TextIOWrapper class

 		open() (in module io)

 		open() built-in function

 		str.splitlines method

 		subprocess module

 		zipfile.ZipFile.open method

 		UNIX

 		

 		I/O control

 		file control

 		UnixDatagramServer (class in SocketServer)

 		unixfrom (rfc822.Message attribute)

 		UnixMailbox (class in mailbox)

 		UnixStreamServer (class in SocketServer)

 		Unknown (class in aetypes)

 		unknown_charref() (sgmllib.SGMLParser method)

 		unknown_decl() (HTMLParser.HTMLParser method)

 		unknown_endtag() (sgmllib.SGMLParser method)

 		unknown_entityref() (sgmllib.SGMLParser method)

 		unknown_open() (urllib2.BaseHandler method)

 		

 		(urllib2.UnknownHandler method)

 		unknown_starttag() (sgmllib.SGMLParser method)

 		UnknownHandler (class in urllib2)

 		UnknownProtocol

 		UnknownTransferEncoding

 		unlink() (in module os)

 		

 		(xml.dom.minidom.Node method)

 		unlock() (mailbox.Babyl method)

 		

 		(mailbox.MH method)

 		(mailbox.MMDF method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mailbox.mbox method)

 		(mutex.mutex method)

 		unmimify() (in module mimify)

 		unpack() (in module aepack)

 		

 		(in module struct)

 		(struct.Struct method)

 		unpack_array() (xdrlib.Unpacker method)

 		unpack_bytes() (xdrlib.Unpacker method)

 		unpack_double() (xdrlib.Unpacker method)

 		unpack_farray() (xdrlib.Unpacker method)

 		unpack_float() (xdrlib.Unpacker method)

 		unpack_fopaque() (xdrlib.Unpacker method)

 		unpack_from() (in module struct)

 		

 		(struct.Struct method)

 		unpack_fstring() (xdrlib.Unpacker method)

 		unpack_list() (xdrlib.Unpacker method)

 		unpack_opaque() (xdrlib.Unpacker method)

 		

 		UNPACK_SEQUENCE (opcode)

 		unpack_string() (xdrlib.Unpacker method)

 		Unpacker (class in xdrlib)

 		unpackevent() (in module aetools)

 		unparsedEntityDecl() (xml.sax.handler.DTDHandler method)

 		UnparsedEntityDeclHandler() (xml.parsers.expat.xmlparser method)

 		Unpickler (class in pickle)

 		UnpicklingError

 		unqdevice() (in module fl)

 		unquote() (in module email.utils)

 		

 		(in module rfc822)

 		(in module urllib)

 		unquote_plus() (in module urllib)

 		unreachable object

 		unreadline() (distutils.text_file.TextFile method)

 		unrecognized escape sequence

 		unregister() (select.epoll method)

 		

 		(select.poll method)

 		unregister_archive_format() (in module shutil)

 		unregister_dialect() (in module csv)

 		unset() (test.test_support.EnvironmentVarGuard method)

 		unsetenv() (in module os)

 		unsubscribe() (imaplib.IMAP4 method)

 		UnsupportedOperation

 		untokenize() (in module tokenize)

 		untouchwin() (curses.window method)

 		unused_data (zlib.Decompress attribute)

 		unwrap() (ssl.SSLSocket method)

 		up() (in module turtle)

 		update() (collections.Counter method)

 		

 		(dict method)

 		(hashlib.hash method)

 		(hmac.HMAC method)

 		(in module turtle)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(md5.md5 method)

 		(set method)

 		(sha.sha method)

 		(trace.CoverageResults method)

 		update_panels() (in module curses.panel)

 		update_visible() (mailbox.BabylMessage method)

 		update_wrapper() (in module functools)

 		updatescrollbars() (FrameWork.ScrolledWindow method)

 		upper() (in module string)

 		

 		(str method)

 		uppercase (in module string)

 		urandom() (in module os)

 		URL, [1], [2], [3], [4]

 		

 		parsing

 		relative

 		url (xmlrpclib.ProtocolError attribute)

 		url2pathname() (in module urllib)

 		urlcleanup() (in module urllib)

 		urldefrag() (in module urlparse)

 		urlencode() (in module urllib)

 		URLError

 		urljoin() (in module urlparse)

 		
 urllib

 		

 		module

 		urllib (2to3 fixer)

 		

 		(module)

 		urllib2 (module)

 		urlopen() (in module urllib)

 		

 		(in module urllib2)

 		URLopener (class in urllib)

 		
 urlparse

 		

 		module

 		urlparse (module)

 		urlparse() (in module urlparse)

 		urlretrieve() (in module urllib)

 		urlsafe_b64decode() (in module base64)

 		urlsafe_b64encode() (in module base64)

 		urlsplit() (in module urlparse)

 		urlunparse() (in module urlparse)

 		urlunsplit() (in module urlparse)

 		urn (uuid.UUID attribute)

 		use_default_colors() (in module curses)

 		use_env() (in module curses)

 		use_rawinput (cmd.Cmd attribute)

 		UseForeignDTD() (xml.parsers.expat.xmlparser method)

 		USER

 		
 user

 		

 		configuration file

 		effective id

 		id

 		id, setting

 		user (module)

 		user() (poplib.POP3 method)

 		
 user-defined

 		

 		function

 		function call

 		method

 		
 user-defined function

 		

 		object, [1], [2]

 		
 user-defined method

 		

 		object

 		USER_BASE

 		

 		(in module site)

 		user_call() (bdb.Bdb method)

 		user_exception() (bdb.Bdb method)

 		user_line() (bdb.Bdb method)

 		user_return() (bdb.Bdb method)

 		USER_SITE (in module site)

 		
 usercustomize

 		

 		module

 		UserDict (class in UserDict)

 		

 		(module)

 		UserList (class in UserList)

 		

 		(module)

 		USERNAME

 		USERPROFILE, [1]

 		userptr() (curses.panel.Panel method)

 		UserString (class in UserString)

 		

 		(module)

 		UserWarning

 		USTAR_FORMAT (in module tarfile)

 		UTC

 		utcfromtimestamp() (datetime.datetime class method)

 		utcnow() (datetime.datetime class method)

 		utcoffset() (datetime.datetime method)

 		

 		(datetime.time method)

 		(datetime.tzinfo method)

 		utctimetuple() (datetime.datetime method)

 		utime() (in module os)

 		
 uu

 		

 		module

 		uu (module)

 		UUID (class in uuid)

 		uuid (module)

 		uuid1

 		uuid1() (in module uuid)

 		uuid3

 		uuid3() (in module uuid)

 		uuid4

 		uuid4() (in module uuid)

 		uuid5

 		uuid5() (in module uuid)

 		UuidCreate() (in module msilib)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

download.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Download Python 2.7.12 Documentation

 Last updated on: Jun 25, 2016.

To download an archive containing all the documents for
this version of Python in one of various formats, follow one of links
in this table. The numbers in the table are the size of the download
files in megabytes.

 		Format
 		Packed as .zip
 		Packed as .tar.bz2

 		PDF (US-Letter paper size)
 		

 Download
 (ca. 8 MB)

 		

 Download
 (ca. 8 MB)

 		PDF (A4 paper size)
 		

 Download
 (ca. 8 MB)
 		

 Download
 (ca. 8 MB)

 		HTML
 		

 Download
 (ca. 6 MB)

 		

 Download
 (ca. 4 MB)

 		Plain Text
 		

 Download
 (ca. 2 MB)

 		

 Download
 (ca. 1.5 MB)

These archives contain all the content in the
documentation.

HTML Help
(.chm) files are made available in the "Windows" section
on the Python download page.

Unpacking

Unix users should download the .tar.bz2 archives; these
are bzipped tar archives and can be handled in the usual way using tar
and the bzip2 program. The InfoZIP unzip
program can be used to handle the ZIP archives if desired. The
.tar.bz2 archives provide the best compression and fastest download
times.

Windows users can use the ZIP archives since those are
customary on that platform. These are created on Unix using the
InfoZIP zip program.

Problems

If you have comments or suggestions for the Python
documentation, please send email to
docs@python.org.

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-C.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – C

 		

 		C

 		

 		language, [1], [2], [3], [4]

 		structures

 		c_bool (class in ctypes)

 		C_BUILTIN (in module imp)

 		c_byte (class in ctypes)

 		c_char (class in ctypes)

 		c_char_p (class in ctypes)

 		c_double (class in ctypes)

 		C_EXTENSION (in module imp)

 		c_float (class in ctypes)

 		c_int (class in ctypes)

 		c_int16 (class in ctypes)

 		c_int32 (class in ctypes)

 		c_int64 (class in ctypes)

 		c_int8 (class in ctypes)

 		c_long (class in ctypes)

 		c_longdouble (class in ctypes)

 		c_longlong (class in ctypes)

 		c_short (class in ctypes)

 		c_size_t (class in ctypes)

 		c_ssize_t (class in ctypes)

 		c_ubyte (class in ctypes)

 		c_uint (class in ctypes)

 		c_uint16 (class in ctypes)

 		c_uint32 (class in ctypes)

 		c_uint64 (class in ctypes)

 		c_uint8 (class in ctypes)

 		c_ulong (class in ctypes)

 		c_ulonglong (class in ctypes)

 		c_ushort (class in ctypes)

 		c_void_p (class in ctypes)

 		c_wchar (class in ctypes)

 		c_wchar_p (class in ctypes)

 		CAB (class in msilib)

 		CacheFTPHandler (class in urllib2)

 		calcsize() (in module struct)

 		Calendar (class in calendar)

 		calendar (module)

 		calendar() (in module calendar)

 		call

 		

 		built-in function

 		built-in method

 		class instance

 		class object, [1], [2], [3]

 		function, [1], [2]

 		instance, [1]

 		method

 		procedure

 		user-defined function

 		call() (dl.dl method)

 		

 		(in module subprocess)

 		CALL_FUNCTION (opcode)

 		CALL_FUNCTION_KW (opcode)

 		CALL_FUNCTION_VAR (opcode)

 		CALL_FUNCTION_VAR_KW (opcode)

 		call_tracing() (in module sys)

 		
 callable

 		

 		object, [1]

 		callable (2to3 fixer)

 		Callable (class in collections)

 		callable() (built-in function)

 		CallableProxyType (in module weakref)

 		callback (optparse.Option attribute)

 		callback() (MiniAEFrame.AEServer method)

 		callback_args (optparse.Option attribute)

 		callback_kwargs (optparse.Option attribute)

 		CalledProcessError

 		calloc()

 		can_change_color() (in module curses)

 		can_fetch() (robotparser.RobotFileParser method)

 		cancel() (sched.scheduler method)

 		

 		(threading.Timer method)

 		cancel_join_thread() (multiprocessing.Queue method)

 		CannotSendHeader

 		CannotSendRequest

 		canonic() (bdb.Bdb method)

 		canonical() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		capitalize() (in module string)

 		

 		(str method)

 		
 Capsule

 		

 		object

 		captured_stdout() (in module test.test_support)

 		captureWarnings() (in module logging)

 		capwords() (in module string)

 		Carbon.AE (module)

 		Carbon.AH (module)

 		Carbon.App (module)

 		Carbon.Appearance (module)

 		Carbon.CarbonEvents (module)

 		Carbon.CarbonEvt (module)

 		Carbon.CF (module)

 		Carbon.CG (module)

 		Carbon.Cm (module)

 		Carbon.Components (module)

 		Carbon.ControlAccessor (module)

 		Carbon.Controls (module)

 		Carbon.CoreFounation (module)

 		Carbon.CoreGraphics (module)

 		Carbon.Ctl (module)

 		Carbon.Dialogs (module)

 		Carbon.Dlg (module)

 		Carbon.Drag (module)

 		Carbon.Dragconst (module)

 		Carbon.Events (module)

 		Carbon.Evt (module)

 		Carbon.File (module)

 		Carbon.Files (module)

 		Carbon.Fm (module)

 		Carbon.Folder (module)

 		Carbon.Folders (module)

 		Carbon.Fonts (module)

 		Carbon.Help (module)

 		Carbon.IBCarbon (module)

 		Carbon.IBCarbonRuntime (module)

 		Carbon.Icns (module)

 		Carbon.Icons (module)

 		Carbon.Launch (module)

 		Carbon.LaunchServices (module)

 		Carbon.List (module)

 		Carbon.Lists (module)

 		Carbon.MacHelp (module)

 		Carbon.MediaDescr (module)

 		Carbon.Menu (module)

 		Carbon.Menus (module)

 		Carbon.Mlte (module)

 		Carbon.OSA (module)

 		Carbon.OSAconst (module)

 		Carbon.Qd (module)

 		Carbon.Qdoffs (module)

 		Carbon.QDOffscreen (module)

 		Carbon.Qt (module)

 		Carbon.QuickDraw (module)

 		Carbon.QuickTime (module)

 		Carbon.Res (module)

 		Carbon.Resources (module)

 		Carbon.Scrap (module)

 		Carbon.Snd (module)

 		Carbon.Sound (module)

 		Carbon.TE (module)

 		Carbon.TextEdit (module)

 		Carbon.Win (module)

 		Carbon.Windows (module)

 		cast() (in module ctypes)

 		cat() (in module nis)

 		catalog (in module cd)

 		catch_warnings (class in warnings)

 		category() (in module unicodedata)

 		cbreak() (in module curses)

 		CC

 		CCompiler (class in distutils.ccompiler)

 		cd (module)

 		CDLL (class in ctypes)

 		CDROM (in module cd)

 		ceil() (in module math), [1]

 		center() (in module string)

 		

 		(str method)

 		CERT_NONE (in module ssl)

 		CERT_OPTIONAL (in module ssl)

 		CERT_REQUIRED (in module ssl)

 		cert_store_stats() (ssl.SSLContext method)

 		cert_time_to_seconds() (in module ssl)

 		CertificateError

 		certificates

 		CFLAGS, [1], [2]

 		cfmfile (module)

 		CFUNCTYPE() (in module ctypes)

 		
 CGI

 		

 		debugging

 		exceptions

 		protocol

 		security

 		tracebacks

 		cgi (module)

 		cgi_directories (CGIHTTPServer.CGIHTTPRequestHandler attribute)

 		CGIHandler (class in wsgiref.handlers)

 		CGIHTTPRequestHandler (class in CGIHTTPServer)

 		
 CGIHTTPServer

 		

 		module

 		CGIHTTPServer (module)

 		cgitb (module)

 		CGIXMLRPCRequestHandler (class in SimpleXMLRPCServer)

 		chain() (in module itertools)

 		
 chaining

 		

 		comparisons, [1]

 		change_root() (in module distutils.util)

 		CHANNEL_BINDING_TYPES (in module ssl)

 		channels() (ossaudiodev.oss_audio_device method)

 		CHAR_MAX (in module locale)

 		character, [1], [2], [3]

 		character set

 		CharacterDataHandler() (xml.parsers.expat.xmlparser method)

 		characters() (xml.sax.handler.ContentHandler method)

 		characters_written (io.BlockingIOError attribute)

 		charbufferproc (C type)

 		Charset (class in email.charset)

 		CHARSET (in module mimify)

 		charset() (gettext.NullTranslations method)

 		chdir() (in module os)

 		check() (imaplib.IMAP4 method)

 		

 		(in module tabnanny)

 		check_call() (in module subprocess)

 		check_environ() (in module distutils.util)

 		check_forms() (in module fl)

 		check_hostname (ssl.SSLContext attribute)

 		check_output() (doctest.OutputChecker method)

 		

 		(in module subprocess)

 		check_py3k_warnings() (in module test.test_support)

 		check_unused_args() (string.Formatter method)

 		check_warnings() (in module test.test_support)

 		checkbox() (msilib.Dialog method)

 		checkcache() (in module linecache)

 		checkfuncname() (in module bdb)

 		CheckList (class in Tix)

 		
 checksum

 		

 		Cyclic Redundancy Check

 		MD5

 		SHA

 		chflags() (in module os)

 		chgat() (curses.window method)

 		childerr (popen2.Popen3 attribute)

 		childNodes (xml.dom.Node attribute)

 		chmod() (in module os)

 		choice() (in module random)

 		choices (optparse.Option attribute)

 		choose_boundary() (in module mimetools)

 		chown() (in module os)

 		
 chr

 		

 		built-in function, [1]

 		chr() (built-in function)

 		chroot() (in module os)

 		Chunk (class in chunk)

 		chunk (module)

 		
 cipher

 		

 		DES

 		cipher() (ssl.SSLSocket method)

 		circle() (in module turtle)

 		CIRCUMFLEX (in module token)

 		CIRCUMFLEXEQUAL (in module token)

 		Clamped (class in decimal)

 		class

 		

 		attribute

 		attribute assignment

 		classic

 		constructor

 		definition, [1]

 		instance

 		name

 		new-style

 		object, [1], [2], [3], [4]

 		old-style

 		statement

 		Class (class in symtable)

 		Class browser

 		
 class instance

 		

 		attribute

 		attribute assignment

 		call

 		object, [1], [2], [3]

 		
 class object

 		

 		call, [1], [2], [3]

 		classic class

 		
 classmethod

 		

 		built-in function

 		classmethod() (built-in function)

 		classobj() (in module new)

 		ClassType (in module types), [1]

 		clause

 		clean() (mailbox.Maildir method)

 		cleandoc() (in module inspect)

 		cleanup functions

 		Clear Breakpoint

 		clear() (collections.deque method)

 		

 		(cookielib.CookieJar method)

 		(curses.window method)

 		(dict method)

 		(in module turtle), [1]

 		(mailbox.Mailbox method)

 		(set method)

 		(threading.Event method)

 		(xml.etree.ElementTree.Element method)

 		clear_all_breaks() (bdb.Bdb method)

 		clear_all_file_breaks() (bdb.Bdb method)

 		clear_bpbynumber() (bdb.Bdb method)

 		clear_break() (bdb.Bdb method)

 		clear_flags() (decimal.Context method)

 		clear_history() (in module readline)

 		clear_memo() (pickle.Pickler method)

 		clear_session_cookies() (cookielib.CookieJar method)

 		clearcache() (in module linecache)

 		ClearData() (msilib.Record method)

 		clearok() (curses.window method)

 		clearscreen() (in module turtle)

 		clearstamp() (in module turtle)

 		clearstamps() (in module turtle)

 		Client() (in module multiprocessing.connection)

 		client_address (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		clock() (in module time)

 		clone() (email.generator.Generator method)

 		

 		(in module turtle)

 		(pipes.Template method)

 		cloneNode() (xml.dom.minidom.Node method)

 		

 		(xml.dom.Node method)

 		Close() (_winreg.PyHKEY method)

 		close() (aifc.aifc method), [1]

 		

 		(FrameWork.Window method)

 		(HTMLParser.HTMLParser method)

 		(asyncore.dispatcher method)

 		(bsddb.bsddbobject method)

 		(bz2.BZ2File method)

 		(chunk.Chunk method)

 		(distutils.text_file.TextFile method)

 		(dl.dl method)

 		(email.parser.FeedParser method)

 		(file method)

 		(ftplib.FTP method)

 		(generator method)

 		(hotshot.Profile method)

 		(httplib.HTTPConnection method)

 		(imaplib.IMAP4 method)

 		(in module anydbm)

 		(in module dbm)

 		(in module dumbdbm)

 		(in module fileinput)

 		(in module gdbm)

 		(in module os), [1]

 		(io.IOBase method)

 		(logging.FileHandler method)

 		(logging.Handler method)

 		(logging.handlers.MemoryHandler method)

 		(logging.handlers.NTEventLogHandler method)

 		(logging.handlers.SocketHandler method)

 		(logging.handlers.SysLogHandler method)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mmap.mmap method)

 		Close() (msilib.View method)

 		close() (multiprocessing.Connection method)

 		

 		(StringIO.StringIO method)

 		(multiprocessing.Queue method)

 		(multiprocessing.connection.Listener method)

 		(multiprocessing.pool.multiprocessing.Pool method)

 		(ossaudiodev.oss_audio_device method)

 		(ossaudiodev.oss_mixer_device method)

 		(select.epoll method)

 		(select.kqueue method)

 		(sgmllib.SGMLParser method)

 		(shelve.Shelf method)

 		(socket.socket method)

 		(sqlite3.Connection method)

 		(sunau.AU_read method)

 		(sunau.AU_write method)

 		(tarfile.TarFile method)

 		(telnetlib.Telnet method)

 		(urllib2.BaseHandler method)

 		(wave.Wave_read method)

 		(wave.Wave_write method)

 		(xml.etree.ElementTree.TreeBuilder method)

 		(xml.etree.ElementTree.XMLParser method)

 		(xml.sax.xmlreader.IncrementalParser method)

 		(zipfile.ZipFile method)

 		close_when_done() (asynchat.async_chat method)

 		closed (file attribute)

 		

 		(io.IOBase attribute)

 		(ossaudiodev.oss_audio_device attribute)

 		CloseKey() (in module _winreg)

 		closelog() (in module syslog)

 		closerange() (in module os)

 		closing() (in module contextlib)

 		clrtobot() (curses.window method)

 		clrtoeol() (curses.window method)

 		cmath (module)

 		
 cmd

 		

 		module

 		Cmd (class in cmd)

 		cmd (module)

 		

 		(subprocess.CalledProcessError attribute)

 		cmdloop() (cmd.Cmd method)

 		cmdqueue (cmd.Cmd attribute)

 		
 cmp

 		

 		built-in function, [1], [2], [3]

 		cmp() (built-in function)

 		

 		(in module filecmp)

 		cmp_op (in module dis)

 		cmp_to_key() (in module functools)

 		cmpfiles() (in module filecmp)

 		co_argcount (code object attribute)

 		co_cellvars (code object attribute)

 		co_code (code object attribute)

 		co_consts (code object attribute)

 		co_filename (code object attribute)

 		co_firstlineno (code object attribute)

 		co_flags (code object attribute)

 		co_freevars (code object attribute)

 		CO_FUTURE_DIVISION (C variable)

 		co_lnotab (code object attribute)

 		co_name (code object attribute)

 		co_names (code object attribute)

 		co_nlocals (code object attribute)

 		co_stacksize (code object attribute)

 		co_varnames (code object attribute)

 		
 CObject

 		

 		object

 		
 code

 		

 		block

 		code (module)

 		

 		(urllib2.HTTPError attribute)

 		(xml.parsers.expat.ExpatError attribute)

 		

 		code object, [1], [2], [3]

 		code() (in module new)

 		Codecs

 		

 		decode

 		encode

 		codecs (module)

 		coded_value (Cookie.Morsel attribute)

 		codeop (module)

 		codepoint2name (in module htmlentitydefs)

 		CODESET (in module locale)

 		CodeType (in module types)

 		
 coding

 		

 		style

 		
 coerce

 		

 		built-in function

 		coerce() (built-in function)

 		coercion

 		col_offset (ast.AST attribute)

 		collapse_rfc2231_value() (in module email.utils)

 		collect() (in module gc)

 		collect_incoming_data() (asynchat.async_chat method)

 		collections (module)

 		COLON (in module token)

 		color() (in module fl)

 		

 		(in module turtle)

 		color_content() (in module curses)

 		color_pair() (in module curses)

 		colormode() (in module turtle)

 		ColorPicker (module)

 		colorsys (module)

 		column() (ttk.Treeview method)

 		COLUMNS, [1]

 		combinations() (in module itertools)

 		combinations_with_replacement() (in module itertools)

 		combine() (datetime.datetime class method)

 		combining() (in module unicodedata)

 		ComboBox (class in Tix)

 		Combobox (class in ttk)

 		comma

 		

 		trailing, [1]

 		COMMA (in module token)

 		command (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		Command (class in distutils.cmd)

 		

 		(class in distutils.core)

 		command line

 		
 command line option

 		

 		--help

 		--version

 		-3

 		-?

 		-B

 		-E

 		-J

 		-O

 		-OO

 		-Q <arg>

 		-R

 		-S

 		-U

 		-V

 		-W arg

 		-X

 		-c <command>

 		-d

 		-h

 		-i

 		-m <module-name>

 		-s

 		-t

 		-u

 		-v

 		-x

 		CommandCompiler (class in codeop)

 		commands (module)

 		comment

 		

 		(cookielib.Cookie attribute)

 		COMMENT (in module tokenize)

 		comment (zipfile.ZipFile attribute)

 		

 		(zipfile.ZipInfo attribute)

 		Comment() (in module xml.etree.ElementTree)

 		comment_url (cookielib.Cookie attribute)

 		commenters (shlex.shlex attribute)

 		CommentHandler() (xml.parsers.expat.xmlparser method)

 		commit() (msilib.CAB method)

 		Commit() (msilib.Database method)

 		commit() (sqlite3.Connection method)

 		common (filecmp.dircmp attribute)

 		Common Gateway Interface

 		common_dirs (filecmp.dircmp attribute)

 		common_files (filecmp.dircmp attribute)

 		common_funny (filecmp.dircmp attribute)

 		common_types (in module mimetypes)

 		commonprefix() (in module os.path)

 		communicate() (subprocess.Popen method)

 		compare() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(difflib.Differ method)

 		compare_digest() (in module hmac)

 		COMPARE_OP (opcode)

 		compare_signal() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		compare_total() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		compare_total_mag() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		
 comparing

 		

 		objects

 		comparison

 		

 		operator

 		string

 		Comparison (class in aetypes)

 		COMPARISON_FLAGS (in module doctest)

 		comparisons, [1]

 		

 		chaining, [1]

 		
 compile

 		

 		built-in function, [1], [2], [3], [4]

 		Compile (class in codeop)

 		compile() (built-in function)

 		

 		(distutils.ccompiler.CCompiler method)

 		(in module compiler)

 		(in module py_compile)

 		(in module re)

 		(parser.ST method)

 		compile_command() (in module code)

 		

 		(in module codeop)

 		compile_dir() (in module compileall)

 		compile_file() (in module compileall)

 		compile_path() (in module compileall)

 		
 compileall

 		

 		module

 		compileall (module)

 		
 compileall command line option

 		

 		-d destdir

 		-f

 		-i list

 		-l

 		-q

 		-x regex

 		directory ...

 		file ...

 		compileFile() (in module compiler)

 		compiler (module)

 		compiler.ast (module)

 		compiler.visitor (module)

 		compilest() (in module parser)

 		complete() (rlcompleter.Completer method)

 		complete_statement() (in module sqlite3)

 		completedefault() (cmd.Cmd method)

 		
 complex

 		

 		built-in function, [1]

 		literal

 		number

 		object

 		complex (built-in class)

 		Complex (class in numbers)

 		complex number

 		

 		literals

 		object, [1]

 		ComplexType (in module types)

 		ComponentItem (class in aetypes)

 		
 compound

 		

 		statement

 		
 comprehensions

 		

 		list, [1]

 		compress() (bz2.BZ2Compressor method)

 		

 		(in module bz2)

 		(in module itertools)

 		(in module jpeg)

 		(in module zlib)

 		(zlib.Compress method)

 		compress_size (zipfile.ZipInfo attribute)

 		compress_type (zipfile.ZipInfo attribute)

 		compression() (ssl.SSLSocket method)

 		CompressionError

 		compressobj() (in module zlib)

 		COMSPEC, [1]

 		concat() (in module operator)

 		
 concatenation

 		

 		operation

 		Condition (class in multiprocessing)

 		

 		(class in threading)

 		condition() (msilib.Control method)

 		Condition() (multiprocessing.managers.SyncManager method)

 		
 Conditional

 		

 		expression

 		
 conditional

 		

 		expression

 		ConfigParser (class in ConfigParser)

 		

 		(module)

 		
 configuration

 		

 		file

 		file, debugger

 		file, path

 		file, user

 		configuration information

 		configure() (ttk.Style method)

 		confstr() (in module os)

 		confstr_names (in module os)

 		conjugate() (complex number method)

 		

 		(decimal.Decimal method)

 		(numbers.Complex method)

 		connect() (asyncore.dispatcher method)

 		

 		(ftplib.FTP method)

 		(httplib.HTTPConnection method)

 		(in module sqlite3)

 		(multiprocessing.managers.BaseManager method)

 		(smtplib.SMTP method)

 		(socket.socket method)

 		connect_ex() (socket.socket method)

 		Connection (class in multiprocessing)

 		

 		(class in sqlite3)

 		connection (sqlite3.Cursor attribute)

 		ConnectRegistry() (in module _winreg)

 		const (optparse.Option attribute)

 		constant

 		
 constructor

 		

 		class

 		constructor() (in module copy_reg)

 		container, [1]

 		

 		iteration over

 		Container (class in collections)

 		contains() (in module operator)

 		
 content type

 		

 		MIME

 		ContentHandler (class in xml.sax.handler)

 		contents (ctypes._Pointer attribute)

 		ContentTooShortError

 		Context (class in decimal)

 		context (ssl.SSLSocket attribute)

 		context management protocol

 		context manager, [1], [2]

 		context_diff() (in module difflib)

 		contextlib (module)

 		contextmanager() (in module contextlib)

 		
 continue

 		

 		statement, [1], [2], [3], [4]

 		CONTINUE_LOOP (opcode)

 		Control (class in msilib)

 		

 		(class in Tix)

 		control (in module cd)

 		control() (msilib.Dialog method)

 		

 		(select.kqueue method)

 		controlnames (in module curses.ascii)

 		controls() (ossaudiodev.oss_mixer_device method)

 		
 conversion

 		

 		arithmetic

 		string, [1], [2]

 		ConversionError

 		
 conversions

 		

 		numeric

 		convert() (email.charset.Charset method)

 		convert_arg_line_to_args() (argparse.ArgumentParser method)

 		convert_charref() (sgmllib.SGMLParser method)

 		convert_codepoint() (sgmllib.SGMLParser method)

 		convert_entityref() (sgmllib.SGMLParser method)

 		convert_field() (string.Formatter method)

 		convert_path() (in module distutils.util)

 		Cookie (class in cookielib)

 		

 		(module)

 		CookieError

 		CookieJar (class in cookielib)

 		cookiejar (urllib2.HTTPCookieProcessor attribute)

 		cookielib (module)

 		CookiePolicy (class in cookielib)

 		Coordinated Universal Time

 		Copy

 		
 copy

 		

 		module

 		copy (module)

 		copy() (decimal.Context method)

 		

 		(dict method)

 		(hashlib.hash method)

 		(hmac.HMAC method)

 		(imaplib.IMAP4 method)

 		(in module copy)

 		(in module findertools)

 		(in module macostools)

 		(in module multiprocessing.sharedctypes)

 		(in module shutil)

 		(md5.md5 method)

 		(pipes.Template method)

 		(set method)

 		(sha.sha method)

 		(zlib.Compress method)

 		(zlib.Decompress method)

 		copy2() (in module shutil)

 		copy_abs() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		copy_decimal() (decimal.Context method)

 		copy_file() (in module distutils.file_util)

 		copy_location() (in module ast)

 		copy_negate() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		copy_reg (module)

 		copy_sign() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		copy_tree() (in module distutils.dir_util)

 		copybinary() (in module mimetools)

 		copyfile() (in module shutil)

 		copyfileobj() (in module shutil)

 		copying files

 		copyliteral() (in module mimetools)

 		copymessage() (mhlib.Folder method)

 		copymode() (in module shutil)

 		copyright (built-in variable)

 		

 		(in module sys), [1]

 		copysign() (in module math)

 		copystat() (in module shutil)

 		copytree() (in module macostools)

 		

 		(in module shutil)

 		coroutine

 		cos() (in module cmath)

 		

 		(in module math)

 		cosh() (in module cmath)

 		

 		(in module math)

 		count() (array.array method)

 		

 		(collections.deque method)

 		(in module itertools)

 		(in module string)

 		(list method)

 		(str method)

 		Counter (class in collections)

 		countOf() (in module operator)

 		countTestCases() (unittest.TestCase method)

 		

 		(unittest.TestSuite method)

 		CoverageResults (class in trace)

 		
 cPickle

 		

 		module

 		cPickle (module)

 		CPP

 		CPPFLAGS

 		cProfile (module)

 		CPU time

 		cpu_count() (in module multiprocessing)

 		CPython

 		CRC (zipfile.ZipInfo attribute)

 		crc32() (in module binascii)

 		

 		(in module zlib)

 		crc_hqx() (in module binascii)

 		create() (imaplib.IMAP4 method)

 		create_aggregate() (sqlite3.Connection method)

 		create_collation() (sqlite3.Connection method)

 		create_connection() (in module socket)

 		create_decimal() (decimal.Context method)

 		create_decimal_from_float() (decimal.Context method)

 		create_default_context() (in module ssl)

 		create_function() (sqlite3.Connection method)

 		CREATE_NEW_CONSOLE (in module subprocess)

 		CREATE_NEW_PROCESS_GROUP (in module subprocess)

 		create_shortcut() (built-in function)

 		create_socket() (asyncore.dispatcher method)

 		create_static_lib() (distutils.ccompiler.CCompiler method)

 		create_stats() (profile.Profile method)

 		create_string_buffer() (in module ctypes)

 		create_system (zipfile.ZipInfo attribute)

 		create_tree() (in module distutils.dir_util)

 		create_unicode_buffer() (in module ctypes)

 		create_version (zipfile.ZipInfo attribute)

 		createAttribute() (xml.dom.Document method)

 		createAttributeNS() (xml.dom.Document method)

 		createComment() (xml.dom.Document method)

 		createDocument() (xml.dom.DOMImplementation method)

 		createDocumentType() (xml.dom.DOMImplementation method)

 		createElement() (xml.dom.Document method)

 		createElementNS() (xml.dom.Document method)

 		createfilehandler() (Tkinter.Widget.tk method)

 		CreateKey() (in module _winreg)

 		CreateKeyEx() (in module _winreg)

 		createLock() (logging.Handler method)

 		

 		(logging.NullHandler method)

 		createparser() (in module cd)

 		createProcessingInstruction() (xml.dom.Document method)

 		CreateRecord() (in module msilib)

 		createSocket() (logging.handlers.SocketHandler method)

 		createTextNode() (xml.dom.Document method)

 		credits (built-in variable)

 		critical() (in module logging)

 		

 		(logging.Logger method)

 		CRNCYSTR (in module locale)

 		crop() (in module imageop)

 		cross() (in module audioop)

 		
 crypt

 		

 		module

 		crypt (module)

 		crypt() (in module crypt)

 		crypt(3), [1], [2]

 		cryptography

 		cStringIO (module)

 		csv

 		

 		(module)

 		ctermid() (in module os)

 		ctime() (datetime.date method)

 		

 		(datetime.datetime method)

 		(in module time)

 		ctrl() (in module curses.ascii)

 		CTRL_BREAK_EVENT (in module signal)

 		CTRL_C_EVENT (in module signal)

 		ctypes (module)

 		curdir (in module os)

 		currency() (in module locale)

 		current() (ttk.Combobox method)

 		current_process() (in module multiprocessing)

 		current_thread() (in module threading)

 		CurrentByteIndex (xml.parsers.expat.xmlparser attribute)

 		CurrentColumnNumber (xml.parsers.expat.xmlparser attribute)

 		currentframe() (in module inspect)

 		CurrentLineNumber (xml.parsers.expat.xmlparser attribute)

 		currentThread() (in module threading)

 		curs_set() (in module curses)

 		curses (module)

 		curses.ascii (module)

 		curses.panel (module)

 		curses.textpad (module)

 		Cursor (class in sqlite3)

 		cursor() (sqlite3.Connection method)

 		cursyncup() (curses.window method)

 		curval (EasyDialogs.ProgressBar attribute)

 		customize_compiler() (in module distutils.sysconfig)

 		Cut

 		cwd() (ftplib.FTP method)

 		cycle() (in module itertools)

 		Cyclic Redundancy Check

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-L.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – L

 		

 		L (in module re)

 		label() (EasyDialogs.ProgressBar method)

 		LabelEntry (class in Tix)

 		LabelFrame (class in Tix)

 		lambda

 		

 		expression, [1]

 		LambdaType (in module types)

 		LANG, [1], [2], [3], [4]

 		LANGUAGE, [1]

 		
 language

 		

 		C, [1], [2], [3], [4]

 		Java

 		Pascal

 		large files

 		LargeZipFile

 		last (multifile.MultiFile attribute)

 		last() (bsddb.bsddbobject method)

 		

 		(dbhash.dbhash method)

 		(nntplib.NNTP method)

 		last_accepted (multiprocessing.connection.Listener attribute)

 		last_traceback (in module sys), [1]

 		last_type (in module sys)

 		last_value (in module sys)

 		lastChild (xml.dom.Node attribute)

 		lastcmd (cmd.Cmd attribute)

 		lastgroup (re.MatchObject attribute)

 		lastindex (re.MatchObject attribute)

 		lastpart() (MimeWriter.MimeWriter method)

 		lastrowid (sqlite3.Cursor attribute)

 		launch() (in module findertools)

 		launchurl() (ic.IC method)

 		

 		(in module ic)

 		layout() (ttk.Style method)

 		LBRACE (in module token)

 		LBYL

 		LC_ALL, [1]

 		

 		(in module locale)

 		LC_COLLATE (in module locale)

 		LC_CTYPE (in module locale)

 		LC_MESSAGES, [1]

 		

 		(in module locale)

 		LC_MONETARY (in module locale)

 		LC_NUMERIC (in module locale)

 		LC_TIME (in module locale)

 		lchflags() (in module os)

 		lchmod() (in module os)

 		lchown() (in module os)

 		LDCXXSHARED

 		ldexp() (in module math)

 		LDFLAGS

 		ldgettext() (in module gettext)

 		ldngettext() (in module gettext)

 		le() (in module operator)

 		leading whitespace

 		leapdays() (in module calendar)

 		leaveok() (curses.window method)

 		left (filecmp.dircmp attribute)

 		left() (in module turtle)

 		left_list (filecmp.dircmp attribute)

 		left_only (filecmp.dircmp attribute)

 		LEFTSHIFT (in module token)

 		LEFTSHIFTEQUAL (in module token)

 		
 len

 		

 		built-in function, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 		len() (built-in function)

 		length (xml.dom.NamedNodeMap attribute)

 		

 		(xml.dom.NodeList attribute)

 		LESS (in module token)

 		LESSEQUAL (in module token)

 		letters (in module string)

 		level (multifile.MultiFile attribute)

 		lexical analysis

 		lexical definitions

 		lexists() (in module os.path)

 		lgamma() (in module math)

 		lgettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		lib2to3 (module)

 		libc_ver() (in module platform)

 		library (in module dbm)

 		

 		(ssl.SSLError attribute)

 		library_dir_option() (distutils.ccompiler.CCompiler method)

 		library_filename() (distutils.ccompiler.CCompiler method)

 		library_option() (distutils.ccompiler.CCompiler method)

 		LibraryLoader (class in ctypes)

 		license (built-in variable)

 		LifoQueue (class in Queue)

 		light-weight processes

 		limit_denominator() (fractions.Fraction method)

 		lin2adpcm() (in module audioop)

 		lin2alaw() (in module audioop)

 		lin2lin() (in module audioop)

 		lin2ulaw() (in module audioop)

 		line continuation

 		line joining, [1]

 		line structure

 		line() (msilib.Dialog method)

 		line-buffered I/O

 		line_buffering (io.TextIOWrapper attribute)

 		line_num (csv.csvreader attribute)

 		linecache (module)

 		lineno (ast.AST attribute)

 		

 		(doctest.DocTest attribute)

 		(doctest.Example attribute)

 		(pyclbr.Class attribute)

 		(pyclbr.Function attribute)

 		(shlex.shlex attribute)

 		(xml.parsers.expat.ExpatError attribute)

 		lineno() (in module fileinput)

 		LINES, [1], [2]

 		linesep (in module os)

 		lineterminator (csv.Dialect attribute)

 		link() (distutils.ccompiler.CCompiler method)

 		

 		(in module os)

 		link_executable() (distutils.ccompiler.CCompiler method)

 		link_shared_lib() (distutils.ccompiler.CCompiler method)

 		link_shared_object() (distutils.ccompiler.CCompiler method)

 		linkmodel (in module MacOS)

 		linkname (tarfile.TarInfo attribute)

 		linux_distribution() (in module platform)

 		list

 		

 		assignment, target

 		comprehensions, [1]

 		deletion target

 		display

 		empty

 		expression, [1], [2]

 		object, [1], [2], [3], [4], [5], [6], [7], [8]

 		target, [1]

 		type, operations on

 		list (built-in class)

 		list comprehension

 		list() (imaplib.IMAP4 method)

 		

 		(multiprocessing.managers.SyncManager method)

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		(tarfile.TarFile method)

 		LIST_APPEND (opcode)

 		list_dialects() (in module csv)

 		list_folders() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		listallfolders() (mhlib.MH method)

 		listallsubfolders() (mhlib.MH method)

 		listdir() (in module dircache)

 		

 		(in module os)

 		listen() (asyncore.dispatcher method)

 		

 		(in module logging.config)

 		(in module turtle)

 		(socket.socket method)

 		Listener (class in multiprocessing.connection)

 		listfolders() (mhlib.MH method)

 		listmessages() (mhlib.Folder method)

 		listMethods() (xmlrpclib.ServerProxy.system method)

 		ListNoteBook (class in Tix)

 		listsubfolders() (mhlib.MH method)

 		ListType (in module types)

 		literal, [1]

 		literal_eval() (in module ast)

 		

 		
 literals

 		

 		complex number

 		floating point

 		hexadecimal

 		integer

 		long integer

 		numeric

 		octal

 		LittleEndianStructure (class in ctypes)

 		ljust() (in module string)

 		

 		(str method)

 		LK_LOCK (in module msvcrt)

 		LK_NBLCK (in module msvcrt)

 		LK_NBRLCK (in module msvcrt)

 		LK_RLCK (in module msvcrt)

 		LK_UNLCK (in module msvcrt)

 		LMTP (class in smtplib)

 		ln() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		LNAME

 		lngettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		load() (Cookie.BaseCookie method)

 		

 		(cookielib.FileCookieJar method)

 		(in module hotshot.stats)

 		(in module json)

 		(in module marshal)

 		(in module pickle)

 		(pickle.Unpickler method)

 		LOAD_ATTR (opcode)

 		load_cert_chain() (ssl.SSLContext method)

 		LOAD_CLOSURE (opcode)

 		load_compiled() (in module imp)

 		LOAD_CONST (opcode)

 		load_default_certs() (ssl.SSLContext method)

 		LOAD_DEREF (opcode)

 		load_dh_params() (ssl.SSLContext method)

 		load_dynamic() (in module imp)

 		load_extension() (sqlite3.Connection method)

 		LOAD_FAST (opcode)

 		LOAD_GLOBAL (opcode)

 		load_global() (pickle protocol)

 		LOAD_LOCALS (opcode)

 		
 load_module

 		

 		loader

 		load_module() (in module imp)

 		

 		(zipimport.zipimporter method)

 		LOAD_NAME (opcode)

 		load_source() (in module imp)

 		load_verify_locations() (ssl.SSLContext method)

 		loader, [1]

 		

 		load_module

 		LoadError

 		LoadKey() (in module _winreg)

 		LoadLibrary() (ctypes.LibraryLoader method)

 		loads() (in module json)

 		

 		(in module marshal)

 		(in module pickle)

 		(in module xmlrpclib)

 		loadTestsFromModule() (unittest.TestLoader method)

 		loadTestsFromName() (unittest.TestLoader method)

 		loadTestsFromNames() (unittest.TestLoader method)

 		loadTestsFromTestCase() (unittest.TestLoader method)

 		local (class in threading)

 		localcontext() (in module decimal)

 		LOCALE (in module re)

 		locale (module)

 		localeconv() (in module locale)

 		LocaleHTMLCalendar (class in calendar)

 		LocaleTextCalendar (class in calendar)

 		localName (xml.dom.Attr attribute)

 		

 		(xml.dom.Node attribute)

 		
 locals

 		

 		built-in function

 		locals() (built-in function)

 		localtime() (in module time)

 		Locator (class in xml.sax.xmlreader)

 		Lock (class in multiprocessing)

 		Lock() (in module threading)

 		lock() (mailbox.Babyl method)

 		

 		(mailbox.MH method)

 		(mailbox.MMDF method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mailbox.mbox method)

 		Lock() (multiprocessing.managers.SyncManager method)

 		lock() (mutex.mutex method)

 		

 		(posixfile.posixfile method)

 		lock, interpreter

 		lock_held() (in module imp)

 		locked() (thread.lock method)

 		lockf() (in module fcntl)

 		locking() (in module msvcrt)

 		LockType (in module thread)

 		log() (in module cmath)

 		

 		(in module logging)

 		(in module math)

 		(logging.Logger method)

 		log10() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module cmath)

 		(in module math)

 		log1p() (in module math)

 		log_date_time_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_error() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_exception() (wsgiref.handlers.BaseHandler method)

 		log_message() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_request() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_to_stderr() (in module multiprocessing)

 		logb() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		Logger (class in logging)

 		LoggerAdapter (class in logging)

 		
 logging

 		

 		Errors

 		logging (module)

 		logging.config (module)

 		logging.handlers (module)

 		Logical (class in aetypes)

 		logical line

 		logical_and() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		logical_invert() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		logical_or() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		logical_xor() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		login() (ftplib.FTP method)

 		

 		(imaplib.IMAP4 method)

 		(smtplib.SMTP method)

 		login_cram_md5() (imaplib.IMAP4 method)

 		LOGNAME, [1]

 		lognormvariate() (in module random)

 		logout() (imaplib.IMAP4 method)

 		LogRecord (class in logging)

 		
 long

 		

 		built-in function, [1], [2], [3]

 		integer division

 		integer literals

 		long (2to3 fixer)

 		

 		(built-in class)

 		
 long integer

 		

 		object, [1], [2]

 		long integer literal

 		long_info (in module sys)

 		LONG_MAX, [1]

 		longMessage (unittest.TestCase attribute)

 		longname() (in module curses)

 		LongType (in module types)

 		

 		(in modules types)

 		lookup() (in module codecs)

 		

 		(in module unicodedata)

 		(symtable.SymbolTable method)

 		(ttk.Style method)

 		lookup_error() (in module codecs)

 		LookupError

 		
 loop

 		

 		over mutable sequence

 		statement, [1], [2], [3]

 		
 loop control

 		

 		target

 		loop() (in module asyncore)

 		lower() (in module string)

 		

 		(str method)

 		lowercase (in module string)

 		LPAR (in module token)

 		lseek() (in module os)

 		lshift() (in module operator)

 		LSQB (in module token)

 		lstat() (in module os)

 		lstrip() (in module string)

 		

 		(str method)

 		lsub() (imaplib.IMAP4 method)

 		lt() (in module operator)

 		

 		(in module turtle)

 		Lundh, Fredrik

 		LWPCookieJar (class in cookielib)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-X.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – X

 		

 		X (in module re)

 		X509 certificate

 		X_OK (in module os)

 		xatom() (imaplib.IMAP4 method)

 		xcor() (in module turtle)

 		XDR, [1]

 		xdrlib (module)

 		xgtitle() (nntplib.NNTP method)

 		xhdr() (nntplib.NNTP method)

 		XHTML

 		XHTML_NAMESPACE (in module xml.dom)

 		xml (module)

 		XML() (in module xml.etree.ElementTree)

 		xml.dom (module)

 		xml.dom.minidom (module)

 		xml.dom.pulldom (module)

 		xml.etree.ElementTree (module)

 		xml.parsers.expat (module)

 		xml.sax (module)

 		xml.sax.handler (module)

 		xml.sax.saxutils (module)

 		xml.sax.xmlreader (module)

 		

 		XML_NAMESPACE (in module xml.dom)

 		xmlcharrefreplace_errors() (in module codecs)

 		XmlDeclHandler() (xml.parsers.expat.xmlparser method)

 		XMLFilterBase (class in xml.sax.saxutils)

 		XMLGenerator (class in xml.sax.saxutils)

 		XMLID() (in module xml.etree.ElementTree)

 		XMLNS_NAMESPACE (in module xml.dom)

 		XMLParser (class in xml.etree.ElementTree)

 		XMLParserType (in module xml.parsers.expat)

 		XMLReader (class in xml.sax.xmlreader)

 		xmlrpclib (module)

 		
 xor

 		

 		bitwise

 		xor() (in module operator)

 		xover() (nntplib.NNTP method)

 		xpath() (nntplib.NNTP method)

 		
 xrange

 		

 		built-in function

 		object, [1]

 		xrange (2to3 fixer)

 		xrange() (built-in function)

 		XRangeType (in module types)

 		xreadlines (2to3 fixer)

 		xreadlines() (bz2.BZ2File method)

 		

 		(file method)

 		xview() (ttk.Treeview method)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-G.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – G

 		

 		G.722

 		gaierror

 		gamma() (in module math)

 		gammavariate() (in module random)

 		garbage (in module gc)

 		garbage collection, [1]

 		gather() (curses.textpad.Textbox method)

 		gauss() (in module random)

 		gc (module)

 		gcd() (in module fractions)

 		
 gdbm

 		

 		module, [1], [2]

 		gdbm (module)

 		ge() (in module operator)

 		gen_lib_options() (in module distutils.ccompiler)

 		gen_preprocess_options() (in module distutils.ccompiler)

 		gen_uuid() (in module msilib)

 		generate_help() (distutils.fancy_getopt.FancyGetopt method)

 		generate_tokens() (in module tokenize)

 		generator, [1]

 		

 		expression

 		function, [1], [2]

 		iterator, [1]

 		object, [1], [2]

 		Generator (class in email.generator)

 		generator expression, [1]

 		GeneratorExit

 		

 		exception

 		GeneratorType (in module types)

 		
 generic

 		

 		special attribute

 		generic_visit() (ast.NodeVisitor method)

 		genops() (in module pickletools)

 		gensuitemodule (module)

 		get() (ConfigParser.ConfigParser method)

 		

 		(ConfigParser.RawConfigParser method)

 		(Queue.Queue method)

 		(dict method)

 		(email.message.Message method)

 		(in module webbrowser)

 		(mailbox.Mailbox method)

 		(multiprocessing.Queue method)

 		(multiprocessing.multiprocessing.queues.SimpleQueue method)

 		(multiprocessing.pool.AsyncResult method)

 		(ossaudiodev.oss_mixer_device method)

 		(rfc822.Message method)

 		(ttk.Combobox method)

 		(xml.etree.ElementTree.Element method)

 		get_all() (email.message.Message method)

 		

 		(wsgiref.headers.Headers method)

 		get_all_breaks() (bdb.Bdb method)

 		get_app() (wsgiref.simple_server.WSGIServer method)

 		get_archive_formats() (in module shutil)

 		get_begidx() (in module readline)

 		get_body_encoding() (email.charset.Charset method)

 		get_boundary() (email.message.Message method)

 		get_break() (bdb.Bdb method)

 		get_breaks() (bdb.Bdb method)

 		get_buffer() (xdrlib.Packer method)

 		

 		(xdrlib.Unpacker method)

 		get_ca_certs() (ssl.SSLContext method), [1]

 		get_channel_binding() (ssl.SSLSocket method)

 		get_charset() (email.message.Message method)

 		get_charsets() (email.message.Message method)

 		get_children() (symtable.SymbolTable method)

 		

 		(ttk.Treeview method)

 		get_close_matches() (in module difflib)

 		get_code() (imputil.BuiltinImporter method)

 		

 		(imputil.Importer method)

 		(zipimport.zipimporter method)

 		get_completer() (in module readline)

 		get_completer_delims() (in module readline)

 		get_completion_type() (in module readline)

 		get_config_h_filename() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_config_var() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_config_vars() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_content_charset() (email.message.Message method)

 		get_content_maintype() (email.message.Message method)

 		get_content_subtype() (email.message.Message method)

 		get_content_type() (email.message.Message method)

 		get_count() (in module gc)

 		get_current_history_length() (in module readline)

 		get_data() (in module pkgutil)

 		

 		(urllib2.Request method)

 		(zipimport.zipimporter method)

 		get_date() (mailbox.MaildirMessage method)

 		get_debug() (in module gc)

 		get_default() (argparse.ArgumentParser method)

 		get_default_compiler() (in module distutils.ccompiler)

 		get_default_domain() (in module nis)

 		get_default_type() (email.message.Message method)

 		get_default_verify_paths() (in module ssl)

 		get_dialect() (in module csv)

 		get_directory() (in module fl)

 		get_docstring() (in module ast)

 		get_doctest() (doctest.DocTestParser method)

 		get_endidx() (in module readline)

 		get_environ() (wsgiref.simple_server.WSGIRequestHandler method)

 		get_errno() (in module ctypes)

 		get_examples() (doctest.DocTestParser method)

 		get_field() (string.Formatter method)

 		get_file() (mailbox.Babyl method)

 		

 		(mailbox.MH method)

 		(mailbox.MMDF method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mailbox.mbox method)

 		get_file_breaks() (bdb.Bdb method)

 		get_filename() (email.message.Message method)

 		

 		(in module fl)

 		(zipimport.zipimporter method)

 		get_flags() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		get_folder() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		get_frees() (symtable.Function method)

 		get_from() (mailbox.mboxMessage method)

 		

 		(mailbox.MMDFMessage method)

 		get_full_url() (urllib2.Request method)

 		get_globals() (symtable.Function method)

 		get_grouped_opcodes() (difflib.SequenceMatcher method)

 		get_header() (urllib2.Request method)

 		get_history_item() (in module readline)

 		get_history_length() (in module readline)

 		get_host() (urllib2.Request method)

 		get_id() (symtable.SymbolTable method)

 		get_ident() (in module thread)

 		get_identifiers() (symtable.SymbolTable method)

 		get_importer() (in module pkgutil)

 		get_info() (mailbox.MaildirMessage method)

 		GET_ITER (opcode)

 		get_labels() (mailbox.Babyl method)

 		

 		(mailbox.BabylMessage method)

 		get_last_error() (in module ctypes)

 		get_line_buffer() (in module readline)

 		get_lineno() (symtable.SymbolTable method)

 		get_loader() (in module pkgutil)

 		get_locals() (symtable.Function method)

 		get_logger() (in module multiprocessing)

 		get_magic() (in module imp)

 		get_makefile_filename() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_matching_blocks() (difflib.SequenceMatcher method)

 		get_message() (mailbox.Mailbox method)

 		get_method() (urllib2.Request method)

 		get_methods() (symtable.Class method)

 		get_mouse() (in module fl)

 		get_name() (symtable.Symbol method)

 		

 		(symtable.SymbolTable method)

 		get_namespace() (symtable.Symbol method)

 		get_namespaces() (symtable.Symbol method)

 		get_nonstandard_attr() (cookielib.Cookie method)

 		get_nowait() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		get_objects() (in module gc)

 		get_opcodes() (difflib.SequenceMatcher method)

 		get_option() (optparse.OptionParser method)

 		get_option_group() (optparse.OptionParser method)

 		get_option_order() (distutils.fancy_getopt.FancyGetopt method)

 		get_origin_req_host() (urllib2.Request method)

 		get_osfhandle() (in module msvcrt)

 		get_output_charset() (email.charset.Charset method)

 		get_param() (email.message.Message method)

 		get_parameters() (symtable.Function method)

 		get_params() (email.message.Message method)

 		get_path() (in module sysconfig)

 		get_path_names() (in module sysconfig)

 		get_paths() (in module sysconfig)

 		get_pattern() (in module fl)

 		get_payload() (email.message.Message method)

 		get_platform() (in module distutils.util)

 		

 		(in module sysconfig)

 		get_poly() (in module turtle)

 		get_position() (xdrlib.Unpacker method)

 		get_python_inc() (in module distutils.sysconfig)

 		get_python_lib() (in module distutils.sysconfig)

 		get_python_version() (in module sysconfig)

 		get_recsrc() (ossaudiodev.oss_mixer_device method)

 		get_referents() (in module gc)

 		get_referrers() (in module gc)

 		get_request() (SocketServer.BaseServer method)

 		get_rgbmode() (in module fl)

 		get_scheme() (wsgiref.handlers.BaseHandler method)

 		get_scheme_names() (in module sysconfig)

 		get_selector() (urllib2.Request method)

 		get_sequences() (mailbox.MH method)

 		

 		(mailbox.MHMessage method)

 		get_server() (multiprocessing.managers.BaseManager method)

 		get_server_certificate() (in module ssl)

 		get_socket() (telnetlib.Telnet method)

 		get_source() (zipimport.zipimporter method)

 		get_special_folder_path() (built-in function)

 		get_stack() (bdb.Bdb method)

 		get_starttag_text() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		get_stderr() (wsgiref.handlers.BaseHandler method)

 		

 		(wsgiref.simple_server.WSGIRequestHandler method)

 		get_stdin() (wsgiref.handlers.BaseHandler method)

 		get_string() (mailbox.Mailbox method)

 		get_subdir() (mailbox.MaildirMessage method)

 		get_suffixes() (in module imp)

 		get_symbols() (symtable.SymbolTable method)

 		get_terminator() (asynchat.async_chat method)

 		get_threshold() (in module gc)

 		get_token() (shlex.shlex method)

 		get_type() (symtable.SymbolTable method)

 		

 		(urllib2.Request method)

 		get_unixfrom() (email.message.Message method)

 		get_usage() (optparse.OptionParser method)

 		get_value() (string.Formatter method)

 		get_version() (optparse.OptionParser method)

 		get_visible() (mailbox.BabylMessage method)

 		getabouttext() (FrameWork.Application method)

 		getacl() (imaplib.IMAP4 method)

 		getaddr() (rfc822.Message method)

 		getaddresses() (in module email.utils)

 		getaddrinfo() (in module socket)

 		getaddrlist() (rfc822.Message method)

 		getallmatchingheaders() (rfc822.Message method)

 		getannotation() (imaplib.IMAP4 method)

 		getargspec() (in module inspect)

 		GetArgv() (in module EasyDialogs)

 		getargvalues() (in module inspect)

 		getatime() (in module os.path)

 		getattr() (built-in function)

 		getAttribute() (xml.dom.Element method)

 		getAttributeNode() (xml.dom.Element method)

 		getAttributeNodeNS() (xml.dom.Element method)

 		getAttributeNS() (xml.dom.Element method)

 		GetBase() (xml.parsers.expat.xmlparser method)

 		getbegyx() (curses.window method)

 		getbkgd() (curses.window method)

 		getboolean() (ConfigParser.RawConfigParser method)

 		getByteStream() (xml.sax.xmlreader.InputSource method)

 		getcallargs() (in module inspect)

 		getcanvas() (in module turtle)

 		getcaps() (in module mailcap)

 		getch() (curses.window method)

 		

 		(in module msvcrt)

 		getCharacterStream() (xml.sax.xmlreader.InputSource method)

 		getche() (in module msvcrt)

 		getcheckinterval() (in module sys)

 		getChild() (logging.Logger method)

 		getChildNodes() (compiler.ast.Node method)

 		getChildren() (compiler.ast.Node method)

 		getchildren() (xml.etree.ElementTree.Element method)

 		getclasstree() (in module inspect)

 		GetColor() (in module ColorPicker)

 		GetColumnInfo() (msilib.View method)

 		getColumnNumber() (xml.sax.xmlreader.Locator method)

 		getcomments() (in module inspect)

 		getcompname() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getcomptype() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getContentHandler() (xml.sax.xmlreader.XMLReader method)

 		getcontext() (in module decimal)

 		

 		(mhlib.MH method)

 		GetCreatorAndType() (in module MacOS)

 		getctime() (in module os.path)

 		getcurrent() (mhlib.Folder method)

 		getcwd() (in module os)

 		getcwdu (2to3 fixer)

 		getcwdu() (in module os)

 		getdate() (rfc822.Message method)

 		getdate_tz() (rfc822.Message method)

 		getdecoder() (in module codecs)

 		getdefaultencoding() (in module sys)

 		getdefaultlocale() (in module locale)

 		getdefaulttimeout() (in module socket)

 		getdlopenflags() (in module sys)

 		getdoc() (in module inspect)

 		getDOMImplementation() (in module xml.dom)

 		getDTDHandler() (xml.sax.xmlreader.XMLReader method)

 		getEffectiveLevel() (logging.Logger method)

 		getegid() (in module os)

 		getElementsByTagName() (xml.dom.Document method)

 		

 		(xml.dom.Element method)

 		getElementsByTagNameNS() (xml.dom.Document method)

 		

 		(xml.dom.Element method)

 		getencoder() (in module codecs)

 		getencoding() (mimetools.Message method)

 		getEncoding() (xml.sax.xmlreader.InputSource method)

 		getEntityResolver() (xml.sax.xmlreader.XMLReader method)

 		getenv() (in module os)

 		getErrorHandler() (xml.sax.xmlreader.XMLReader method)

 		

 		GetErrorString() (in module MacOS)

 		geteuid() (in module os)

 		getEvent() (xml.dom.pulldom.DOMEventStream method)

 		getEventCategory() (logging.handlers.NTEventLogHandler method)

 		getEventType() (logging.handlers.NTEventLogHandler method)

 		getException() (xml.sax.SAXException method)

 		getFeature() (xml.sax.xmlreader.XMLReader method)

 		GetFieldCount() (msilib.Record method)

 		getfile() (in module inspect)

 		getfilesystemencoding() (in module sys)

 		getfirst() (cgi.FieldStorage method)

 		getfirstmatchingheader() (rfc822.Message method)

 		getfloat() (ConfigParser.RawConfigParser method)

 		getfmts() (ossaudiodev.oss_audio_device method)

 		getfqdn() (in module socket)

 		getframeinfo() (in module inspect)

 		getframerate() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getfullname() (mhlib.Folder method)

 		getgid() (in module os)

 		getgrall() (in module grp)

 		getgrgid() (in module grp)

 		getgrnam() (in module grp)

 		getgroups() (in module os)

 		getheader() (httplib.HTTPResponse method)

 		

 		(rfc822.Message method)

 		getheaders() (httplib.HTTPResponse method)

 		gethostbyaddr() (in module socket), [1]

 		gethostbyname() (in module socket)

 		gethostbyname_ex() (in module socket)

 		gethostname() (in module socket), [1]

 		getincrementaldecoder() (in module codecs)

 		getincrementalencoder() (in module codecs)

 		getinfo() (zipfile.ZipFile method)

 		getinnerframes() (in module inspect)

 		GetInputContext() (xml.parsers.expat.xmlparser method)

 		getint() (ConfigParser.RawConfigParser method)

 		GetInteger() (msilib.Record method)

 		getitem() (in module operator)

 		getiterator() (xml.etree.ElementTree.Element method)

 		

 		(xml.etree.ElementTree.ElementTree method)

 		getitimer() (in module signal)

 		getkey() (curses.window method)

 		getlast() (mhlib.Folder method)

 		GetLastError() (in module ctypes)

 		getLength() (xml.sax.xmlreader.Attributes method)

 		getLevelName() (in module logging)

 		getline() (in module linecache)

 		getLineNumber() (xml.sax.xmlreader.Locator method)

 		getlist() (cgi.FieldStorage method)

 		getloadavg() (in module os)

 		getlocale() (in module locale)

 		getLogger() (in module logging)

 		getLoggerClass() (in module logging)

 		getlogin() (in module os)

 		getmaintype() (mimetools.Message method)

 		getmark() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getmarkers() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getmaxyx() (curses.window method)

 		getmcolor() (in module fl)

 		getmember() (tarfile.TarFile method)

 		getmembers() (in module inspect)

 		

 		(tarfile.TarFile method)

 		getMessage() (logging.LogRecord method)

 		

 		(xml.sax.SAXException method)

 		getmessagefilename() (mhlib.Folder method)

 		getMessageID() (logging.handlers.NTEventLogHandler method)

 		getmodule() (in module inspect)

 		getmoduleinfo() (in module inspect)

 		getmodulename() (in module inspect)

 		getmouse() (in module curses)

 		getmro() (in module inspect)

 		getmtime() (in module os.path)

 		getname() (chunk.Chunk method)

 		getName() (threading.Thread method)

 		getNameByQName() (xml.sax.xmlreader.AttributesNS method)

 		getnameinfo() (in module socket)

 		getnames() (tarfile.TarFile method)

 		getNames() (xml.sax.xmlreader.Attributes method)

 		getnchannels() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getnframes() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getnode

 		getnode() (in module uuid)

 		getopt (module)

 		getopt() (distutils.fancy_getopt.FancyGetopt method)

 		

 		(in module getopt)

 		GetoptError

 		getouterframes() (in module inspect)

 		getoutput() (in module commands)

 		getpagesize() (in module resource)

 		getparam() (mimetools.Message method)

 		getparams() (aifc.aifc method)

 		

 		(in module al)

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getparyx() (curses.window method)

 		getpass (module)

 		getpass() (in module getpass)

 		GetPassWarning

 		getpath() (mhlib.MH method)

 		getpeercert() (ssl.SSLSocket method)

 		getpeername() (socket.socket method)

 		getpen() (in module turtle)

 		getpgid() (in module os)

 		getpgrp() (in module os)

 		getpid() (in module os)

 		getplist() (mimetools.Message method)

 		getpos() (HTMLParser.HTMLParser method)

 		getppid() (in module os)

 		getpreferredencoding() (in module locale)

 		getprofile() (in module sys)

 		

 		(mhlib.MH method)

 		GetProperty() (msilib.SummaryInformation method)

 		getProperty() (xml.sax.xmlreader.XMLReader method)

 		GetPropertyCount() (msilib.SummaryInformation method)

 		getprotobyname() (in module socket)

 		getproxies() (in module urllib)

 		getPublicId() (xml.sax.xmlreader.InputSource method)

 		

 		(xml.sax.xmlreader.Locator method)

 		getpwall() (in module pwd)

 		getpwnam() (in module pwd)

 		getpwuid() (in module pwd)

 		getQNameByName() (xml.sax.xmlreader.AttributesNS method)

 		getQNames() (xml.sax.xmlreader.AttributesNS method)

 		getquota() (imaplib.IMAP4 method)

 		getquotaroot() (imaplib.IMAP4 method)

 		getrandbits() (in module random)

 		getrawheader() (rfc822.Message method)

 		getreader() (in module codecs)

 		getrecursionlimit() (in module sys)

 		getrefcount() (in module sys)

 		getresgid() (in module os)

 		getresponse() (httplib.HTTPConnection method)

 		getresuid() (in module os)

 		getrlimit() (in module resource)

 		getroot() (xml.etree.ElementTree.ElementTree method)

 		getrusage() (in module resource)

 		getsample() (in module audioop)

 		getsampwidth() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getscreen() (in module turtle)

 		getscrollbarvalues() (FrameWork.ScrolledWindow method)

 		getsequences() (mhlib.Folder method)

 		getsequencesfilename() (mhlib.Folder method)

 		getservbyname() (in module socket)

 		getservbyport() (in module socket)

 		GetSetDescriptorType (in module types)

 		getshapes() (in module turtle)

 		getsid() (in module os)

 		getsignal() (in module signal)

 		getsitepackages() (in module site)

 		getsize() (chunk.Chunk method)

 		

 		(in module os.path)

 		getsizeof() (in module sys)

 		getsizes() (in module imgfile)

 		getslice() (in module operator)

 		getsockname() (socket.socket method)

 		getsockopt() (socket.socket method)

 		getsource() (in module inspect)

 		getsourcefile() (in module inspect)

 		getsourcelines() (in module inspect)

 		getspall() (in module spwd)

 		getspnam() (in module spwd)

 		getstate() (in module random)

 		getstatus() (in module commands)

 		getstatusoutput() (in module commands)

 		getstr() (curses.window method)

 		GetString() (msilib.Record method)

 		getSubject() (logging.handlers.SMTPHandler method)

 		getsubtype() (mimetools.Message method)

 		GetSummaryInformation() (msilib.Database method)

 		getSystemId() (xml.sax.xmlreader.InputSource method)

 		

 		(xml.sax.xmlreader.Locator method)

 		getsyx() (in module curses)

 		gettarinfo() (tarfile.TarFile method)

 		gettempdir() (in module tempfile)

 		gettempprefix() (in module tempfile)

 		getTestCaseNames() (unittest.TestLoader method)

 		gettext (module)

 		gettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		GetTicks() (in module MacOS)

 		gettimeout() (socket.socket method)

 		gettrace() (in module sys)

 		getturtle() (in module turtle)

 		gettype() (mimetools.Message method)

 		getType() (xml.sax.xmlreader.Attributes method)

 		getuid() (in module os)

 		geturl() (urlparse.ParseResult method)

 		getuser() (in module getpass)

 		getuserbase() (in module site)

 		getusersitepackages() (in module site)

 		getvalue() (io.BytesIO method)

 		

 		(StringIO.StringIO method)

 		(io.StringIO method)

 		getValue() (xml.sax.xmlreader.Attributes method)

 		getValueByQName() (xml.sax.xmlreader.AttributesNS method)

 		getwch() (in module msvcrt)

 		getwche() (in module msvcrt)

 		getweakrefcount() (in module weakref)

 		getweakrefs() (in module weakref)

 		getwelcome() (ftplib.FTP method)

 		

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		getwin() (in module curses)

 		getwindowsversion() (in module sys)

 		getwriter() (in module codecs)

 		getyx() (curses.window method)

 		gid (tarfile.TarInfo attribute)

 		GIL, [1]

 		GL (module)

 		gl (module)

 		
 glob

 		

 		module

 		glob (module)

 		glob() (in module glob)

 		

 		(msilib.Directory method)

 		
 global

 		

 		name binding

 		namespace

 		statement, [1], [2]

 		global interpreter lock, [1]

 		
 globals

 		

 		built-in function

 		globals() (built-in function)

 		globs (doctest.DocTest attribute)

 		gmtime() (in module time)

 		gname (tarfile.TarInfo attribute)

 		GNOME

 		GNU_FORMAT (in module tarfile)

 		gnu_getopt() (in module getopt)

 		got (doctest.DocTestFailure attribute)

 		goto() (in module turtle)

 		grammar

 		Graphical User Interface

 		GREATER (in module token)

 		GREATEREQUAL (in module token)

 		Greenwich Mean Time

 		grey22grey() (in module imageop)

 		grey2grey2() (in module imageop)

 		grey2grey4() (in module imageop)

 		grey2mono() (in module imageop)

 		grey42grey() (in module imageop)

 		group() (nntplib.NNTP method)

 		

 		(re.MatchObject method)

 		groupby() (in module itertools)

 		groupdict() (re.MatchObject method)

 		groupindex (re.RegexObject attribute)

 		grouping

 		groups (re.RegexObject attribute)

 		groups() (re.MatchObject method)

 		grp (module)

 		gt() (in module operator)

 		guess_all_extensions() (in module mimetypes)

 		

 		(mimetypes.MimeTypes method)

 		guess_extension() (in module mimetypes)

 		

 		(mimetypes.MimeTypes method)

 		guess_scheme() (in module wsgiref.util)

 		guess_type() (in module mimetypes)

 		

 		(mimetypes.MimeTypes method)

 		GUI

 		gzip (module)

 		GzipFile (class in gzip)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-E.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – E

 		

 		e (in module cmath)

 		

 		(in module math)

 		E2BIG (in module errno)

 		EACCES (in module errno)

 		EADDRINUSE (in module errno)

 		EADDRNOTAVAIL (in module errno)

 		EADV (in module errno)

 		EAFNOSUPPORT (in module errno)

 		EAFP

 		EAGAIN (in module errno)

 		EALREADY (in module errno)

 		east_asian_width() (in module unicodedata)

 		EasyDialogs (module)

 		EBADE (in module errno)

 		EBADF (in module errno)

 		EBADFD (in module errno)

 		EBADMSG (in module errno)

 		EBADR (in module errno)

 		EBADRQC (in module errno)

 		EBADSLT (in module errno)

 		EBCDIC

 		EBFONT (in module errno)

 		EBUSY (in module errno)

 		ECHILD (in module errno)

 		echo() (in module curses)

 		echochar() (curses.window method)

 		ECHRNG (in module errno)

 		ECOMM (in module errno)

 		ECONNABORTED (in module errno)

 		ECONNREFUSED (in module errno)

 		ECONNRESET (in module errno)

 		EDEADLK (in module errno)

 		EDEADLOCK (in module errno)

 		EDESTADDRREQ (in module errno)

 		edit() (curses.textpad.Textbox method)

 		EDOM (in module errno)

 		EDOTDOT (in module errno)

 		EDQUOT (in module errno)

 		EEXIST (in module errno)

 		EFAULT (in module errno)

 		EFBIG (in module errno)

 		effective() (in module bdb)

 		ehlo() (smtplib.SMTP method)

 		ehlo_or_helo_if_needed() (smtplib.SMTP method)

 		EHOSTDOWN (in module errno)

 		EHOSTUNREACH (in module errno)

 		EIDRM (in module errno)

 		EILSEQ (in module errno)

 		EINPROGRESS (in module errno)

 		EINTR (in module errno)

 		EINVAL (in module errno)

 		EIO (in module errno)

 		EISCONN (in module errno)

 		EISDIR (in module errno)

 		EISNAM (in module errno)

 		EL2HLT (in module errno)

 		EL2NSYNC (in module errno)

 		EL3HLT (in module errno)

 		EL3RST (in module errno)

 		Element (class in xml.etree.ElementTree)

 		element_create() (ttk.Style method)

 		element_names() (ttk.Style method)

 		element_options() (ttk.Style method)

 		ElementDeclHandler() (xml.parsers.expat.xmlparser method)

 		elements() (collections.Counter method)

 		ElementTree (class in xml.etree.ElementTree)

 		ELIBACC (in module errno)

 		ELIBBAD (in module errno)

 		ELIBEXEC (in module errno)

 		ELIBMAX (in module errno)

 		ELIBSCN (in module errno)

 		
 elif

 		

 		keyword

 		Ellinghouse, Lance

 		
 Ellipsis

 		

 		object

 		Ellipsis (built-in variable)

 		ELLIPSIS (in module doctest)

 		EllipsisType (in module types)

 		ELNRNG (in module errno)

 		ELOOP (in module errno)

 		
 else

 		

 		dangling

 		keyword, [1], [2], [3], [4]

 		email (module)

 		email.charset (module)

 		email.encoders (module)

 		email.errors (module)

 		email.generator (module)

 		email.header (module)

 		email.iterators (module)

 		email.message (module)

 		email.mime (module)

 		email.parser (module)

 		email.utils (module)

 		EMFILE (in module errno)

 		emit() (logging.FileHandler method)

 		

 		(logging.Handler method)

 		(logging.NullHandler method)

 		(logging.StreamHandler method)

 		(logging.handlers.BufferingHandler method)

 		(logging.handlers.DatagramHandler method)

 		(logging.handlers.HTTPHandler method)

 		(logging.handlers.NTEventLogHandler method)

 		(logging.handlers.RotatingFileHandler method)

 		(logging.handlers.SMTPHandler method)

 		(logging.handlers.SocketHandler method)

 		(logging.handlers.SysLogHandler method)

 		(logging.handlers.TimedRotatingFileHandler method)

 		(logging.handlers.WatchedFileHandler method)

 		EMLINK (in module errno)

 		Empty

 		
 empty

 		

 		list

 		tuple, [1]

 		empty() (multiprocessing.multiprocessing.queues.SimpleQueue method)

 		

 		(Queue.Queue method)

 		(multiprocessing.Queue method)

 		(sched.scheduler method)

 		EMPTY_NAMESPACE (in module xml.dom)

 		emptyline() (cmd.Cmd method)

 		EMSGSIZE (in module errno)

 		EMULTIHOP (in module errno)

 		enable() (bdb.Breakpoint method)

 		

 		(in module cgitb)

 		(in module gc)

 		(profile.Profile method)

 		enable_callback_tracebacks() (in module sqlite3)

 		enable_interspersed_args() (optparse.OptionParser method)

 		enable_load_extension() (sqlite3.Connection method)

 		enable_traversal() (ttk.Notebook method)

 		ENABLE_USER_SITE (in module site)

 		EnableReflectionKey() (in module _winreg)

 		ENAMETOOLONG (in module errno)

 		ENAVAIL (in module errno)

 		enclose() (curses.window method)

 		
 encode

 		

 		Codecs

 		encode() (codecs.Codec method)

 		

 		(codecs.IncrementalEncoder method)

 		(email.header.Header method)

 		(in module base64)

 		(in module codecs)

 		(in module mimetools)

 		(in module quopri)

 		(in module uu)

 		(json.JSONEncoder method)

 		(str method)

 		(xmlrpclib.Binary method)

 		(xmlrpclib.Boolean method)

 		(xmlrpclib.DateTime method)

 		encode_7or8bit() (in module email.encoders)

 		encode_base64() (in module email.encoders)

 		encode_noop() (in module email.encoders)

 		encode_quopri() (in module email.encoders)

 		encode_rfc2231() (in module email.utils)

 		encode_threshold (SimpleXMLRPCServer.SimpleXMLRPCRequestHandler attribute)

 		encoded_header_len() (email.charset.Charset method)

 		EncodedFile() (in module codecs)

 		encodePriority() (logging.handlers.SysLogHandler method)

 		encodestring() (in module base64)

 		

 		(in module quopri)

 		
 encoding

 		

 		base64

 		quoted-printable

 		encoding (exceptions.UnicodeError attribute)

 		

 		(file attribute)

 		ENCODING (in module tarfile)

 		encoding (io.TextIOBase attribute)

 		encoding declarations (source file)

 		encodings.idna (module)

 		encodings.utf_8_sig (module)

 		encodings_map (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		end (exceptions.UnicodeError attribute)

 		end() (re.MatchObject method)

 		

 		(xml.etree.ElementTree.TreeBuilder method)

 		end_fill() (in module turtle)

 		END_FINALLY (opcode)

 		end_group() (fl.form method)

 		end_headers() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		end_marker() (multifile.MultiFile method)

 		end_paragraph() (formatter.formatter method)

 		end_poly() (in module turtle)

 		EndCdataSectionHandler() (xml.parsers.expat.xmlparser method)

 		EndDoctypeDeclHandler() (xml.parsers.expat.xmlparser method)

 		endDocument() (xml.sax.handler.ContentHandler method)

 		endElement() (xml.sax.handler.ContentHandler method)

 		EndElementHandler() (xml.parsers.expat.xmlparser method)

 		endElementNS() (xml.sax.handler.ContentHandler method)

 		endheaders() (httplib.HTTPConnection method)

 		ENDMARKER (in module token)

 		EndNamespaceDeclHandler() (xml.parsers.expat.xmlparser method)

 		endpick() (in module gl)

 		endpos (re.MatchObject attribute)

 		endPrefixMapping() (xml.sax.handler.ContentHandler method)

 		endselect() (in module gl)

 		endswith() (str method)

 		endwin() (in module curses)

 		ENETDOWN (in module errno)

 		ENETRESET (in module errno)

 		ENETUNREACH (in module errno)

 		ENFILE (in module errno)

 		ENOANO (in module errno)

 		ENOBUFS (in module errno)

 		ENOCSI (in module errno)

 		ENODATA (in module errno)

 		ENODEV (in module errno)

 		ENOENT (in module errno)

 		ENOEXEC (in module errno)

 		ENOLCK (in module errno)

 		ENOLINK (in module errno)

 		ENOMEM (in module errno)

 		ENOMSG (in module errno)

 		ENONET (in module errno)

 		ENOPKG (in module errno)

 		ENOPROTOOPT (in module errno)

 		ENOSPC (in module errno)

 		ENOSR (in module errno)

 		ENOSTR (in module errno)

 		ENOSYS (in module errno)

 		ENOTBLK (in module errno)

 		ENOTCONN (in module errno)

 		ENOTDIR (in module errno)

 		ENOTEMPTY (in module errno)

 		ENOTNAM (in module errno)

 		ENOTSOCK (in module errno)

 		ENOTTY (in module errno)

 		ENOTUNIQ (in module errno)

 		ensurepip (module)

 		enter() (sched.scheduler method)

 		enterabs() (sched.scheduler method)

 		entities (xml.dom.DocumentType attribute)

 		EntityDeclHandler() (xml.parsers.expat.xmlparser method)

 		entitydefs (in module htmlentitydefs)

 		EntityResolver (class in xml.sax.handler)

 		Enum (class in aetypes)

 		enum_certificates() (in module ssl)

 		enum_crls() (in module ssl)

 		enumerate() (built-in function)

 		

 		(in module fm)

 		(in module threading)

 		EnumKey() (in module _winreg)

 		enumsubst() (in module aetools)

 		EnumValue() (in module _winreg)

 		environ (in module os)

 		

 		(in module posix)

 		environment

 		
 environment variable

 		

 		%PATH%

 		<protocol>_proxy

 		APPDATA

 		AUDIODEV

 		BROWSER, [1]

 		CC

 		CFLAGS, [1], [2]

 		COLUMNS, [1]

 		COMSPEC, [1]

 		CPP

 		CPPFLAGS

 		DISTUTILS_DEBUG

 		HOME, [1], [2], [3], [4], [5]

 		HOMEDRIVE, [1]

 		HOMEPATH, [1]

 		IDLESTARTUP

 		KDEDIR

 		LANG, [1], [2], [3], [4]

 		LANGUAGE, [1]

 		LC_ALL, [1]

 		LC_MESSAGES, [1]

 		LDCXXSHARED

 		LDFLAGS

 		LINES, [1], [2]

 		LNAME

 		LOGNAME, [1]

 		MIXERDEV

 		PAGER, [1]

 		PATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]

 		PLAT

 		POSIXLY_CORRECT

 		PYTHON*

 		PYTHONCASEOK, [1]

 		PYTHONDEBUG, [1]

 		PYTHONDOCS

 		PYTHONDONTWRITEBYTECODE, [1], [2], [3], [4]

 		PYTHONDUMPREFS, [1]

 		PYTHONEXECUTABLE

 		PYTHONHASHSEED, [1], [2]

 		PYTHONHOME, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 		PYTHONHTTPSVERIFY

 		PYTHONINSPECT, [1], [2]

 		PYTHONIOENCODING, [1]

 		PYTHONMALLOCSTATS

 		PYTHONNOUSERSITE, [1], [2], [3]

 		PYTHONOPTIMIZE, [1]

 		PYTHONPATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]

 		PYTHONSTARTUP, [1], [2], [3], [4], [5], [6], [7]

 		PYTHONTHREADDEBUG

 		PYTHONUNBUFFERED, [1]

 		PYTHONUSERBASE, [1], [2], [3]

 		PYTHONVERBOSE, [1]

 		PYTHONWARNINGS, [1], [2], [3]

 		PYTHONY2K, [1], [2], [3]

 		PYTHON_DOM

 		SystemRoot

 		TCL_LIBRARY

 		TEMP

 		TERM, [1]

 		TIX_LIBRARY

 		TK_LIBRARY

 		TMP, [1]

 		TMPDIR, [1]

 		TZ, [1], [2], [3], [4]

 		USER

 		USERNAME

 		USERPROFILE, [1]

 		USER_BASE

 		Wimp$ScrapDir

 		exec_prefix, [1], [2]

 		ftp_proxy

 		http_proxy, [1], [2], [3]

 		no_proxy, [1]

 		prefix, [1], [2], [3]

 		
 environment variables

 		

 		deleting

 		setting

 		EnvironmentError

 		EnvironmentVarGuard (class in test.test_support)

 		ENXIO (in module errno)

 		eof (shlex.shlex attribute)

 		EOFError

 		

 		(built-in exception)

 		EOPNOTSUPP (in module errno)

 		EOVERFLOW (in module errno)

 		EPERM (in module errno)

 		

 		EPFNOSUPPORT (in module errno)

 		epilogue (email.message.Message attribute)

 		EPIPE (in module errno)

 		epoch

 		epoll() (in module select)

 		EPROTO (in module errno)

 		EPROTONOSUPPORT (in module errno)

 		EPROTOTYPE (in module errno)

 		eq() (in module operator)

 		EQEQUAL (in module token)

 		EQUAL (in module token)

 		ERA (in module locale)

 		ERA_D_FMT (in module locale)

 		ERA_D_T_FMT (in module locale)

 		ERA_T_FMT (in module locale)

 		ERANGE (in module errno)

 		erase() (curses.window method)

 		erasechar() (in module curses)

 		EREMCHG (in module errno)

 		EREMOTE (in module errno)

 		EREMOTEIO (in module errno)

 		ERESTART (in module errno)

 		erf() (in module math)

 		erfc() (in module math)

 		EROFS (in module errno)

 		ERR (in module curses)

 		errcheck (ctypes._FuncPtr attribute)

 		errcode (xmlrpclib.ProtocolError attribute)

 		errmsg (xmlrpclib.ProtocolError attribute)

 		
 errno

 		

 		module, [1]

 		errno (module)

 		Error, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]

 		error, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]

 		ERROR (in module cd)

 		error handling

 		error() (argparse.ArgumentParser method)

 		

 		(in module logging)

 		(logging.Logger method)

 		(mhlib.Folder method)

 		(mhlib.MH method)

 		(urllib2.OpenerDirector method)

 		(xml.sax.handler.ErrorHandler method)

 		error_body (wsgiref.handlers.BaseHandler attribute)

 		error_content_type (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		error_headers (wsgiref.handlers.BaseHandler attribute)

 		error_leader() (shlex.shlex method)

 		error_message_format (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		error_output() (wsgiref.handlers.BaseHandler method)

 		error_perm

 		error_proto, [1]

 		error_reply

 		error_status (wsgiref.handlers.BaseHandler attribute)

 		error_temp

 		ErrorByteIndex (xml.parsers.expat.xmlparser attribute)

 		errorcode (in module errno)

 		ErrorCode (xml.parsers.expat.xmlparser attribute)

 		ErrorColumnNumber (xml.parsers.expat.xmlparser attribute)

 		ErrorHandler (class in xml.sax.handler)

 		ErrorLineNumber (xml.parsers.expat.xmlparser attribute)

 		
 Errors

 		

 		logging

 		errors

 		

 		(file attribute)

 		(io.TextIOBase attribute)

 		(unittest.TestResult attribute)

 		ErrorString() (in module xml.parsers.expat)

 		ERRORTOKEN (in module token)

 		escape (shlex.shlex attribute)

 		escape sequence

 		escape() (in module cgi)

 		

 		(in module re)

 		(in module xml.sax.saxutils)

 		escapechar (csv.Dialect attribute)

 		escapedquotes (shlex.shlex attribute)

 		ESHUTDOWN (in module errno)

 		ESOCKTNOSUPPORT (in module errno)

 		ESPIPE (in module errno)

 		ESRCH (in module errno)

 		ESRMNT (in module errno)

 		ESTALE (in module errno)

 		ESTRPIPE (in module errno)

 		ETIME (in module errno)

 		ETIMEDOUT (in module errno)

 		Etiny() (decimal.Context method)

 		ETOOMANYREFS (in module errno)

 		Etop() (decimal.Context method)

 		ETXTBSY (in module errno)

 		EUCLEAN (in module errno)

 		EUNATCH (in module errno)

 		EUSERS (in module errno)

 		
 eval

 		

 		built-in function, [1], [2], [3], [4], [5], [6], [7]

 		eval() (built-in function)

 		
 evaluation

 		

 		order

 		Event (class in multiprocessing)

 		

 		(class in threading)

 		event scheduling

 		event() (msilib.Control method)

 		Event() (multiprocessing.managers.SyncManager method)

 		events (widgets)

 		EWOULDBLOCK (in module errno)

 		EX_CANTCREAT (in module os)

 		EX_CONFIG (in module os)

 		EX_DATAERR (in module os)

 		EX_IOERR (in module os)

 		EX_NOHOST (in module os)

 		EX_NOINPUT (in module os)

 		EX_NOPERM (in module os)

 		EX_NOTFOUND (in module os)

 		EX_NOUSER (in module os)

 		EX_OK (in module os)

 		EX_OSERR (in module os)

 		EX_OSFILE (in module os)

 		EX_PROTOCOL (in module os)

 		EX_SOFTWARE (in module os)

 		EX_TEMPFAIL (in module os)

 		EX_UNAVAILABLE (in module os)

 		EX_USAGE (in module os)

 		Example (class in doctest)

 		example (doctest.DocTestFailure attribute)

 		

 		(doctest.UnexpectedException attribute)

 		examples (doctest.DocTest attribute)

 		exc_clear() (in module sys)

 		exc_info (doctest.UnexpectedException attribute)

 		

 		(in module sys)

 		exc_info() (in module sys), [1]

 		exc_msg (doctest.Example attribute)

 		exc_traceback (in module sys), [1], [2], [3], [4]

 		exc_type (in module sys), [1], [2], [3]

 		exc_value (in module sys), [1], [2], [3]

 		excel (class in csv)

 		excel_tab (class in csv)

 		
 except

 		

 		bare

 		keyword

 		statement

 		except (2to3 fixer)

 		excepthook() (in module sys), [1]

 		Exception

 		exception, [1]

 		

 		AssertionError

 		AttributeError

 		GeneratorExit

 		ImportError, [1], [2]

 		NameError

 		RuntimeError

 		StopIteration, [1]

 		TypeError

 		ValueError

 		ZeroDivisionError

 		handler

 		raising

 		EXCEPTION (in module Tkinter)

 		exception handler

 		exception() (in module logging)

 		

 		(logging.Logger method)

 		
 exceptions

 		

 		in CGI scripts

 		module

 		exceptions (module)

 		
 exclusive

 		

 		or

 		EXDEV (in module errno)

 		
 exec

 		

 		statement, [1], [2]

 		exec (2to3 fixer)

 		exec_prefix, [1], [2]

 		EXEC_PREFIX (in module distutils.sysconfig)

 		exec_prefix (in module sys)

 		EXEC_STMT (opcode)

 		
 execfile

 		

 		built-in function, [1]

 		execfile (2to3 fixer)

 		execfile() (built-in function)

 		execl() (in module os)

 		execle() (in module os)

 		execlp() (in module os)

 		execlpe() (in module os)

 		executable (in module sys), [1]

 		executable_filename() (distutils.ccompiler.CCompiler method)

 		execute() (distutils.ccompiler.CCompiler method)

 		

 		(in module distutils.util)

 		Execute() (msilib.View method)

 		execute() (sqlite3.Connection method)

 		

 		(sqlite3.Cursor method)

 		executemany() (sqlite3.Connection method)

 		

 		(sqlite3.Cursor method)

 		executescript() (sqlite3.Connection method)

 		

 		(sqlite3.Cursor method)

 		
 execution

 		

 		frame, [1]

 		restricted

 		stack

 		execution model

 		execv() (in module os)

 		execve() (in module os)

 		execvp() (in module os)

 		execvpe() (in module os)

 		ExFileSelectBox (class in Tix)

 		EXFULL (in module errno)

 		exists() (in module os.path)

 		

 		(ttk.Treeview method)

 		exit (built-in variable)

 		exit()

 		

 		(argparse.ArgumentParser method)

 		(in module sys)

 		(in module thread)

 		exitcode (multiprocessing.Process attribute)

 		exitfunc (2to3 fixer)

 		

 		(in module sys)

 		(in sys)

 		exitonclick() (in module turtle)

 		exp() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module cmath)

 		(in module math)

 		expand() (re.MatchObject method)

 		expand_tabs (textwrap.TextWrapper attribute)

 		ExpandEnvironmentStrings() (in module _winreg)

 		expandNode() (xml.dom.pulldom.DOMEventStream method)

 		expandtabs() (in module string)

 		

 		(str method)

 		expanduser() (in module os.path)

 		expandvars() (in module os.path)

 		Expat

 		ExpatError

 		expect() (telnetlib.Telnet method)

 		expectedFailure() (in module unittest)

 		expectedFailures (unittest.TestResult attribute)

 		expires (cookielib.Cookie attribute)

 		expm1() (in module math)

 		expovariate() (in module random)

 		expr() (in module parser)

 		expression, [1]

 		

 		Conditional

 		conditional

 		generator

 		lambda, [1]

 		list, [1], [2]

 		statement

 		yield

 		expunge() (imaplib.IMAP4 method)

 		extend() (array.array method)

 		

 		(collections.deque method)

 		(list method)

 		(xml.etree.ElementTree.Element method)

 		extend_path() (in module pkgutil)

 		
 extended

 		

 		slicing

 		extended print statement

 		
 extended slice

 		

 		assignment

 		operation

 		extended slicing

 		EXTENDED_ARG (opcode)

 		ExtendedContext (class in decimal)

 		extendleft() (collections.deque method)

 		
 extension

 		

 		module

 		Extension (class in distutils.core)

 		extension module

 		extensions_map (SimpleHTTPServer.SimpleHTTPRequestHandler attribute)

 		External Data Representation, [1]

 		external_attr (zipfile.ZipInfo attribute)

 		ExternalClashError

 		ExternalEntityParserCreate() (xml.parsers.expat.xmlparser method)

 		ExternalEntityRefHandler() (xml.parsers.expat.xmlparser method)

 		extra (zipfile.ZipInfo attribute)

 		extract() (tarfile.TarFile method)

 		

 		(zipfile.ZipFile method)

 		extract_cookies() (cookielib.CookieJar method)

 		extract_stack() (in module traceback)

 		extract_tb() (in module traceback)

 		extract_version (zipfile.ZipInfo attribute)

 		extractall() (tarfile.TarFile method)

 		

 		(zipfile.ZipFile method)

 		ExtractError

 		extractfile() (tarfile.TarFile method)

 		extsep (in module os)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-R.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – R

 		

 		r_eval() (rexec.RExec method)

 		r_exec() (rexec.RExec method)

 		r_execfile() (rexec.RExec method)

 		r_import() (rexec.RExec method)

 		R_OK (in module os)

 		r_open() (rexec.RExec method)

 		r_reload() (rexec.RExec method)

 		r_unload() (rexec.RExec method)

 		radians() (in module math)

 		

 		(in module turtle)

 		RadioButtonGroup (class in msilib)

 		radiogroup() (msilib.Dialog method)

 		radix() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		RADIXCHAR (in module locale)

 		
 raise

 		

 		statement, [1]

 		raise (2to3 fixer)

 		raise an exception

 		RAISE_VARARGS (opcode)

 		
 raising

 		

 		exception

 		RAND_add() (in module ssl)

 		RAND_egd() (in module ssl)

 		RAND_status() (in module ssl)

 		randint() (in module random)

 		random (module)

 		random() (in module random)

 		randrange() (in module random)

 		
 range

 		

 		built-in function

 		Range (class in aetypes)

 		range() (built-in function)

 		ratecv() (in module audioop)

 		ratio() (difflib.SequenceMatcher method)

 		Rational (class in numbers)

 		raw (io.BufferedIOBase attribute)

 		raw input

 		raw string

 		raw() (in module curses)

 		raw_decode() (json.JSONDecoder method)

 		
 raw_input

 		

 		built-in function, [1]

 		raw_input (2to3 fixer)

 		raw_input() (built-in function)

 		

 		(code.InteractiveConsole method)

 		RawArray() (in module multiprocessing.sharedctypes)

 		RawConfigParser (class in ConfigParser)

 		RawDescriptionHelpFormatter (class in argparse)

 		RawIOBase (class in io)

 		RawPen (class in turtle)

 		RawTextHelpFormatter (class in argparse)

 		RawTurtle (class in turtle)

 		RawValue() (in module multiprocessing.sharedctypes)

 		RBRACE (in module token)

 		
 re

 		

 		module, [1], [2]

 		re (module)

 		

 		(re.MatchObject attribute)

 		read() (array.array method)

 		

 		(ConfigParser.RawConfigParser method)

 		(bz2.BZ2File method)

 		(chunk.Chunk method)

 		(codecs.StreamReader method)

 		(file method)

 		(httplib.HTTPResponse method)

 		(imaplib.IMAP4 method)

 		(in module imgfile)

 		(in module os)

 		(io.BufferedIOBase method)

 		(io.BufferedReader method)

 		(io.RawIOBase method)

 		(io.TextIOBase method)

 		(mimetypes.MimeTypes method)

 		(mmap.mmap method)

 		(multifile.MultiFile method)

 		(ossaudiodev.oss_audio_device method)

 		(robotparser.RobotFileParser method)

 		(zipfile.ZipFile method)

 		read1() (io.BufferedIOBase method)

 		

 		(io.BufferedReader method)

 		(io.BytesIO method)

 		read_all() (telnetlib.Telnet method)

 		read_byte() (mmap.mmap method)

 		read_eager() (telnetlib.Telnet method)

 		read_history_file() (in module readline)

 		read_init_file() (in module readline)

 		read_lazy() (telnetlib.Telnet method)

 		read_mime_types() (in module mimetypes)

 		READ_RESTRICTED

 		read_sb_data() (telnetlib.Telnet method)

 		read_some() (telnetlib.Telnet method)

 		read_token() (shlex.shlex method)

 		read_until() (telnetlib.Telnet method)

 		read_very_eager() (telnetlib.Telnet method)

 		read_very_lazy() (telnetlib.Telnet method)

 		read_windows_registry() (mimetypes.MimeTypes method)

 		READABLE (in module Tkinter)

 		readable() (asyncore.dispatcher method)

 		

 		(io.IOBase method)

 		readall() (io.RawIOBase method)

 		readbufferproc (C type)

 		reader() (in module csv)

 		ReadError

 		readfp() (ConfigParser.RawConfigParser method)

 		

 		(mimetypes.MimeTypes method)

 		readframes() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		readinto() (io.BufferedIOBase method)

 		

 		(io.RawIOBase method)

 		
 readline

 		

 		module

 		readline (module)

 		readline() (bz2.BZ2File method)

 		

 		(codecs.StreamReader method)

 		(distutils.text_file.TextFile method)

 		(file method), [1]

 		(imaplib.IMAP4 method)

 		(io.IOBase method)

 		(io.TextIOBase method)

 		(mmap.mmap method)

 		(multifile.MultiFile method)

 		readlines() (bz2.BZ2File method)

 		

 		(codecs.StreamReader method)

 		(distutils.text_file.TextFile method)

 		(file method)

 		(io.IOBase method)

 		(multifile.MultiFile method)

 		readlink() (in module os)

 		readmodule() (in module pyclbr)

 		readmodule_ex() (in module pyclbr)

 		READONLY

 		readonly (memoryview attribute)

 		readPlist() (in module plistlib)

 		readPlistFromResource() (in module plistlib)

 		readPlistFromString() (in module plistlib)

 		readscaled() (in module imgfile)

 		READY (in module cd)

 		ready() (multiprocessing.pool.AsyncResult method)

 		Real (class in numbers)

 		real (numbers.Complex attribute)

 		Real Media File Format

 		real_quick_ratio() (difflib.SequenceMatcher method)

 		realloc()

 		realpath() (in module os.path)

 		reason (exceptions.UnicodeError attribute)

 		

 		(httplib.HTTPResponse attribute)

 		(ssl.SSLError attribute)

 		(urllib2.HTTPError attribute)

 		(urllib2.URLError attribute)

 		reattach() (ttk.Treeview method)

 		
 rebinding

 		

 		name

 		reccontrols() (ossaudiodev.oss_mixer_device method)

 		recent() (imaplib.IMAP4 method)

 		rect() (in module cmath)

 		rectangle() (in module curses.textpad)

 		
 recursive

 		

 		object

 		recv() (asyncore.dispatcher method)

 		

 		(multiprocessing.Connection method)

 		(socket.socket method)

 		recv_bytes() (multiprocessing.Connection method)

 		recv_bytes_into() (multiprocessing.Connection method)

 		recv_into() (socket.socket method)

 		recvfrom() (socket.socket method)

 		recvfrom_into() (socket.socket method)

 		redirect_request() (urllib2.HTTPRedirectHandler method)

 		redisplay() (in module readline)

 		redraw_form() (fl.form method)

 		redrawln() (curses.window method)

 		redrawwin() (curses.window method)

 		reduce (2to3 fixer)

 		reduce() (built-in function)

 		

 		(in module functools)

 		ref (class in weakref)

 		
 reference

 		

 		attribute

 		reference count

 		reference counting

 		ReferenceError, [1]

 		ReferenceType (in module weakref)

 		refilemessages() (mhlib.Folder method)

 		refresh() (curses.window method)

 		REG_BINARY (in module _winreg)

 		REG_DWORD (in module _winreg)

 		REG_DWORD_BIG_ENDIAN (in module _winreg)

 		REG_DWORD_LITTLE_ENDIAN (in module _winreg)

 		REG_EXPAND_SZ (in module _winreg)

 		REG_FULL_RESOURCE_DESCRIPTOR (in module _winreg)

 		REG_LINK (in module _winreg)

 		REG_MULTI_SZ (in module _winreg)

 		REG_NONE (in module _winreg)

 		REG_RESOURCE_LIST (in module _winreg)

 		REG_RESOURCE_REQUIREMENTS_LIST (in module _winreg)

 		REG_SZ (in module _winreg)

 		RegexObject (class in re)

 		register() (abc.ABCMeta method)

 		

 		(in module atexit)

 		(in module codecs)

 		(in module webbrowser)

 		(multiprocessing.managers.BaseManager method)

 		(select.epoll method)

 		(select.poll method)

 		register_adapter() (in module sqlite3)

 		register_archive_format() (in module shutil)

 		register_converter() (in module sqlite3)

 		register_dialect() (in module csv)

 		register_error() (in module codecs)

 		register_function() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_instance() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_introspection_functions() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_multicall_functions() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_namespace() (in module xml.etree.ElementTree)

 		register_optionflag() (in module doctest)

 		register_shape() (in module turtle)

 		registerDOMImplementation() (in module xml.dom)

 		registerResult() (in module unittest)

 		
 relative

 		

 		URL

 		import

 		release() (in module platform)

 		

 		(logging.Handler method)

 		(multiprocessing.Lock method)

 		(multiprocessing.RLock method)

 		(thread.lock method)

 		(threading.Condition method)

 		(threading.Lock method)

 		(threading.RLock method)

 		(threading.Semaphore method)

 		release_lock() (in module imp)

 		
 reload

 		

 		built-in function, [1], [2], [3]

 		reload() (built-in function)

 		relpath() (in module os.path)

 		remainder() (decimal.Context method)

 		remainder_near() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		remove() (array.array method)

 		

 		(collections.deque method)

 		(in module os)

 		(list method)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(set method)

 		(xml.etree.ElementTree.Element method)

 		remove_flag() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		remove_folder() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		remove_history_item() (in module readline)

 		remove_label() (mailbox.BabylMessage method)

 		remove_option() (ConfigParser.RawConfigParser method)

 		

 		(optparse.OptionParser method)

 		remove_pyc() (msilib.Directory method)

 		remove_section() (ConfigParser.RawConfigParser method)

 		remove_sequence() (mailbox.MHMessage method)

 		remove_tree() (in module distutils.dir_util)

 		removeAttribute() (xml.dom.Element method)

 		removeAttributeNode() (xml.dom.Element method)

 		removeAttributeNS() (xml.dom.Element method)

 		removeChild() (xml.dom.Node method)

 		removedirs() (in module os)

 		removeFilter() (logging.Handler method)

 		

 		(logging.Logger method)

 		removeHandler() (in module unittest)

 		

 		(logging.Logger method)

 		removemessages() (mhlib.Folder method)

 		removeResult() (in module unittest)

 		rename() (ftplib.FTP method)

 		

 		(imaplib.IMAP4 method)

 		(in module os)

 		renames (2to3 fixer)

 		

 		renames() (in module os)

 		reorganize() (in module gdbm)

 		repeat() (in module itertools)

 		

 		(in module operator)

 		(in module timeit)

 		(timeit.Timer method)

 		
 repetition

 		

 		operation

 		replace() (curses.panel.Panel method)

 		

 		(datetime.date method)

 		(datetime.datetime method)

 		(datetime.time method)

 		(in module string)

 		(str method)

 		replace_errors() (in module codecs)

 		replace_header() (email.message.Message method)

 		replace_history_item() (in module readline)

 		replace_whitespace (textwrap.TextWrapper attribute)

 		replaceChild() (xml.dom.Node method)

 		ReplacePackage() (in module modulefinder)

 		report() (filecmp.dircmp method)

 		

 		(modulefinder.ModuleFinder method)

 		REPORT_CDIFF (in module doctest)

 		report_failure() (doctest.DocTestRunner method)

 		report_full_closure() (filecmp.dircmp method)

 		REPORT_NDIFF (in module doctest)

 		REPORT_ONLY_FIRST_FAILURE (in module doctest)

 		report_partial_closure() (filecmp.dircmp method)

 		report_start() (doctest.DocTestRunner method)

 		report_success() (doctest.DocTestRunner method)

 		REPORT_UDIFF (in module doctest)

 		report_unbalanced() (sgmllib.SGMLParser method)

 		report_unexpected_exception() (doctest.DocTestRunner method)

 		REPORTING_FLAGS (in module doctest)

 		
 repr

 		

 		built-in function, [1], [2], [3], [4], [5]

 		repr (2to3 fixer)

 		Repr (class in repr)

 		repr() (built-in function)

 		

 		(in module repr)

 		(repr.Repr method)

 		repr1() (repr.Repr method)

 		
 representation

 		

 		integer

 		Request (class in urllib2)

 		request() (httplib.HTTPConnection method)

 		request_queue_size (SocketServer.BaseServer attribute)

 		request_uri() (in module wsgiref.util)

 		request_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		RequestHandlerClass (SocketServer.BaseServer attribute)

 		requires() (in module test.test_support)

 		reserved (zipfile.ZipInfo attribute)

 		reserved word

 		RESERVED_FUTURE (in module uuid)

 		RESERVED_MICROSOFT (in module uuid)

 		RESERVED_NCS (in module uuid)

 		reset() (bdb.Bdb method)

 		

 		(HTMLParser.HTMLParser method)

 		(codecs.IncrementalDecoder method)

 		(codecs.IncrementalEncoder method)

 		(codecs.StreamReader method)

 		(codecs.StreamWriter method)

 		(in module dircache)

 		(in module turtle), [1]

 		(ossaudiodev.oss_audio_device method)

 		(pipes.Template method)

 		(sgmllib.SGMLParser method)

 		(xdrlib.Packer method)

 		(xdrlib.Unpacker method)

 		(xml.dom.pulldom.DOMEventStream method)

 		(xml.sax.xmlreader.IncrementalParser method)

 		reset_prog_mode() (in module curses)

 		reset_shell_mode() (in module curses)

 		resetbuffer() (code.InteractiveConsole method)

 		resetlocale() (in module locale)

 		resetscreen() (in module turtle)

 		resetty() (in module curses)

 		resetwarnings() (in module warnings)

 		resize() (curses.window method)

 		

 		(in module ctypes)

 		(mmap.mmap method)

 		resize_term() (in module curses)

 		resizemode() (in module turtle)

 		resizeterm() (in module curses)

 		resolution (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		(datetime.timedelta attribute)

 		resolveEntity() (xml.sax.handler.EntityResolver method)

 		resource (module)

 		ResourceDenied

 		response() (imaplib.IMAP4 method)

 		ResponseNotReady

 		responses (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		

 		(in module httplib)

 		restart() (in module findertools)

 		restore() (in module difflib)

 		RESTRICTED

 		
 restricted

 		

 		execution

 		restype (ctypes._FuncPtr attribute)

 		results() (trace.Trace method)

 		retr() (poplib.POP3 method)

 		retrbinary() (ftplib.FTP method)

 		retrieve() (urllib.URLopener method)

 		retrlines() (ftplib.FTP method)

 		
 return

 		

 		statement, [1], [2]

 		return_ok() (cookielib.CookiePolicy method)

 		RETURN_VALUE (opcode)

 		returncode (subprocess.CalledProcessError attribute)

 		

 		(subprocess.Popen attribute)

 		returns_unicode (xml.parsers.expat.xmlparser attribute)

 		
 reverse

 		

 		quotes, [1]

 		reverse() (array.array method)

 		

 		(collections.deque method)

 		(in module audioop)

 		(list method)

 		reverse_order() (pstats.Stats method)

 		reversed() (built-in function)

 		revert() (cookielib.FileCookieJar method)

 		rewind() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		rewindbody() (rfc822.Message method)

 		
 rexec

 		

 		module

 		RExec (class in rexec)

 		rexec (module)

 		
 RFC

 		

 		RFC 1014, [1]

 		RFC 1123

 		RFC 1321, [1]

 		RFC 1422

 		RFC 1521, [1], [2]

 		RFC 1522

 		RFC 1524, [1]

 		RFC 1725

 		RFC 1730

 		RFC 1738

 		RFC 1750

 		RFC 1766, [1]

 		RFC 1808, [1]

 		RFC 1832, [1]

 		RFC 1866

 		RFC 1869, [1]

 		RFC 1894

 		RFC 2033

 		RFC 2045, [1], [2], [3], [4], [5], [6]

 		RFC 2046, [1]

 		RFC 2047, [1], [2], [3], [4]

 		RFC 2060, [1]

 		RFC 2068

 		RFC 2104, [1]

 		RFC 2109, [1], [2], [3], [4], [5], [6]

 		RFC 2231, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 		RFC 2342

 		RFC 2368

 		RFC 2396, [1]

 		RFC 2487

 		RFC 2616, [1], [2], [3], [4]

 		RFC 2732, [1]

 		RFC 2774

 		RFC 2817

 		RFC 2818

 		RFC 2821

 		RFC 2822, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36]

 		RFC 2964

 		RFC 2965, [1], [2], [3]

 		RFC 3207

 		RFC 3229

 		RFC 3280

 		RFC 3454

 		RFC 3490, [1], [2], [3], [4]

 		RFC 3492, [1]

 		RFC 3493

 		RFC 3548, [1], [2], [3]

 		RFC 3986, [1], [2]

 		RFC 4122, [1], [2], [3], [4]

 		RFC 4217

 		RFC 4366

 		RFC 4627, [1]

 		RFC 5246

 		RFC 5280

 		RFC 5929

 		RFC 6066

 		RFC 6125

 		RFC 7159, [1], [2]

 		RFC 7301, [1]

 		RFC 821, [1]

 		RFC 822, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]

 		RFC 854, [1]

 		RFC 959

 		RFC 977

 		rfc2109 (cookielib.Cookie attribute)

 		rfc2109_as_netscape (cookielib.DefaultCookiePolicy attribute)

 		rfc2965 (cookielib.CookiePolicy attribute)

 		
 rfc822

 		

 		module

 		rfc822 (module)

 		rfc822_escape() (in module distutils.util)

 		RFC_4122 (in module uuid)

 		rfile (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		rfind() (in module string)

 		

 		(mmap.mmap method)

 		(str method)

 		rgb_to_hls() (in module colorsys)

 		rgb_to_hsv() (in module colorsys)

 		rgb_to_yiq() (in module colorsys)

 		RGBColor (class in aetypes)

 		right (filecmp.dircmp attribute)

 		right() (in module turtle)

 		right_list (filecmp.dircmp attribute)

 		right_only (filecmp.dircmp attribute)

 		RIGHTSHIFT (in module token)

 		RIGHTSHIFTEQUAL (in module token)

 		rindex() (in module string)

 		

 		(str method)

 		rjust() (in module string)

 		

 		(str method)

 		
 rlcompleter

 		

 		module

 		rlcompleter (module)

 		rlecode_hqx() (in module binascii)

 		rledecode_hqx() (in module binascii)

 		RLIM_INFINITY (in module resource)

 		RLIMIT_AS (in module resource)

 		RLIMIT_CORE (in module resource)

 		RLIMIT_CPU (in module resource)

 		RLIMIT_DATA (in module resource)

 		RLIMIT_FSIZE (in module resource)

 		RLIMIT_MEMLOCK (in module resource)

 		RLIMIT_NOFILE (in module resource)

 		RLIMIT_NPROC (in module resource)

 		RLIMIT_OFILE (in module resource)

 		RLIMIT_RSS (in module resource)

 		RLIMIT_STACK (in module resource)

 		RLIMIT_VMEM (in module resource)

 		RLock (class in multiprocessing)

 		RLock() (in module threading)

 		

 		(multiprocessing.managers.SyncManager method)

 		rmd() (ftplib.FTP method)

 		rmdir() (in module os)

 		RMFF

 		rms() (in module audioop)

 		rmtree() (in module shutil)

 		rnopen() (in module bsddb)

 		RO

 		RobotFileParser (class in robotparser)

 		robotparser (module)

 		robots.txt

 		rollback() (sqlite3.Connection method)

 		ROT_FOUR (opcode)

 		ROT_THREE (opcode)

 		ROT_TWO (opcode)

 		rotate() (collections.deque method)

 		

 		(decimal.Context method)

 		(decimal.Decimal method)

 		RotatingFileHandler (class in logging.handlers)

 		round() (built-in function)

 		Rounded (class in decimal)

 		Row (class in sqlite3)

 		row_factory (sqlite3.Connection attribute)

 		rowcount (sqlite3.Cursor attribute)

 		RPAR (in module token)

 		rpartition() (str method)

 		rpc_paths (SimpleXMLRPCServer.SimpleXMLRPCRequestHandler attribute)

 		rpop() (poplib.POP3 method)

 		rset() (poplib.POP3 method)

 		rshift() (in module operator)

 		rsplit() (in module string)

 		

 		(str method)

 		RSQB (in module token)

 		rstrip() (in module string)

 		

 		(str method)

 		rt() (in module turtle)

 		RTLD_LAZY (in module dl)

 		RTLD_NOW (in module dl)

 		ruler (cmd.Cmd attribute)

 		Run script

 		run() (bdb.Bdb method)

 		

 		(distutils.cmd.Command method)

 		(doctest.DocTestRunner method)

 		(hotshot.Profile method)

 		(in module pdb)

 		(in module profile)

 		(multiprocessing.Process method)

 		(pdb.Pdb method)

 		(profile.Profile method)

 		(sched.scheduler method)

 		(threading.Thread method)

 		(trace.Trace method)

 		(unittest.TestCase method)

 		(unittest.TestSuite method)

 		(wsgiref.handlers.BaseHandler method)

 		run_docstring_examples() (in module doctest)

 		run_module() (in module runpy)

 		run_path() (in module runpy)

 		run_script() (modulefinder.ModuleFinder method)

 		run_setup() (in module distutils.core)

 		run_unittest() (in module test.test_support)

 		runcall() (bdb.Bdb method)

 		

 		(hotshot.Profile method)

 		(in module pdb)

 		(pdb.Pdb method)

 		(profile.Profile method)

 		runcode() (code.InteractiveInterpreter method)

 		runctx() (bdb.Bdb method)

 		

 		(hotshot.Profile method)

 		(in module profile)

 		(profile.Profile method)

 		(trace.Trace method)

 		runeval() (bdb.Bdb method)

 		

 		(in module pdb)

 		(pdb.Pdb method)

 		runfunc() (trace.Trace method)

 		runpy (module)

 		runsource() (code.InteractiveInterpreter method)

 		runtime_library_dir_option() (distutils.ccompiler.CCompiler method)

 		RuntimeError

 		

 		exception

 		runtimemodel (in module MacOS)

 		RuntimeWarning

 		RUSAGE_BOTH (in module resource)

 		RUSAGE_CHILDREN (in module resource)

 		RUSAGE_SELF (in module resource)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-I.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – I

 		

 		I (in module re)

 		
 I/O control

 		

 		POSIX

 		UNIX

 		buffering, [1], [2]

 		tty

 		iadd() (in module operator)

 		iand() (in module operator)

 		IC (class in ic)

 		ic (module)

 		
 icglue

 		

 		module

 		iconcat() (in module operator)

 		icopen (module)

 		
 id

 		

 		built-in function

 		id() (built-in function)

 		

 		(unittest.TestCase method)

 		idcok() (curses.window method)

 		ident (in module cd)

 		

 		(select.kevent attribute)

 		(threading.Thread attribute)

 		identchars (cmd.Cmd attribute)

 		identifier, [1]

 		identify() (ttk.Notebook method)

 		

 		(ttk.Treeview method)

 		(ttk.Widget method)

 		identify_column() (ttk.Treeview method)

 		identify_element() (ttk.Treeview method)

 		identify_region() (ttk.Treeview method)

 		identify_row() (ttk.Treeview method)

 		
 identity

 		

 		test

 		identity of an object

 		idioms (2to3 fixer)

 		idiv() (in module operator)

 		IDLE, [1]

 		idle() (FrameWork.Application method)

 		IDLESTARTUP

 		idlok() (curses.window method)

 		IEEE-754

 		
 if

 		

 		statement, [1]

 		ifilter() (in module itertools)

 		ifilterfalse() (in module itertools)

 		ifloordiv() (in module operator)

 		iglob() (in module glob)

 		ignorableWhitespace() (xml.sax.handler.ContentHandler method)

 		ignore_errors() (in module codecs)

 		IGNORE_EXCEPTION_DETAIL (in module doctest)

 		ignore_patterns() (in module shutil)

 		IGNORECASE (in module re)

 		ihave() (nntplib.NNTP method)

 		
 ihooks

 		

 		module

 		ilshift() (in module operator)

 		im_class (method attribute), [1]

 		im_func (method attribute), [1], [2], [3]

 		im_self (method attribute), [1], [2]

 		imag (numbers.Complex attribute)

 		imageop (module)

 		imaginary literal

 		imap() (in module itertools)

 		

 		(multiprocessing.pool.multiprocessing.Pool method)

 		
 IMAP4

 		

 		protocol

 		IMAP4 (class in imaplib)

 		IMAP4.abort

 		IMAP4.error

 		IMAP4.readonly

 		
 IMAP4_SSL

 		

 		protocol

 		IMAP4_SSL (class in imaplib)

 		
 IMAP4_stream

 		

 		protocol

 		IMAP4_stream (class in imaplib)

 		imap_unordered() (multiprocessing.pool.multiprocessing.Pool method)

 		imaplib (module)

 		imgfile (module)

 		imghdr (module)

 		immedok() (curses.window method)

 		immutable

 		

 		data type

 		object, [1], [2]

 		immutable object

 		
 immutable sequence

 		

 		object

 		
 immutable types

 		

 		subclassing

 		ImmutableSet (class in sets)

 		imod() (in module operator)

 		
 imp

 		

 		module

 		imp (module)

 		ImpImporter (class in pkgutil)

 		ImpLoader (class in pkgutil)

 		
 import

 		

 		statement, [1], [2], [3], [4]

 		import (2to3 fixer)

 		import_file() (imputil.DynLoadSuffixImporter method)

 		import_fresh_module() (in module test.test_support)

 		IMPORT_FROM (opcode)

 		import_module() (in module importlib)

 		

 		(in module test.test_support)

 		IMPORT_NAME (opcode)

 		IMPORT_STAR (opcode)

 		import_top() (imputil.Importer method)

 		importer

 		Importer (class in imputil)

 		ImportError

 		

 		exception, [1], [2]

 		importing

 		importlib (module)

 		ImportManager (class in imputil)

 		imports (2to3 fixer)

 		imports2 (2to3 fixer)

 		ImportWarning

 		ImproperConnectionState

 		imputil (module)

 		imul() (in module operator)

 		
 in

 		

 		keyword

 		operator, [1], [2]

 		in_dll() (ctypes._CData method)

 		in_table_a1() (in module stringprep)

 		in_table_b1() (in module stringprep)

 		in_table_c11() (in module stringprep)

 		in_table_c11_c12() (in module stringprep)

 		in_table_c12() (in module stringprep)

 		in_table_c21() (in module stringprep)

 		in_table_c21_c22() (in module stringprep)

 		in_table_c22() (in module stringprep)

 		in_table_c3() (in module stringprep)

 		in_table_c4() (in module stringprep)

 		in_table_c5() (in module stringprep)

 		in_table_c6() (in module stringprep)

 		in_table_c7() (in module stringprep)

 		in_table_c8() (in module stringprep)

 		in_table_c9() (in module stringprep)

 		in_table_d1() (in module stringprep)

 		in_table_d2() (in module stringprep)

 		inc() (EasyDialogs.ProgressBar method)

 		inch() (curses.window method)

 		
 inclusive

 		

 		or

 		Incomplete

 		IncompleteRead

 		incr_item(), [1]

 		increment_lineno() (in module ast)

 		IncrementalDecoder (class in codecs)

 		IncrementalEncoder (class in codecs)

 		IncrementalNewlineDecoder (class in io)

 		IncrementalParser (class in xml.sax.xmlreader)

 		indent (doctest.Example attribute)

 		INDENT (in module token)

 		INDENT token

 		indentation

 		IndentationError

 		Independent JPEG Group

 		index (in module cd)

 		index operation

 		index() (array.array method)

 		

 		(in module operator)

 		(in module string)

 		(list method)

 		(str method)

 		(ttk.Notebook method)

 		(ttk.Treeview method)

 		IndexError

 		indexOf() (in module operator)

 		IndexSizeErr

 		indices() (slice method)

 		inet_aton() (in module socket)

 		inet_ntoa() (in module socket)

 		inet_ntop() (in module socket)

 		inet_pton() (in module socket)

 		Inexact (class in decimal)

 		infile (shlex.shlex attribute)

 		Infinity, [1]

 		info() (gettext.NullTranslations method)

 		

 		(in module logging)

 		(logging.Logger method)

 		infolist() (zipfile.ZipFile method)

 		InfoScrap() (in module Carbon.Scrap)

 		inheritance

 		ini file

 		init() (in module fm)

 		

 		(in module mimetypes)

 		init_builtin() (in module imp)

 		init_color() (in module curses)

 		init_database() (in module msilib)

 		init_frozen() (in module imp)

 		init_pair() (in module curses)

 		inited (in module mimetypes)

 		initgroups() (in module os)

 		initial_indent (textwrap.TextWrapper attribute)

 		initialize_options() (distutils.cmd.Command method)

 		initscr() (in module curses)

 		INPLACE_ADD (opcode)

 		INPLACE_AND (opcode)

 		INPLACE_DIVIDE (opcode)

 		INPLACE_FLOOR_DIVIDE (opcode)

 		INPLACE_LSHIFT (opcode)

 		INPLACE_MODULO (opcode)

 		INPLACE_MULTIPLY (opcode)

 		INPLACE_OR (opcode)

 		INPLACE_POWER (opcode)

 		INPLACE_RSHIFT (opcode)

 		INPLACE_SUBTRACT (opcode)

 		INPLACE_TRUE_DIVIDE (opcode)

 		INPLACE_XOR (opcode)

 		input

 		

 		built-in function, [1]

 		raw

 		input (2to3 fixer)

 		input() (built-in function)

 		

 		(in module fileinput)

 		input_charset (email.charset.Charset attribute)

 		input_codec (email.charset.Charset attribute)

 		InputOnly (class in Tix)

 		InputSource (class in xml.sax.xmlreader)

 		InputType (in module cStringIO)

 		inquiry (C type)

 		insch() (curses.window method)

 		insdelln() (curses.window method)

 		insert() (array.array method)

 		

 		(list method)

 		(ttk.Notebook method)

 		(ttk.Treeview method)

 		(xml.etree.ElementTree.Element method)

 		insert_text() (in module readline)

 		insertBefore() (xml.dom.Node method)

 		InsertionLoc (class in aetypes)

 		insertln() (curses.window method)

 		insnstr() (curses.window method)

 		insort() (in module bisect)

 		insort_left() (in module bisect)

 		insort_right() (in module bisect)

 		inspect (module)

 		insstr() (curses.window method)

 		install() (gettext.NullTranslations method)

 		

 		(imputil.ImportManager method)

 		(in module gettext)

 		install_opener() (in module urllib2)

 		installaehandler() (MiniAEFrame.AEServer method)

 		installAutoGIL() (in module autoGIL)

 		installHandler() (in module unittest)

 		
 instance

 		

 		call, [1]

 		class

 		object, [1], [2], [3], [4]

 		instance() (in module new)

 		instancemethod() (in module new)

 		InstanceType (in module types)

 		instate() (ttk.Widget method)

 		instr() (curses.window method)

 		instream (shlex.shlex attribute)

 		
 int

 		

 		built-in function, [1], [2]

 		int (built-in class)

 		

 		(uuid.UUID attribute)

 		Int2AP() (in module imaplib)

 		integer

 		

 		division

 		division, long

 		literals

 		literals, long

 		object, [1], [2]

 		representation

 		types, operations on

 		integer division

 		integer literal

 		Integral (class in numbers)

 		Integrated Development Environment

 		Intel/DVI ADPCM

 		interact() (code.InteractiveConsole method)

 		

 		(in module code)

 		(telnetlib.Telnet method)

 		interactive

 		interactive mode

 		InteractiveConsole (class in code)

 		InteractiveInterpreter (class in code)

 		intern (2to3 fixer)

 		intern() (built-in function)

 		internal type

 		internal_attr (zipfile.ZipInfo attribute)

 		Internaldate2tuple() (in module imaplib)

 		

 		internalSubset (xml.dom.DocumentType attribute)

 		Internet

 		Internet Config

 		interpolation, string (%)

 		InterpolationDepthError

 		InterpolationError

 		InterpolationMissingOptionError

 		InterpolationSyntaxError

 		interpreted

 		interpreter

 		interpreter lock

 		interpreter prompts

 		interrupt() (sqlite3.Connection method)

 		interrupt_main() (in module thread)

 		intersection() (set method)

 		intersection_update() (set method)

 		IntlText (class in aetypes)

 		IntlWritingCode (class in aetypes)

 		intro (cmd.Cmd attribute)

 		IntType (in module types)

 		

 		(in modules types)

 		InuseAttributeErr

 		inv() (in module operator)

 		InvalidAccessErr

 		InvalidCharacterErr

 		InvalidModificationErr

 		InvalidOperation (class in decimal)

 		InvalidStateErr

 		InvalidURL

 		inversion

 		invert() (in module operator)

 		invocation

 		io (module)

 		IOBase (class in io)

 		ioctl() (in module fcntl)

 		

 		(socket.socket method)

 		IOError

 		ior() (in module operator)

 		ipow() (in module operator)

 		irepeat() (in module operator)

 		IRIS Font Manager

 		
 IRIX

 		

 		threads

 		irshift() (in module operator)

 		
 is

 		

 		operator, [1]

 		
 is not

 		

 		operator, [1]

 		is_() (in module operator)

 		is_alive() (multiprocessing.Process method)

 		

 		(threading.Thread method)

 		is_assigned() (symtable.Symbol method)

 		is_blocked() (cookielib.DefaultCookiePolicy method)

 		is_builtin() (in module imp)

 		is_canonical() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		IS_CHARACTER_JUNK() (in module difflib)

 		is_data() (multifile.MultiFile method)

 		is_declared_global() (symtable.Symbol method)

 		is_empty() (asynchat.fifo method)

 		is_expired() (cookielib.Cookie method)

 		is_finite() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_free() (symtable.Symbol method)

 		is_frozen() (in module imp)

 		is_global() (symtable.Symbol method)

 		is_hop_by_hop() (in module wsgiref.util)

 		is_imported() (symtable.Symbol method)

 		is_infinite() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_integer() (float method)

 		is_jython (in module test.test_support)

 		IS_LINE_JUNK() (in module difflib)

 		is_linetouched() (curses.window method)

 		is_local() (symtable.Symbol method)

 		is_multipart() (email.message.Message method)

 		is_namespace() (symtable.Symbol method)

 		is_nan() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_nested() (symtable.SymbolTable method)

 		is_normal() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_not() (in module operator)

 		is_not_allowed() (cookielib.DefaultCookiePolicy method)

 		is_optimized() (symtable.SymbolTable method)

 		is_package() (zipimport.zipimporter method)

 		is_parameter() (symtable.Symbol method)

 		is_python_build() (in module sysconfig)

 		is_qnan() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_referenced() (symtable.Symbol method)

 		is_resource_enabled() (in module test.test_support)

 		is_scriptable() (in module gensuitemodule)

 		is_set() (threading.Event method)

 		is_signed() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_snan() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_subnormal() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_tarfile() (in module tarfile)

 		is_term_resized() (in module curses)

 		is_tracked() (in module gc)

 		is_unverifiable() (urllib2.Request method)

 		is_wintouched() (curses.window method)

 		is_zero() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_zipfile() (in module zipfile)

 		isabs() (in module os.path)

 		isabstract() (in module inspect)

 		isAlive() (threading.Thread method)

 		isalnum() (in module curses.ascii)

 		

 		(str method)

 		isalpha() (in module curses.ascii)

 		

 		(str method)

 		isascii() (in module curses.ascii)

 		isatty() (chunk.Chunk method)

 		

 		(file method)

 		(in module os)

 		(io.IOBase method)

 		isblank() (in module curses.ascii)

 		isblk() (tarfile.TarInfo method)

 		isbuiltin() (in module inspect)

 		isCallable() (in module operator)

 		ischr() (tarfile.TarInfo method)

 		isclass() (in module inspect)

 		iscntrl() (in module curses.ascii)

 		iscode() (in module inspect)

 		iscomment() (rfc822.Message method)

 		isctrl() (in module curses.ascii)

 		isDaemon() (threading.Thread method)

 		isdatadescriptor() (in module inspect)

 		isdecimal() (unicode method)

 		isdev() (tarfile.TarInfo method)

 		isdigit() (in module curses.ascii)

 		

 		(str method)

 		isdir() (in module os.path)

 		

 		(tarfile.TarInfo method)

 		isdisjoint() (set method)

 		isdown() (in module turtle)

 		iselement() (in module xml.etree.ElementTree)

 		isenabled() (in module gc)

 		isEnabledFor() (logging.Logger method)

 		isendwin() (in module curses)

 		ISEOF() (in module token)

 		isexpr() (in module parser)

 		

 		(parser.ST method)

 		isfifo() (tarfile.TarInfo method)

 		isfile() (in module os.path)

 		

 		(tarfile.TarInfo method)

 		isfirstline() (in module fileinput)

 		isframe() (in module inspect)

 		isfunction() (in module inspect)

 		isgenerator() (in module inspect)

 		isgeneratorfunction() (in module inspect)

 		isgetsetdescriptor() (in module inspect)

 		isgraph() (in module curses.ascii)

 		isheader() (rfc822.Message method)

 		isinf() (in module cmath)

 		

 		(in module math)

 		isinstance (2to3 fixer)

 		isinstance() (built-in function)

 		iskeyword() (in module keyword)

 		islast() (rfc822.Message method)

 		isleap() (in module calendar)

 		islice() (in module itertools)

 		islink() (in module os.path)

 		islnk() (tarfile.TarInfo method)

 		islower() (in module curses.ascii)

 		

 		(str method)

 		isMappingType() (in module operator)

 		ismemberdescriptor() (in module inspect)

 		ismeta() (in module curses.ascii)

 		ismethod() (in module inspect)

 		ismethoddescriptor() (in module inspect)

 		ismodule() (in module inspect)

 		ismount() (in module os.path)

 		isnan() (in module cmath)

 		

 		(in module math)

 		ISNONTERMINAL() (in module token)

 		isNumberType() (in module operator)

 		isnumeric() (unicode method)

 		isocalendar() (datetime.date method)

 		

 		(datetime.datetime method)

 		isoformat() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		isolation_level (sqlite3.Connection attribute)

 		isoweekday() (datetime.date method)

 		

 		(datetime.datetime method)

 		isprint() (in module curses.ascii)

 		ispunct() (in module curses.ascii)

 		isqueued() (in module fl)

 		isreadable() (in module pprint)

 		

 		(pprint.PrettyPrinter method)

 		isrecursive() (in module pprint)

 		

 		(pprint.PrettyPrinter method)

 		isreg() (tarfile.TarInfo method)

 		isReservedKey() (Cookie.Morsel method)

 		isroutine() (in module inspect)

 		isSameNode() (xml.dom.Node method)

 		isSequenceType() (in module operator)

 		isSet() (threading.Event method)

 		isspace() (in module curses.ascii)

 		

 		(str method)

 		isstdin() (in module fileinput)

 		issubclass() (built-in function)

 		issubset() (set method)

 		issuite() (in module parser)

 		

 		(parser.ST method)

 		issuperset() (set method)

 		issym() (tarfile.TarInfo method)

 		ISTERMINAL() (in module token)

 		istitle() (str method)

 		istraceback() (in module inspect)

 		isub() (in module operator)

 		isupper() (in module curses.ascii)

 		

 		(str method)

 		isvisible() (in module turtle)

 		isxdigit() (in module curses.ascii)

 		
 item

 		

 		sequence

 		string

 		item selection

 		item() (ttk.Treeview method)

 		

 		(xml.dom.NamedNodeMap method)

 		(xml.dom.NodeList method)

 		itemgetter() (in module operator)

 		items() (ConfigParser.ConfigParser method)

 		

 		(ConfigParser.RawConfigParser method)

 		(dict method)

 		(email.message.Message method)

 		(mailbox.Mailbox method)

 		(xml.etree.ElementTree.Element method)

 		itemsize (array.array attribute)

 		

 		(memoryview attribute)

 		ItemsView (class in collections)

 		iter() (built-in function)

 		

 		(xml.etree.ElementTree.Element method)

 		(xml.etree.ElementTree.ElementTree method)

 		iter_child_nodes() (in module ast)

 		iter_fields() (in module ast)

 		iter_importers() (in module pkgutil)

 		iter_modules() (in module pkgutil)

 		iterable

 		Iterable (class in collections)

 		IterableUserDict (class in UserDict)

 		iterator

 		Iterator (class in collections)

 		iterator protocol

 		iterdecode() (in module codecs)

 		iterdump (sqlite3.Connection attribute)

 		iterencode() (in module codecs)

 		

 		(json.JSONEncoder method)

 		iterfind() (xml.etree.ElementTree.Element method)

 		

 		(xml.etree.ElementTree.ElementTree method)

 		iteritems() (dict method)

 		

 		(mailbox.Mailbox method)

 		iterkeyrefs() (weakref.WeakKeyDictionary method)

 		iterkeys() (dict method)

 		

 		(mailbox.Mailbox method)

 		itermonthdates() (calendar.Calendar method)

 		itermonthdays() (calendar.Calendar method)

 		itermonthdays2() (calendar.Calendar method)

 		iterparse() (in module xml.etree.ElementTree)

 		itertext() (xml.etree.ElementTree.Element method)

 		itertools (2to3 fixer)

 		

 		(module)

 		itertools_imports (2to3 fixer)

 		itervaluerefs() (weakref.WeakValueDictionary method)

 		itervalues() (dict method)

 		

 		(mailbox.Mailbox method)

 		iterweekdays() (calendar.Calendar method)

 		ITIMER_PROF (in module signal)

 		ITIMER_REAL (in module signal)

 		ITIMER_VIRTUAL (in module signal)

 		ItimerError

 		itruediv() (in module operator)

 		ixor() (in module operator)

 		izip() (in module itertools)

 		izip_longest() (in module itertools)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-N.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – N

 		

 		N_TOKENS (in module token)

 		name, [1], [2]

 		

 		binding, [1], [2], [3], [4], [5]

 		binding, global

 		class

 		function

 		mangling

 		rebinding

 		unbinding

 		name (cookielib.Cookie attribute)

 		

 		(doctest.DocTest attribute)

 		(file attribute)

 		(in module os)

 		NAME (in module token)

 		name (io.FileIO attribute)

 		

 		(multiprocessing.Process attribute)

 		(ossaudiodev.oss_audio_device attribute)

 		(pyclbr.Class attribute)

 		(pyclbr.Function attribute)

 		(tarfile.TarInfo attribute)

 		(threading.Thread attribute)

 		(xml.dom.Attr attribute)

 		(xml.dom.DocumentType attribute)

 		name() (in module unicodedata)

 		name2codepoint (in module htmlentitydefs)

 		named tuple

 		NamedTemporaryFile() (in module tempfile)

 		namedtuple() (in module collections)

 		NameError

 		

 		exception

 		NameError (built-in exception)

 		namelist() (zipfile.ZipFile method)

 		nameprep() (in module encodings.idna)

 		
 names

 		

 		private

 		namespace, [1]

 		

 		global

 		module

 		Namespace (class in argparse)

 		

 		(class in multiprocessing.managers)

 		namespace() (imaplib.IMAP4 method)

 		Namespace() (multiprocessing.managers.SyncManager method)

 		NAMESPACE_DNS (in module uuid)

 		NAMESPACE_OID (in module uuid)

 		NAMESPACE_URL (in module uuid)

 		NAMESPACE_X500 (in module uuid)

 		NamespaceErr

 		namespaceURI (xml.dom.Node attribute)

 		NaN, [1]

 		NannyNag

 		napms() (in module curses)

 		nargs (optparse.Option attribute)

 		Nav (module)

 		Navigation Services

 		ndiff() (in module difflib)

 		ndim (memoryview attribute)

 		ne (2to3 fixer)

 		ne() (in module operator)

 		neg() (in module operator)

 		negation

 		nested scope

 		nested() (in module contextlib)

 		netrc (class in netrc)

 		

 		(module)

 		NetrcParseError

 		netscape (cookielib.CookiePolicy attribute)

 		Network News Transfer Protocol

 		new (module)

 		new() (in module hmac)

 		

 		(in module md5)

 		(in module sha)

 		new-style class

 		new_alignment() (formatter.writer method)

 		new_compiler() (in module distutils.ccompiler)

 		new_font() (formatter.writer method)

 		new_margin() (formatter.writer method)

 		new_module() (in module imp)

 		new_panel() (in module curses.panel)

 		new_spacing() (formatter.writer method)

 		new_styles() (formatter.writer method)

 		newconfig() (in module al)

 		newer() (in module distutils.dep_util)

 		newer_group() (in module distutils.dep_util)

 		newer_pairwise() (in module distutils.dep_util)

 		newgroups() (nntplib.NNTP method)

 		
 newline

 		

 		suppression

 		NEWLINE (in module token)

 		NEWLINE token, [1]

 		newlines (file attribute)

 		

 		(io.TextIOBase attribute)

 		newnews() (nntplib.NNTP method)

 		newpad() (in module curses)

 		newwin() (in module curses)

 		next (2to3 fixer)

 		next() (bsddb.bsddbobject method)

 		

 		(built-in function)

 		(csv.csvreader method)

 		(dbhash.dbhash method)

 		(file method)

 		(generator method)

 		(iterator method)

 		(mailbox.oldmailbox method)

 		(multifile.MultiFile method)

 		(nntplib.NNTP method)

 		(tarfile.TarFile method)

 		(ttk.Treeview method)

 		next_minus() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		next_plus() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		next_toward() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		nextfile() (in module fileinput)

 		nextkey() (in module gdbm)

 		nextpart() (MimeWriter.MimeWriter method)

 		nextSibling (xml.dom.Node attribute)

 		ngettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		nice() (in module os)

 		nis (module)

 		NIST

 		NL (in module tokenize)

 		nl() (in module curses)

 		nl_langinfo() (in module locale)

 		nlargest() (in module heapq)

 		nlst() (ftplib.FTP method)

 		
 NNTP

 		

 		protocol

 		NNTP (class in nntplib)

 		NNTPDataError

 		NNTPError

 		nntplib (module)

 		NNTPPermanentError

 		NNTPProtocolError

 		NNTPReplyError

 		

 		NNTPTemporaryError

 		no_proxy, [1]

 		nocbreak() (in module curses)

 		NoDataAllowedErr

 		Node (class in compiler.ast)

 		node() (in module platform)

 		nodelay() (curses.window method)

 		nodeName (xml.dom.Node attribute)

 		NodeTransformer (class in ast)

 		nodeType (xml.dom.Node attribute)

 		nodeValue (xml.dom.Node attribute)

 		NodeVisitor (class in ast)

 		NODISC (in module cd)

 		noecho() (in module curses)

 		NOEXPR (in module locale)

 		nofill (htmllib.HTMLParser attribute)

 		nok_builtin_names (rexec.RExec attribute)

 		noload() (pickle.Unpickler method)

 		NoModificationAllowedErr

 		nonblock() (ossaudiodev.oss_audio_device method)

 		
 None

 		

 		object, [1], [2]

 		None (Built-in object)

 		

 		(built-in variable)

 		NoneType (in module types)

 		nonl() (in module curses)

 		nonzero (2to3 fixer)

 		noop() (imaplib.IMAP4 method)

 		

 		(poplib.POP3 method)

 		NoOptionError

 		NOP (opcode)

 		noqiflush() (in module curses)

 		noraw() (in module curses)

 		normalize() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module locale)

 		(in module unicodedata)

 		(xml.dom.Node method)

 		NORMALIZE_WHITESPACE (in module doctest)

 		normalvariate() (in module random)

 		normcase() (in module os.path)

 		normpath() (in module os.path)

 		NoSectionError

 		NoSuchMailboxError

 		
 not

 		

 		operator, [1]

 		
 not in

 		

 		operator, [1], [2]

 		not_() (in module operator)

 		NotANumber

 		notation

 		notationDecl() (xml.sax.handler.DTDHandler method)

 		NotationDeclHandler() (xml.parsers.expat.xmlparser method)

 		notations (xml.dom.DocumentType attribute)

 		NotConnected

 		NoteBook (class in Tix)

 		Notebook (class in ttk)

 		NotEmptyError

 		NOTEQUAL (in module token)

 		NotFoundErr

 		notify() (threading.Condition method)

 		notify_all() (threading.Condition method)

 		notifyAll() (threading.Condition method)

 		notimeout() (curses.window method)

 		
 NotImplemented

 		

 		object

 		NotImplemented (built-in variable)

 		NotImplementedError

 		NotImplementedType (in module types)

 		NotStandaloneHandler() (xml.parsers.expat.xmlparser method)

 		NotSupportedErr

 		noutrefresh() (curses.window method)

 		now() (datetime.datetime class method)

 		NProperty (class in aetypes)

 		NSIG (in module signal)

 		nsmallest() (in module heapq)

 		NT_OFFSET (in module token)

 		NTEventLogHandler (class in logging.handlers)

 		ntohl() (in module socket)

 		ntohs() (in module socket)

 		ntransfercmd() (ftplib.FTP method)

 		
 null

 		

 		operation

 		NullFormatter (class in formatter)

 		NullHandler (class in logging)

 		NullImporter (class in imp)

 		NullTranslations (class in gettext)

 		NullWriter (class in formatter)

 		number

 		

 		complex

 		floating point

 		Number (class in numbers)

 		NUMBER (in module token)

 		number_class() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		numbers (module)

 		numerator (numbers.Rational attribute)

 		
 numeric

 		

 		conversions

 		literals

 		object, [1], [2], [3], [4]

 		types, operations on

 		numeric literal

 		numeric() (in module unicodedata)

 		Numerical Python

 		numliterals (2to3 fixer)

 		nurbscurve() (in module gl)

 		nurbssurface() (in module gl)

 		nvarray() (in module gl)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

index.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 Python 2.7.12 documentation

 Welcome! This is
 the documentation for Python
 2.7.12, last updated Jun 25, 2016.

 Parts of the documentation:

 		
 What's new in Python 2.7?

 or all "What's new" documents since 2.0

 Tutorial

 start here

 Library Reference

 keep this under your pillow

 Language Reference

 describes syntax and language elements

 Python Setup and Usage

 how to use Python on different platforms

 Python HOWTOs

 in-depth documents on specific topics

 		
 Installing Python Modules

 installing from the Python Package Index & other sources

 Distributing Python Modules

 publishing modules for installation by others

 Extending and Embedding

 tutorial for C/C++ programmers

 Python/C API

 reference for C/C++ programmers

 FAQs

 frequently asked questions (with answers!)

 Indices and tables:

 		
 Global Module Index

 quick access to all modules

 General Index

 all functions, classes, terms

 Glossary

 the most important terms explained

 		
 Search page

 search this documentation

 Complete Table of Contents

 lists all sections and subsections

 Meta information:

 		
 Reporting bugs

 About the documentation

 		
 History and License of Python

 Copyright

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-J.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – J

 		

 		Jansen, Jack

 		
 Java

 		

 		language

 		java_ver() (in module platform)

 		JFIF, [1]

 		join() (in module os.path)

 		

 		(Queue.Queue method)

 		(in module string)

 		(multiprocessing.JoinableQueue method)

 		(multiprocessing.Process method)

 		(multiprocessing.pool.multiprocessing.Pool method)

 		(str method)

 		(threading.Thread method)

 		join_thread() (multiprocessing.Queue method)

 		JoinableQueue (class in multiprocessing)

 		joinfields() (in module string)

 		jpeg (module)

 		js_output() (Cookie.BaseCookie method)

 		

 		(Cookie.Morsel method)

 		

 		
 json

 		

 		module

 		json (module)

 		JSONDecoder (class in json)

 		JSONEncoder (class in json)

 		JUMP_ABSOLUTE (opcode)

 		JUMP_FORWARD (opcode)

 		JUMP_IF_FALSE_OR_POP (opcode)

 		JUMP_IF_TRUE_OR_POP (opcode)

 		jumpahead() (in module random)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-W.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – W

 		

 		W (module)

 		W_OK (in module os)

 		wait() (in module os)

 		

 		(multiprocessing.pool.AsyncResult method)

 		(popen2.Popen3 method)

 		(subprocess.Popen method)

 		(threading.Condition method)

 		(threading.Event method)

 		wait3() (in module os)

 		wait4() (in module os)

 		waitpid() (in module os)

 		walk() (email.message.Message method)

 		

 		(in module ast)

 		(in module compiler)

 		(in module compiler.visitor)

 		(in module os)

 		(in module os.path)

 		walk_packages() (in module pkgutil)

 		want (doctest.Example attribute)

 		warn() (distutils.ccompiler.CCompiler method)

 		

 		(distutils.text_file.TextFile method)

 		(in module warnings)

 		warn_explicit() (in module warnings)

 		Warning

 		warning() (in module logging)

 		

 		(logging.Logger method)

 		(xml.sax.handler.ErrorHandler method)

 		warnings

 		

 		(module)

 		WarningsRecorder (class in test.test_support)

 		warnoptions (in module sys)

 		warnpy3k() (in module warnings)

 		wasSuccessful() (unittest.TestResult method)

 		WatchedFileHandler (class in logging.handlers)

 		wave (module)

 		WCONTINUED (in module os)

 		WCOREDUMP() (in module os)

 		WeakKeyDictionary (class in weakref)

 		weakref (module)

 		WeakSet (class in weakref)

 		WeakValueDictionary (class in weakref)

 		webbrowser (module)

 		weekday() (datetime.date method)

 		

 		(datetime.datetime method)

 		(in module calendar)

 		weekheader() (in module calendar)

 		weibullvariate() (in module random)

 		WEXITSTATUS() (in module os)

 		wfile (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		what() (in module imghdr)

 		

 		(in module sndhdr)

 		whathdr() (in module sndhdr)

 		whichdb (module)

 		whichdb() (in module whichdb)

 		
 while

 		

 		statement, [1], [2], [3]

 		whitespace

 		

 		(in module string)

 		(shlex.shlex attribute)

 		whitespace_split (shlex.shlex attribute)

 		whseed() (in module random)

 		WichmannHill (class in random)

 		Widget (class in ttk)

 		width (textwrap.TextWrapper attribute)

 		width() (in module turtle)

 		WIFCONTINUED() (in module os)

 		WIFEXITED() (in module os)

 		WIFSIGNALED() (in module os)

 		WIFSTOPPED() (in module os)

 		Wimp$ScrapDir

 		win32_ver() (in module platform)

 		WinDLL (class in ctypes)

 		window manager (widgets)

 		window() (curses.panel.Panel method)

 		Window() (in module FrameWork)

 		window_height() (in module turtle), [1]

 		window_width() (in module turtle), [1]

 		windowbounds() (in module FrameWork)

 		Windows ini file

 		WindowsError

 		WinError() (in module ctypes)

 		WINFUNCTYPE() (in module ctypes)

 		

 		WinSock

 		winsound (module)

 		winver (in module sys)

 		
 with

 		

 		statement, [1]

 		WITH_CLEANUP (opcode)

 		WMAvailable() (in module MacOS)

 		WNOHANG (in module os)

 		wordchars (shlex.shlex attribute)

 		World Wide Web, [1], [2], [3]

 		wrap() (in module textwrap)

 		

 		(textwrap.TextWrapper method)

 		wrap_socket() (in module ssl)

 		

 		(ssl.SSLContext method)

 		wrap_text() (in module distutils.fancy_getopt)

 		wrapper() (in module curses)

 		wraps() (in module functools)

 		WRITABLE (in module Tkinter)

 		writable() (asyncore.dispatcher method)

 		

 		(io.IOBase method)

 		write() (array.array method)

 		

 		(ConfigParser.RawConfigParser method)

 		(bz2.BZ2File method)

 		(code.InteractiveInterpreter method)

 		(codecs.StreamWriter method)

 		(email.generator.Generator method)

 		(file method)

 		(in module imgfile)

 		(in module os)

 		(in module turtle)

 		(io.BufferedIOBase method)

 		(io.BufferedWriter method)

 		(io.RawIOBase method)

 		(io.TextIOBase method)

 		(mmap.mmap method)

 		(ossaudiodev.oss_audio_device method)

 		(telnetlib.Telnet method)

 		(xml.etree.ElementTree.ElementTree method)

 		(zipfile.ZipFile method)

 		write_byte() (mmap.mmap method)

 		write_docstringdict() (in module turtle)

 		write_file() (in module distutils.file_util)

 		write_history_file() (in module readline)

 		WRITE_RESTRICTED

 		write_results() (trace.CoverageResults method)

 		writeall() (ossaudiodev.oss_audio_device method)

 		writebufferproc (C type)

 		writeframes() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		writeframesraw() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		writeheader() (csv.DictWriter method)

 		writelines() (bz2.BZ2File method)

 		

 		(codecs.StreamWriter method)

 		(file method)

 		(io.IOBase method)

 		writePlist() (in module plistlib)

 		writePlistToResource() (in module plistlib)

 		writePlistToString() (in module plistlib)

 		writepy() (zipfile.PyZipFile method)

 		writer (formatter.formatter attribute)

 		writer() (in module csv)

 		writerow() (csv.csvwriter method)

 		writerows() (csv.csvwriter method)

 		writestr() (zipfile.ZipFile method)

 		writexml() (xml.dom.minidom.Node method)

 		
 writing

 		

 		values, [1]

 		WrongDocumentErr

 		ws_comma (2to3 fixer)

 		wsgi_file_wrapper (wsgiref.handlers.BaseHandler attribute)

 		wsgi_multiprocess (wsgiref.handlers.BaseHandler attribute)

 		wsgi_multithread (wsgiref.handlers.BaseHandler attribute)

 		wsgi_run_once (wsgiref.handlers.BaseHandler attribute)

 		wsgiref (module)

 		wsgiref.handlers (module)

 		wsgiref.headers (module)

 		wsgiref.simple_server (module)

 		wsgiref.util (module)

 		wsgiref.validate (module)

 		WSGIRequestHandler (class in wsgiref.simple_server)

 		WSGIServer (class in wsgiref.simple_server)

 		wShowWindow (subprocess.STARTUPINFO attribute)

 		WSTOPSIG() (in module os)

 		wstring_at() (in module ctypes)

 		WTERMSIG() (in module os)

 		WUNTRACED (in module os)

 		WWW, [1], [2], [3]

 		

 		server, [1]

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-S.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – S

 		

 		S (in module re)

 		S_ENFMT (in module stat)

 		s_eval() (rexec.RExec method)

 		s_exec() (rexec.RExec method)

 		s_execfile() (rexec.RExec method)

 		S_IEXEC (in module stat)

 		S_IFBLK (in module stat)

 		S_IFCHR (in module stat)

 		S_IFDIR (in module stat)

 		S_IFIFO (in module stat)

 		S_IFLNK (in module stat)

 		S_IFMT() (in module stat)

 		S_IFREG (in module stat)

 		S_IFSOCK (in module stat)

 		S_IMODE() (in module stat)

 		s_import() (rexec.RExec method)

 		S_IREAD (in module stat)

 		S_IRGRP (in module stat)

 		S_IROTH (in module stat)

 		S_IRUSR (in module stat)

 		S_IRWXG (in module stat)

 		S_IRWXO (in module stat)

 		S_IRWXU (in module stat)

 		S_ISBLK() (in module stat)

 		S_ISCHR() (in module stat)

 		S_ISDIR() (in module stat)

 		S_ISFIFO() (in module stat)

 		S_ISGID (in module stat)

 		S_ISLNK() (in module stat)

 		S_ISREG() (in module stat)

 		S_ISSOCK() (in module stat)

 		S_ISUID (in module stat)

 		S_ISVTX (in module stat)

 		S_IWGRP (in module stat)

 		S_IWOTH (in module stat)

 		S_IWRITE (in module stat)

 		S_IWUSR (in module stat)

 		S_IXGRP (in module stat)

 		S_IXOTH (in module stat)

 		S_IXUSR (in module stat)

 		s_reload() (rexec.RExec method)

 		s_unload() (rexec.RExec method)

 		safe_substitute() (string.Template method)

 		SafeConfigParser (class in ConfigParser)

 		saferepr() (in module pprint)

 		same_files (filecmp.dircmp attribute)

 		same_quantum() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		samefile() (in module os.path)

 		sameopenfile() (in module os.path)

 		samestat() (in module os.path)

 		sample() (in module random)

 		save() (cookielib.FileCookieJar method)

 		save_bgn() (htmllib.HTMLParser method)

 		save_end() (htmllib.HTMLParser method)

 		SaveKey() (in module _winreg)

 		savetty() (in module curses)

 		SAX2DOM (class in xml.dom.pulldom)

 		SAXException

 		SAXNotRecognizedException

 		SAXNotSupportedException

 		SAXParseException

 		scale() (in module imageop)

 		scaleb() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		scalebarvalues() (FrameWork.ScrolledWindow method)

 		scanf()

 		sched (module)

 		scheduler (class in sched)

 		schema (in module msilib)

 		sci() (in module fpformat)

 		scope, [1]

 		Scrap Manager

 		Screen (class in turtle)

 		screensize() (in module turtle)

 		script_from_examples() (in module doctest)

 		scroll() (curses.window method)

 		scrollbar_callback() (FrameWork.ScrolledWindow method)

 		scrollbars() (FrameWork.ScrolledWindow method)

 		ScrolledCanvas (class in turtle)

 		ScrolledText (module)

 		scrollok() (curses.window method)

 		
 search

 		

 		path, module, [1], [2], [3], [4], [5], [6]

 		search() (imaplib.IMAP4 method)

 		

 		(in module re)

 		(re.RegexObject method)

 		SEARCH_ERROR (in module imp)

 		second (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		section_divider() (multifile.MultiFile method)

 		sections() (ConfigParser.RawConfigParser method)

 		secure (cookielib.Cookie attribute)

 		Secure Hash Algorithm

 		secure hash algorithm, SHA1, SHA224, SHA256, SHA384, SHA512

 		Secure Sockets Layer

 		
 security

 		

 		CGI

 		see() (ttk.Treeview method)

 		seed() (in module random)

 		seek() (bz2.BZ2File method)

 		

 		(chunk.Chunk method)

 		(file method)

 		(io.IOBase method)

 		(io.TextIOBase method)

 		(mmap.mmap method)

 		(multifile.MultiFile method)

 		SEEK_CUR (in module os)

 		

 		(in module posixfile)

 		SEEK_END (in module os)

 		

 		(in module posixfile)

 		SEEK_SET (in module os)

 		

 		(in module posixfile)

 		seekable() (io.IOBase method)

 		segcountproc (C type)

 		Select (class in Tix)

 		select (module)

 		select() (imaplib.IMAP4 method)

 		

 		(in module gl)

 		(in module select)

 		(ttk.Notebook method)

 		selected_alpn_protocol() (ssl.SSLSocket method)

 		selected_npn_protocol() (ssl.SSLSocket method)

 		selection() (ttk.Treeview method)

 		selection_add() (ttk.Treeview method)

 		selection_remove() (ttk.Treeview method)

 		selection_set() (ttk.Treeview method)

 		selection_toggle() (ttk.Treeview method)

 		Semaphore (class in multiprocessing)

 		

 		(class in threading)

 		Semaphore() (multiprocessing.managers.SyncManager method)

 		semaphores, binary

 		SEMI (in module token)

 		send() (aetools.TalkTo method)

 		

 		(asyncore.dispatcher method)

 		(generator method)

 		(httplib.HTTPConnection method)

 		(imaplib.IMAP4 method)

 		(logging.handlers.DatagramHandler method)

 		(logging.handlers.SocketHandler method)

 		(multiprocessing.Connection method)

 		(socket.socket method)

 		send_bytes() (multiprocessing.Connection method)

 		send_error() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		send_flowing_data() (formatter.writer method)

 		send_header() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		send_hor_rule() (formatter.writer method)

 		send_label_data() (formatter.writer method)

 		send_line_break() (formatter.writer method)

 		send_literal_data() (formatter.writer method)

 		send_paragraph() (formatter.writer method)

 		send_response() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		send_signal() (subprocess.Popen method)

 		sendall() (socket.socket method)

 		sendcmd() (ftplib.FTP method)

 		sendfile() (wsgiref.handlers.BaseHandler method)

 		sendmail() (smtplib.SMTP method)

 		sendto() (socket.socket method)

 		sep (in module os)

 		Separator() (in module FrameWork)

 		sequence

 		

 		item

 		iteration

 		object, [1], [2], [3], [4], [5], [6], [7], [8]

 		types, mutable

 		types, operations on, [1]

 		Sequence (class in collections)

 		sequence (in module msilib)

 		sequence2st() (in module parser)

 		sequenceIncludes() (in module operator)

 		SequenceMatcher (class in difflib), [1]

 		SerialCookie (class in Cookie)

 		
 serializing

 		

 		objects

 		serve_forever() (SocketServer.BaseServer method)

 		
 server

 		

 		WWW, [1]

 		server (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		server_activate() (SocketServer.BaseServer method)

 		server_address (SocketServer.BaseServer attribute)

 		server_bind() (SocketServer.BaseServer method)

 		server_close() (SocketServer.BaseServer method)

 		server_software (wsgiref.handlers.BaseHandler attribute)

 		server_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		

 		(SimpleHTTPServer.SimpleHTTPRequestHandler attribute)

 		ServerProxy (class in xmlrpclib)

 		session_stats() (ssl.SSLContext method)

 		
 set

 		

 		display

 		object, [1], [2], [3]

 		set (built-in class)

 		Set (class in collections)

 		

 		(class in sets)

 		Set Breakpoint

 		
 set type

 		

 		object

 		set() (ConfigParser.RawConfigParser method)

 		

 		(ConfigParser.SafeConfigParser method)

 		(Cookie.Morsel method)

 		(EasyDialogs.ProgressBar method)

 		(ossaudiodev.oss_mixer_device method)

 		(test.test_support.EnvironmentVarGuard method)

 		(threading.Event method)

 		(ttk.Combobox method)

 		(ttk.Treeview method)

 		(xml.etree.ElementTree.Element method)

 		set_all()

 		set_allowed_domains() (cookielib.DefaultCookiePolicy method)

 		set_alpn_protocols() (ssl.SSLContext method)

 		set_app() (wsgiref.simple_server.WSGIServer method)

 		set_authorizer() (sqlite3.Connection method)

 		set_blocked_domains() (cookielib.DefaultCookiePolicy method)

 		set_boundary() (email.message.Message method)

 		set_break() (bdb.Bdb method)

 		set_charset() (email.message.Message method)

 		set_children() (ttk.Treeview method)

 		set_ciphers() (ssl.SSLContext method)

 		set_completer() (in module readline)

 		set_completer_delims() (in module readline)

 		set_completion_display_matches_hook() (in module readline)

 		set_continue() (bdb.Bdb method)

 		set_conversion_mode() (in module ctypes)

 		set_cookie() (cookielib.CookieJar method)

 		set_cookie_if_ok() (cookielib.CookieJar method)

 		set_current() (msilib.Feature method)

 		set_date() (mailbox.MaildirMessage method)

 		set_debug() (in module gc)

 		set_debuglevel() (ftplib.FTP method)

 		

 		(httplib.HTTPConnection method)

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		(smtplib.SMTP method)

 		(telnetlib.Telnet method)

 		set_default_type() (email.message.Message method)

 		set_default_verify_paths() (ssl.SSLContext method)

 		set_defaults() (argparse.ArgumentParser method)

 		

 		(optparse.OptionParser method)

 		set_ecdh_curve() (ssl.SSLContext method)

 		set_errno() (in module ctypes)

 		set_event_call_back() (in module fl)

 		set_executable() (in module multiprocessing)

 		set_executables() (distutils.ccompiler.CCompiler method)

 		set_flags() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		set_form_position() (fl.form method)

 		set_from() (mailbox.mboxMessage method)

 		

 		(mailbox.MMDFMessage method)

 		set_graphics_mode() (in module fl)

 		set_history_length() (in module readline)

 		set_include_dirs() (distutils.ccompiler.CCompiler method)

 		set_info() (mailbox.MaildirMessage method)

 		set_labels() (mailbox.BabylMessage method)

 		set_last_error() (in module ctypes)

 		set_libraries() (distutils.ccompiler.CCompiler method)

 		set_library_dirs() (distutils.ccompiler.CCompiler method)

 		SET_LINENO (opcode)

 		set_link_objects() (distutils.ccompiler.CCompiler method)

 		set_literal (2to3 fixer)

 		set_location() (bsddb.bsddbobject method)

 		set_next() (bdb.Bdb method)

 		set_nonstandard_attr() (cookielib.Cookie method)

 		set_npn_protocols() (ssl.SSLContext method)

 		set_ok() (cookielib.CookiePolicy method)

 		set_option_negotiation_callback() (telnetlib.Telnet method)

 		set_output_charset() (gettext.NullTranslations method)

 		set_param() (email.message.Message method)

 		set_pasv() (ftplib.FTP method)

 		set_payload() (email.message.Message method)

 		set_policy() (cookielib.CookieJar method)

 		set_position() (xdrlib.Unpacker method)

 		set_pre_input_hook() (in module readline)

 		set_progress_handler() (sqlite3.Connection method)

 		set_proxy() (urllib2.Request method)

 		set_python_build() (in module distutils.sysconfig)

 		set_quit() (bdb.Bdb method)

 		set_recsrc() (ossaudiodev.oss_mixer_device method)

 		set_return() (bdb.Bdb method)

 		set_runtime_library_dirs() (distutils.ccompiler.CCompiler method)

 		set_seq1() (difflib.SequenceMatcher method)

 		set_seq2() (difflib.SequenceMatcher method)

 		set_seqs() (difflib.SequenceMatcher method)

 		set_sequences() (mailbox.MH method)

 		

 		(mailbox.MHMessage method)

 		set_server_documentation() (DocXMLRPCServer.DocCGIXMLRPCRequestHandler method)

 		

 		(DocXMLRPCServer.DocXMLRPCServer method)

 		set_server_name() (DocXMLRPCServer.DocCGIXMLRPCRequestHandler method)

 		

 		(DocXMLRPCServer.DocXMLRPCServer method)

 		set_server_title() (DocXMLRPCServer.DocCGIXMLRPCRequestHandler method)

 		

 		(DocXMLRPCServer.DocXMLRPCServer method)

 		set_servername_callback() (ssl.SSLContext method)

 		set_spacing() (formatter.formatter method)

 		set_startup_hook() (in module readline)

 		set_step() (bdb.Bdb method)

 		set_subdir() (mailbox.MaildirMessage method)

 		set_terminator() (asynchat.async_chat method)

 		set_threshold() (in module gc)

 		set_trace() (bdb.Bdb method)

 		

 		(in module bdb)

 		(in module pdb)

 		(pdb.Pdb method)

 		set_tunnel() (httplib.HTTPConnection method)

 		set_type() (email.message.Message method)

 		set_unittest_reportflags() (in module doctest)

 		set_unixfrom() (email.message.Message method)

 		set_until() (bdb.Bdb method)

 		set_url() (robotparser.RobotFileParser method)

 		set_usage() (optparse.OptionParser method)

 		set_userptr() (curses.panel.Panel method)

 		set_visible() (mailbox.BabylMessage method)

 		set_wakeup_fd() (in module signal)

 		setacl() (imaplib.IMAP4 method)

 		setannotation() (imaplib.IMAP4 method)

 		setarrowcursor() (in module FrameWork)

 		setattr() (built-in function)

 		setAttribute() (xml.dom.Element method)

 		setAttributeNode() (xml.dom.Element method)

 		setAttributeNodeNS() (xml.dom.Element method)

 		setAttributeNS() (xml.dom.Element method)

 		SetBase() (xml.parsers.expat.xmlparser method)

 		setblocking() (socket.socket method)

 		setByteStream() (xml.sax.xmlreader.InputSource method)

 		setcbreak() (in module tty)

 		setCharacterStream() (xml.sax.xmlreader.InputSource method)

 		setcheckinterval() (in module sys), [1]

 		setcomptype() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setContentHandler() (xml.sax.xmlreader.XMLReader method)

 		setcontext() (in module decimal)

 		

 		(mhlib.MH method)

 		SetCreatorAndType() (in module MacOS)

 		setcurrent() (mhlib.Folder method)

 		setDaemon() (threading.Thread method)

 		setdefault() (dict method)

 		setdefaultencoding() (in module sys)

 		setdefaulttimeout() (in module socket)

 		setdlopenflags() (in module sys)

 		setDocumentLocator() (xml.sax.handler.ContentHandler method)

 		setDTDHandler() (xml.sax.xmlreader.XMLReader method)

 		setegid() (in module os)

 		setEncoding() (xml.sax.xmlreader.InputSource method)

 		setEntityResolver() (xml.sax.xmlreader.XMLReader method)

 		setErrorHandler() (xml.sax.xmlreader.XMLReader method)

 		seteuid() (in module os)

 		setFeature() (xml.sax.xmlreader.XMLReader method)

 		setfirstweekday() (in module calendar)

 		setfmt() (ossaudiodev.oss_audio_device method)

 		setFormatter() (logging.Handler method)

 		setframerate() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setgid() (in module os)

 		setgroups() (in module os)

 		seth() (in module turtle)

 		setheading() (in module turtle)

 		SetInteger() (msilib.Record method)

 		setitem() (in module operator)

 		setitimer() (in module signal)

 		setlast() (mhlib.Folder method)

 		setLevel() (logging.Handler method)

 		

 		(logging.Logger method)

 		setliteral() (sgmllib.SGMLParser method)

 		setlocale() (in module locale)

 		setLocale() (xml.sax.xmlreader.XMLReader method)

 		setLoggerClass() (in module logging)

 		setlogmask() (in module syslog)

 		setmark() (aifc.aifc method)

 		setMaxConns() (urllib2.CacheFTPHandler method)

 		setmode() (in module msvcrt)

 		setName() (threading.Thread method)

 		setnchannels() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setnframes() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setnomoretags() (sgmllib.SGMLParser method)

 		setoption() (in module jpeg)

 		SetParamEntityParsing() (xml.parsers.expat.xmlparser method)

 		setparameters() (ossaudiodev.oss_audio_device method)

 		setparams() (aifc.aifc method)

 		

 		(in module al)

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setpassword() (zipfile.ZipFile method)

 		setpath() (in module fm)

 		setpgid() (in module os)

 		setpgrp() (in module os)

 		setpos() (aifc.aifc method)

 		

 		(in module turtle)

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		setposition() (in module turtle)

 		setprofile() (in module sys)

 		

 		(in module threading)

 		SetProperty() (msilib.SummaryInformation method)

 		setProperty() (xml.sax.xmlreader.XMLReader method)

 		setPublicId() (xml.sax.xmlreader.InputSource method)

 		setquota() (imaplib.IMAP4 method)

 		setraw() (in module tty)

 		setrecursionlimit() (in module sys)

 		setregid() (in module os)

 		setresgid() (in module os)

 		setresuid() (in module os)

 		setreuid() (in module os)

 		setrlimit() (in module resource)

 		sets (module)

 		setsampwidth() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setscrreg() (curses.window method)

 		setsid() (in module os)

 		setslice() (in module operator)

 		setsockopt() (socket.socket method)

 		setstate() (in module random)

 		SetStream() (msilib.Record method)

 		SetString() (msilib.Record method)

 		setSystemId() (xml.sax.xmlreader.InputSource method)

 		setsyx() (in module curses)

 		setTarget() (logging.handlers.MemoryHandler method)

 		settiltangle() (in module turtle)

 		settimeout() (socket.socket method)

 		setTimeout() (urllib2.CacheFTPHandler method)

 		settrace() (in module sys)

 		

 		(in module threading)

 		settscdump() (in module sys)

 		settypecreator() (ic.IC method)

 		

 		(in module ic)

 		setuid() (in module os)

 		setundobuffer() (in module turtle)

 		setup() (in module distutils.core)

 		

 		(SocketServer.BaseRequestHandler method)

 		(in module turtle)

 		setUp() (unittest.TestCase method)

 		setup_environ() (wsgiref.handlers.BaseHandler method)

 		SETUP_EXCEPT (opcode)

 		SETUP_FINALLY (opcode)

 		SETUP_LOOP (opcode)

 		setup_testing_defaults() (in module wsgiref.util)

 		SETUP_WITH (opcode)

 		setUpClass() (unittest.TestCase method)

 		setupterm() (in module curses)

 		SetValue() (in module _winreg)

 		SetValueEx() (in module _winreg)

 		setvbuf()

 		setwatchcursor() (in module FrameWork)

 		setworldcoordinates() (in module turtle)

 		setx() (in module turtle)

 		sety() (in module turtle)

 		SF_APPEND (in module stat)

 		SF_ARCHIVED (in module stat)

 		SF_IMMUTABLE (in module stat)

 		SF_NOUNLINK (in module stat)

 		SF_SNAPSHOT (in module stat)

 		SGML

 		
 sgmllib

 		

 		module

 		sgmllib (module)

 		SGMLParseError

 		SGMLParser (class in sgmllib)

 		

 		(in module sgmllib)

 		sha (module)

 		Shape (class in turtle)

 		shape (memoryview attribute)

 		shape() (in module turtle)

 		shapesize() (in module turtle)

 		shared_object_filename() (distutils.ccompiler.CCompiler method)

 		Shelf (class in shelve)

 		
 shelve

 		

 		module

 		shelve (module)

 		shift() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		shift_path_info() (in module wsgiref.util)

 		
 shifting

 		

 		operation

 		operations

 		shlex (class in shlex)

 		

 		(module)

 		shortDescription() (unittest.TestCase method)

 		shouldFlush() (logging.handlers.BufferingHandler method)

 		

 		(logging.handlers.MemoryHandler method)

 		shouldStop (unittest.TestResult attribute)

 		show() (curses.panel.Panel method)

 		show_choice() (in module fl)

 		show_compilers() (in module distutils.ccompiler)

 		show_file_selector() (in module fl)

 		show_form() (fl.form method)

 		show_input() (in module fl)

 		show_message() (in module fl)

 		show_question() (in module fl)

 		

 		showsyntaxerror() (code.InteractiveInterpreter method)

 		showtraceback() (code.InteractiveInterpreter method)

 		showturtle() (in module turtle)

 		showwarning() (in module warnings)

 		shuffle() (in module random)

 		shutdown() (imaplib.IMAP4 method)

 		

 		(SocketServer.BaseServer method)

 		(in module findertools)

 		(in module logging)

 		(multiprocessing.managers.BaseManager method)

 		(socket.socket method)

 		shutil (module)

 		SIG_DFL (in module signal)

 		SIG_IGN (in module signal)

 		SIGINT, [1]

 		siginterrupt() (in module signal)

 		
 signal

 		

 		module, [1]

 		signal (module)

 		signal() (in module signal)

 		
 simple

 		

 		statement

 		Simple Mail Transfer Protocol

 		SimpleCookie (class in Cookie)

 		simplefilter() (in module warnings)

 		SimpleHandler (class in wsgiref.handlers)

 		SimpleHTTPRequestHandler (class in SimpleHTTPServer)

 		
 SimpleHTTPServer

 		

 		module

 		SimpleHTTPServer (module)

 		SimpleXMLRPCRequestHandler (class in SimpleXMLRPCServer)

 		SimpleXMLRPCServer (class in SimpleXMLRPCServer)

 		

 		(module)

 		sin() (in module cmath)

 		

 		(in module math)

 		
 singleton

 		

 		tuple

 		sinh() (in module cmath)

 		

 		(in module math)

 		site (module)

 		
 site command line option

 		

 		--user-base

 		--user-site

 		
 site-packages

 		

 		directory

 		
 site-python

 		

 		directory

 		
 sitecustomize

 		

 		module

 		size (struct.Struct attribute)

 		

 		(tarfile.TarInfo attribute)

 		size() (ftplib.FTP method)

 		

 		(mmap.mmap method)

 		Sized (class in collections)

 		sizeof() (in module ctypes)

 		SKIP (in module doctest)

 		skip() (chunk.Chunk method)

 		

 		(in module unittest)

 		skipIf() (in module unittest)

 		skipinitialspace (csv.Dialect attribute)

 		skipped (unittest.TestResult attribute)

 		skippedEntity() (xml.sax.handler.ContentHandler method)

 		SkipTest

 		skipTest() (unittest.TestCase method)

 		skipUnless() (in module unittest)

 		SLASH (in module token)

 		SLASHEQUAL (in module token)

 		slave() (nntplib.NNTP method)

 		sleep() (in module findertools)

 		

 		(in module time)

 		slice, [1]

 		

 		assignment

 		built-in function, [1], [2]

 		object

 		operation

 		slice (built-in class)

 		SLICE+0 (opcode)

 		SLICE+1 (opcode)

 		SLICE+2 (opcode)

 		SLICE+3 (opcode)

 		SliceType (in module types), [1]

 		slicing, [1], [2]

 		

 		assignment

 		extended

 		SmartCookie (class in Cookie)

 		
 SMTP

 		

 		protocol

 		SMTP (class in smtplib)

 		SMTP_SSL (class in smtplib)

 		SMTPAuthenticationError

 		SMTPConnectError

 		smtpd (module)

 		SMTPDataError

 		SMTPException

 		SMTPHandler (class in logging.handlers)

 		SMTPHeloError

 		smtplib (module)

 		SMTPRecipientsRefused

 		SMTPResponseException

 		SMTPSenderRefused

 		SMTPServer (class in smtpd)

 		SMTPServerDisconnected

 		SND_ALIAS (in module winsound)

 		SND_ASYNC (in module winsound)

 		SND_FILENAME (in module winsound)

 		SND_LOOP (in module winsound)

 		SND_MEMORY (in module winsound)

 		SND_NODEFAULT (in module winsound)

 		SND_NOSTOP (in module winsound)

 		SND_NOWAIT (in module winsound)

 		SND_PURGE (in module winsound)

 		sndhdr (module)

 		sniff() (csv.Sniffer method)

 		Sniffer (class in csv)

 		SOCK_DGRAM (in module socket)

 		SOCK_RAW (in module socket)

 		SOCK_RDM (in module socket)

 		SOCK_SEQPACKET (in module socket)

 		SOCK_STREAM (in module socket)

 		
 socket

 		

 		module, [1]

 		object

 		socket (module)

 		

 		(SocketServer.BaseServer attribute)

 		socket() (imaplib.IMAP4 method)

 		

 		(in module socket), [1]

 		socket_type (SocketServer.BaseServer attribute)

 		SocketHandler (class in logging.handlers)

 		socketpair() (in module socket)

 		SocketServer (module)

 		SocketType (in module socket)

 		softspace (file attribute), [1]

 		SOMAXCONN (in module socket)

 		sort() (imaplib.IMAP4 method)

 		

 		(list method)

 		sort_stats() (pstats.Stats method)

 		sorted() (built-in function)

 		sortTestMethodsUsing (unittest.TestLoader attribute)

 		source (doctest.Example attribute)

 		

 		(shlex.shlex attribute)

 		source character set

 		sourcehook() (shlex.shlex method)

 		space

 		span() (re.MatchObject method)

 		spawn() (distutils.ccompiler.CCompiler method)

 		

 		(in module pty)

 		spawnl() (in module os)

 		spawnle() (in module os)

 		spawnlp() (in module os)

 		spawnlpe() (in module os)

 		spawnv() (in module os)

 		spawnve() (in module os)

 		spawnvp() (in module os)

 		spawnvpe() (in module os)

 		
 special

 		

 		attribute

 		attribute, generic

 		special method

 		specified_attributes (xml.parsers.expat.xmlparser attribute)

 		speed() (in module turtle)

 		

 		(ossaudiodev.oss_audio_device method)

 		splash() (in module MacOS)

 		split() (in module os.path)

 		

 		(in module re)

 		(in module shlex)

 		(in module string)

 		(re.RegexObject method)

 		(str method)

 		split_quoted() (in module distutils.util)

 		splitdrive() (in module os.path)

 		splitext() (in module os.path)

 		splitfields() (in module string)

 		splitlines() (str method)

 		SplitResult (class in urlparse)

 		splitunc() (in module os.path)

 		SpooledTemporaryFile() (in module tempfile)

 		sprintf-style formatting

 		spwd (module)

 		sqlite3 (module)

 		sqlite_version (in module sqlite3)

 		sqlite_version_info (in module sqlite3)

 		sqrt() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module cmath)

 		(in module math)

 		SSL

 		ssl (module)

 		ssl() (imaplib.IMAP4_SSL method)

 		ssl_version (ftplib.FTP_TLS attribute)

 		SSLContext (class in ssl)

 		SSLEOFError

 		SSLError

 		SSLSyscallError

 		SSLWantReadError

 		SSLWantWriteError

 		SSLZeroReturnError

 		st() (in module turtle)

 		st2list() (in module parser)

 		st2tuple() (in module parser)

 		ST_ATIME (in module stat)

 		ST_CTIME (in module stat)

 		ST_DEV (in module stat)

 		ST_GID (in module stat)

 		ST_INO (in module stat)

 		ST_MODE (in module stat)

 		ST_MTIME (in module stat)

 		ST_NLINK (in module stat)

 		ST_SIZE (in module stat)

 		ST_UID (in module stat)

 		
 stack

 		

 		execution

 		trace

 		stack viewer

 		stack() (in module inspect)

 		stack_size() (in module thread)

 		

 		(in module threading)

 		
 stackable

 		

 		streams

 		stamp() (in module turtle)

 		
 standard

 		

 		output, [1]

 		Standard C

 		standard input

 		standard_b64decode() (in module base64)

 		standard_b64encode() (in module base64)

 		StandardError

 		standarderror (2to3 fixer)

 		standend() (curses.window method)

 		standout() (curses.window method)

 		STAR (in module token)

 		STAREQUAL (in module token)

 		starmap() (in module itertools)

 		start (exceptions.UnicodeError attribute)

 		

 		(slice object attribute), [1]

 		start() (hotshot.Profile method)

 		

 		(multiprocessing.Process method)

 		(multiprocessing.managers.BaseManager method)

 		(re.MatchObject method)

 		(threading.Thread method)

 		(ttk.Progressbar method)

 		(xml.etree.ElementTree.TreeBuilder method)

 		start_color() (in module curses)

 		start_component() (msilib.Directory method)

 		start_new_thread() (in module thread)

 		startbody() (MimeWriter.MimeWriter method)

 		StartCdataSectionHandler() (xml.parsers.expat.xmlparser method)

 		StartDoctypeDeclHandler() (xml.parsers.expat.xmlparser method)

 		startDocument() (xml.sax.handler.ContentHandler method)

 		startElement() (xml.sax.handler.ContentHandler method)

 		StartElementHandler() (xml.parsers.expat.xmlparser method)

 		startElementNS() (xml.sax.handler.ContentHandler method)

 		STARTF_USESHOWWINDOW (in module subprocess)

 		STARTF_USESTDHANDLES (in module subprocess)

 		startfile() (in module os)

 		startmultipartbody() (MimeWriter.MimeWriter method)

 		StartNamespaceDeclHandler() (xml.parsers.expat.xmlparser method)

 		startPrefixMapping() (xml.sax.handler.ContentHandler method)

 		startswith() (str method)

 		startTest() (unittest.TestResult method)

 		startTestRun() (unittest.TestResult method)

 		starttls() (smtplib.SMTP method)

 		STARTUPINFO (class in subprocess)

 		
 stat

 		

 		module

 		stat (module)

 		stat() (in module os)

 		

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		stat_float_times() (in module os)

 		state() (ttk.Widget method)

 		statement

 		

 		*, [1]

 		**, [1]

 		@

 		assert, [1]

 		assignment, [1]

 		assignment, augmented

 		break, [1], [2], [3], [4]

 		class

 		compound

 		continue, [1], [2], [3], [4]

 		def

 		del, [1], [2], [3]

 		except

 		exec, [1], [2]

 		expression

 		for, [1], [2], [3], [4]

 		from

 		future

 		global, [1], [2]

 		if, [1]

 		import, [1], [2], [3], [4]

 		loop, [1], [2], [3]

 		pass

 		print, [1], [2]

 		raise, [1]

 		return, [1], [2]

 		simple

 		try, [1], [2]

 		while, [1], [2], [3]

 		with, [1]

 		yield

 		statement grouping

 		
 staticmethod

 		

 		built-in function

 		staticmethod() (built-in function)

 		Stats (class in pstats)

 		status (httplib.HTTPResponse attribute)

 		status() (imaplib.IMAP4 method)

 		
 statvfs

 		

 		module

 		statvfs (module)

 		statvfs() (in module os)

 		STD_ERROR_HANDLE (in module subprocess)

 		STD_INPUT_HANDLE (in module subprocess)

 		STD_OUTPUT_HANDLE (in module subprocess)

 		StdButtonBox (class in Tix)

 		stderr (in module sys), [1], [2]

 		

 		(subprocess.Popen attribute)

 		stdin (in module sys), [1], [2]

 		

 		(subprocess.Popen attribute)

 		stdio

 		STDOUT (in module subprocess)

 		stdout (in module sys), [1], [2], [3]

 		

 		(subprocess.Popen attribute)

 		Stein, Greg

 		step (slice object attribute), [1]

 		step() (ttk.Progressbar method)

 		stereocontrols() (ossaudiodev.oss_mixer_device method)

 		STILL (in module cd)

 		stop (slice object attribute), [1]

 		stop() (hotshot.Profile method)

 		

 		(ttk.Progressbar method)

 		(unittest.TestResult method)

 		STOP_CODE (opcode)

 		stop_here() (bdb.Bdb method)

 		StopIteration

 		

 		exception, [1]

 		stopListening() (in module logging.config)

 		stopTest() (unittest.TestResult method)

 		stopTestRun() (unittest.TestResult method)

 		storbinary() (ftplib.FTP method)

 		store() (imaplib.IMAP4 method)

 		STORE_ACTIONS (optparse.Option attribute)

 		STORE_ATTR (opcode)

 		STORE_DEREF (opcode)

 		STORE_FAST (opcode)

 		STORE_GLOBAL (opcode)

 		STORE_MAP (opcode)

 		STORE_NAME (opcode)

 		STORE_SLICE+0 (opcode)

 		STORE_SLICE+1 (opcode)

 		STORE_SLICE+2 (opcode)

 		STORE_SLICE+3 (opcode)

 		STORE_SUBSCR (opcode)

 		storlines() (ftplib.FTP method)

 		
 str

 		

 		built-in function, [1], [2], [3]

 		format

 		str (built-in class)

 		str() (in module locale)

 		strcoll() (in module locale)

 		StreamError

 		StreamHandler (class in logging)

 		StreamReader (class in codecs)

 		StreamReaderWriter (class in codecs)

 		StreamRecoder (class in codecs)

 		StreamRequestHandler (class in SocketServer)

 		streams

 		

 		stackable

 		StreamWriter (class in codecs)

 		strerror()

 		

 		(in module os)

 		strftime() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		(in module time)

 		strict (csv.Dialect attribute)

 		strict_domain (cookielib.DefaultCookiePolicy attribute)

 		strict_errors() (in module codecs)

 		strict_ns_domain (cookielib.DefaultCookiePolicy attribute)

 		strict_ns_set_initial_dollar (cookielib.DefaultCookiePolicy attribute)

 		strict_ns_set_path (cookielib.DefaultCookiePolicy attribute)

 		strict_ns_unverifiable (cookielib.DefaultCookiePolicy attribute)

 		strict_rfc2965_unverifiable (cookielib.DefaultCookiePolicy attribute)

 		strides (memoryview attribute)

 		
 string

 		

 		Unicode

 		comparison

 		conversion, [1], [2]

 		formatting

 		interpolation

 		item

 		methods

 		module, [1], [2]

 		object, [1], [2], [3], [4]

 		STRING (in module token)

 		string (module)

 		

 		(re.MatchObject attribute)

 		string literal

 		string_at() (in module ctypes)

 		StringIO (class in io)

 		

 		(class in StringIO)

 		(module)

 		StringIO() (in module cStringIO)

 		stringprep (module)

 		strings, documentation, [1]

 		StringType (in module types), [1]

 		StringTypes (in module types)

 		strip() (in module string)

 		

 		(str method)

 		strip_dirs() (pstats.Stats method)

 		stripspaces (curses.textpad.Textbox attribute)

 		strptime() (datetime.datetime class method)

 		

 		(in module time)

 		strtobool() (in module distutils.util)

 		
 struct

 		

 		module

 		Struct (class in struct)

 		struct (module)

 		struct sequence

 		struct_time (class in time)

 		Structure (class in ctypes)

 		
 structures

 		

 		C

 		strxfrm() (in module locale)

 		STType (in module parser)

 		
 style

 		

 		coding

 		Style (class in ttk)

 		StyledText (class in aetypes)

 		sub() (in module operator)

 		

 		(in module re)

 		(re.RegexObject method)

 		sub_commands (distutils.cmd.Command attribute)

 		
 subclassing

 		

 		immutable types

 		subdirs (filecmp.dircmp attribute)

 		SubElement() (in module xml.etree.ElementTree)

 		SubMenu() (in module FrameWork)

 		subn() (in module re)

 		

 		(re.RegexObject method)

 		Subnormal (class in decimal)

 		subpad() (curses.window method)

 		subprocess (module)

 		subscribe() (imaplib.IMAP4 method)

 		
 subscript

 		

 		assignment

 		operation

 		subscription, [1], [2], [3]

 		

 		assignment

 		subsequent_indent (textwrap.TextWrapper attribute)

 		subst_vars() (in module distutils.util)

 		substitute() (string.Template method)

 		subtract() (collections.Counter method)

 		

 		(decimal.Context method)

 		subtraction

 		subversion (in module sys)

 		subwin() (curses.window method)

 		successful() (multiprocessing.pool.AsyncResult method)

 		suffix_map (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		suite

 		suite() (in module parser)

 		suiteClass (unittest.TestLoader attribute)

 		sum() (built-in function)

 		sum_list()

 		sum_sequence(), [1]

 		summarize() (doctest.DocTestRunner method)

 		sunau (module)

 		
 SUNAUDIODEV

 		

 		module

 		
 sunaudiodev

 		

 		module

 		SUNAUDIODEV (module)

 		sunaudiodev (module)

 		super (pyclbr.Class attribute)

 		super() (built-in function)

 		supports_unicode_filenames (in module os.path)

 		
 suppression

 		

 		newline

 		SW_HIDE (in module subprocess)

 		swapcase() (in module string)

 		

 		(str method)

 		sym() (dl.dl method)

 		sym_name (in module symbol)

 		Symbol (class in symtable)

 		symbol (module)

 		SymbolTable (class in symtable)

 		symlink() (in module os)

 		symmetric_difference() (set method)

 		symmetric_difference_update() (set method)

 		symtable (module)

 		symtable() (in module symtable)

 		sync() (bsddb.bsddbobject method)

 		

 		(dbhash.dbhash method)

 		(dumbdbm.dumbdbm method)

 		(in module gdbm)

 		(ossaudiodev.oss_audio_device method)

 		(shelve.Shelf method)

 		syncdown() (curses.window method)

 		synchronized() (in module multiprocessing.sharedctypes)

 		SyncManager (class in multiprocessing.managers)

 		syncok() (curses.window method)

 		syncup() (curses.window method)

 		syntax, [1]

 		SyntaxErr

 		SyntaxError

 		SyntaxWarning

 		
 sys

 		

 		module, [1], [2], [3], [4], [5], [6]

 		sys (module)

 		sys.exc_info

 		sys.exc_traceback

 		sys.last_traceback

 		sys.meta_path

 		sys.modules

 		sys.path

 		sys.path_hooks

 		sys.path_importer_cache

 		sys.stderr

 		sys.stdin

 		sys.stdout

 		sys_exc (2to3 fixer)

 		sys_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		SysBeep() (in module MacOS)

 		sysconf() (in module os)

 		sysconf_names (in module os)

 		sysconfig (module)

 		syslog (module)

 		syslog() (in module syslog)

 		SysLogHandler (class in logging.handlers)

 		system() (in module os)

 		

 		(in module platform)

 		system_alias() (in module platform)

 		SystemError

 		

 		(built-in exception), [1]

 		SystemExit

 		

 		(built-in exception)

 		systemId (xml.dom.DocumentType attribute)

 		SystemRandom (class in random)

 		SystemRoot

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-K.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – K

 		

 		kbhit() (in module msvcrt)

 		KDEDIR

 		kevent() (in module select)

 		key

 		

 		(Cookie.Morsel attribute)

 		key function

 		key/datum pair

 		KEY_ALL_ACCESS (in module _winreg)

 		KEY_CREATE_LINK (in module _winreg)

 		KEY_CREATE_SUB_KEY (in module _winreg)

 		KEY_ENUMERATE_SUB_KEYS (in module _winreg)

 		KEY_EXECUTE (in module _winreg)

 		KEY_NOTIFY (in module _winreg)

 		KEY_QUERY_VALUE (in module _winreg)

 		KEY_READ (in module _winreg)

 		KEY_SET_VALUE (in module _winreg)

 		KEY_WOW64_32KEY (in module _winreg)

 		KEY_WOW64_64KEY (in module _winreg)

 		KEY_WRITE (in module _winreg)

 		KeyboardInterrupt

 		

 		(built-in exception), [1]

 		

 		KeyError

 		keyname() (in module curses)

 		keypad() (curses.window method)

 		keyrefs() (weakref.WeakKeyDictionary method)

 		keys() (bsddb.bsddbobject method)

 		

 		(dict method)

 		(email.message.Message method)

 		(mailbox.Mailbox method)

 		(sqlite3.Row method)

 		(xml.etree.ElementTree.Element method)

 		keysubst() (in module aetools)

 		KeysView (class in collections)

 		keyword

 		

 		elif

 		else, [1], [2], [3], [4]

 		except

 		finally, [1], [2], [3], [4]

 		from

 		in

 		yield

 		Keyword (class in aetypes)

 		keyword (module)

 		keyword argument

 		keywords (functools.partial attribute)

 		kill() (in module os)

 		

 		(subprocess.Popen method)

 		killchar() (in module curses)

 		killpg() (in module os)

 		
 knee

 		

 		module, [1]

 		knownfiles (in module mimetypes)

 		kqueue() (in module select)

 		kwlist (in module keyword)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

search.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-O.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – O

 		

 		O_APPEND (in module os)

 		O_ASYNC (in module os)

 		O_BINARY (in module os)

 		O_CREAT (in module os)

 		O_DIRECT (in module os)

 		O_DIRECTORY (in module os)

 		O_DSYNC (in module os)

 		O_EXCL (in module os)

 		O_EXLOCK (in module os)

 		O_NDELAY (in module os)

 		O_NOATIME (in module os)

 		O_NOCTTY (in module os)

 		O_NOFOLLOW (in module os)

 		O_NOINHERIT (in module os)

 		O_NONBLOCK (in module os)

 		O_RANDOM (in module os)

 		O_RDONLY (in module os)

 		O_RDWR (in module os)

 		O_RSYNC (in module os)

 		O_SEQUENTIAL (in module os)

 		O_SHLOCK (in module os)

 		O_SHORT_LIVED (in module os)

 		O_SYNC (in module os)

 		O_TEMPORARY (in module os)

 		O_TEXT (in module os)

 		O_TRUNC (in module os)

 		O_WRONLY (in module os)

 		object, [1]

 		

 		Boolean, [1]

 		CObject

 		Capsule

 		Ellipsis

 		None, [1], [2]

 		NotImplemented

 		Unicode

 		buffer, [1]

 		built-in function, [1]

 		built-in method, [1]

 		bytearray, [1]

 		callable, [1]

 		class, [1], [2], [3], [4]

 		class instance, [1], [2], [3]

 		code, [1], [2], [3]

 		complex

 		complex number, [1]

 		deallocation

 		dictionary, [1], [2], [3], [4], [5], [6], [7]

 		file, [1], [2], [3], [4]

 		finalization

 		floating point, [1], [2]

 		frame

 		frozenset, [1]

 		function, [1], [2], [3], [4], [5]

 		generator, [1], [2]

 		immutable, [1], [2]

 		immutable sequence

 		instance, [1], [2], [3], [4]

 		integer, [1], [2]

 		list, [1], [2], [3], [4], [5], [6], [7], [8]

 		long integer, [1], [2]

 		mapping, [1], [2], [3], [4], [5]

 		method, [1], [2], [3], [4], [5]

 		module, [1], [2]

 		mutable, [1], [2]

 		mutable sequence

 		numeric, [1], [2], [3], [4]

 		plain integer

 		recursive

 		sequence, [1], [2], [3], [4], [5], [6], [7], [8]

 		set, [1], [2], [3]

 		set type

 		slice

 		socket

 		string, [1], [2], [3], [4]

 		traceback, [1], [2], [3], [4]

 		tuple, [1], [2], [3], [4], [5]

 		type, [1], [2]

 		unicode

 		user-defined function, [1], [2]

 		user-defined method

 		xrange, [1]

 		object (built-in class)

 		

 		(exceptions.UnicodeError attribute)

 		object_filenames() (distutils.ccompiler.CCompiler method)

 		
 objects

 		

 		comparing

 		flattening

 		marshalling

 		persistent

 		pickling

 		serializing

 		ObjectSpecifier (class in aetypes)

 		obufcount() (ossaudiodev.oss_audio_device method)

 		obuffree() (ossaudiodev.oss_audio_device method)

 		
 oct

 		

 		built-in function

 		oct() (built-in function)

 		

 		(in module future_builtins)

 		
 octal

 		

 		literals

 		octal literal

 		octdigits (in module string)

 		offset (xml.parsers.expat.ExpatError attribute)

 		OK (in module curses)

 		ok_builtin_modules (rexec.RExec attribute)

 		ok_file_types (rexec.RExec attribute)

 		ok_path (rexec.RExec attribute)

 		ok_posix_names (rexec.RExec attribute)

 		ok_sys_names (rexec.RExec attribute)

 		OleDLL (class in ctypes)

 		onclick() (in module turtle), [1]

 		ondrag() (in module turtle)

 		onecmd() (cmd.Cmd method)

 		onkey() (in module turtle)

 		onrelease() (in module turtle)

 		onscreenclick() (in module turtle)

 		ontimer() (in module turtle)

 		OP (in module token)

 		OP_ALL (in module ssl)

 		OP_CIPHER_SERVER_PREFERENCE (in module ssl)

 		OP_NO_COMPRESSION (in module ssl)

 		OP_NO_SSLv2 (in module ssl)

 		OP_NO_SSLv3 (in module ssl)

 		OP_NO_TLSv1 (in module ssl)

 		OP_NO_TLSv1_1 (in module ssl)

 		OP_NO_TLSv1_2 (in module ssl)

 		OP_SINGLE_DH_USE (in module ssl)

 		OP_SINGLE_ECDH_USE (in module ssl)

 		
 open

 		

 		built-in function, [1]

 		Open Scripting Architecture

 		open() (built-in function)

 		

 		(FrameWork.DialogWindow method)

 		(FrameWork.Window method)

 		(distutils.text_file.TextFile method)

 		(imaplib.IMAP4 method)

 		(in module aifc)

 		(in module anydbm)

 		(in module cd)

 		(in module codecs)

 		(in module dbhash)

 		(in module dbm)

 		(in module dl)

 		(in module dumbdbm)

 		(in module gdbm)

 		(in module gzip)

 		(in module io)

 		(in module os)

 		(in module ossaudiodev)

 		(in module posixfile)

 		(in module shelve)

 		(in module sunau)

 		(in module sunaudiodev)

 		(in module tarfile)

 		(in module wave)

 		(in module webbrowser)

 		(pipes.Template method)

 		(tarfile.TarFile class method)

 		(telnetlib.Telnet method)

 		(urllib.URLopener method)

 		(urllib2.OpenerDirector method)

 		(webbrowser.controller method)

 		(zipfile.ZipFile method)

 		open_new() (in module webbrowser)

 		

 		(webbrowser.controller method)

 		open_new_tab() (in module webbrowser)

 		

 		(webbrowser.controller method)

 		

 		open_osfhandle() (in module msvcrt)

 		open_unknown() (urllib.URLopener method)

 		OpenDatabase() (in module msilib)

 		opendir() (in module dircache)

 		OpenerDirector (class in urllib2)

 		openfolder() (mhlib.MH method)

 		openfp() (in module sunau)

 		

 		(in module wave)

 		OpenGL

 		OpenKey() (in module _winreg)

 		OpenKeyEx() (in module _winreg)

 		openlog() (in module syslog)

 		openmessage() (mhlib.Message method)

 		openmixer() (in module ossaudiodev)

 		openport() (in module al)

 		openpty() (in module os)

 		

 		(in module pty)

 		openrf() (in module MacOS)

 		
 OpenSSL

 		

 		(use in module hashlib)

 		(use in module ssl)

 		OPENSSL_VERSION (in module ssl)

 		OPENSSL_VERSION_INFO (in module ssl)

 		OPENSSL_VERSION_NUMBER (in module ssl)

 		OpenView() (msilib.Database method)

 		
 operation

 		

 		Boolean

 		binary arithmetic

 		binary bitwise

 		concatenation

 		extended slice

 		null

 		repetition

 		shifting

 		slice

 		subscript

 		unary arithmetic

 		unary bitwise

 		
 operations

 		

 		Boolean, [1]

 		bitwise

 		masking

 		shifting

 		
 operations on

 		

 		dictionary type

 		integer types

 		list type

 		mapping types

 		numeric types

 		sequence types, [1]

 		
 operator

 		

 		!=

 		%

 		&

 		*

 		**

 		+

 		-

 		/

 		//

 		<

 		<<

 		<=

 		==

 		>

 		>=

 		>>

 		^

 		and, [1], [2]

 		comparison

 		in, [1], [2]

 		is, [1]

 		is not, [1]

 		not, [1]

 		not in, [1], [2]

 		or, [1], [2]

 		overloading

 		precedence

 		ternary

 		operator (module)

 		operators

 		opmap (in module dis)

 		opname (in module dis)

 		optimize() (in module pickletools)

 		OptionGroup (class in optparse)

 		OptionMenu (class in Tix)

 		OptionParser (class in optparse)

 		options (doctest.Example attribute)

 		

 		(ssl.SSLContext attribute)

 		options() (ConfigParser.RawConfigParser method)

 		optionxform() (ConfigParser.RawConfigParser method)

 		optparse (module)

 		
 or

 		

 		bitwise

 		exclusive

 		inclusive

 		operator, [1], [2]

 		or_() (in module operator)

 		
 ord

 		

 		built-in function, [1], [2]

 		ord() (built-in function)

 		
 order

 		

 		evaluation

 		ordered_attributes (xml.parsers.expat.xmlparser attribute)

 		OrderedDict (class in collections)

 		Ordinal (class in aetypes)

 		origin_server (wsgiref.handlers.BaseHandler attribute)

 		
 os

 		

 		module, [1]

 		os (module)

 		os.path (module)

 		os_environ (wsgiref.handlers.BaseHandler attribute)

 		OSError

 		ossaudiodev (module)

 		OSSAudioError

 		output, [1]

 		

 		standard, [1]

 		output (subprocess.CalledProcessError attribute)

 		output() (Cookie.BaseCookie method)

 		

 		(Cookie.Morsel method)

 		output_charset (email.charset.Charset attribute)

 		output_charset() (gettext.NullTranslations method)

 		output_codec (email.charset.Charset attribute)

 		output_difference() (doctest.OutputChecker method)

 		OutputChecker (class in doctest)

 		OutputString() (Cookie.Morsel method)

 		OutputType (in module cStringIO)

 		Overflow (class in decimal)

 		OverflowError

 		

 		(built-in exception), [1], [2], [3], [4], [5]

 		overlay() (curses.window method)

 		
 overloading

 		

 		operator

 		Overmars, Mark

 		overwrite() (curses.window method)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-V.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – V

 		

 		validator() (in module wsgiref.validate)

 		
 value

 		

 		default parameter

 		truth

 		value (Cookie.Morsel attribute)

 		

 		(cookielib.Cookie attribute)

 		(ctypes._SimpleCData attribute)

 		(xml.dom.Attr attribute)

 		value of an object

 		Value() (in module multiprocessing)

 		

 		(in module multiprocessing.sharedctypes)

 		(multiprocessing.managers.SyncManager method)

 		value_decode() (Cookie.BaseCookie method)

 		value_encode() (Cookie.BaseCookie method)

 		ValueError

 		

 		exception

 		valuerefs() (weakref.WeakValueDictionary method)

 		
 values

 		

 		Boolean

 		writing, [1]

 		values() (dict method)

 		

 		(email.message.Message method)

 		(mailbox.Mailbox method)

 		ValuesView (class in collections)

 		
 variable

 		

 		free, [1]

 		variant (uuid.UUID attribute)

 		varray() (in module gl)

 		vars() (built-in function)

 		VBAR (in module token)

 		vbar (ScrolledText.ScrolledText attribute)

 		VBAREQUAL (in module token)

 		Vec2D (class in turtle)

 		VERBOSE (in module re)

 		verbose (in module tabnanny)

 		

 		(in module test.test_support)

 		verify() (smtplib.SMTP method)

 		VERIFY_CRL_CHECK_CHAIN (in module ssl)

 		VERIFY_CRL_CHECK_LEAF (in module ssl)

 		

 		VERIFY_DEFAULT (in module ssl)

 		verify_flags (ssl.SSLContext attribute)

 		verify_mode (ssl.SSLContext attribute)

 		verify_request() (SocketServer.BaseServer method)

 		VERIFY_X509_STRICT (in module ssl)

 		VERIFY_X509_TRUSTED_FIRST (in module ssl)

 		version (cookielib.Cookie attribute)

 		

 		(httplib.HTTPResponse attribute)

 		(in module curses)

 		(in module marshal)

 		(in module sqlite3)

 		(in module sys), [1], [2], [3]

 		(urllib.URLopener attribute)

 		(uuid.UUID attribute)

 		version() (in module ensurepip)

 		

 		(in module platform)

 		(ssl.SSLSocket method)

 		version_info (in module sqlite3)

 		

 		(in module sys)

 		version_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		vformat() (string.Formatter method)

 		videoreader (module)

 		viewitems() (dict method)

 		viewkeys() (dict method)

 		viewvalues() (dict method)

 		virtual environment

 		virtual machine

 		visit() (ast.NodeVisitor method)

 		visitproc (C type)

 		vline() (curses.window method)

 		VMSError

 		vnarray() (in module gl)

 		voidcmd() (ftplib.FTP method)

 		volume (zipfile.ZipInfo attribute)

 		vonmisesvariate() (in module random)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-A.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – A

 		

 		A-LAW, [1]

 		a-LAW

 		a2b_base64() (in module binascii)

 		a2b_hex() (in module binascii)

 		a2b_hqx() (in module binascii)

 		a2b_qp() (in module binascii)

 		a2b_uu() (in module binascii)

 		abc (module)

 		ABCMeta (class in abc)

 		abort()

 		

 		(ftplib.FTP method)

 		(in module os)

 		above() (curses.panel.Panel method)

 		
 abs

 		

 		built-in function, [1]

 		abs() (built-in function)

 		

 		(decimal.Context method)

 		(in module operator)

 		abspath() (in module os.path)

 		abstract base class

 		AbstractBasicAuthHandler (class in urllib2)

 		AbstractDigestAuthHandler (class in urllib2)

 		AbstractFormatter (class in formatter)

 		abstractmethod() (in module abc)

 		abstractproperty() (in module abc)

 		AbstractWriter (class in formatter)

 		accept() (asyncore.dispatcher method)

 		

 		(multiprocessing.connection.Listener method)

 		(socket.socket method)

 		accept2dyear (in module time)

 		access() (in module os)

 		acos() (in module cmath)

 		

 		(in module math)

 		acosh() (in module cmath)

 		

 		(in module math)

 		acquire() (logging.Handler method)

 		

 		(multiprocessing.Lock method)

 		(multiprocessing.RLock method)

 		(thread.lock method)

 		(threading.Condition method)

 		(threading.Lock method)

 		(threading.RLock method)

 		(threading.Semaphore method)

 		acquire_lock() (in module imp)

 		Action (class in argparse)

 		action (optparse.Option attribute)

 		ACTIONS (optparse.Option attribute)

 		activate_form() (fl.form method)

 		active_children() (in module multiprocessing)

 		active_count() (in module threading)

 		activeCount() (in module threading)

 		add() (decimal.Context method)

 		

 		(in module audioop)

 		(in module operator)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(msilib.RadioButtonGroup method)

 		(pstats.Stats method)

 		(set method)

 		(tarfile.TarFile method)

 		(ttk.Notebook method)

 		add_alias() (in module email.charset)

 		add_argument() (argparse.ArgumentParser method)

 		add_argument_group() (argparse.ArgumentParser method)

 		add_box() (fl.form method)

 		add_browser() (fl.form method)

 		add_button() (fl.form method)

 		add_cgi_vars() (wsgiref.handlers.BaseHandler method)

 		add_charset() (in module email.charset)

 		add_choice() (fl.form method)

 		add_clock() (fl.form method)

 		add_codec() (in module email.charset)

 		add_cookie_header() (cookielib.CookieJar method)

 		add_counter() (fl.form method)

 		add_data() (in module msilib)

 		

 		(urllib2.Request method)

 		add_dial() (fl.form method)

 		add_fallback() (gettext.NullTranslations method)

 		add_file() (msilib.Directory method)

 		add_flag() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		add_flowing_data() (formatter.formatter method)

 		add_folder() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		add_handler() (urllib2.OpenerDirector method)

 		add_header() (email.message.Message method)

 		

 		(urllib2.Request method)

 		(wsgiref.headers.Headers method)

 		add_history() (in module readline)

 		add_hor_rule() (formatter.formatter method)

 		add_include_dir() (distutils.ccompiler.CCompiler method)

 		add_input() (fl.form method)

 		add_label() (mailbox.BabylMessage method)

 		add_label_data() (formatter.formatter method)

 		add_library() (distutils.ccompiler.CCompiler method)

 		add_library_dir() (distutils.ccompiler.CCompiler method)

 		add_lightbutton() (fl.form method)

 		add_line_break() (formatter.formatter method)

 		add_link_object() (distutils.ccompiler.CCompiler method)

 		add_literal_data() (formatter.formatter method)

 		add_menu() (fl.form method)

 		add_mutually_exclusive_group() (argparse.ArgumentParser method)

 		add_option() (optparse.OptionParser method)

 		add_parent() (urllib2.BaseHandler method)

 		add_password() (urllib2.HTTPPasswordMgr method)

 		add_positioner() (fl.form method)

 		add_roundbutton() (fl.form method)

 		add_runtime_library_dir() (distutils.ccompiler.CCompiler method)

 		add_section() (ConfigParser.RawConfigParser method)

 		add_sequence() (mailbox.MHMessage method)

 		add_slider() (fl.form method)

 		add_stream() (in module msilib)

 		add_subparsers() (argparse.ArgumentParser method)

 		add_suffix() (imputil.ImportManager method)

 		add_tables() (in module msilib)

 		add_text() (fl.form method)

 		add_timer() (fl.form method)

 		add_type() (in module mimetypes)

 		add_unredirected_header() (urllib2.Request method)

 		add_valslider() (fl.form method)

 		addch() (curses.window method)

 		addCleanup() (unittest.TestCase method)

 		addcomponent() (turtle.Shape method)

 		addError() (unittest.TestResult method)

 		addExpectedFailure() (unittest.TestResult method)

 		addFailure() (unittest.TestResult method)

 		addfile() (tarfile.TarFile method)

 		addFilter() (logging.Handler method)

 		

 		(logging.Logger method)

 		addHandler() (logging.Logger method)

 		addheader() (MimeWriter.MimeWriter method)

 		addinfo() (hotshot.Profile method)

 		addition

 		addLevelName() (in module logging)

 		addnstr() (curses.window method)

 		AddPackagePath() (in module modulefinder)

 		address (multiprocessing.connection.Listener attribute)

 		

 		(multiprocessing.managers.BaseManager attribute)

 		address_family (SocketServer.BaseServer attribute)

 		address_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		AddressList (class in rfc822)

 		addresslist (rfc822.AddressList attribute)

 		addressof() (in module ctypes)

 		addshape() (in module turtle)

 		addsitedir() (in module site)

 		addSkip() (unittest.TestResult method)

 		addstr() (curses.window method)

 		addSuccess() (unittest.TestResult method)

 		addTest() (unittest.TestSuite method)

 		addTests() (unittest.TestSuite method)

 		addTypeEqualityFunc() (unittest.TestCase method)

 		addUnexpectedSuccess() (unittest.TestResult method)

 		adjusted() (decimal.Decimal method)

 		adler32() (in module zlib)

 		ADPCM, Intel/DVI

 		adpcm2lin() (in module audioop)

 		aepack (module)

 		AEServer (class in MiniAEFrame)

 		AEText (class in aetypes)

 		aetools (module)

 		aetypes (module)

 		AF_INET (in module socket)

 		AF_INET6 (in module socket)

 		AF_UNIX (in module socket)

 		aifc (module)

 		aifc() (aifc.aifc method)

 		AIFF, [1]

 		aiff() (aifc.aifc method)

 		AIFF-C, [1]

 		
 AL

 		

 		module

 		AL (module)

 		al (module)

 		alarm() (in module signal)

 		alaw2lin() (in module audioop)

 		ALERT_DESCRIPTION_HANDSHAKE_FAILURE (in module ssl)

 		ALERT_DESCRIPTION_INTERNAL_ERROR (in module ssl)

 		algorithms_available (in module hashlib)

 		algorithms_guaranteed (in module hashlib)

 		alignment() (in module ctypes)

 		all() (built-in function)

 		all_errors (in module ftplib)

 		all_features (in module xml.sax.handler)

 		all_properties (in module xml.sax.handler)

 		allocate_lock() (in module thread)

 		allow_reuse_address (SocketServer.BaseServer attribute)

 		allowed_domains() (cookielib.DefaultCookiePolicy method)

 		alt() (in module curses.ascii)

 		ALT_DIGITS (in module locale)

 		altsep (in module os)

 		altzone (in module time)

 		ALWAYS_TYPED_ACTIONS (optparse.Option attribute)

 		AMPER (in module token)

 		AMPEREQUAL (in module token)

 		

 		anchor_bgn() (htmllib.HTMLParser method)

 		anchor_end() (htmllib.HTMLParser method)

 		
 and

 		

 		bitwise

 		operator, [1], [2]

 		and_() (in module operator)

 		annotate() (in module dircache)

 		announce() (distutils.ccompiler.CCompiler method)

 		
 anonymous

 		

 		function

 		answer_challenge() (in module multiprocessing.connection)

 		any() (built-in function)

 		anydbm (module)

 		api_version (in module sys)

 		apop() (poplib.POP3 method)

 		APPDATA

 		append() (array.array method)

 		

 		(collections.deque method)

 		(email.header.Header method)

 		(imaplib.IMAP4 method)

 		(list method)

 		(msilib.CAB method)

 		(pipes.Template method)

 		(xml.etree.ElementTree.Element method)

 		appendChild() (xml.dom.Node method)

 		appendleft() (collections.deque method)

 		AppleEvents, [1]

 		applesingle (module)

 		Application() (in module FrameWork)

 		application_uri() (in module wsgiref.util)

 		
 apply

 		

 		built-in function, [1], [2]

 		apply (2to3 fixer)

 		apply() (built-in function)

 		

 		(multiprocessing.pool.multiprocessing.Pool method)

 		apply_async() (multiprocessing.pool.multiprocessing.Pool method)

 		architecture() (in module platform)

 		archive (zipimport.zipimporter attribute)

 		aRepr (in module repr)

 		argparse (module)

 		args (exceptions.BaseException attribute)

 		

 		(functools.partial attribute)

 		argtypes (ctypes._FuncPtr attribute)

 		argument

 		

 		call semantics

 		difference from parameter

 		function

 		function definition

 		ArgumentDefaultsHelpFormatter (class in argparse)

 		ArgumentError

 		ArgumentParser (class in argparse)

 		argv (in module sys), [1]

 		arithmetic

 		

 		conversion

 		operation, binary

 		operation, unary

 		ArithmeticError

 		
 array

 		

 		module

 		array (class in array)

 		Array (class in ctypes)

 		array (module)

 		Array() (in module multiprocessing)

 		

 		(in module multiprocessing.sharedctypes)

 		(multiprocessing.managers.SyncManager method)

 		arrays

 		ArrayType (in module array)

 		article() (nntplib.NNTP method)

 		
 as

 		

 		import statement

 		with statement

 		as_integer_ratio() (float method)

 		AS_IS (in module formatter)

 		as_string() (email.message.Message method)

 		as_tuple() (decimal.Decimal method)

 		ascii() (in module curses.ascii)

 		

 		(in module future_builtins)

 		ASCII@ASCII, [1], [2], [3], [4], [5]

 		ascii_letters (in module string)

 		ascii_lowercase (in module string)

 		ascii_uppercase (in module string)

 		asctime() (in module time)

 		asin() (in module cmath)

 		

 		(in module math)

 		asinh() (in module cmath)

 		

 		(in module math)

 		AskFileForOpen() (in module EasyDialogs)

 		AskFileForSave() (in module EasyDialogs)

 		AskFolder() (in module EasyDialogs)

 		AskPassword() (in module EasyDialogs)

 		AskString() (in module EasyDialogs)

 		AskYesNoCancel() (in module EasyDialogs)

 		
 assert

 		

 		statement, [1]

 		assert_line_data() (formatter.formatter method)

 		assertAlmostEqual() (unittest.TestCase method)

 		assertDictContainsSubset() (unittest.TestCase method)

 		assertDictEqual() (unittest.TestCase method)

 		assertEqual() (unittest.TestCase method)

 		assertFalse() (unittest.TestCase method)

 		assertGreater() (unittest.TestCase method)

 		assertGreaterEqual() (unittest.TestCase method)

 		assertIn() (unittest.TestCase method)

 		AssertionError

 		

 		exception

 		
 assertions

 		

 		debugging

 		assertIs() (unittest.TestCase method)

 		assertIsInstance() (unittest.TestCase method)

 		assertIsNone() (unittest.TestCase method)

 		assertIsNot() (unittest.TestCase method)

 		assertIsNotNone() (unittest.TestCase method)

 		assertItemsEqual() (unittest.TestCase method)

 		assertLess() (unittest.TestCase method)

 		assertLessEqual() (unittest.TestCase method)

 		assertListEqual() (unittest.TestCase method)

 		assertMultiLineEqual() (unittest.TestCase method)

 		assertNotAlmostEqual() (unittest.TestCase method)

 		assertNotEqual() (unittest.TestCase method)

 		assertNotIn() (unittest.TestCase method)

 		assertNotIsInstance() (unittest.TestCase method)

 		assertNotRegexpMatches() (unittest.TestCase method)

 		assertRaises() (unittest.TestCase method)

 		assertRaisesRegexp() (unittest.TestCase method)

 		assertRegexpMatches() (unittest.TestCase method)

 		asserts (2to3 fixer)

 		assertSequenceEqual() (unittest.TestCase method)

 		assertSetEqual() (unittest.TestCase method)

 		assertTrue() (unittest.TestCase method)

 		assertTupleEqual() (unittest.TestCase method)

 		
 assignment

 		

 		attribute, [1]

 		augmented

 		class attribute

 		class instance attribute

 		extended slice

 		slice

 		slicing

 		statement, [1]

 		subscript

 		subscription

 		target list

 		AST (class in ast)

 		ast (module)

 		astimezone() (datetime.datetime method)

 		ASTVisitor (class in compiler.visitor)

 		async_chat (class in asynchat)

 		async_chat.ac_in_buffer_size (in module asynchat)

 		async_chat.ac_out_buffer_size (in module asynchat)

 		asyncevents() (FrameWork.Application method)

 		asynchat (module)

 		asyncore (module)

 		AsyncResult (class in multiprocessing.pool)

 		AT (in module token)

 		atan() (in module cmath)

 		

 		(in module math)

 		atan2() (in module math)

 		atanh() (in module cmath)

 		

 		(in module math)

 		atexit (module)

 		atime (in module cd)

 		atof() (in module locale)

 		

 		(in module string)

 		atoi() (in module locale)

 		

 		(in module string)

 		atol() (in module string)

 		atom

 		attach() (email.message.Message method)

 		AttlistDeclHandler() (xml.parsers.expat.xmlparser method)

 		attrgetter() (in module operator)

 		attrib (xml.etree.ElementTree.Element attribute)

 		attribute, [1]

 		

 		assignment, [1]

 		assignment, class

 		assignment, class instance

 		class

 		class instance

 		deletion

 		generic special

 		reference

 		special

 		AttributeError

 		

 		exception

 		attributes (xml.dom.Node attribute)

 		AttributesImpl (class in xml.sax.xmlreader)

 		AttributesNSImpl (class in xml.sax.xmlreader)

 		attroff() (curses.window method)

 		attron() (curses.window method)

 		attrset() (curses.window method)

 		audio (in module cd)

 		Audio Interchange File Format, [1]

 		AUDIO_FILE_ENCODING_ADPCM_G721 (in module sunau)

 		AUDIO_FILE_ENCODING_ADPCM_G722 (in module sunau)

 		AUDIO_FILE_ENCODING_ADPCM_G723_3 (in module sunau)

 		AUDIO_FILE_ENCODING_ADPCM_G723_5 (in module sunau)

 		AUDIO_FILE_ENCODING_ALAW_8 (in module sunau)

 		AUDIO_FILE_ENCODING_DOUBLE (in module sunau)

 		AUDIO_FILE_ENCODING_FLOAT (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_16 (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_24 (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_32 (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_8 (in module sunau)

 		AUDIO_FILE_ENCODING_MULAW_8 (in module sunau)

 		AUDIO_FILE_MAGIC (in module sunau)

 		AUDIODEV

 		audioop (module)

 		
 augmented

 		

 		assignment

 		auth() (ftplib.FTP_TLS method)

 		authenticate() (imaplib.IMAP4 method)

 		AuthenticationError

 		authenticators() (netrc.netrc method)

 		authkey (multiprocessing.Process attribute)

 		autoGIL (module)

 		AutoGILError

 		avg() (in module audioop)

 		avgpp() (in module audioop)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-D.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – D

 		

 		D_FMT (in module locale)

 		D_T_FMT (in module locale)

 		daemon (multiprocessing.Process attribute)

 		

 		(threading.Thread attribute)

 		
 dangling

 		

 		else

 		data

 		

 		packing binary

 		tabular

 		type

 		type, immutable

 		Data (class in plistlib)

 		data (select.kevent attribute)

 		

 		(UserDict.IterableUserDict attribute)

 		(UserList.UserList attribute)

 		(UserString.MutableString attribute)

 		(xml.dom.Comment attribute)

 		(xml.dom.ProcessingInstruction attribute)

 		(xml.dom.Text attribute)

 		(xmlrpclib.Binary attribute)

 		data() (xml.etree.ElementTree.TreeBuilder method)

 		
 database

 		

 		Unicode

 		databases

 		DatagramHandler (class in logging.handlers)

 		DatagramRequestHandler (class in SocketServer)

 		DATASIZE (in module cd)

 		date (class in datetime)

 		date() (datetime.datetime method)

 		

 		(nntplib.NNTP method)

 		date_time (zipfile.ZipInfo attribute)

 		date_time_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		datetime (class in datetime)

 		DateTime (class in xmlrpclib)

 		datetime (module)

 		datum

 		day (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		day_abbr (in module calendar)

 		day_name (in module calendar)

 		daylight (in module time)

 		Daylight Saving Time

 		DbfilenameShelf (class in shelve)

 		
 dbhash

 		

 		module

 		dbhash (module)

 		
 dbm

 		

 		module, [1], [2], [3]

 		dbm (module)

 		deactivate_form() (fl.form method)

 		deallocation, object

 		debug (imaplib.IMAP4 attribute)

 		DEBUG (in module re)

 		debug (shlex.shlex attribute)

 		

 		(zipfile.ZipFile attribute)

 		debug() (in module doctest)

 		

 		(in module logging)

 		(logging.Logger method)

 		(pipes.Template method)

 		(unittest.TestCase method)

 		(unittest.TestSuite method)

 		DEBUG_COLLECTABLE (in module gc)

 		DEBUG_INSTANCES (in module gc)

 		DEBUG_LEAK (in module gc)

 		DEBUG_OBJECTS (in module gc)

 		debug_print() (distutils.ccompiler.CCompiler method)

 		DEBUG_SAVEALL (in module gc)

 		debug_src() (in module doctest)

 		DEBUG_STATS (in module gc)

 		DEBUG_UNCOLLECTABLE (in module gc)

 		debugger, [1], [2]

 		

 		configuration file

 		debugging

 		

 		CGI

 		assertions

 		DebuggingServer (class in smtpd)

 		DebugRunner (class in doctest)

 		DebugStr() (in module MacOS)

 		Decimal (class in decimal)

 		decimal (module)

 		decimal literal

 		decimal() (in module unicodedata)

 		DecimalException (class in decimal)

 		
 decode

 		

 		Codecs

 		decode() (codecs.Codec method)

 		

 		(codecs.IncrementalDecoder method)

 		(in module base64)

 		(in module codecs)

 		(in module mimetools)

 		(in module quopri)

 		(in module uu)

 		(json.JSONDecoder method)

 		(str method)

 		(xmlrpclib.Binary method)

 		(xmlrpclib.DateTime method)

 		decode_header() (in module email.header)

 		decode_params() (in module email.utils)

 		decode_rfc2231() (in module email.utils)

 		DecodedGenerator (class in email.generator)

 		decodestring() (in module base64)

 		

 		(in module quopri)

 		decomposition() (in module unicodedata)

 		decompress() (bz2.BZ2Decompressor method)

 		

 		(in module bz2)

 		(in module jpeg)

 		(in module zlib)

 		(zlib.Decompress method)

 		decompressobj() (in module zlib)

 		decorator

 		DEDENT (in module token)

 		DEDENT token, [1]

 		dedent() (in module textwrap)

 		deepcopy() (in module copy)

 		
 def

 		

 		statement

 		def_prog_mode() (in module curses)

 		def_shell_mode() (in module curses)

 		
 default

 		

 		parameter value

 		default (optparse.Option attribute)

 		default() (cmd.Cmd method)

 		

 		(compiler.visitor.ASTVisitor method)

 		(json.JSONEncoder method)

 		DEFAULT_BUFFER_SIZE (in module io)

 		default_bufsize (in module xml.dom.pulldom)

 		default_factory (collections.defaultdict attribute)

 		DEFAULT_FORMAT (in module tarfile)

 		default_open() (urllib2.BaseHandler method)

 		default_timer() (in module timeit)

 		DefaultContext (class in decimal)

 		DefaultCookiePolicy (class in cookielib)

 		defaultdict (class in collections)

 		DefaultHandler() (xml.parsers.expat.xmlparser method)

 		DefaultHandlerExpand() (xml.parsers.expat.xmlparser method)

 		defaults() (ConfigParser.RawConfigParser method)

 		defaultTestLoader (in module unittest)

 		defaultTestResult() (unittest.TestCase method)

 		defects (email.message.Message attribute)

 		define_macro() (distutils.ccompiler.CCompiler method)

 		
 definition

 		

 		class, [1]

 		function, [1]

 		defpath (in module os)

 		degrees() (in module math)

 		

 		(in module turtle)

 		
 del

 		

 		statement, [1], [2], [3]

 		del_param() (email.message.Message method)

 		delattr() (built-in function)

 		delay() (in module turtle)

 		delay_output() (in module curses)

 		delayload (cookielib.FileCookieJar attribute)

 		delch() (curses.window method)

 		dele() (poplib.POP3 method)

 		delete() (ftplib.FTP method)

 		

 		(imaplib.IMAP4 method)

 		(ttk.Treeview method)

 		DELETE_ATTR (opcode)

 		DELETE_FAST (opcode)

 		DELETE_GLOBAL (opcode)

 		DELETE_NAME (opcode)

 		DELETE_SLICE+0 (opcode)

 		DELETE_SLICE+1 (opcode)

 		DELETE_SLICE+2 (opcode)

 		DELETE_SLICE+3 (opcode)

 		DELETE_SUBSCR (opcode)

 		deleteacl() (imaplib.IMAP4 method)

 		deletefilehandler() (Tkinter.Widget.tk method)

 		deletefolder() (mhlib.MH method)

 		DeleteKey() (in module _winreg)

 		DeleteKeyEx() (in module _winreg)

 		deleteln() (curses.window method)

 		deleteMe() (bdb.Breakpoint method)

 		DeleteValue() (in module _winreg)

 		
 deletion

 		

 		attribute

 		target

 		target list

 		delimiter (csv.Dialect attribute)

 		delimiters

 		delitem() (in module operator)

 		deliver_challenge() (in module multiprocessing.connection)

 		delslice() (in module operator)

 		demo_app() (in module wsgiref.simple_server)

 		denominator (numbers.Rational attribute)

 		DeprecationWarning

 		deque (class in collections)

 		DER_cert_to_PEM_cert() (in module ssl)

 		derwin() (curses.window method)

 		
 DES

 		

 		cipher

 		description (sqlite3.Cursor attribute)

 		description() (nntplib.NNTP method)

 		descriptions() (nntplib.NNTP method)

 		descriptor

 		

 		file

 		dest (optparse.Option attribute)

 		destructor, [1]

 		Detach() (_winreg.PyHKEY method)

 		detach() (io.BufferedIOBase method)

 		

 		(io.TextIOBase method)

 		(ttk.Treeview method)

 		detect_language() (distutils.ccompiler.CCompiler method)

 		deterministic profiling

 		DEVICE (module)

 		devnull (in module os)

 		dgettext() (in module gettext)

 		Dialect (class in csv)

 		dialect (csv.csvreader attribute)

 		

 		(csv.csvwriter attribute)

 		Dialog (class in msilib)

 		DialogWindow() (in module FrameWork)

 		dict (2to3 fixer)

 		

 		(built-in class)

 		dict() (multiprocessing.managers.SyncManager method)

 		dictConfig() (in module logging.config)

 		dictionary

 		

 		display

 		object, [1], [2], [3], [4], [5], [6], [7]

 		type, operations on

 		dictionary view

 		DictionaryType (in module types), [1]

 		DictMixin (class in UserDict)

 		DictProxyType (in module types)

 		DictReader (class in csv)

 		DictType (in module types), [1]

 		DictWriter (class in csv)

 		diff_files (filecmp.dircmp attribute)

 		Differ (class in difflib), [1]

 		difference() (set method)

 		difference_update() (set method)

 		difflib (module)

 		digest() (hashlib.hash method)

 		

 		(hmac.HMAC method)

 		(md5.md5 method)

 		(sha.sha method)

 		digest_size (in module md5)

 		

 		(in module sha)

 		digit() (in module unicodedata)

 		digits (in module string)

 		dir() (built-in function)

 		

 		(ftplib.FTP method)

 		dircache (module)

 		dircmp (class in filecmp)

 		
 directory

 		

 		changing

 		creating

 		deleting, [1]

 		site-packages

 		site-python

 		traversal

 		walking

 		Directory (class in msilib)

 		

 		
 directory ...

 		

 		compileall command line option

 		directory_created() (built-in function)

 		DirList (class in Tix)

 		dirname() (in module os.path)

 		DirSelectBox (class in Tix)

 		DirSelectDialog (class in Tix)

 		DirTree (class in Tix)

 		dis (module)

 		dis() (in module dis)

 		

 		(in module pickletools)

 		disable() (bdb.Breakpoint method)

 		

 		(in module gc)

 		(in module logging)

 		(profile.Profile method)

 		disable_interspersed_args() (optparse.OptionParser method)

 		DisableReflectionKey() (in module _winreg)

 		disassemble() (in module dis)

 		discard (cookielib.Cookie attribute)

 		discard() (mailbox.Mailbox method)

 		

 		(mailbox.MH method)

 		(set method)

 		discard_buffers() (asynchat.async_chat method)

 		disco() (in module dis)

 		discover() (unittest.TestLoader method)

 		dispatch() (compiler.visitor.ASTVisitor method)

 		dispatch_call() (bdb.Bdb method)

 		dispatch_exception() (bdb.Bdb method)

 		dispatch_line() (bdb.Bdb method)

 		dispatch_return() (bdb.Bdb method)

 		dispatcher (class in asyncore)

 		dispatcher_with_send (class in asyncore)

 		
 display

 		

 		dictionary

 		list

 		set

 		tuple

 		displayhook() (in module sys)

 		dist() (in module platform)

 		distance() (in module turtle)

 		distb() (in module dis)

 		Distribution (class in distutils.core)

 		distutils (module)

 		distutils.archive_util (module)

 		distutils.bcppcompiler (module)

 		distutils.ccompiler (module)

 		distutils.cmd (module)

 		distutils.command (module)

 		distutils.command.bdist (module)

 		distutils.command.bdist_dumb (module)

 		distutils.command.bdist_msi (module)

 		distutils.command.bdist_packager (module)

 		distutils.command.bdist_rpm (module)

 		distutils.command.bdist_wininst (module)

 		distutils.command.build (module)

 		distutils.command.build_clib (module)

 		distutils.command.build_ext (module)

 		distutils.command.build_py (module)

 		distutils.command.build_scripts (module)

 		distutils.command.check (module)

 		distutils.command.clean (module)

 		distutils.command.config (module)

 		distutils.command.install (module)

 		distutils.command.install_data (module)

 		distutils.command.install_headers (module)

 		distutils.command.install_lib (module)

 		distutils.command.install_scripts (module)

 		distutils.command.register (module)

 		distutils.command.sdist (module)

 		distutils.core (module)

 		distutils.cygwinccompiler (module)

 		distutils.debug (module)

 		distutils.dep_util (module)

 		distutils.dir_util (module)

 		distutils.dist (module)

 		distutils.emxccompiler (module)

 		distutils.errors (module)

 		distutils.extension (module)

 		distutils.fancy_getopt (module)

 		distutils.file_util (module)

 		distutils.filelist (module)

 		distutils.log (module)

 		distutils.msvccompiler (module)

 		distutils.spawn (module)

 		distutils.sysconfig (module)

 		distutils.text_file (module)

 		distutils.unixccompiler (module)

 		distutils.util (module)

 		distutils.version (module)

 		DISTUTILS_DEBUG

 		dither2grey2() (in module imageop)

 		dither2mono() (in module imageop)

 		div() (in module operator)

 		divide() (decimal.Context method)

 		divide_int() (decimal.Context method)

 		division

 		

 		integer

 		long integer

 		DivisionByZero (class in decimal)

 		
 divmod

 		

 		built-in function, [1], [2]

 		divmod() (built-in function)

 		

 		(decimal.Context method)

 		dl (module)

 		DllCanUnloadNow() (in module ctypes)

 		DllGetClassObject() (in module ctypes)

 		dllhandle (in module sys)

 		dngettext() (in module gettext)

 		do_activate() (FrameWork.ScrolledWindow method)

 		

 		(FrameWork.Window method)

 		do_char() (FrameWork.Application method)

 		do_clear() (bdb.Bdb method)

 		do_command() (curses.textpad.Textbox method)

 		do_contentclick() (FrameWork.Window method)

 		do_controlhit() (FrameWork.ControlsWindow method)

 		

 		(FrameWork.ScrolledWindow method)

 		do_dialogevent() (FrameWork.Application method)

 		do_forms() (in module fl)

 		do_GET() (SimpleHTTPServer.SimpleHTTPRequestHandler method)

 		do_handshake() (ssl.SSLSocket method)

 		do_HEAD() (SimpleHTTPServer.SimpleHTTPRequestHandler method)

 		do_itemhit() (FrameWork.DialogWindow method)

 		do_POST() (CGIHTTPServer.CGIHTTPRequestHandler method)

 		do_postresize() (FrameWork.ScrolledWindow method)

 		

 		(FrameWork.Window method)

 		do_update() (FrameWork.Window method)

 		doc_header (cmd.Cmd attribute)

 		DocCGIXMLRPCRequestHandler (class in DocXMLRPCServer)

 		DocFileSuite() (in module doctest)

 		doCleanups() (unittest.TestCase method)

 		docmd() (smtplib.SMTP method)

 		docstring, [1]

 		

 		(doctest.DocTest attribute)

 		docstrings, [1]

 		DocTest (class in doctest)

 		doctest (module)

 		DocTestFailure

 		DocTestFinder (class in doctest)

 		DocTestParser (class in doctest)

 		DocTestRunner (class in doctest)

 		DocTestSuite() (in module doctest)

 		doctype() (xml.etree.ElementTree.TreeBuilder method)

 		

 		(xml.etree.ElementTree.XMLParser method)

 		
 documentation

 		

 		generation

 		online

 		documentation string

 		documentation strings, [1]

 		documentElement (xml.dom.Document attribute)

 		DocXMLRPCRequestHandler (class in DocXMLRPCServer)

 		DocXMLRPCServer (class in DocXMLRPCServer)

 		

 		(module)

 		domain_initial_dot (cookielib.Cookie attribute)

 		domain_return_ok() (cookielib.CookiePolicy method)

 		domain_specified (cookielib.Cookie attribute)

 		DomainLiberal (cookielib.DefaultCookiePolicy attribute)

 		DomainRFC2965Match (cookielib.DefaultCookiePolicy attribute)

 		DomainStrict (cookielib.DefaultCookiePolicy attribute)

 		DomainStrictNoDots (cookielib.DefaultCookiePolicy attribute)

 		DomainStrictNonDomain (cookielib.DefaultCookiePolicy attribute)

 		DOMEventStream (class in xml.dom.pulldom)

 		DOMException

 		DomstringSizeErr

 		done() (in module turtle)

 		

 		(xdrlib.Unpacker method)

 		DONT_ACCEPT_BLANKLINE (in module doctest)

 		DONT_ACCEPT_TRUE_FOR_1 (in module doctest)

 		dont_write_bytecode (in module sys)

 		doRollover() (logging.handlers.RotatingFileHandler method)

 		

 		(logging.handlers.TimedRotatingFileHandler method)

 		DOT (in module token)

 		dot() (in module turtle)

 		DOTALL (in module re)

 		doublequote (csv.Dialect attribute)

 		DOUBLESLASH (in module token)

 		DOUBLESLASHEQUAL (in module token)

 		DOUBLESTAR (in module token)

 		DOUBLESTAREQUAL (in module token)

 		doupdate() (in module curses)

 		down() (in module turtle)

 		drop_whitespace (textwrap.TextWrapper attribute)

 		dropwhile() (in module itertools)

 		dst() (datetime.datetime method)

 		

 		(datetime.time method)

 		(datetime.tzinfo method)

 		DTDHandler (class in xml.sax.handler)

 		duck-typing

 		
 dumbdbm

 		

 		module

 		dumbdbm (module)

 		DumbWriter (class in formatter)

 		dummy_thread (module)

 		dummy_threading (module)

 		dump() (in module ast)

 		

 		(in module json)

 		(in module marshal)

 		(in module pickle)

 		(in module xml.etree.ElementTree)

 		(pickle.Pickler method)

 		dump_address_pair() (in module rfc822)

 		dump_stats() (profile.Profile method)

 		

 		(pstats.Stats method)

 		dumps() (in module json)

 		

 		(in module marshal)

 		(in module pickle)

 		(in module xmlrpclib)

 		dup() (in module os)

 		

 		(posixfile.posixfile method)

 		dup2() (in module os)

 		

 		(posixfile.posixfile method)

 		DUP_TOP (opcode)

 		DUP_TOPX (opcode)

 		DuplicateSectionError

 		dwFlags (subprocess.STARTUPINFO attribute)

 		DynLoadSuffixImporter (class in imputil)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-Y.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – Y

 		

 		Y2K

 		ycor() (in module turtle)

 		year (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		Year 2000

 		Year 2038

 		yeardatescalendar() (calendar.Calendar method)

 		yeardays2calendar() (calendar.Calendar method)

 		

 		yeardayscalendar() (calendar.Calendar method)

 		YESEXPR (in module locale)

 		
 yield

 		

 		expression

 		keyword

 		statement

 		YIELD_VALUE (opcode)

 		yiq_to_rgb() (in module colorsys)

 		yview() (ttk.Treeview method)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-Q.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – Q

 		

 		qdevice() (in module fl)

 		QDPoint (class in aetypes)

 		QDRectangle (class in aetypes)

 		qenter() (in module fl)

 		qiflush() (in module curses)

 		QName (class in xml.etree.ElementTree)

 		qread() (in module fl)

 		qreset() (in module fl)

 		qsize() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		qtest() (in module fl)

 		quantize() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		QueryInfoKey() (in module _winreg)

 		queryparams() (in module al)

 		QueryReflectionKey() (in module _winreg)

 		QueryValue() (in module _winreg)

 		QueryValueEx() (in module _winreg)

 		Queue (class in multiprocessing)

 		

 		(class in Queue)

 		(module)

 		queue (sched.scheduler attribute)

 		

 		Queue() (multiprocessing.managers.SyncManager method)

 		quick_ratio() (difflib.SequenceMatcher method)

 		quit (built-in variable)

 		quit() (ftplib.FTP method)

 		

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		(smtplib.SMTP method)

 		quopri (module)

 		quote() (in module email.utils)

 		

 		(in module pipes)

 		(in module rfc822)

 		(in module urllib)

 		QUOTE_ALL (in module csv)

 		QUOTE_MINIMAL (in module csv)

 		QUOTE_NONE (in module csv)

 		QUOTE_NONNUMERIC (in module csv)

 		quote_plus() (in module urllib)

 		quoteattr() (in module xml.sax.saxutils)

 		quotechar (csv.Dialect attribute)

 		
 quoted-printable

 		

 		encoding

 		
 quotes

 		

 		backward, [1]

 		reverse, [1]

 		quotes (shlex.shlex attribute)

 		quoting (csv.Dialect attribute)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-all.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

Symbols

 		

 		
 !=

 		

 		operator

 		
 %

 		

 		operator

 		% formatting

 		% interpolation

 		
 %=

 		

 		augmented assignment

 		%PATH%

 		
 &

 		

 		operator

 		
 &=

 		

 		augmented assignment

 		
 *

 		

 		in function calls

 		operator

 		statement, [1]

 		
 **

 		

 		in function calls

 		operator

 		statement, [1]

 		
 **=

 		

 		augmented assignment

 		
 *=

 		

 		augmented assignment

 		
 +

 		

 		operator

 		
 +=

 		

 		augmented assignment

 		
 -

 		

 		operator

 		
 --help

 		

 		command line option

 		trace command line option

 		
 --ignore-dir=<dir>

 		

 		trace command line option

 		
 --ignore-module=<mod>

 		

 		trace command line option

 		
 --user-base

 		

 		site command line option

 		
 --user-site

 		

 		site command line option

 		
 --version

 		

 		command line option

 		trace command line option

 		
 -3

 		

 		command line option

 		
 -=

 		

 		augmented assignment

 		
 -?

 		

 		command line option

 		
 -B

 		

 		command line option

 		
 -b, --buffer

 		

 		unittest command line option

 		
 -c <command>

 		

 		command line option

 		
 -c, --catch

 		

 		unittest command line option

 		
 -c, --clock

 		

 		timeit command line option

 		
 -c, --count

 		

 		trace command line option

 		
 -C, --coverdir=<dir>

 		

 		trace command line option

 		
 -d

 		

 		command line option

 		
 -d destdir

 		

 		compileall command line option

 		
 -E

 		

 		command line option

 		
 -f

 		

 		compileall command line option

 		
 -f, --failfast

 		

 		unittest command line option

 		
 -f, --file=<file>

 		

 		trace command line option

 		
 -g, --timing

 		

 		trace command line option

 		
 -h

 		

 		command line option

 		
 -h, --help

 		

 		timeit command line option

 		
 -i

 		

 		command line option

 		
 -i list

 		

 		compileall command line option

 		
 -J

 		

 		command line option

 		
 -l

 		

 		compileall command line option

 		
 -l, --listfuncs

 		

 		trace command line option

 		
 -m <module-name>

 		

 		command line option

 		
 -m, --missing

 		

 		trace command line option

 		
 -n N, --number=N

 		

 		timeit command line option

 		
 -O

 		

 		command line option

 		
 -OO

 		

 		command line option

 		
 -p, --pattern pattern

 		

 		unittest-discover command line option

 		

 		
 -q

 		

 		compileall command line option

 		
 -Q <arg>

 		

 		command line option

 		
 -R

 		

 		command line option

 		
 -r N, --repeat=N

 		

 		timeit command line option

 		
 -R, --no-report

 		

 		trace command line option

 		
 -r, --report

 		

 		trace command line option

 		
 -S

 		

 		command line option

 		
 -s

 		

 		command line option

 		
 -s S, --setup=S

 		

 		timeit command line option

 		
 -s, --start-directory directory

 		

 		unittest-discover command line option

 		
 -s, --summary

 		

 		trace command line option

 		
 -t

 		

 		command line option

 		
 -t, --time

 		

 		timeit command line option

 		
 -t, --top-level-directory directory

 		

 		unittest-discover command line option

 		
 -t, --trace

 		

 		trace command line option

 		
 -T, --trackcalls

 		

 		trace command line option

 		
 -U

 		

 		command line option

 		
 -u

 		

 		command line option

 		
 -V

 		

 		command line option

 		
 -v

 		

 		command line option

 		
 -v, --verbose

 		

 		timeit command line option

 		unittest-discover command line option

 		
 -W arg

 		

 		command line option

 		
 -X

 		

 		command line option

 		
 -x

 		

 		command line option

 		
 -x regex

 		

 		compileall command line option

 		...

 		
 .ini

 		

 		file

 		
 .pdbrc

 		

 		file

 		.pypirc file

 		
 .pythonrc.py

 		

 		file

 		
 /

 		

 		operator

 		
 //

 		

 		operator

 		
 //=

 		

 		augmented assignment

 		
 /=

 		

 		augmented assignment

 		2to3

 		
 <

 		

 		operator

 		
 <<

 		

 		operator

 		
 <<=

 		

 		augmented assignment

 		
 <=

 		

 		operator

 		<protocol>_proxy

 		
 =

 		

 		assignment statement

 		
 ==

 		

 		operator

 		
 >

 		

 		operator

 		
 >=

 		

 		operator

 		
 >>

 		

 		operator

 		
 >>=

 		

 		augmented assignment

 		>>>

 		
 @

 		

 		statement

 		
 ^

 		

 		operator

 		
 ^=

 		

 		augmented assignment

 		
 |=

 		

 		augmented assignment

_

 		

 		__abs__() (in module operator)

 		

 		(object method)

 		__add__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__all__

 		

 		(optional module attribute)

 		(package variable)

 		__and__() (in module operator)

 		

 		(object method)

 		__bases__ (class attribute), [1]

 		
 __builtin__

 		

 		module, [1], [2], [3], [4]

 		__builtin__ (module)

 		__builtins__

 		__call__() (object method), [1]

 		__class__ (instance attribute), [1]

 		__closure__ (function attribute)

 		__cmp__() (instance method)

 		

 		(object method)

 		__code__ (function attribute)

 		__coerce__() (object method)

 		__complex__() (object method)

 		__concat__() (in module operator)

 		__contains__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.Mailbox method)

 		(object method)

 		__copy__() (copy protocol)

 		__debug__

 		

 		(built-in variable)

 		__deepcopy__() (copy protocol)

 		__defaults__ (function attribute)

 		__del__() (io.IOBase method)

 		

 		(object method)

 		__delattr__() (object method)

 		__delete__() (object method)

 		__delitem__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(object method)

 		__delslice__() (in module operator)

 		

 		(object method)

 		__dict__ (class attribute)

 		

 		(function attribute)

 		(instance attribute), [1]

 		(module attribute), [1]

 		(object attribute)

 		__displayhook__ (in module sys)

 		__div__() (in module operator)

 		

 		(object method)

 		__divmod__() (object method)

 		__doc__ (class attribute)

 		

 		(function attribute)

 		(method attribute)

 		(module attribute), [1]

 		__enter__() (_winreg.PyHKEY method)

 		

 		(contextmanager method)

 		(object method)

 		__eq__() (email.charset.Charset method)

 		

 		(email.header.Header method)

 		(in module operator)

 		(instance method)

 		(object method)

 		__excepthook__ (in module sys)

 		__exit__() (_winreg.PyHKEY method)

 		

 		(contextmanager method)

 		(object method)

 		__file__

 		

 		(module attribute), [1], [2]

 		__float__() (object method)

 		__floordiv__() (in module operator)

 		

 		(object method)

 		__format__

 		__format__() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		__future__

 		

 		(module)

 		__ge__() (in module operator)

 		

 		(instance method)

 		(object method)

 		__get__() (object method)

 		__getattr__() (object method)

 		__getattribute__() (object method)

 		__getinitargs__() (object method)

 		__getitem__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.Mailbox method)

 		(mapping object method)

 		(object method)

 		__getnewargs__() (object method)

 		__getslice__() (in module operator)

 		

 		(object method)

 		__getstate__() (object method)

 		__globals__ (function attribute)

 		__gt__() (in module operator)

 		

 		(instance method)

 		(object method)

 		__hash__() (object method)

 		__hex__() (object method)

 		__iadd__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__iand__() (in module operator)

 		

 		(object method)

 		__iconcat__() (in module operator)

 		__idiv__() (in module operator)

 		

 		(object method)

 		__ifloordiv__() (in module operator)

 		

 		(object method)

 		__ilshift__() (in module operator)

 		

 		(object method)

 		__imod__() (in module operator)

 		

 		(object method)

 		
 __import__

 		

 		built-in function

 		__import__() (built-in function)

 		__imul__() (in module operator)

 		

 		(object method)

 		__index__() (in module operator)

 		

 		(object method)

 		__init__() (logging.Handler method)

 		

 		(logging.logging.Formatter method)

 		(object method), [1]

 		__instancecheck__() (class method)

 		__int__() (object method)

 		__inv__() (in module operator)

 		__invert__() (in module operator)

 		

 		(object method)

 		__ior__() (in module operator)

 		

 		(object method)

 		__ipow__() (in module operator)

 		

 		(object method)

 		__irepeat__() (in module operator)

 		__irshift__() (in module operator)

 		

 		(object method)

 		__isub__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__iter__() (container method)

 		

 		(iterator method)

 		(mailbox.Mailbox method)

 		(object method)

 		(unittest.TestSuite method)

 		__itruediv__() (in module operator)

 		

 		(object method)

 		__ixor__() (in module operator)

 		

 		(object method)

 		__le__() (in module operator)

 		

 		(instance method)

 		(object method)

 		__len__() (email.message.Message method)

 		

 		(mailbox.Mailbox method)

 		(mapping object method)

 		(object method)

 		(rfc822.AddressList method)

 		__loader__

 		__long__() (object method)

 		__lshift__() (in module operator)

 		

 		(object method)

 		__lt__() (in module operator)

 		

 		(instance method)

 		(object method)

 		
 __main__

 		

 		module, [1], [2], [3], [4], [5], [6], [7]

 		__main__ (module)

 		__members__ (object attribute)

 		__metaclass__ (built-in variable)

 		__methods__ (object attribute)

 		__missing__()

 		

 		(collections.defaultdict method)

 		(object method)

 		__mod__() (in module operator)

 		

 		(object method)

 		__module__ (class attribute)

 		

 		(function attribute)

 		(method attribute)

 		__mro__ (class attribute)

 		__mul__() (in module operator)

 		

 		(object method)

 		__name__

 		

 		(class attribute), [1]

 		(function attribute)

 		(method attribute)

 		(module attribute), [1], [2]

 		__ne__() (email.charset.Charset method)

 		

 		(email.header.Header method)

 		(in module operator)

 		(instance method)

 		(object method)

 		__neg__() (in module operator)

 		

 		(object method)

 		__new__() (object method)

 		__nonzero__() (object method), [1]

 		__not__() (in module operator)

 		

 		__oct__() (object method)

 		__or__() (in module operator)

 		

 		(object method)

 		__package__

 		__path__, [1]

 		__pos__() (in module operator)

 		

 		(object method)

 		__pow__() (in module operator)

 		

 		(object method)

 		__radd__() (object method)

 		__rand__() (object method)

 		__rcmp__() (object method)

 		__rdiv__() (object method)

 		__rdivmod__() (object method)

 		__reduce__() (object method)

 		__reduce_ex__() (object method)

 		__repeat__() (in module operator)

 		__repr__() (multiprocessing.managers.BaseProxy method)

 		

 		(netrc.netrc method)

 		(object method)

 		__reversed__() (object method)

 		__rfloordiv__() (object method)

 		__rlshift__() (object method)

 		__rmod__() (object method)

 		__rmul__() (object method)

 		__ror__() (object method)

 		__rpow__() (object method)

 		__rrshift__() (object method)

 		__rshift__() (in module operator)

 		

 		(object method)

 		__rsub__() (object method)

 		__rtruediv__() (object method)

 		__rxor__() (object method)

 		__set__() (object method)

 		__setattr__() (object method), [1]

 		__setitem__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(object method)

 		__setslice__() (in module operator)

 		

 		(object method)

 		__setstate__() (object method)

 		__slots__

 		

 		(built-in variable)

 		__stderr__ (in module sys)

 		__stdin__ (in module sys)

 		__stdout__ (in module sys)

 		__str__() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		(email.charset.Charset method)

 		(email.header.Header method)

 		(email.message.Message method)

 		(multiprocessing.managers.BaseProxy method)

 		(object method)

 		(rfc822.AddressList method)

 		__sub__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__subclasscheck__() (class method)

 		__subclasses__() (class method)

 		__subclasshook__() (abc.ABCMeta method)

 		__truediv__() (in module operator)

 		

 		(object method)

 		__unicode__() (email.header.Header method)

 		

 		(object method)

 		__xor__() (in module operator)

 		

 		(object method)

 		anonymous (ctypes.Structure attribute)

 		_asdict() (collections.somenamedtuple method)

 		_b_base_ (ctypes._CData attribute)

 		_b_needsfree_ (ctypes._CData attribute)

 		_callmethod() (multiprocessing.managers.BaseProxy method)

 		_CData (class in ctypes)

 		_clear_type_cache() (in module sys)

 		_current_frames() (in module sys)

 		_exit() (in module os)

 		_fields (ast.AST attribute)

 		

 		(collections.somenamedtuple attribute)

 		fields (ctypes.Structure attribute)

 		_flush() (wsgiref.handlers.BaseHandler method)

 		_frozen (C type)

 		_FuncPtr (class in ctypes)

 		_getframe() (in module sys)

 		_getvalue() (multiprocessing.managers.BaseProxy method)

 		_handle (ctypes.PyDLL attribute)

 		_https_verify_certificates() (in module ssl)

 		_inittab (C type)

 		length (ctypes.Array attribute)

 		
 _locale

 		

 		module

 		_make() (collections.somenamedtuple class method)

 		_makeResult() (unittest.TextTestRunner method)

 		_name (ctypes.PyDLL attribute)

 		_objects (ctypes._CData attribute)

 		pack (ctypes.Structure attribute)

 		_parse() (gettext.NullTranslations method)

 		_Pointer (class in ctypes)

 		_Py_c_diff (C function)

 		_Py_c_neg (C function)

 		_Py_c_pow (C function)

 		_Py_c_prod (C function)

 		_Py_c_quot (C function)

 		_Py_c_sum (C function)

 		_Py_NoneStruct (C variable)

 		_PyImport_FindExtension (C function)

 		_PyImport_Fini (C function)

 		_PyImport_FixupExtension (C function)

 		_PyImport_Init (C function)

 		_PyObject_Del (C function)

 		_PyObject_GC_TRACK (C function)

 		_PyObject_GC_UNTRACK (C function)

 		_PyObject_New (C function)

 		_PyObject_NewVar (C function)

 		_PyString_Resize (C function)

 		_PyTuple_Resize (C function)

 		_quit() (FrameWork.Application method)

 		_replace() (collections.somenamedtuple method)

 		_setroot() (xml.etree.ElementTree.ElementTree method)

 		_SimpleCData (class in ctypes)

 		_start() (aetools.TalkTo method)

 		_structure() (in module email.iterators)

 		type (ctypes._Pointer attribute)

 		

 		(ctypes.Array attribute)

 		_urlopener (in module urllib)

 		_winreg (module)

 		_write() (wsgiref.handlers.BaseHandler method)

A

 		

 		A-LAW, [1]

 		a-LAW

 		a2b_base64() (in module binascii)

 		a2b_hex() (in module binascii)

 		a2b_hqx() (in module binascii)

 		a2b_qp() (in module binascii)

 		a2b_uu() (in module binascii)

 		abc (module)

 		ABCMeta (class in abc)

 		abort()

 		

 		(ftplib.FTP method)

 		(in module os)

 		above() (curses.panel.Panel method)

 		
 abs

 		

 		built-in function, [1]

 		abs() (built-in function)

 		

 		(decimal.Context method)

 		(in module operator)

 		abspath() (in module os.path)

 		abstract base class

 		AbstractBasicAuthHandler (class in urllib2)

 		AbstractDigestAuthHandler (class in urllib2)

 		AbstractFormatter (class in formatter)

 		abstractmethod() (in module abc)

 		abstractproperty() (in module abc)

 		AbstractWriter (class in formatter)

 		accept() (asyncore.dispatcher method)

 		

 		(multiprocessing.connection.Listener method)

 		(socket.socket method)

 		accept2dyear (in module time)

 		access() (in module os)

 		acos() (in module cmath)

 		

 		(in module math)

 		acosh() (in module cmath)

 		

 		(in module math)

 		acquire() (logging.Handler method)

 		

 		(multiprocessing.Lock method)

 		(multiprocessing.RLock method)

 		(thread.lock method)

 		(threading.Condition method)

 		(threading.Lock method)

 		(threading.RLock method)

 		(threading.Semaphore method)

 		acquire_lock() (in module imp)

 		Action (class in argparse)

 		action (optparse.Option attribute)

 		ACTIONS (optparse.Option attribute)

 		activate_form() (fl.form method)

 		active_children() (in module multiprocessing)

 		active_count() (in module threading)

 		activeCount() (in module threading)

 		add() (decimal.Context method)

 		

 		(in module audioop)

 		(in module operator)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(msilib.RadioButtonGroup method)

 		(pstats.Stats method)

 		(set method)

 		(tarfile.TarFile method)

 		(ttk.Notebook method)

 		add_alias() (in module email.charset)

 		add_argument() (argparse.ArgumentParser method)

 		add_argument_group() (argparse.ArgumentParser method)

 		add_box() (fl.form method)

 		add_browser() (fl.form method)

 		add_button() (fl.form method)

 		add_cgi_vars() (wsgiref.handlers.BaseHandler method)

 		add_charset() (in module email.charset)

 		add_choice() (fl.form method)

 		add_clock() (fl.form method)

 		add_codec() (in module email.charset)

 		add_cookie_header() (cookielib.CookieJar method)

 		add_counter() (fl.form method)

 		add_data() (in module msilib)

 		

 		(urllib2.Request method)

 		add_dial() (fl.form method)

 		add_fallback() (gettext.NullTranslations method)

 		add_file() (msilib.Directory method)

 		add_flag() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		add_flowing_data() (formatter.formatter method)

 		add_folder() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		add_handler() (urllib2.OpenerDirector method)

 		add_header() (email.message.Message method)

 		

 		(urllib2.Request method)

 		(wsgiref.headers.Headers method)

 		add_history() (in module readline)

 		add_hor_rule() (formatter.formatter method)

 		add_include_dir() (distutils.ccompiler.CCompiler method)

 		add_input() (fl.form method)

 		add_label() (mailbox.BabylMessage method)

 		add_label_data() (formatter.formatter method)

 		add_library() (distutils.ccompiler.CCompiler method)

 		add_library_dir() (distutils.ccompiler.CCompiler method)

 		add_lightbutton() (fl.form method)

 		add_line_break() (formatter.formatter method)

 		add_link_object() (distutils.ccompiler.CCompiler method)

 		add_literal_data() (formatter.formatter method)

 		add_menu() (fl.form method)

 		add_mutually_exclusive_group() (argparse.ArgumentParser method)

 		add_option() (optparse.OptionParser method)

 		add_parent() (urllib2.BaseHandler method)

 		add_password() (urllib2.HTTPPasswordMgr method)

 		add_positioner() (fl.form method)

 		add_roundbutton() (fl.form method)

 		add_runtime_library_dir() (distutils.ccompiler.CCompiler method)

 		add_section() (ConfigParser.RawConfigParser method)

 		add_sequence() (mailbox.MHMessage method)

 		add_slider() (fl.form method)

 		add_stream() (in module msilib)

 		add_subparsers() (argparse.ArgumentParser method)

 		add_suffix() (imputil.ImportManager method)

 		add_tables() (in module msilib)

 		add_text() (fl.form method)

 		add_timer() (fl.form method)

 		add_type() (in module mimetypes)

 		add_unredirected_header() (urllib2.Request method)

 		add_valslider() (fl.form method)

 		addch() (curses.window method)

 		addCleanup() (unittest.TestCase method)

 		addcomponent() (turtle.Shape method)

 		addError() (unittest.TestResult method)

 		addExpectedFailure() (unittest.TestResult method)

 		addFailure() (unittest.TestResult method)

 		addfile() (tarfile.TarFile method)

 		addFilter() (logging.Handler method)

 		

 		(logging.Logger method)

 		addHandler() (logging.Logger method)

 		addheader() (MimeWriter.MimeWriter method)

 		addinfo() (hotshot.Profile method)

 		addition

 		addLevelName() (in module logging)

 		addnstr() (curses.window method)

 		AddPackagePath() (in module modulefinder)

 		address (multiprocessing.connection.Listener attribute)

 		

 		(multiprocessing.managers.BaseManager attribute)

 		address_family (SocketServer.BaseServer attribute)

 		address_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		AddressList (class in rfc822)

 		addresslist (rfc822.AddressList attribute)

 		addressof() (in module ctypes)

 		addshape() (in module turtle)

 		addsitedir() (in module site)

 		addSkip() (unittest.TestResult method)

 		addstr() (curses.window method)

 		addSuccess() (unittest.TestResult method)

 		addTest() (unittest.TestSuite method)

 		addTests() (unittest.TestSuite method)

 		addTypeEqualityFunc() (unittest.TestCase method)

 		addUnexpectedSuccess() (unittest.TestResult method)

 		adjusted() (decimal.Decimal method)

 		adler32() (in module zlib)

 		ADPCM, Intel/DVI

 		adpcm2lin() (in module audioop)

 		aepack (module)

 		AEServer (class in MiniAEFrame)

 		AEText (class in aetypes)

 		aetools (module)

 		aetypes (module)

 		AF_INET (in module socket)

 		AF_INET6 (in module socket)

 		AF_UNIX (in module socket)

 		aifc (module)

 		aifc() (aifc.aifc method)

 		AIFF, [1]

 		aiff() (aifc.aifc method)

 		AIFF-C, [1]

 		
 AL

 		

 		module

 		AL (module)

 		al (module)

 		alarm() (in module signal)

 		alaw2lin() (in module audioop)

 		ALERT_DESCRIPTION_HANDSHAKE_FAILURE (in module ssl)

 		ALERT_DESCRIPTION_INTERNAL_ERROR (in module ssl)

 		algorithms_available (in module hashlib)

 		algorithms_guaranteed (in module hashlib)

 		alignment() (in module ctypes)

 		all() (built-in function)

 		all_errors (in module ftplib)

 		all_features (in module xml.sax.handler)

 		all_properties (in module xml.sax.handler)

 		allocate_lock() (in module thread)

 		allow_reuse_address (SocketServer.BaseServer attribute)

 		allowed_domains() (cookielib.DefaultCookiePolicy method)

 		alt() (in module curses.ascii)

 		ALT_DIGITS (in module locale)

 		altsep (in module os)

 		altzone (in module time)

 		ALWAYS_TYPED_ACTIONS (optparse.Option attribute)

 		AMPER (in module token)

 		AMPEREQUAL (in module token)

 		

 		anchor_bgn() (htmllib.HTMLParser method)

 		anchor_end() (htmllib.HTMLParser method)

 		
 and

 		

 		bitwise

 		operator, [1], [2]

 		and_() (in module operator)

 		annotate() (in module dircache)

 		announce() (distutils.ccompiler.CCompiler method)

 		
 anonymous

 		

 		function

 		answer_challenge() (in module multiprocessing.connection)

 		any() (built-in function)

 		anydbm (module)

 		api_version (in module sys)

 		apop() (poplib.POP3 method)

 		APPDATA

 		append() (array.array method)

 		

 		(collections.deque method)

 		(email.header.Header method)

 		(imaplib.IMAP4 method)

 		(list method)

 		(msilib.CAB method)

 		(pipes.Template method)

 		(xml.etree.ElementTree.Element method)

 		appendChild() (xml.dom.Node method)

 		appendleft() (collections.deque method)

 		AppleEvents, [1]

 		applesingle (module)

 		Application() (in module FrameWork)

 		application_uri() (in module wsgiref.util)

 		
 apply

 		

 		built-in function, [1], [2]

 		apply (2to3 fixer)

 		apply() (built-in function)

 		

 		(multiprocessing.pool.multiprocessing.Pool method)

 		apply_async() (multiprocessing.pool.multiprocessing.Pool method)

 		architecture() (in module platform)

 		archive (zipimport.zipimporter attribute)

 		aRepr (in module repr)

 		argparse (module)

 		args (exceptions.BaseException attribute)

 		

 		(functools.partial attribute)

 		argtypes (ctypes._FuncPtr attribute)

 		argument

 		

 		call semantics

 		difference from parameter

 		function

 		function definition

 		ArgumentDefaultsHelpFormatter (class in argparse)

 		ArgumentError

 		ArgumentParser (class in argparse)

 		argv (in module sys), [1]

 		arithmetic

 		

 		conversion

 		operation, binary

 		operation, unary

 		ArithmeticError

 		
 array

 		

 		module

 		array (class in array)

 		Array (class in ctypes)

 		array (module)

 		Array() (in module multiprocessing)

 		

 		(in module multiprocessing.sharedctypes)

 		(multiprocessing.managers.SyncManager method)

 		arrays

 		ArrayType (in module array)

 		article() (nntplib.NNTP method)

 		
 as

 		

 		import statement

 		with statement

 		as_integer_ratio() (float method)

 		AS_IS (in module formatter)

 		as_string() (email.message.Message method)

 		as_tuple() (decimal.Decimal method)

 		ascii() (in module curses.ascii)

 		

 		(in module future_builtins)

 		ASCII@ASCII, [1], [2], [3], [4], [5]

 		ascii_letters (in module string)

 		ascii_lowercase (in module string)

 		ascii_uppercase (in module string)

 		asctime() (in module time)

 		asin() (in module cmath)

 		

 		(in module math)

 		asinh() (in module cmath)

 		

 		(in module math)

 		AskFileForOpen() (in module EasyDialogs)

 		AskFileForSave() (in module EasyDialogs)

 		AskFolder() (in module EasyDialogs)

 		AskPassword() (in module EasyDialogs)

 		AskString() (in module EasyDialogs)

 		AskYesNoCancel() (in module EasyDialogs)

 		
 assert

 		

 		statement, [1]

 		assert_line_data() (formatter.formatter method)

 		assertAlmostEqual() (unittest.TestCase method)

 		assertDictContainsSubset() (unittest.TestCase method)

 		assertDictEqual() (unittest.TestCase method)

 		assertEqual() (unittest.TestCase method)

 		assertFalse() (unittest.TestCase method)

 		assertGreater() (unittest.TestCase method)

 		assertGreaterEqual() (unittest.TestCase method)

 		assertIn() (unittest.TestCase method)

 		AssertionError

 		

 		exception

 		
 assertions

 		

 		debugging

 		assertIs() (unittest.TestCase method)

 		assertIsInstance() (unittest.TestCase method)

 		assertIsNone() (unittest.TestCase method)

 		assertIsNot() (unittest.TestCase method)

 		assertIsNotNone() (unittest.TestCase method)

 		assertItemsEqual() (unittest.TestCase method)

 		assertLess() (unittest.TestCase method)

 		assertLessEqual() (unittest.TestCase method)

 		assertListEqual() (unittest.TestCase method)

 		assertMultiLineEqual() (unittest.TestCase method)

 		assertNotAlmostEqual() (unittest.TestCase method)

 		assertNotEqual() (unittest.TestCase method)

 		assertNotIn() (unittest.TestCase method)

 		assertNotIsInstance() (unittest.TestCase method)

 		assertNotRegexpMatches() (unittest.TestCase method)

 		assertRaises() (unittest.TestCase method)

 		assertRaisesRegexp() (unittest.TestCase method)

 		assertRegexpMatches() (unittest.TestCase method)

 		asserts (2to3 fixer)

 		assertSequenceEqual() (unittest.TestCase method)

 		assertSetEqual() (unittest.TestCase method)

 		assertTrue() (unittest.TestCase method)

 		assertTupleEqual() (unittest.TestCase method)

 		
 assignment

 		

 		attribute, [1]

 		augmented

 		class attribute

 		class instance attribute

 		extended slice

 		slice

 		slicing

 		statement, [1]

 		subscript

 		subscription

 		target list

 		AST (class in ast)

 		ast (module)

 		astimezone() (datetime.datetime method)

 		ASTVisitor (class in compiler.visitor)

 		async_chat (class in asynchat)

 		async_chat.ac_in_buffer_size (in module asynchat)

 		async_chat.ac_out_buffer_size (in module asynchat)

 		asyncevents() (FrameWork.Application method)

 		asynchat (module)

 		asyncore (module)

 		AsyncResult (class in multiprocessing.pool)

 		AT (in module token)

 		atan() (in module cmath)

 		

 		(in module math)

 		atan2() (in module math)

 		atanh() (in module cmath)

 		

 		(in module math)

 		atexit (module)

 		atime (in module cd)

 		atof() (in module locale)

 		

 		(in module string)

 		atoi() (in module locale)

 		

 		(in module string)

 		atol() (in module string)

 		atom

 		attach() (email.message.Message method)

 		AttlistDeclHandler() (xml.parsers.expat.xmlparser method)

 		attrgetter() (in module operator)

 		attrib (xml.etree.ElementTree.Element attribute)

 		attribute, [1]

 		

 		assignment, [1]

 		assignment, class

 		assignment, class instance

 		class

 		class instance

 		deletion

 		generic special

 		reference

 		special

 		AttributeError

 		

 		exception

 		attributes (xml.dom.Node attribute)

 		AttributesImpl (class in xml.sax.xmlreader)

 		AttributesNSImpl (class in xml.sax.xmlreader)

 		attroff() (curses.window method)

 		attron() (curses.window method)

 		attrset() (curses.window method)

 		audio (in module cd)

 		Audio Interchange File Format, [1]

 		AUDIO_FILE_ENCODING_ADPCM_G721 (in module sunau)

 		AUDIO_FILE_ENCODING_ADPCM_G722 (in module sunau)

 		AUDIO_FILE_ENCODING_ADPCM_G723_3 (in module sunau)

 		AUDIO_FILE_ENCODING_ADPCM_G723_5 (in module sunau)

 		AUDIO_FILE_ENCODING_ALAW_8 (in module sunau)

 		AUDIO_FILE_ENCODING_DOUBLE (in module sunau)

 		AUDIO_FILE_ENCODING_FLOAT (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_16 (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_24 (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_32 (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_8 (in module sunau)

 		AUDIO_FILE_ENCODING_MULAW_8 (in module sunau)

 		AUDIO_FILE_MAGIC (in module sunau)

 		AUDIODEV

 		audioop (module)

 		
 augmented

 		

 		assignment

 		auth() (ftplib.FTP_TLS method)

 		authenticate() (imaplib.IMAP4 method)

 		AuthenticationError

 		authenticators() (netrc.netrc method)

 		authkey (multiprocessing.Process attribute)

 		autoGIL (module)

 		AutoGILError

 		avg() (in module audioop)

 		avgpp() (in module audioop)

B

 		

 		b16decode() (in module base64)

 		b16encode() (in module base64)

 		b2a_base64() (in module binascii)

 		b2a_hex() (in module binascii)

 		b2a_hqx() (in module binascii)

 		b2a_qp() (in module binascii)

 		b2a_uu() (in module binascii)

 		b32decode() (in module base64)

 		b32encode() (in module base64)

 		b64decode() (in module base64)

 		b64encode() (in module base64)

 		Babyl (class in mailbox)

 		BabylMailbox (class in mailbox)

 		BabylMessage (class in mailbox)

 		back() (in module turtle)

 		back-quotes, [1]

 		BACKQUOTE (in module token)

 		backslash character

 		backslashreplace_errors() (in module codecs)

 		
 backward

 		

 		quotes, [1]

 		backward() (in module turtle)

 		backward_compatible (in module imageop)

 		BadStatusLine

 		BadZipfile

 		Balloon (class in Tix)

 		bare except

 		
 base64

 		

 		encoding

 		module

 		base64 (module)

 		BaseCGIHandler (class in wsgiref.handlers)

 		BaseCookie (class in Cookie)

 		BaseException

 		BaseHandler (class in urllib2)

 		

 		(class in wsgiref.handlers)

 		BaseHTTPRequestHandler (class in BaseHTTPServer)

 		BaseHTTPServer (module)

 		BaseManager (class in multiprocessing.managers)

 		basename() (in module os.path)

 		BaseProxy (class in multiprocessing.managers)

 		BaseRequestHandler (class in SocketServer)

 		BaseServer (class in SocketServer)

 		basestring (2to3 fixer)

 		basestring() (built-in function)

 		basicConfig() (in module logging)

 		BasicContext (class in decimal)

 		Bastion (module)

 		Bastion() (in module Bastion)

 		BastionClass (class in Bastion)

 		baudrate() (in module curses)

 		bbox() (ttk.Treeview method)

 		
 bdb

 		

 		module

 		Bdb (class in bdb)

 		bdb (module)

 		BdbQuit

 		BDFL

 		bdist_msi (class in distutils.command.bdist_msi)

 		beep() (in module curses)

 		Beep() (in module winsound)

 		begin_fill() (in module turtle)

 		begin_poly() (in module turtle)

 		below() (curses.panel.Panel method)

 		Benchmarking

 		benchmarking

 		betavariate() (in module random)

 		bgcolor() (in module turtle)

 		bgn_group() (fl.form method)

 		bgpic() (in module turtle)

 		bias() (in module audioop)

 		bidirectional() (in module unicodedata)

 		BigEndianStructure (class in ctypes)

 		bin() (built-in function)

 		
 binary

 		

 		arithmetic operation

 		bitwise operation

 		data, packing

 		Binary (class in msilib)

 		

 		(class in xmlrpclib)

 		binary literal

 		binary semaphores

 		BINARY_ADD (opcode)

 		BINARY_AND (opcode)

 		BINARY_DIVIDE (opcode)

 		BINARY_FLOOR_DIVIDE (opcode)

 		BINARY_LSHIFT (opcode)

 		BINARY_MODULO (opcode)

 		BINARY_MULTIPLY (opcode)

 		BINARY_OR (opcode)

 		BINARY_POWER (opcode)

 		BINARY_RSHIFT (opcode)

 		BINARY_SUBSCR (opcode)

 		BINARY_SUBTRACT (opcode)

 		BINARY_TRUE_DIVIDE (opcode)

 		BINARY_XOR (opcode)

 		binascii (module)

 		bind (widgets)

 		bind() (asyncore.dispatcher method)

 		

 		(socket.socket method)

 		bind_textdomain_codeset() (in module gettext)

 		
 binding

 		

 		global name

 		name, [1], [2], [3], [4], [5]

 		bindtextdomain() (in module gettext)

 		
 binhex

 		

 		module

 		binhex (module)

 		binhex() (in module binhex)

 		bisect (module)

 		bisect() (in module bisect)

 		bisect_left() (in module bisect)

 		bisect_right() (in module bisect)

 		bit_length() (int method)

 		

 		(long method)

 		bitmap() (msilib.Dialog method)

 		
 bitwise

 		

 		and

 		operation, binary

 		operation, unary

 		operations

 		or

 		xor

 		bk() (in module turtle)

 		bkgd() (curses.window method)

 		

 		bkgdset() (curses.window method)

 		blank line

 		block

 		

 		code

 		blocked_domains() (cookielib.DefaultCookiePolicy method)

 		BlockingIOError

 		BLOCKSIZE (in module cd)

 		blocksize (in module sha)

 		BNF, [1]

 		body() (nntplib.NNTP method)

 		body_encode() (email.charset.Charset method)

 		body_encoding (email.charset.Charset attribute)

 		body_line_iterator() (in module email.iterators)

 		BOM (in module codecs)

 		BOM_BE (in module codecs)

 		BOM_LE (in module codecs)

 		BOM_UTF16 (in module codecs)

 		BOM_UTF16_BE (in module codecs)

 		BOM_UTF16_LE (in module codecs)

 		BOM_UTF32 (in module codecs)

 		BOM_UTF32_BE (in module codecs)

 		BOM_UTF32_LE (in module codecs)

 		BOM_UTF8 (in module codecs)

 		bool (built-in class)

 		
 Boolean

 		

 		object, [1]

 		operation

 		operations, [1]

 		type

 		values

 		Boolean (class in aetypes)

 		boolean() (in module xmlrpclib)

 		BooleanType (in module types)

 		bootstrap() (in module ensurepip)

 		border() (curses.window method)

 		bottom() (curses.panel.Panel method)

 		bottom_panel() (in module curses.panel)

 		BoundaryError

 		BoundedSemaphore (class in multiprocessing)

 		BoundedSemaphore() (in module threading)

 		

 		(multiprocessing.managers.SyncManager method)

 		box() (curses.window method)

 		
 break

 		

 		statement, [1], [2], [3], [4]

 		break_anywhere() (bdb.Bdb method)

 		break_here() (bdb.Bdb method)

 		break_long_words (textwrap.TextWrapper attribute)

 		BREAK_LOOP (opcode)

 		break_on_hyphens (textwrap.TextWrapper attribute)

 		Breakpoint (class in bdb)

 		breakpoints

 		BROWSER, [1]

 		
 bsddb

 		

 		module, [1], [2], [3]

 		bsddb (module)

 		BsdDbShelf (class in shelve)

 		btopen() (in module bsddb)

 		
 buffer

 		

 		built-in function

 		object, [1]

 		buffer (2to3 fixer)

 		

 		(io.TextIOBase attribute)

 		(unittest.TestResult attribute)

 		buffer interface

 		buffer size, I/O

 		buffer() (built-in function)

 		buffer_info() (array.array method)

 		buffer_size (xml.parsers.expat.xmlparser attribute)

 		buffer_text (xml.parsers.expat.xmlparser attribute)

 		buffer_used (xml.parsers.expat.xmlparser attribute)

 		BufferedIOBase (class in io)

 		BufferedRandom (class in io)

 		BufferedReader (class in io)

 		BufferedRWPair (class in io)

 		BufferedWriter (class in io)

 		BufferError

 		BufferingHandler (class in logging.handlers)

 		BufferTooShort

 		BufferType (in module types), [1]

 		BUFSIZ (in module macostools)

 		bufsize() (ossaudiodev.oss_audio_device method)

 		BUILD_CLASS (opcode)

 		BUILD_LIST (opcode)

 		BUILD_MAP (opcode)

 		build_opener() (in module urllib2)

 		BUILD_SET (opcode)

 		BUILD_SLICE (opcode)

 		BUILD_TUPLE (opcode)

 		buildtools (module)

 		
 built-in

 		

 		method

 		types

 		
 built-in function

 		

 		__import__

 		abs, [1]

 		apply, [1], [2]

 		buffer

 		bytes

 		call

 		chr, [1]

 		classmethod

 		cmp, [1], [2], [3]

 		coerce

 		compile, [1], [2], [3], [4]

 		complex, [1]

 		divmod, [1], [2]

 		eval, [1], [2], [3], [4], [5], [6], [7]

 		execfile, [1]

 		file

 		float, [1], [2], [3]

 		globals

 		hash, [1], [2]

 		help

 		hex

 		id

 		input, [1]

 		int, [1], [2]

 		len, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 		locals

 		long, [1], [2], [3]

 		max

 		min

 		object, [1]

 		oct

 		open, [1]

 		ord, [1], [2]

 		pow, [1], [2], [3], [4], [5]

 		range

 		raw_input, [1]

 		reload, [1], [2], [3]

 		repr, [1], [2], [3], [4], [5]

 		slice, [1], [2]

 		staticmethod

 		str, [1], [2], [3]

 		tuple, [1]

 		type, [1], [2], [3]

 		unichr

 		unicode, [1], [2], [3]

 		xrange

 		
 built-in method

 		

 		call

 		object, [1]

 		builtin_module_names (in module sys)

 		BuiltinFunctionType (in module types)

 		BuiltinImporter (class in imputil)

 		BuiltinMethodType (in module types)

 		
 builtins

 		

 		module

 		ButtonBox (class in Tix)

 		bye() (in module turtle)

 		byref() (in module ctypes)

 		byte

 		
 byte-code

 		

 		file, [1], [2]

 		byte_compile() (in module distutils.util)

 		bytearray

 		

 		object, [1]

 		bytearray (built-in class)

 		bytecode, [1]

 		byteorder (in module sys)

 		
 bytes

 		

 		built-in function

 		bytes (uuid.UUID attribute)

 		bytes-like object

 		bytes_le (uuid.UUID attribute)

 		BytesIO (class in io)

 		byteswap() (array.array method)

 		bz2 (module)

 		BZ2Compressor (class in bz2)

 		BZ2Decompressor (class in bz2)

 		BZ2File (class in bz2)

C

 		

 		C

 		

 		language, [1], [2], [3], [4]

 		structures

 		c_bool (class in ctypes)

 		C_BUILTIN (in module imp)

 		c_byte (class in ctypes)

 		c_char (class in ctypes)

 		c_char_p (class in ctypes)

 		c_double (class in ctypes)

 		C_EXTENSION (in module imp)

 		c_float (class in ctypes)

 		c_int (class in ctypes)

 		c_int16 (class in ctypes)

 		c_int32 (class in ctypes)

 		c_int64 (class in ctypes)

 		c_int8 (class in ctypes)

 		c_long (class in ctypes)

 		c_longdouble (class in ctypes)

 		c_longlong (class in ctypes)

 		c_short (class in ctypes)

 		c_size_t (class in ctypes)

 		c_ssize_t (class in ctypes)

 		c_ubyte (class in ctypes)

 		c_uint (class in ctypes)

 		c_uint16 (class in ctypes)

 		c_uint32 (class in ctypes)

 		c_uint64 (class in ctypes)

 		c_uint8 (class in ctypes)

 		c_ulong (class in ctypes)

 		c_ulonglong (class in ctypes)

 		c_ushort (class in ctypes)

 		c_void_p (class in ctypes)

 		c_wchar (class in ctypes)

 		c_wchar_p (class in ctypes)

 		CAB (class in msilib)

 		CacheFTPHandler (class in urllib2)

 		calcsize() (in module struct)

 		Calendar (class in calendar)

 		calendar (module)

 		calendar() (in module calendar)

 		call

 		

 		built-in function

 		built-in method

 		class instance

 		class object, [1], [2], [3]

 		function, [1], [2]

 		instance, [1]

 		method

 		procedure

 		user-defined function

 		call() (dl.dl method)

 		

 		(in module subprocess)

 		CALL_FUNCTION (opcode)

 		CALL_FUNCTION_KW (opcode)

 		CALL_FUNCTION_VAR (opcode)

 		CALL_FUNCTION_VAR_KW (opcode)

 		call_tracing() (in module sys)

 		
 callable

 		

 		object, [1]

 		callable (2to3 fixer)

 		Callable (class in collections)

 		callable() (built-in function)

 		CallableProxyType (in module weakref)

 		callback (optparse.Option attribute)

 		callback() (MiniAEFrame.AEServer method)

 		callback_args (optparse.Option attribute)

 		callback_kwargs (optparse.Option attribute)

 		CalledProcessError

 		calloc()

 		can_change_color() (in module curses)

 		can_fetch() (robotparser.RobotFileParser method)

 		cancel() (sched.scheduler method)

 		

 		(threading.Timer method)

 		cancel_join_thread() (multiprocessing.Queue method)

 		CannotSendHeader

 		CannotSendRequest

 		canonic() (bdb.Bdb method)

 		canonical() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		capitalize() (in module string)

 		

 		(str method)

 		
 Capsule

 		

 		object

 		captured_stdout() (in module test.test_support)

 		captureWarnings() (in module logging)

 		capwords() (in module string)

 		Carbon.AE (module)

 		Carbon.AH (module)

 		Carbon.App (module)

 		Carbon.Appearance (module)

 		Carbon.CarbonEvents (module)

 		Carbon.CarbonEvt (module)

 		Carbon.CF (module)

 		Carbon.CG (module)

 		Carbon.Cm (module)

 		Carbon.Components (module)

 		Carbon.ControlAccessor (module)

 		Carbon.Controls (module)

 		Carbon.CoreFounation (module)

 		Carbon.CoreGraphics (module)

 		Carbon.Ctl (module)

 		Carbon.Dialogs (module)

 		Carbon.Dlg (module)

 		Carbon.Drag (module)

 		Carbon.Dragconst (module)

 		Carbon.Events (module)

 		Carbon.Evt (module)

 		Carbon.File (module)

 		Carbon.Files (module)

 		Carbon.Fm (module)

 		Carbon.Folder (module)

 		Carbon.Folders (module)

 		Carbon.Fonts (module)

 		Carbon.Help (module)

 		Carbon.IBCarbon (module)

 		Carbon.IBCarbonRuntime (module)

 		Carbon.Icns (module)

 		Carbon.Icons (module)

 		Carbon.Launch (module)

 		Carbon.LaunchServices (module)

 		Carbon.List (module)

 		Carbon.Lists (module)

 		Carbon.MacHelp (module)

 		Carbon.MediaDescr (module)

 		Carbon.Menu (module)

 		Carbon.Menus (module)

 		Carbon.Mlte (module)

 		Carbon.OSA (module)

 		Carbon.OSAconst (module)

 		Carbon.Qd (module)

 		Carbon.Qdoffs (module)

 		Carbon.QDOffscreen (module)

 		Carbon.Qt (module)

 		Carbon.QuickDraw (module)

 		Carbon.QuickTime (module)

 		Carbon.Res (module)

 		Carbon.Resources (module)

 		Carbon.Scrap (module)

 		Carbon.Snd (module)

 		Carbon.Sound (module)

 		Carbon.TE (module)

 		Carbon.TextEdit (module)

 		Carbon.Win (module)

 		Carbon.Windows (module)

 		cast() (in module ctypes)

 		cat() (in module nis)

 		catalog (in module cd)

 		catch_warnings (class in warnings)

 		category() (in module unicodedata)

 		cbreak() (in module curses)

 		CC

 		CCompiler (class in distutils.ccompiler)

 		cd (module)

 		CDLL (class in ctypes)

 		CDROM (in module cd)

 		ceil() (in module math), [1]

 		center() (in module string)

 		

 		(str method)

 		CERT_NONE (in module ssl)

 		CERT_OPTIONAL (in module ssl)

 		CERT_REQUIRED (in module ssl)

 		cert_store_stats() (ssl.SSLContext method)

 		cert_time_to_seconds() (in module ssl)

 		CertificateError

 		certificates

 		CFLAGS, [1], [2]

 		cfmfile (module)

 		CFUNCTYPE() (in module ctypes)

 		
 CGI

 		

 		debugging

 		exceptions

 		protocol

 		security

 		tracebacks

 		cgi (module)

 		cgi_directories (CGIHTTPServer.CGIHTTPRequestHandler attribute)

 		CGIHandler (class in wsgiref.handlers)

 		CGIHTTPRequestHandler (class in CGIHTTPServer)

 		
 CGIHTTPServer

 		

 		module

 		CGIHTTPServer (module)

 		cgitb (module)

 		CGIXMLRPCRequestHandler (class in SimpleXMLRPCServer)

 		chain() (in module itertools)

 		
 chaining

 		

 		comparisons, [1]

 		change_root() (in module distutils.util)

 		CHANNEL_BINDING_TYPES (in module ssl)

 		channels() (ossaudiodev.oss_audio_device method)

 		CHAR_MAX (in module locale)

 		character, [1], [2], [3]

 		character set

 		CharacterDataHandler() (xml.parsers.expat.xmlparser method)

 		characters() (xml.sax.handler.ContentHandler method)

 		characters_written (io.BlockingIOError attribute)

 		charbufferproc (C type)

 		Charset (class in email.charset)

 		CHARSET (in module mimify)

 		charset() (gettext.NullTranslations method)

 		chdir() (in module os)

 		check() (imaplib.IMAP4 method)

 		

 		(in module tabnanny)

 		check_call() (in module subprocess)

 		check_environ() (in module distutils.util)

 		check_forms() (in module fl)

 		check_hostname (ssl.SSLContext attribute)

 		check_output() (doctest.OutputChecker method)

 		

 		(in module subprocess)

 		check_py3k_warnings() (in module test.test_support)

 		check_unused_args() (string.Formatter method)

 		check_warnings() (in module test.test_support)

 		checkbox() (msilib.Dialog method)

 		checkcache() (in module linecache)

 		checkfuncname() (in module bdb)

 		CheckList (class in Tix)

 		
 checksum

 		

 		Cyclic Redundancy Check

 		MD5

 		SHA

 		chflags() (in module os)

 		chgat() (curses.window method)

 		childerr (popen2.Popen3 attribute)

 		childNodes (xml.dom.Node attribute)

 		chmod() (in module os)

 		choice() (in module random)

 		choices (optparse.Option attribute)

 		choose_boundary() (in module mimetools)

 		chown() (in module os)

 		
 chr

 		

 		built-in function, [1]

 		chr() (built-in function)

 		chroot() (in module os)

 		Chunk (class in chunk)

 		chunk (module)

 		
 cipher

 		

 		DES

 		cipher() (ssl.SSLSocket method)

 		circle() (in module turtle)

 		CIRCUMFLEX (in module token)

 		CIRCUMFLEXEQUAL (in module token)

 		Clamped (class in decimal)

 		class

 		

 		attribute

 		attribute assignment

 		classic

 		constructor

 		definition, [1]

 		instance

 		name

 		new-style

 		object, [1], [2], [3], [4]

 		old-style

 		statement

 		Class (class in symtable)

 		Class browser

 		
 class instance

 		

 		attribute

 		attribute assignment

 		call

 		object, [1], [2], [3]

 		
 class object

 		

 		call, [1], [2], [3]

 		classic class

 		
 classmethod

 		

 		built-in function

 		classmethod() (built-in function)

 		classobj() (in module new)

 		ClassType (in module types), [1]

 		clause

 		clean() (mailbox.Maildir method)

 		cleandoc() (in module inspect)

 		cleanup functions

 		Clear Breakpoint

 		clear() (collections.deque method)

 		

 		(cookielib.CookieJar method)

 		(curses.window method)

 		(dict method)

 		(in module turtle), [1]

 		(mailbox.Mailbox method)

 		(set method)

 		(threading.Event method)

 		(xml.etree.ElementTree.Element method)

 		clear_all_breaks() (bdb.Bdb method)

 		clear_all_file_breaks() (bdb.Bdb method)

 		clear_bpbynumber() (bdb.Bdb method)

 		clear_break() (bdb.Bdb method)

 		clear_flags() (decimal.Context method)

 		clear_history() (in module readline)

 		clear_memo() (pickle.Pickler method)

 		clear_session_cookies() (cookielib.CookieJar method)

 		clearcache() (in module linecache)

 		ClearData() (msilib.Record method)

 		clearok() (curses.window method)

 		clearscreen() (in module turtle)

 		clearstamp() (in module turtle)

 		clearstamps() (in module turtle)

 		Client() (in module multiprocessing.connection)

 		client_address (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		clock() (in module time)

 		clone() (email.generator.Generator method)

 		

 		(in module turtle)

 		(pipes.Template method)

 		cloneNode() (xml.dom.minidom.Node method)

 		

 		(xml.dom.Node method)

 		Close() (_winreg.PyHKEY method)

 		close() (aifc.aifc method), [1]

 		

 		(FrameWork.Window method)

 		(HTMLParser.HTMLParser method)

 		(asyncore.dispatcher method)

 		(bsddb.bsddbobject method)

 		(bz2.BZ2File method)

 		(chunk.Chunk method)

 		(distutils.text_file.TextFile method)

 		(dl.dl method)

 		(email.parser.FeedParser method)

 		(file method)

 		(ftplib.FTP method)

 		(generator method)

 		(hotshot.Profile method)

 		(httplib.HTTPConnection method)

 		(imaplib.IMAP4 method)

 		(in module anydbm)

 		(in module dbm)

 		(in module dumbdbm)

 		(in module fileinput)

 		(in module gdbm)

 		(in module os), [1]

 		(io.IOBase method)

 		(logging.FileHandler method)

 		(logging.Handler method)

 		(logging.handlers.MemoryHandler method)

 		(logging.handlers.NTEventLogHandler method)

 		(logging.handlers.SocketHandler method)

 		(logging.handlers.SysLogHandler method)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mmap.mmap method)

 		Close() (msilib.View method)

 		close() (multiprocessing.Connection method)

 		

 		(StringIO.StringIO method)

 		(multiprocessing.Queue method)

 		(multiprocessing.connection.Listener method)

 		(multiprocessing.pool.multiprocessing.Pool method)

 		(ossaudiodev.oss_audio_device method)

 		(ossaudiodev.oss_mixer_device method)

 		(select.epoll method)

 		(select.kqueue method)

 		(sgmllib.SGMLParser method)

 		(shelve.Shelf method)

 		(socket.socket method)

 		(sqlite3.Connection method)

 		(sunau.AU_read method)

 		(sunau.AU_write method)

 		(tarfile.TarFile method)

 		(telnetlib.Telnet method)

 		(urllib2.BaseHandler method)

 		(wave.Wave_read method)

 		(wave.Wave_write method)

 		(xml.etree.ElementTree.TreeBuilder method)

 		(xml.etree.ElementTree.XMLParser method)

 		(xml.sax.xmlreader.IncrementalParser method)

 		(zipfile.ZipFile method)

 		close_when_done() (asynchat.async_chat method)

 		closed (file attribute)

 		

 		(io.IOBase attribute)

 		(ossaudiodev.oss_audio_device attribute)

 		CloseKey() (in module _winreg)

 		closelog() (in module syslog)

 		closerange() (in module os)

 		closing() (in module contextlib)

 		clrtobot() (curses.window method)

 		clrtoeol() (curses.window method)

 		cmath (module)

 		
 cmd

 		

 		module

 		Cmd (class in cmd)

 		cmd (module)

 		

 		(subprocess.CalledProcessError attribute)

 		cmdloop() (cmd.Cmd method)

 		cmdqueue (cmd.Cmd attribute)

 		
 cmp

 		

 		built-in function, [1], [2], [3]

 		cmp() (built-in function)

 		

 		(in module filecmp)

 		cmp_op (in module dis)

 		cmp_to_key() (in module functools)

 		cmpfiles() (in module filecmp)

 		co_argcount (code object attribute)

 		co_cellvars (code object attribute)

 		co_code (code object attribute)

 		co_consts (code object attribute)

 		co_filename (code object attribute)

 		co_firstlineno (code object attribute)

 		co_flags (code object attribute)

 		co_freevars (code object attribute)

 		CO_FUTURE_DIVISION (C variable)

 		co_lnotab (code object attribute)

 		co_name (code object attribute)

 		co_names (code object attribute)

 		co_nlocals (code object attribute)

 		co_stacksize (code object attribute)

 		co_varnames (code object attribute)

 		
 CObject

 		

 		object

 		
 code

 		

 		block

 		code (module)

 		

 		(urllib2.HTTPError attribute)

 		(xml.parsers.expat.ExpatError attribute)

 		

 		code object, [1], [2], [3]

 		code() (in module new)

 		Codecs

 		

 		decode

 		encode

 		codecs (module)

 		coded_value (Cookie.Morsel attribute)

 		codeop (module)

 		codepoint2name (in module htmlentitydefs)

 		CODESET (in module locale)

 		CodeType (in module types)

 		
 coding

 		

 		style

 		
 coerce

 		

 		built-in function

 		coerce() (built-in function)

 		coercion

 		col_offset (ast.AST attribute)

 		collapse_rfc2231_value() (in module email.utils)

 		collect() (in module gc)

 		collect_incoming_data() (asynchat.async_chat method)

 		collections (module)

 		COLON (in module token)

 		color() (in module fl)

 		

 		(in module turtle)

 		color_content() (in module curses)

 		color_pair() (in module curses)

 		colormode() (in module turtle)

 		ColorPicker (module)

 		colorsys (module)

 		column() (ttk.Treeview method)

 		COLUMNS, [1]

 		combinations() (in module itertools)

 		combinations_with_replacement() (in module itertools)

 		combine() (datetime.datetime class method)

 		combining() (in module unicodedata)

 		ComboBox (class in Tix)

 		Combobox (class in ttk)

 		comma

 		

 		trailing, [1]

 		COMMA (in module token)

 		command (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		Command (class in distutils.cmd)

 		

 		(class in distutils.core)

 		command line

 		
 command line option

 		

 		--help

 		--version

 		-3

 		-?

 		-B

 		-E

 		-J

 		-O

 		-OO

 		-Q <arg>

 		-R

 		-S

 		-U

 		-V

 		-W arg

 		-X

 		-c <command>

 		-d

 		-h

 		-i

 		-m <module-name>

 		-s

 		-t

 		-u

 		-v

 		-x

 		CommandCompiler (class in codeop)

 		commands (module)

 		comment

 		

 		(cookielib.Cookie attribute)

 		COMMENT (in module tokenize)

 		comment (zipfile.ZipFile attribute)

 		

 		(zipfile.ZipInfo attribute)

 		Comment() (in module xml.etree.ElementTree)

 		comment_url (cookielib.Cookie attribute)

 		commenters (shlex.shlex attribute)

 		CommentHandler() (xml.parsers.expat.xmlparser method)

 		commit() (msilib.CAB method)

 		Commit() (msilib.Database method)

 		commit() (sqlite3.Connection method)

 		common (filecmp.dircmp attribute)

 		Common Gateway Interface

 		common_dirs (filecmp.dircmp attribute)

 		common_files (filecmp.dircmp attribute)

 		common_funny (filecmp.dircmp attribute)

 		common_types (in module mimetypes)

 		commonprefix() (in module os.path)

 		communicate() (subprocess.Popen method)

 		compare() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(difflib.Differ method)

 		compare_digest() (in module hmac)

 		COMPARE_OP (opcode)

 		compare_signal() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		compare_total() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		compare_total_mag() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		
 comparing

 		

 		objects

 		comparison

 		

 		operator

 		string

 		Comparison (class in aetypes)

 		COMPARISON_FLAGS (in module doctest)

 		comparisons, [1]

 		

 		chaining, [1]

 		
 compile

 		

 		built-in function, [1], [2], [3], [4]

 		Compile (class in codeop)

 		compile() (built-in function)

 		

 		(distutils.ccompiler.CCompiler method)

 		(in module compiler)

 		(in module py_compile)

 		(in module re)

 		(parser.ST method)

 		compile_command() (in module code)

 		

 		(in module codeop)

 		compile_dir() (in module compileall)

 		compile_file() (in module compileall)

 		compile_path() (in module compileall)

 		
 compileall

 		

 		module

 		compileall (module)

 		
 compileall command line option

 		

 		-d destdir

 		-f

 		-i list

 		-l

 		-q

 		-x regex

 		directory ...

 		file ...

 		compileFile() (in module compiler)

 		compiler (module)

 		compiler.ast (module)

 		compiler.visitor (module)

 		compilest() (in module parser)

 		complete() (rlcompleter.Completer method)

 		complete_statement() (in module sqlite3)

 		completedefault() (cmd.Cmd method)

 		
 complex

 		

 		built-in function, [1]

 		literal

 		number

 		object

 		complex (built-in class)

 		Complex (class in numbers)

 		complex number

 		

 		literals

 		object, [1]

 		ComplexType (in module types)

 		ComponentItem (class in aetypes)

 		
 compound

 		

 		statement

 		
 comprehensions

 		

 		list, [1]

 		compress() (bz2.BZ2Compressor method)

 		

 		(in module bz2)

 		(in module itertools)

 		(in module jpeg)

 		(in module zlib)

 		(zlib.Compress method)

 		compress_size (zipfile.ZipInfo attribute)

 		compress_type (zipfile.ZipInfo attribute)

 		compression() (ssl.SSLSocket method)

 		CompressionError

 		compressobj() (in module zlib)

 		COMSPEC, [1]

 		concat() (in module operator)

 		
 concatenation

 		

 		operation

 		Condition (class in multiprocessing)

 		

 		(class in threading)

 		condition() (msilib.Control method)

 		Condition() (multiprocessing.managers.SyncManager method)

 		
 Conditional

 		

 		expression

 		
 conditional

 		

 		expression

 		ConfigParser (class in ConfigParser)

 		

 		(module)

 		
 configuration

 		

 		file

 		file, debugger

 		file, path

 		file, user

 		configuration information

 		configure() (ttk.Style method)

 		confstr() (in module os)

 		confstr_names (in module os)

 		conjugate() (complex number method)

 		

 		(decimal.Decimal method)

 		(numbers.Complex method)

 		connect() (asyncore.dispatcher method)

 		

 		(ftplib.FTP method)

 		(httplib.HTTPConnection method)

 		(in module sqlite3)

 		(multiprocessing.managers.BaseManager method)

 		(smtplib.SMTP method)

 		(socket.socket method)

 		connect_ex() (socket.socket method)

 		Connection (class in multiprocessing)

 		

 		(class in sqlite3)

 		connection (sqlite3.Cursor attribute)

 		ConnectRegistry() (in module _winreg)

 		const (optparse.Option attribute)

 		constant

 		
 constructor

 		

 		class

 		constructor() (in module copy_reg)

 		container, [1]

 		

 		iteration over

 		Container (class in collections)

 		contains() (in module operator)

 		
 content type

 		

 		MIME

 		ContentHandler (class in xml.sax.handler)

 		contents (ctypes._Pointer attribute)

 		ContentTooShortError

 		Context (class in decimal)

 		context (ssl.SSLSocket attribute)

 		context management protocol

 		context manager, [1], [2]

 		context_diff() (in module difflib)

 		contextlib (module)

 		contextmanager() (in module contextlib)

 		
 continue

 		

 		statement, [1], [2], [3], [4]

 		CONTINUE_LOOP (opcode)

 		Control (class in msilib)

 		

 		(class in Tix)

 		control (in module cd)

 		control() (msilib.Dialog method)

 		

 		(select.kqueue method)

 		controlnames (in module curses.ascii)

 		controls() (ossaudiodev.oss_mixer_device method)

 		
 conversion

 		

 		arithmetic

 		string, [1], [2]

 		ConversionError

 		
 conversions

 		

 		numeric

 		convert() (email.charset.Charset method)

 		convert_arg_line_to_args() (argparse.ArgumentParser method)

 		convert_charref() (sgmllib.SGMLParser method)

 		convert_codepoint() (sgmllib.SGMLParser method)

 		convert_entityref() (sgmllib.SGMLParser method)

 		convert_field() (string.Formatter method)

 		convert_path() (in module distutils.util)

 		Cookie (class in cookielib)

 		

 		(module)

 		CookieError

 		CookieJar (class in cookielib)

 		cookiejar (urllib2.HTTPCookieProcessor attribute)

 		cookielib (module)

 		CookiePolicy (class in cookielib)

 		Coordinated Universal Time

 		Copy

 		
 copy

 		

 		module

 		copy (module)

 		copy() (decimal.Context method)

 		

 		(dict method)

 		(hashlib.hash method)

 		(hmac.HMAC method)

 		(imaplib.IMAP4 method)

 		(in module copy)

 		(in module findertools)

 		(in module macostools)

 		(in module multiprocessing.sharedctypes)

 		(in module shutil)

 		(md5.md5 method)

 		(pipes.Template method)

 		(set method)

 		(sha.sha method)

 		(zlib.Compress method)

 		(zlib.Decompress method)

 		copy2() (in module shutil)

 		copy_abs() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		copy_decimal() (decimal.Context method)

 		copy_file() (in module distutils.file_util)

 		copy_location() (in module ast)

 		copy_negate() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		copy_reg (module)

 		copy_sign() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		copy_tree() (in module distutils.dir_util)

 		copybinary() (in module mimetools)

 		copyfile() (in module shutil)

 		copyfileobj() (in module shutil)

 		copying files

 		copyliteral() (in module mimetools)

 		copymessage() (mhlib.Folder method)

 		copymode() (in module shutil)

 		copyright (built-in variable)

 		

 		(in module sys), [1]

 		copysign() (in module math)

 		copystat() (in module shutil)

 		copytree() (in module macostools)

 		

 		(in module shutil)

 		coroutine

 		cos() (in module cmath)

 		

 		(in module math)

 		cosh() (in module cmath)

 		

 		(in module math)

 		count() (array.array method)

 		

 		(collections.deque method)

 		(in module itertools)

 		(in module string)

 		(list method)

 		(str method)

 		Counter (class in collections)

 		countOf() (in module operator)

 		countTestCases() (unittest.TestCase method)

 		

 		(unittest.TestSuite method)

 		CoverageResults (class in trace)

 		
 cPickle

 		

 		module

 		cPickle (module)

 		CPP

 		CPPFLAGS

 		cProfile (module)

 		CPU time

 		cpu_count() (in module multiprocessing)

 		CPython

 		CRC (zipfile.ZipInfo attribute)

 		crc32() (in module binascii)

 		

 		(in module zlib)

 		crc_hqx() (in module binascii)

 		create() (imaplib.IMAP4 method)

 		create_aggregate() (sqlite3.Connection method)

 		create_collation() (sqlite3.Connection method)

 		create_connection() (in module socket)

 		create_decimal() (decimal.Context method)

 		create_decimal_from_float() (decimal.Context method)

 		create_default_context() (in module ssl)

 		create_function() (sqlite3.Connection method)

 		CREATE_NEW_CONSOLE (in module subprocess)

 		CREATE_NEW_PROCESS_GROUP (in module subprocess)

 		create_shortcut() (built-in function)

 		create_socket() (asyncore.dispatcher method)

 		create_static_lib() (distutils.ccompiler.CCompiler method)

 		create_stats() (profile.Profile method)

 		create_string_buffer() (in module ctypes)

 		create_system (zipfile.ZipInfo attribute)

 		create_tree() (in module distutils.dir_util)

 		create_unicode_buffer() (in module ctypes)

 		create_version (zipfile.ZipInfo attribute)

 		createAttribute() (xml.dom.Document method)

 		createAttributeNS() (xml.dom.Document method)

 		createComment() (xml.dom.Document method)

 		createDocument() (xml.dom.DOMImplementation method)

 		createDocumentType() (xml.dom.DOMImplementation method)

 		createElement() (xml.dom.Document method)

 		createElementNS() (xml.dom.Document method)

 		createfilehandler() (Tkinter.Widget.tk method)

 		CreateKey() (in module _winreg)

 		CreateKeyEx() (in module _winreg)

 		createLock() (logging.Handler method)

 		

 		(logging.NullHandler method)

 		createparser() (in module cd)

 		createProcessingInstruction() (xml.dom.Document method)

 		CreateRecord() (in module msilib)

 		createSocket() (logging.handlers.SocketHandler method)

 		createTextNode() (xml.dom.Document method)

 		credits (built-in variable)

 		critical() (in module logging)

 		

 		(logging.Logger method)

 		CRNCYSTR (in module locale)

 		crop() (in module imageop)

 		cross() (in module audioop)

 		
 crypt

 		

 		module

 		crypt (module)

 		crypt() (in module crypt)

 		crypt(3), [1], [2]

 		cryptography

 		cStringIO (module)

 		csv

 		

 		(module)

 		ctermid() (in module os)

 		ctime() (datetime.date method)

 		

 		(datetime.datetime method)

 		(in module time)

 		ctrl() (in module curses.ascii)

 		CTRL_BREAK_EVENT (in module signal)

 		CTRL_C_EVENT (in module signal)

 		ctypes (module)

 		curdir (in module os)

 		currency() (in module locale)

 		current() (ttk.Combobox method)

 		current_process() (in module multiprocessing)

 		current_thread() (in module threading)

 		CurrentByteIndex (xml.parsers.expat.xmlparser attribute)

 		CurrentColumnNumber (xml.parsers.expat.xmlparser attribute)

 		currentframe() (in module inspect)

 		CurrentLineNumber (xml.parsers.expat.xmlparser attribute)

 		currentThread() (in module threading)

 		curs_set() (in module curses)

 		curses (module)

 		curses.ascii (module)

 		curses.panel (module)

 		curses.textpad (module)

 		Cursor (class in sqlite3)

 		cursor() (sqlite3.Connection method)

 		cursyncup() (curses.window method)

 		curval (EasyDialogs.ProgressBar attribute)

 		customize_compiler() (in module distutils.sysconfig)

 		Cut

 		cwd() (ftplib.FTP method)

 		cycle() (in module itertools)

 		Cyclic Redundancy Check

D

 		

 		D_FMT (in module locale)

 		D_T_FMT (in module locale)

 		daemon (multiprocessing.Process attribute)

 		

 		(threading.Thread attribute)

 		
 dangling

 		

 		else

 		data

 		

 		packing binary

 		tabular

 		type

 		type, immutable

 		Data (class in plistlib)

 		data (select.kevent attribute)

 		

 		(UserDict.IterableUserDict attribute)

 		(UserList.UserList attribute)

 		(UserString.MutableString attribute)

 		(xml.dom.Comment attribute)

 		(xml.dom.ProcessingInstruction attribute)

 		(xml.dom.Text attribute)

 		(xmlrpclib.Binary attribute)

 		data() (xml.etree.ElementTree.TreeBuilder method)

 		
 database

 		

 		Unicode

 		databases

 		DatagramHandler (class in logging.handlers)

 		DatagramRequestHandler (class in SocketServer)

 		DATASIZE (in module cd)

 		date (class in datetime)

 		date() (datetime.datetime method)

 		

 		(nntplib.NNTP method)

 		date_time (zipfile.ZipInfo attribute)

 		date_time_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		datetime (class in datetime)

 		DateTime (class in xmlrpclib)

 		datetime (module)

 		datum

 		day (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		day_abbr (in module calendar)

 		day_name (in module calendar)

 		daylight (in module time)

 		Daylight Saving Time

 		DbfilenameShelf (class in shelve)

 		
 dbhash

 		

 		module

 		dbhash (module)

 		
 dbm

 		

 		module, [1], [2], [3]

 		dbm (module)

 		deactivate_form() (fl.form method)

 		deallocation, object

 		debug (imaplib.IMAP4 attribute)

 		DEBUG (in module re)

 		debug (shlex.shlex attribute)

 		

 		(zipfile.ZipFile attribute)

 		debug() (in module doctest)

 		

 		(in module logging)

 		(logging.Logger method)

 		(pipes.Template method)

 		(unittest.TestCase method)

 		(unittest.TestSuite method)

 		DEBUG_COLLECTABLE (in module gc)

 		DEBUG_INSTANCES (in module gc)

 		DEBUG_LEAK (in module gc)

 		DEBUG_OBJECTS (in module gc)

 		debug_print() (distutils.ccompiler.CCompiler method)

 		DEBUG_SAVEALL (in module gc)

 		debug_src() (in module doctest)

 		DEBUG_STATS (in module gc)

 		DEBUG_UNCOLLECTABLE (in module gc)

 		debugger, [1], [2]

 		

 		configuration file

 		debugging

 		

 		CGI

 		assertions

 		DebuggingServer (class in smtpd)

 		DebugRunner (class in doctest)

 		DebugStr() (in module MacOS)

 		Decimal (class in decimal)

 		decimal (module)

 		decimal literal

 		decimal() (in module unicodedata)

 		DecimalException (class in decimal)

 		
 decode

 		

 		Codecs

 		decode() (codecs.Codec method)

 		

 		(codecs.IncrementalDecoder method)

 		(in module base64)

 		(in module codecs)

 		(in module mimetools)

 		(in module quopri)

 		(in module uu)

 		(json.JSONDecoder method)

 		(str method)

 		(xmlrpclib.Binary method)

 		(xmlrpclib.DateTime method)

 		decode_header() (in module email.header)

 		decode_params() (in module email.utils)

 		decode_rfc2231() (in module email.utils)

 		DecodedGenerator (class in email.generator)

 		decodestring() (in module base64)

 		

 		(in module quopri)

 		decomposition() (in module unicodedata)

 		decompress() (bz2.BZ2Decompressor method)

 		

 		(in module bz2)

 		(in module jpeg)

 		(in module zlib)

 		(zlib.Decompress method)

 		decompressobj() (in module zlib)

 		decorator

 		DEDENT (in module token)

 		DEDENT token, [1]

 		dedent() (in module textwrap)

 		deepcopy() (in module copy)

 		
 def

 		

 		statement

 		def_prog_mode() (in module curses)

 		def_shell_mode() (in module curses)

 		
 default

 		

 		parameter value

 		default (optparse.Option attribute)

 		default() (cmd.Cmd method)

 		

 		(compiler.visitor.ASTVisitor method)

 		(json.JSONEncoder method)

 		DEFAULT_BUFFER_SIZE (in module io)

 		default_bufsize (in module xml.dom.pulldom)

 		default_factory (collections.defaultdict attribute)

 		DEFAULT_FORMAT (in module tarfile)

 		default_open() (urllib2.BaseHandler method)

 		default_timer() (in module timeit)

 		DefaultContext (class in decimal)

 		DefaultCookiePolicy (class in cookielib)

 		defaultdict (class in collections)

 		DefaultHandler() (xml.parsers.expat.xmlparser method)

 		DefaultHandlerExpand() (xml.parsers.expat.xmlparser method)

 		defaults() (ConfigParser.RawConfigParser method)

 		defaultTestLoader (in module unittest)

 		defaultTestResult() (unittest.TestCase method)

 		defects (email.message.Message attribute)

 		define_macro() (distutils.ccompiler.CCompiler method)

 		
 definition

 		

 		class, [1]

 		function, [1]

 		defpath (in module os)

 		degrees() (in module math)

 		

 		(in module turtle)

 		
 del

 		

 		statement, [1], [2], [3]

 		del_param() (email.message.Message method)

 		delattr() (built-in function)

 		delay() (in module turtle)

 		delay_output() (in module curses)

 		delayload (cookielib.FileCookieJar attribute)

 		delch() (curses.window method)

 		dele() (poplib.POP3 method)

 		delete() (ftplib.FTP method)

 		

 		(imaplib.IMAP4 method)

 		(ttk.Treeview method)

 		DELETE_ATTR (opcode)

 		DELETE_FAST (opcode)

 		DELETE_GLOBAL (opcode)

 		DELETE_NAME (opcode)

 		DELETE_SLICE+0 (opcode)

 		DELETE_SLICE+1 (opcode)

 		DELETE_SLICE+2 (opcode)

 		DELETE_SLICE+3 (opcode)

 		DELETE_SUBSCR (opcode)

 		deleteacl() (imaplib.IMAP4 method)

 		deletefilehandler() (Tkinter.Widget.tk method)

 		deletefolder() (mhlib.MH method)

 		DeleteKey() (in module _winreg)

 		DeleteKeyEx() (in module _winreg)

 		deleteln() (curses.window method)

 		deleteMe() (bdb.Breakpoint method)

 		DeleteValue() (in module _winreg)

 		
 deletion

 		

 		attribute

 		target

 		target list

 		delimiter (csv.Dialect attribute)

 		delimiters

 		delitem() (in module operator)

 		deliver_challenge() (in module multiprocessing.connection)

 		delslice() (in module operator)

 		demo_app() (in module wsgiref.simple_server)

 		denominator (numbers.Rational attribute)

 		DeprecationWarning

 		deque (class in collections)

 		DER_cert_to_PEM_cert() (in module ssl)

 		derwin() (curses.window method)

 		
 DES

 		

 		cipher

 		description (sqlite3.Cursor attribute)

 		description() (nntplib.NNTP method)

 		descriptions() (nntplib.NNTP method)

 		descriptor

 		

 		file

 		dest (optparse.Option attribute)

 		destructor, [1]

 		Detach() (_winreg.PyHKEY method)

 		detach() (io.BufferedIOBase method)

 		

 		(io.TextIOBase method)

 		(ttk.Treeview method)

 		detect_language() (distutils.ccompiler.CCompiler method)

 		deterministic profiling

 		DEVICE (module)

 		devnull (in module os)

 		dgettext() (in module gettext)

 		Dialect (class in csv)

 		dialect (csv.csvreader attribute)

 		

 		(csv.csvwriter attribute)

 		Dialog (class in msilib)

 		DialogWindow() (in module FrameWork)

 		dict (2to3 fixer)

 		

 		(built-in class)

 		dict() (multiprocessing.managers.SyncManager method)

 		dictConfig() (in module logging.config)

 		dictionary

 		

 		display

 		object, [1], [2], [3], [4], [5], [6], [7]

 		type, operations on

 		dictionary view

 		DictionaryType (in module types), [1]

 		DictMixin (class in UserDict)

 		DictProxyType (in module types)

 		DictReader (class in csv)

 		DictType (in module types), [1]

 		DictWriter (class in csv)

 		diff_files (filecmp.dircmp attribute)

 		Differ (class in difflib), [1]

 		difference() (set method)

 		difference_update() (set method)

 		difflib (module)

 		digest() (hashlib.hash method)

 		

 		(hmac.HMAC method)

 		(md5.md5 method)

 		(sha.sha method)

 		digest_size (in module md5)

 		

 		(in module sha)

 		digit() (in module unicodedata)

 		digits (in module string)

 		dir() (built-in function)

 		

 		(ftplib.FTP method)

 		dircache (module)

 		dircmp (class in filecmp)

 		
 directory

 		

 		changing

 		creating

 		deleting, [1]

 		site-packages

 		site-python

 		traversal

 		walking

 		Directory (class in msilib)

 		

 		
 directory ...

 		

 		compileall command line option

 		directory_created() (built-in function)

 		DirList (class in Tix)

 		dirname() (in module os.path)

 		DirSelectBox (class in Tix)

 		DirSelectDialog (class in Tix)

 		DirTree (class in Tix)

 		dis (module)

 		dis() (in module dis)

 		

 		(in module pickletools)

 		disable() (bdb.Breakpoint method)

 		

 		(in module gc)

 		(in module logging)

 		(profile.Profile method)

 		disable_interspersed_args() (optparse.OptionParser method)

 		DisableReflectionKey() (in module _winreg)

 		disassemble() (in module dis)

 		discard (cookielib.Cookie attribute)

 		discard() (mailbox.Mailbox method)

 		

 		(mailbox.MH method)

 		(set method)

 		discard_buffers() (asynchat.async_chat method)

 		disco() (in module dis)

 		discover() (unittest.TestLoader method)

 		dispatch() (compiler.visitor.ASTVisitor method)

 		dispatch_call() (bdb.Bdb method)

 		dispatch_exception() (bdb.Bdb method)

 		dispatch_line() (bdb.Bdb method)

 		dispatch_return() (bdb.Bdb method)

 		dispatcher (class in asyncore)

 		dispatcher_with_send (class in asyncore)

 		
 display

 		

 		dictionary

 		list

 		set

 		tuple

 		displayhook() (in module sys)

 		dist() (in module platform)

 		distance() (in module turtle)

 		distb() (in module dis)

 		Distribution (class in distutils.core)

 		distutils (module)

 		distutils.archive_util (module)

 		distutils.bcppcompiler (module)

 		distutils.ccompiler (module)

 		distutils.cmd (module)

 		distutils.command (module)

 		distutils.command.bdist (module)

 		distutils.command.bdist_dumb (module)

 		distutils.command.bdist_msi (module)

 		distutils.command.bdist_packager (module)

 		distutils.command.bdist_rpm (module)

 		distutils.command.bdist_wininst (module)

 		distutils.command.build (module)

 		distutils.command.build_clib (module)

 		distutils.command.build_ext (module)

 		distutils.command.build_py (module)

 		distutils.command.build_scripts (module)

 		distutils.command.check (module)

 		distutils.command.clean (module)

 		distutils.command.config (module)

 		distutils.command.install (module)

 		distutils.command.install_data (module)

 		distutils.command.install_headers (module)

 		distutils.command.install_lib (module)

 		distutils.command.install_scripts (module)

 		distutils.command.register (module)

 		distutils.command.sdist (module)

 		distutils.core (module)

 		distutils.cygwinccompiler (module)

 		distutils.debug (module)

 		distutils.dep_util (module)

 		distutils.dir_util (module)

 		distutils.dist (module)

 		distutils.emxccompiler (module)

 		distutils.errors (module)

 		distutils.extension (module)

 		distutils.fancy_getopt (module)

 		distutils.file_util (module)

 		distutils.filelist (module)

 		distutils.log (module)

 		distutils.msvccompiler (module)

 		distutils.spawn (module)

 		distutils.sysconfig (module)

 		distutils.text_file (module)

 		distutils.unixccompiler (module)

 		distutils.util (module)

 		distutils.version (module)

 		DISTUTILS_DEBUG

 		dither2grey2() (in module imageop)

 		dither2mono() (in module imageop)

 		div() (in module operator)

 		divide() (decimal.Context method)

 		divide_int() (decimal.Context method)

 		division

 		

 		integer

 		long integer

 		DivisionByZero (class in decimal)

 		
 divmod

 		

 		built-in function, [1], [2]

 		divmod() (built-in function)

 		

 		(decimal.Context method)

 		dl (module)

 		DllCanUnloadNow() (in module ctypes)

 		DllGetClassObject() (in module ctypes)

 		dllhandle (in module sys)

 		dngettext() (in module gettext)

 		do_activate() (FrameWork.ScrolledWindow method)

 		

 		(FrameWork.Window method)

 		do_char() (FrameWork.Application method)

 		do_clear() (bdb.Bdb method)

 		do_command() (curses.textpad.Textbox method)

 		do_contentclick() (FrameWork.Window method)

 		do_controlhit() (FrameWork.ControlsWindow method)

 		

 		(FrameWork.ScrolledWindow method)

 		do_dialogevent() (FrameWork.Application method)

 		do_forms() (in module fl)

 		do_GET() (SimpleHTTPServer.SimpleHTTPRequestHandler method)

 		do_handshake() (ssl.SSLSocket method)

 		do_HEAD() (SimpleHTTPServer.SimpleHTTPRequestHandler method)

 		do_itemhit() (FrameWork.DialogWindow method)

 		do_POST() (CGIHTTPServer.CGIHTTPRequestHandler method)

 		do_postresize() (FrameWork.ScrolledWindow method)

 		

 		(FrameWork.Window method)

 		do_update() (FrameWork.Window method)

 		doc_header (cmd.Cmd attribute)

 		DocCGIXMLRPCRequestHandler (class in DocXMLRPCServer)

 		DocFileSuite() (in module doctest)

 		doCleanups() (unittest.TestCase method)

 		docmd() (smtplib.SMTP method)

 		docstring, [1]

 		

 		(doctest.DocTest attribute)

 		docstrings, [1]

 		DocTest (class in doctest)

 		doctest (module)

 		DocTestFailure

 		DocTestFinder (class in doctest)

 		DocTestParser (class in doctest)

 		DocTestRunner (class in doctest)

 		DocTestSuite() (in module doctest)

 		doctype() (xml.etree.ElementTree.TreeBuilder method)

 		

 		(xml.etree.ElementTree.XMLParser method)

 		
 documentation

 		

 		generation

 		online

 		documentation string

 		documentation strings, [1]

 		documentElement (xml.dom.Document attribute)

 		DocXMLRPCRequestHandler (class in DocXMLRPCServer)

 		DocXMLRPCServer (class in DocXMLRPCServer)

 		

 		(module)

 		domain_initial_dot (cookielib.Cookie attribute)

 		domain_return_ok() (cookielib.CookiePolicy method)

 		domain_specified (cookielib.Cookie attribute)

 		DomainLiberal (cookielib.DefaultCookiePolicy attribute)

 		DomainRFC2965Match (cookielib.DefaultCookiePolicy attribute)

 		DomainStrict (cookielib.DefaultCookiePolicy attribute)

 		DomainStrictNoDots (cookielib.DefaultCookiePolicy attribute)

 		DomainStrictNonDomain (cookielib.DefaultCookiePolicy attribute)

 		DOMEventStream (class in xml.dom.pulldom)

 		DOMException

 		DomstringSizeErr

 		done() (in module turtle)

 		

 		(xdrlib.Unpacker method)

 		DONT_ACCEPT_BLANKLINE (in module doctest)

 		DONT_ACCEPT_TRUE_FOR_1 (in module doctest)

 		dont_write_bytecode (in module sys)

 		doRollover() (logging.handlers.RotatingFileHandler method)

 		

 		(logging.handlers.TimedRotatingFileHandler method)

 		DOT (in module token)

 		dot() (in module turtle)

 		DOTALL (in module re)

 		doublequote (csv.Dialect attribute)

 		DOUBLESLASH (in module token)

 		DOUBLESLASHEQUAL (in module token)

 		DOUBLESTAR (in module token)

 		DOUBLESTAREQUAL (in module token)

 		doupdate() (in module curses)

 		down() (in module turtle)

 		drop_whitespace (textwrap.TextWrapper attribute)

 		dropwhile() (in module itertools)

 		dst() (datetime.datetime method)

 		

 		(datetime.time method)

 		(datetime.tzinfo method)

 		DTDHandler (class in xml.sax.handler)

 		duck-typing

 		
 dumbdbm

 		

 		module

 		dumbdbm (module)

 		DumbWriter (class in formatter)

 		dummy_thread (module)

 		dummy_threading (module)

 		dump() (in module ast)

 		

 		(in module json)

 		(in module marshal)

 		(in module pickle)

 		(in module xml.etree.ElementTree)

 		(pickle.Pickler method)

 		dump_address_pair() (in module rfc822)

 		dump_stats() (profile.Profile method)

 		

 		(pstats.Stats method)

 		dumps() (in module json)

 		

 		(in module marshal)

 		(in module pickle)

 		(in module xmlrpclib)

 		dup() (in module os)

 		

 		(posixfile.posixfile method)

 		dup2() (in module os)

 		

 		(posixfile.posixfile method)

 		DUP_TOP (opcode)

 		DUP_TOPX (opcode)

 		DuplicateSectionError

 		dwFlags (subprocess.STARTUPINFO attribute)

 		DynLoadSuffixImporter (class in imputil)

E

 		

 		e (in module cmath)

 		

 		(in module math)

 		E2BIG (in module errno)

 		EACCES (in module errno)

 		EADDRINUSE (in module errno)

 		EADDRNOTAVAIL (in module errno)

 		EADV (in module errno)

 		EAFNOSUPPORT (in module errno)

 		EAFP

 		EAGAIN (in module errno)

 		EALREADY (in module errno)

 		east_asian_width() (in module unicodedata)

 		EasyDialogs (module)

 		EBADE (in module errno)

 		EBADF (in module errno)

 		EBADFD (in module errno)

 		EBADMSG (in module errno)

 		EBADR (in module errno)

 		EBADRQC (in module errno)

 		EBADSLT (in module errno)

 		EBCDIC

 		EBFONT (in module errno)

 		EBUSY (in module errno)

 		ECHILD (in module errno)

 		echo() (in module curses)

 		echochar() (curses.window method)

 		ECHRNG (in module errno)

 		ECOMM (in module errno)

 		ECONNABORTED (in module errno)

 		ECONNREFUSED (in module errno)

 		ECONNRESET (in module errno)

 		EDEADLK (in module errno)

 		EDEADLOCK (in module errno)

 		EDESTADDRREQ (in module errno)

 		edit() (curses.textpad.Textbox method)

 		EDOM (in module errno)

 		EDOTDOT (in module errno)

 		EDQUOT (in module errno)

 		EEXIST (in module errno)

 		EFAULT (in module errno)

 		EFBIG (in module errno)

 		effective() (in module bdb)

 		ehlo() (smtplib.SMTP method)

 		ehlo_or_helo_if_needed() (smtplib.SMTP method)

 		EHOSTDOWN (in module errno)

 		EHOSTUNREACH (in module errno)

 		EIDRM (in module errno)

 		EILSEQ (in module errno)

 		EINPROGRESS (in module errno)

 		EINTR (in module errno)

 		EINVAL (in module errno)

 		EIO (in module errno)

 		EISCONN (in module errno)

 		EISDIR (in module errno)

 		EISNAM (in module errno)

 		EL2HLT (in module errno)

 		EL2NSYNC (in module errno)

 		EL3HLT (in module errno)

 		EL3RST (in module errno)

 		Element (class in xml.etree.ElementTree)

 		element_create() (ttk.Style method)

 		element_names() (ttk.Style method)

 		element_options() (ttk.Style method)

 		ElementDeclHandler() (xml.parsers.expat.xmlparser method)

 		elements() (collections.Counter method)

 		ElementTree (class in xml.etree.ElementTree)

 		ELIBACC (in module errno)

 		ELIBBAD (in module errno)

 		ELIBEXEC (in module errno)

 		ELIBMAX (in module errno)

 		ELIBSCN (in module errno)

 		
 elif

 		

 		keyword

 		Ellinghouse, Lance

 		
 Ellipsis

 		

 		object

 		Ellipsis (built-in variable)

 		ELLIPSIS (in module doctest)

 		EllipsisType (in module types)

 		ELNRNG (in module errno)

 		ELOOP (in module errno)

 		
 else

 		

 		dangling

 		keyword, [1], [2], [3], [4]

 		email (module)

 		email.charset (module)

 		email.encoders (module)

 		email.errors (module)

 		email.generator (module)

 		email.header (module)

 		email.iterators (module)

 		email.message (module)

 		email.mime (module)

 		email.parser (module)

 		email.utils (module)

 		EMFILE (in module errno)

 		emit() (logging.FileHandler method)

 		

 		(logging.Handler method)

 		(logging.NullHandler method)

 		(logging.StreamHandler method)

 		(logging.handlers.BufferingHandler method)

 		(logging.handlers.DatagramHandler method)

 		(logging.handlers.HTTPHandler method)

 		(logging.handlers.NTEventLogHandler method)

 		(logging.handlers.RotatingFileHandler method)

 		(logging.handlers.SMTPHandler method)

 		(logging.handlers.SocketHandler method)

 		(logging.handlers.SysLogHandler method)

 		(logging.handlers.TimedRotatingFileHandler method)

 		(logging.handlers.WatchedFileHandler method)

 		EMLINK (in module errno)

 		Empty

 		
 empty

 		

 		list

 		tuple, [1]

 		empty() (multiprocessing.multiprocessing.queues.SimpleQueue method)

 		

 		(Queue.Queue method)

 		(multiprocessing.Queue method)

 		(sched.scheduler method)

 		EMPTY_NAMESPACE (in module xml.dom)

 		emptyline() (cmd.Cmd method)

 		EMSGSIZE (in module errno)

 		EMULTIHOP (in module errno)

 		enable() (bdb.Breakpoint method)

 		

 		(in module cgitb)

 		(in module gc)

 		(profile.Profile method)

 		enable_callback_tracebacks() (in module sqlite3)

 		enable_interspersed_args() (optparse.OptionParser method)

 		enable_load_extension() (sqlite3.Connection method)

 		enable_traversal() (ttk.Notebook method)

 		ENABLE_USER_SITE (in module site)

 		EnableReflectionKey() (in module _winreg)

 		ENAMETOOLONG (in module errno)

 		ENAVAIL (in module errno)

 		enclose() (curses.window method)

 		
 encode

 		

 		Codecs

 		encode() (codecs.Codec method)

 		

 		(codecs.IncrementalEncoder method)

 		(email.header.Header method)

 		(in module base64)

 		(in module codecs)

 		(in module mimetools)

 		(in module quopri)

 		(in module uu)

 		(json.JSONEncoder method)

 		(str method)

 		(xmlrpclib.Binary method)

 		(xmlrpclib.Boolean method)

 		(xmlrpclib.DateTime method)

 		encode_7or8bit() (in module email.encoders)

 		encode_base64() (in module email.encoders)

 		encode_noop() (in module email.encoders)

 		encode_quopri() (in module email.encoders)

 		encode_rfc2231() (in module email.utils)

 		encode_threshold (SimpleXMLRPCServer.SimpleXMLRPCRequestHandler attribute)

 		encoded_header_len() (email.charset.Charset method)

 		EncodedFile() (in module codecs)

 		encodePriority() (logging.handlers.SysLogHandler method)

 		encodestring() (in module base64)

 		

 		(in module quopri)

 		
 encoding

 		

 		base64

 		quoted-printable

 		encoding (exceptions.UnicodeError attribute)

 		

 		(file attribute)

 		ENCODING (in module tarfile)

 		encoding (io.TextIOBase attribute)

 		encoding declarations (source file)

 		encodings.idna (module)

 		encodings.utf_8_sig (module)

 		encodings_map (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		end (exceptions.UnicodeError attribute)

 		end() (re.MatchObject method)

 		

 		(xml.etree.ElementTree.TreeBuilder method)

 		end_fill() (in module turtle)

 		END_FINALLY (opcode)

 		end_group() (fl.form method)

 		end_headers() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		end_marker() (multifile.MultiFile method)

 		end_paragraph() (formatter.formatter method)

 		end_poly() (in module turtle)

 		EndCdataSectionHandler() (xml.parsers.expat.xmlparser method)

 		EndDoctypeDeclHandler() (xml.parsers.expat.xmlparser method)

 		endDocument() (xml.sax.handler.ContentHandler method)

 		endElement() (xml.sax.handler.ContentHandler method)

 		EndElementHandler() (xml.parsers.expat.xmlparser method)

 		endElementNS() (xml.sax.handler.ContentHandler method)

 		endheaders() (httplib.HTTPConnection method)

 		ENDMARKER (in module token)

 		EndNamespaceDeclHandler() (xml.parsers.expat.xmlparser method)

 		endpick() (in module gl)

 		endpos (re.MatchObject attribute)

 		endPrefixMapping() (xml.sax.handler.ContentHandler method)

 		endselect() (in module gl)

 		endswith() (str method)

 		endwin() (in module curses)

 		ENETDOWN (in module errno)

 		ENETRESET (in module errno)

 		ENETUNREACH (in module errno)

 		ENFILE (in module errno)

 		ENOANO (in module errno)

 		ENOBUFS (in module errno)

 		ENOCSI (in module errno)

 		ENODATA (in module errno)

 		ENODEV (in module errno)

 		ENOENT (in module errno)

 		ENOEXEC (in module errno)

 		ENOLCK (in module errno)

 		ENOLINK (in module errno)

 		ENOMEM (in module errno)

 		ENOMSG (in module errno)

 		ENONET (in module errno)

 		ENOPKG (in module errno)

 		ENOPROTOOPT (in module errno)

 		ENOSPC (in module errno)

 		ENOSR (in module errno)

 		ENOSTR (in module errno)

 		ENOSYS (in module errno)

 		ENOTBLK (in module errno)

 		ENOTCONN (in module errno)

 		ENOTDIR (in module errno)

 		ENOTEMPTY (in module errno)

 		ENOTNAM (in module errno)

 		ENOTSOCK (in module errno)

 		ENOTTY (in module errno)

 		ENOTUNIQ (in module errno)

 		ensurepip (module)

 		enter() (sched.scheduler method)

 		enterabs() (sched.scheduler method)

 		entities (xml.dom.DocumentType attribute)

 		EntityDeclHandler() (xml.parsers.expat.xmlparser method)

 		entitydefs (in module htmlentitydefs)

 		EntityResolver (class in xml.sax.handler)

 		Enum (class in aetypes)

 		enum_certificates() (in module ssl)

 		enum_crls() (in module ssl)

 		enumerate() (built-in function)

 		

 		(in module fm)

 		(in module threading)

 		EnumKey() (in module _winreg)

 		enumsubst() (in module aetools)

 		EnumValue() (in module _winreg)

 		environ (in module os)

 		

 		(in module posix)

 		environment

 		
 environment variable

 		

 		%PATH%

 		<protocol>_proxy

 		APPDATA

 		AUDIODEV

 		BROWSER, [1]

 		CC

 		CFLAGS, [1], [2]

 		COLUMNS, [1]

 		COMSPEC, [1]

 		CPP

 		CPPFLAGS

 		DISTUTILS_DEBUG

 		HOME, [1], [2], [3], [4], [5]

 		HOMEDRIVE, [1]

 		HOMEPATH, [1]

 		IDLESTARTUP

 		KDEDIR

 		LANG, [1], [2], [3], [4]

 		LANGUAGE, [1]

 		LC_ALL, [1]

 		LC_MESSAGES, [1]

 		LDCXXSHARED

 		LDFLAGS

 		LINES, [1], [2]

 		LNAME

 		LOGNAME, [1]

 		MIXERDEV

 		PAGER, [1]

 		PATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]

 		PLAT

 		POSIXLY_CORRECT

 		PYTHON*

 		PYTHONCASEOK, [1]

 		PYTHONDEBUG, [1]

 		PYTHONDOCS

 		PYTHONDONTWRITEBYTECODE, [1], [2], [3], [4]

 		PYTHONDUMPREFS, [1]

 		PYTHONEXECUTABLE

 		PYTHONHASHSEED, [1], [2]

 		PYTHONHOME, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 		PYTHONHTTPSVERIFY

 		PYTHONINSPECT, [1], [2]

 		PYTHONIOENCODING, [1]

 		PYTHONMALLOCSTATS

 		PYTHONNOUSERSITE, [1], [2], [3]

 		PYTHONOPTIMIZE, [1]

 		PYTHONPATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]

 		PYTHONSTARTUP, [1], [2], [3], [4], [5], [6], [7]

 		PYTHONTHREADDEBUG

 		PYTHONUNBUFFERED, [1]

 		PYTHONUSERBASE, [1], [2], [3]

 		PYTHONVERBOSE, [1]

 		PYTHONWARNINGS, [1], [2], [3]

 		PYTHONY2K, [1], [2], [3]

 		PYTHON_DOM

 		SystemRoot

 		TCL_LIBRARY

 		TEMP

 		TERM, [1]

 		TIX_LIBRARY

 		TK_LIBRARY

 		TMP, [1]

 		TMPDIR, [1]

 		TZ, [1], [2], [3], [4]

 		USER

 		USERNAME

 		USERPROFILE, [1]

 		USER_BASE

 		Wimp$ScrapDir

 		exec_prefix, [1], [2]

 		ftp_proxy

 		http_proxy, [1], [2], [3]

 		no_proxy, [1]

 		prefix, [1], [2], [3]

 		
 environment variables

 		

 		deleting

 		setting

 		EnvironmentError

 		EnvironmentVarGuard (class in test.test_support)

 		ENXIO (in module errno)

 		eof (shlex.shlex attribute)

 		EOFError

 		

 		(built-in exception)

 		EOPNOTSUPP (in module errno)

 		EOVERFLOW (in module errno)

 		EPERM (in module errno)

 		

 		EPFNOSUPPORT (in module errno)

 		epilogue (email.message.Message attribute)

 		EPIPE (in module errno)

 		epoch

 		epoll() (in module select)

 		EPROTO (in module errno)

 		EPROTONOSUPPORT (in module errno)

 		EPROTOTYPE (in module errno)

 		eq() (in module operator)

 		EQEQUAL (in module token)

 		EQUAL (in module token)

 		ERA (in module locale)

 		ERA_D_FMT (in module locale)

 		ERA_D_T_FMT (in module locale)

 		ERA_T_FMT (in module locale)

 		ERANGE (in module errno)

 		erase() (curses.window method)

 		erasechar() (in module curses)

 		EREMCHG (in module errno)

 		EREMOTE (in module errno)

 		EREMOTEIO (in module errno)

 		ERESTART (in module errno)

 		erf() (in module math)

 		erfc() (in module math)

 		EROFS (in module errno)

 		ERR (in module curses)

 		errcheck (ctypes._FuncPtr attribute)

 		errcode (xmlrpclib.ProtocolError attribute)

 		errmsg (xmlrpclib.ProtocolError attribute)

 		
 errno

 		

 		module, [1]

 		errno (module)

 		Error, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]

 		error, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]

 		ERROR (in module cd)

 		error handling

 		error() (argparse.ArgumentParser method)

 		

 		(in module logging)

 		(logging.Logger method)

 		(mhlib.Folder method)

 		(mhlib.MH method)

 		(urllib2.OpenerDirector method)

 		(xml.sax.handler.ErrorHandler method)

 		error_body (wsgiref.handlers.BaseHandler attribute)

 		error_content_type (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		error_headers (wsgiref.handlers.BaseHandler attribute)

 		error_leader() (shlex.shlex method)

 		error_message_format (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		error_output() (wsgiref.handlers.BaseHandler method)

 		error_perm

 		error_proto, [1]

 		error_reply

 		error_status (wsgiref.handlers.BaseHandler attribute)

 		error_temp

 		ErrorByteIndex (xml.parsers.expat.xmlparser attribute)

 		errorcode (in module errno)

 		ErrorCode (xml.parsers.expat.xmlparser attribute)

 		ErrorColumnNumber (xml.parsers.expat.xmlparser attribute)

 		ErrorHandler (class in xml.sax.handler)

 		ErrorLineNumber (xml.parsers.expat.xmlparser attribute)

 		
 Errors

 		

 		logging

 		errors

 		

 		(file attribute)

 		(io.TextIOBase attribute)

 		(unittest.TestResult attribute)

 		ErrorString() (in module xml.parsers.expat)

 		ERRORTOKEN (in module token)

 		escape (shlex.shlex attribute)

 		escape sequence

 		escape() (in module cgi)

 		

 		(in module re)

 		(in module xml.sax.saxutils)

 		escapechar (csv.Dialect attribute)

 		escapedquotes (shlex.shlex attribute)

 		ESHUTDOWN (in module errno)

 		ESOCKTNOSUPPORT (in module errno)

 		ESPIPE (in module errno)

 		ESRCH (in module errno)

 		ESRMNT (in module errno)

 		ESTALE (in module errno)

 		ESTRPIPE (in module errno)

 		ETIME (in module errno)

 		ETIMEDOUT (in module errno)

 		Etiny() (decimal.Context method)

 		ETOOMANYREFS (in module errno)

 		Etop() (decimal.Context method)

 		ETXTBSY (in module errno)

 		EUCLEAN (in module errno)

 		EUNATCH (in module errno)

 		EUSERS (in module errno)

 		
 eval

 		

 		built-in function, [1], [2], [3], [4], [5], [6], [7]

 		eval() (built-in function)

 		
 evaluation

 		

 		order

 		Event (class in multiprocessing)

 		

 		(class in threading)

 		event scheduling

 		event() (msilib.Control method)

 		Event() (multiprocessing.managers.SyncManager method)

 		events (widgets)

 		EWOULDBLOCK (in module errno)

 		EX_CANTCREAT (in module os)

 		EX_CONFIG (in module os)

 		EX_DATAERR (in module os)

 		EX_IOERR (in module os)

 		EX_NOHOST (in module os)

 		EX_NOINPUT (in module os)

 		EX_NOPERM (in module os)

 		EX_NOTFOUND (in module os)

 		EX_NOUSER (in module os)

 		EX_OK (in module os)

 		EX_OSERR (in module os)

 		EX_OSFILE (in module os)

 		EX_PROTOCOL (in module os)

 		EX_SOFTWARE (in module os)

 		EX_TEMPFAIL (in module os)

 		EX_UNAVAILABLE (in module os)

 		EX_USAGE (in module os)

 		Example (class in doctest)

 		example (doctest.DocTestFailure attribute)

 		

 		(doctest.UnexpectedException attribute)

 		examples (doctest.DocTest attribute)

 		exc_clear() (in module sys)

 		exc_info (doctest.UnexpectedException attribute)

 		

 		(in module sys)

 		exc_info() (in module sys), [1]

 		exc_msg (doctest.Example attribute)

 		exc_traceback (in module sys), [1], [2], [3], [4]

 		exc_type (in module sys), [1], [2], [3]

 		exc_value (in module sys), [1], [2], [3]

 		excel (class in csv)

 		excel_tab (class in csv)

 		
 except

 		

 		bare

 		keyword

 		statement

 		except (2to3 fixer)

 		excepthook() (in module sys), [1]

 		Exception

 		exception, [1]

 		

 		AssertionError

 		AttributeError

 		GeneratorExit

 		ImportError, [1], [2]

 		NameError

 		RuntimeError

 		StopIteration, [1]

 		TypeError

 		ValueError

 		ZeroDivisionError

 		handler

 		raising

 		EXCEPTION (in module Tkinter)

 		exception handler

 		exception() (in module logging)

 		

 		(logging.Logger method)

 		
 exceptions

 		

 		in CGI scripts

 		module

 		exceptions (module)

 		
 exclusive

 		

 		or

 		EXDEV (in module errno)

 		
 exec

 		

 		statement, [1], [2]

 		exec (2to3 fixer)

 		exec_prefix, [1], [2]

 		EXEC_PREFIX (in module distutils.sysconfig)

 		exec_prefix (in module sys)

 		EXEC_STMT (opcode)

 		
 execfile

 		

 		built-in function, [1]

 		execfile (2to3 fixer)

 		execfile() (built-in function)

 		execl() (in module os)

 		execle() (in module os)

 		execlp() (in module os)

 		execlpe() (in module os)

 		executable (in module sys), [1]

 		executable_filename() (distutils.ccompiler.CCompiler method)

 		execute() (distutils.ccompiler.CCompiler method)

 		

 		(in module distutils.util)

 		Execute() (msilib.View method)

 		execute() (sqlite3.Connection method)

 		

 		(sqlite3.Cursor method)

 		executemany() (sqlite3.Connection method)

 		

 		(sqlite3.Cursor method)

 		executescript() (sqlite3.Connection method)

 		

 		(sqlite3.Cursor method)

 		
 execution

 		

 		frame, [1]

 		restricted

 		stack

 		execution model

 		execv() (in module os)

 		execve() (in module os)

 		execvp() (in module os)

 		execvpe() (in module os)

 		ExFileSelectBox (class in Tix)

 		EXFULL (in module errno)

 		exists() (in module os.path)

 		

 		(ttk.Treeview method)

 		exit (built-in variable)

 		exit()

 		

 		(argparse.ArgumentParser method)

 		(in module sys)

 		(in module thread)

 		exitcode (multiprocessing.Process attribute)

 		exitfunc (2to3 fixer)

 		

 		(in module sys)

 		(in sys)

 		exitonclick() (in module turtle)

 		exp() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module cmath)

 		(in module math)

 		expand() (re.MatchObject method)

 		expand_tabs (textwrap.TextWrapper attribute)

 		ExpandEnvironmentStrings() (in module _winreg)

 		expandNode() (xml.dom.pulldom.DOMEventStream method)

 		expandtabs() (in module string)

 		

 		(str method)

 		expanduser() (in module os.path)

 		expandvars() (in module os.path)

 		Expat

 		ExpatError

 		expect() (telnetlib.Telnet method)

 		expectedFailure() (in module unittest)

 		expectedFailures (unittest.TestResult attribute)

 		expires (cookielib.Cookie attribute)

 		expm1() (in module math)

 		expovariate() (in module random)

 		expr() (in module parser)

 		expression, [1]

 		

 		Conditional

 		conditional

 		generator

 		lambda, [1]

 		list, [1], [2]

 		statement

 		yield

 		expunge() (imaplib.IMAP4 method)

 		extend() (array.array method)

 		

 		(collections.deque method)

 		(list method)

 		(xml.etree.ElementTree.Element method)

 		extend_path() (in module pkgutil)

 		
 extended

 		

 		slicing

 		extended print statement

 		
 extended slice

 		

 		assignment

 		operation

 		extended slicing

 		EXTENDED_ARG (opcode)

 		ExtendedContext (class in decimal)

 		extendleft() (collections.deque method)

 		
 extension

 		

 		module

 		Extension (class in distutils.core)

 		extension module

 		extensions_map (SimpleHTTPServer.SimpleHTTPRequestHandler attribute)

 		External Data Representation, [1]

 		external_attr (zipfile.ZipInfo attribute)

 		ExternalClashError

 		ExternalEntityParserCreate() (xml.parsers.expat.xmlparser method)

 		ExternalEntityRefHandler() (xml.parsers.expat.xmlparser method)

 		extra (zipfile.ZipInfo attribute)

 		extract() (tarfile.TarFile method)

 		

 		(zipfile.ZipFile method)

 		extract_cookies() (cookielib.CookieJar method)

 		extract_stack() (in module traceback)

 		extract_tb() (in module traceback)

 		extract_version (zipfile.ZipInfo attribute)

 		extractall() (tarfile.TarFile method)

 		

 		(zipfile.ZipFile method)

 		ExtractError

 		extractfile() (tarfile.TarFile method)

 		extsep (in module os)

F

 		

 		f_back (frame attribute)

 		F_BAVAIL (in module statvfs)

 		F_BFREE (in module statvfs)

 		F_BLOCKS (in module statvfs)

 		F_BSIZE (in module statvfs)

 		f_builtins (frame attribute)

 		f_code (frame attribute)

 		f_exc_traceback (frame attribute)

 		f_exc_type (frame attribute)

 		f_exc_value (frame attribute)

 		F_FAVAIL (in module statvfs)

 		F_FFREE (in module statvfs)

 		F_FILES (in module statvfs)

 		F_FLAG (in module statvfs)

 		F_FRSIZE (in module statvfs)

 		f_globals (frame attribute)

 		f_lasti (frame attribute)

 		f_lineno (frame attribute)

 		f_locals (frame attribute)

 		F_NAMEMAX (in module statvfs)

 		F_OK (in module os)

 		f_restricted (frame attribute)

 		f_trace (frame attribute)

 		fabs() (in module math)

 		factorial() (in module math)

 		fail() (unittest.TestCase method)

 		failfast (unittest.TestResult attribute)

 		failureException (unittest.TestCase attribute)

 		failures (unittest.TestResult attribute)

 		False, [1], [2]

 		false

 		False (Built-in object)

 		

 		(built-in variable)

 		family (socket.socket attribute)

 		fancy_getopt() (in module distutils.fancy_getopt)

 		FancyGetopt (class in distutils.fancy_getopt)

 		FancyURLopener (class in urllib)

 		fatalError() (xml.sax.handler.ErrorHandler method)

 		Fault (class in xmlrpclib)

 		faultCode (xmlrpclib.Fault attribute)

 		faultString (xmlrpclib.Fault attribute)

 		fchdir() (in module os)

 		fchmod() (in module os)

 		fchown() (in module os)

 		FCICreate() (in module msilib)

 		
 fcntl

 		

 		module

 		fcntl (module)

 		fcntl() (in module fcntl), [1]

 		fd() (in module turtle)

 		fdatasync() (in module os)

 		fdopen() (in module os)

 		Feature (class in msilib)

 		feature_external_ges (in module xml.sax.handler)

 		feature_external_pes (in module xml.sax.handler)

 		feature_namespace_prefixes (in module xml.sax.handler)

 		feature_namespaces (in module xml.sax.handler)

 		feature_string_interning (in module xml.sax.handler)

 		feature_validation (in module xml.sax.handler)

 		feed() (email.parser.FeedParser method)

 		

 		(HTMLParser.HTMLParser method)

 		(sgmllib.SGMLParser method)

 		(xml.etree.ElementTree.XMLParser method)

 		(xml.sax.xmlreader.IncrementalParser method)

 		FeedParser (class in email.parser)

 		fetch() (imaplib.IMAP4 method)

 		Fetch() (msilib.View method)

 		fetchall() (sqlite3.Cursor method)

 		fetchmany() (sqlite3.Cursor method)

 		fetchone() (sqlite3.Cursor method)

 		fflags (select.kevent attribute)

 		field_size_limit() (in module csv)

 		fieldnames (csv.csvreader attribute)

 		fields (uuid.UUID attribute)

 		fifo (class in asynchat)

 		
 file

 		

 		.ini

 		.pdbrc

 		.pythonrc.py

 		built-in function

 		byte-code, [1], [2]

 		configuration

 		copying

 		debugger configuration

 		descriptor

 		large files

 		mime.types

 		object, [1], [2], [3], [4]

 		path configuration

 		plist

 		temporary

 		user configuration

 		file (pyclbr.Class attribute)

 		

 		(pyclbr.Function attribute)

 		
 file ...

 		

 		compileall command line option

 		
 file control

 		

 		UNIX

 		
 file name

 		

 		temporary

 		file object

 		

 		POSIX

 		file() (built-in function)

 		

 		(posixfile.posixfile method)

 		file-like object

 		file_created() (built-in function)

 		file_dispatcher (class in asyncore)

 		file_open() (urllib2.FileHandler method)

 		file_size (zipfile.ZipInfo attribute)

 		file_wrapper (class in asyncore)

 		filecmp (module)

 		fileConfig() (in module logging.config)

 		FileCookieJar (class in cookielib)

 		FileEntry (class in Tix)

 		FileHandler (class in logging)

 		

 		(class in urllib2)

 		FileInput (class in fileinput)

 		fileinput (module)

 		FileIO (class in io)

 		filelineno() (in module fileinput)

 		filename (cookielib.FileCookieJar attribute)

 		

 		(doctest.DocTest attribute)

 		(zipfile.ZipInfo attribute)

 		filename() (in module fileinput)

 		filename_only (in module tabnanny)

 		
 filenames

 		

 		pathname expansion

 		wildcard expansion

 		fileno() (file method)

 		

 		(SocketServer.BaseServer method)

 		(hotshot.Profile method)

 		(httplib.HTTPResponse method)

 		(in module fileinput)

 		(io.IOBase method)

 		(multiprocessing.Connection method)

 		(ossaudiodev.oss_audio_device method)

 		(ossaudiodev.oss_mixer_device method)

 		(select.epoll method)

 		(select.kqueue method)

 		(socket.socket method)

 		(telnetlib.Telnet method)

 		fileopen() (in module posixfile)

 		FileSelectBox (class in Tix)

 		FileType (class in argparse)

 		

 		(in module types), [1]

 		FileWrapper (class in wsgiref.util)

 		fill() (in module textwrap)

 		

 		(in module turtle)

 		(textwrap.TextWrapper method)

 		fillcolor() (in module turtle)

 		filter (2to3 fixer)

 		Filter (class in logging)

 		filter (select.kevent attribute)

 		filter() (built-in function)

 		

 		(in module curses)

 		(in module fnmatch)

 		(in module future_builtins)

 		(logging.Filter method)

 		(logging.Handler method)

 		(logging.Logger method)

 		filterwarnings() (in module warnings)

 		finalization, of objects

 		finalize_options() (distutils.cmd.Command method)

 		
 finally

 		

 		keyword, [1], [2], [3], [4]

 		find() (doctest.DocTestFinder method)

 		

 		(in module gettext)

 		(in module string)

 		(mmap.mmap method)

 		(str method)

 		(xml.etree.ElementTree.Element method)

 		(xml.etree.ElementTree.ElementTree method)

 		find_first() (fl.form method)

 		find_global() (pickle protocol)

 		find_last() (fl.form method)

 		find_library() (in module ctypes.util)

 		find_library_file() (distutils.ccompiler.CCompiler method)

 		find_loader() (in module pkgutil)

 		find_longest_match() (difflib.SequenceMatcher method)

 		
 find_module

 		

 		finder

 		find_module() (imp.NullImporter method)

 		

 		(in module imp)

 		(zipimport.zipimporter method)

 		find_msvcrt() (in module ctypes.util)

 		find_user_password() (urllib2.HTTPPasswordMgr method)

 		findall() (in module re)

 		

 		(re.RegexObject method)

 		(xml.etree.ElementTree.Element method)

 		(xml.etree.ElementTree.ElementTree method)

 		findCaller() (logging.Logger method)

 		finder, [1]

 		

 		find_module

 		findertools (module)

 		findfactor() (in module audioop)

 		findfile() (in module test.test_support)

 		findfit() (in module audioop)

 		findfont() (in module fm)

 		finditer() (in module re)

 		

 		(re.RegexObject method)

 		findlabels() (in module dis)

 		findlinestarts() (in module dis)

 		findmatch() (in module mailcap)

 		findmax() (in module audioop)

 		findtext() (xml.etree.ElementTree.Element method)

 		

 		(xml.etree.ElementTree.ElementTree method)

 		finish() (SocketServer.BaseRequestHandler method)

 		finish_request() (SocketServer.BaseServer method)

 		first() (asynchat.fifo method)

 		

 		(bsddb.bsddbobject method)

 		(dbhash.dbhash method)

 		firstChild (xml.dom.Node attribute)

 		firstkey() (in module gdbm)

 		firstweekday() (in module calendar)

 		fix() (in module fpformat)

 		fix_missing_locations() (in module ast)

 		fix_sentence_endings (textwrap.TextWrapper attribute)

 		FL (module)

 		fl (module)

 		flag_bits (zipfile.ZipInfo attribute)

 		flags (in module sys)

 		

 		(re.RegexObject attribute)

 		(select.kevent attribute)

 		flags() (posixfile.posixfile method)

 		flash() (in module curses)

 		

 		flatten() (email.generator.Generator method)

 		
 flattening

 		

 		objects

 		
 float

 		

 		built-in function, [1], [2], [3]

 		float (built-in class)

 		float_info (in module sys)

 		float_repr_style (in module sys)

 		
 floating point

 		

 		literals

 		number

 		object, [1], [2]

 		floating point literal

 		FloatingPointError, [1]

 		FloatType (in module types)

 		

 		(in modules types)

 		flock() (in module fcntl)

 		floor division

 		floor() (in module math), [1]

 		floordiv() (in module operator)

 		flp (module)

 		flush() (bz2.BZ2Compressor method)

 		

 		(file method)

 		(formatter.writer method)

 		(io.BufferedWriter method)

 		(io.IOBase method)

 		(logging.Handler method)

 		(logging.StreamHandler method)

 		(logging.handlers.BufferingHandler method)

 		(logging.handlers.MemoryHandler method)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mmap.mmap method)

 		(zlib.Compress method)

 		(zlib.Decompress method)

 		flush_softspace() (formatter.formatter method)

 		flushheaders() (MimeWriter.MimeWriter method)

 		flushinp() (in module curses)

 		FlushKey() (in module _winreg)

 		fm (module)

 		fma() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		fmod() (in module math)

 		fnmatch (module)

 		fnmatch() (in module fnmatch)

 		fnmatchcase() (in module fnmatch)

 		focus() (ttk.Treeview method)

 		Folder (class in mhlib)

 		Font Manager, IRIS

 		fontpath() (in module fm)

 		fopen()

 		
 for

 		

 		statement, [1], [2], [3], [4]

 		FOR_ITER (opcode)

 		forget() (in module test.test_support)

 		

 		(ttk.Notebook method)

 		fork() (in module os)

 		

 		(in module pty)

 		ForkingMixIn (class in SocketServer)

 		ForkingTCPServer (class in SocketServer)

 		ForkingUDPServer (class in SocketServer)

 		forkpty() (in module os)

 		Form (class in Tix)

 		
 format

 		

 		str

 		format (memoryview attribute)

 		

 		(struct.Struct attribute)

 		format() (built-in function)

 		

 		(in module locale)

 		(logging.Formatter method)

 		(logging.Handler method)

 		(pprint.PrettyPrinter method)

 		(str method)

 		(string.Formatter method)

 		format_exc() (in module traceback)

 		format_exception() (in module traceback)

 		format_exception_only() (in module traceback)

 		format_field() (string.Formatter method)

 		format_help() (argparse.ArgumentParser method)

 		format_list() (in module traceback)

 		format_stack() (in module traceback)

 		format_stack_entry() (bdb.Bdb method)

 		format_string() (in module locale)

 		format_tb() (in module traceback)

 		format_usage() (argparse.ArgumentParser method)

 		formataddr() (in module email.utils)

 		formatargspec() (in module inspect)

 		formatargvalues() (in module inspect)

 		formatdate() (in module email.utils)

 		FormatError

 		FormatError() (in module ctypes)

 		formatException() (logging.Formatter method)

 		formatmonth() (calendar.HTMLCalendar method)

 		

 		(calendar.TextCalendar method)

 		
 formatter

 		

 		module

 		Formatter (class in logging)

 		

 		(class in string)

 		formatter (htmllib.HTMLParser attribute)

 		

 		(module)

 		formatTime() (logging.Formatter method)

 		formatting, string (%)

 		formatwarning() (in module warnings)

 		formatyear() (calendar.HTMLCalendar method)

 		

 		(calendar.TextCalendar method)

 		formatyearpage() (calendar.HTMLCalendar method)

 		FORMS Library

 		forward() (in module turtle)

 		found_terminator() (asynchat.async_chat method)

 		fp (rfc822.Message attribute)

 		fpathconf() (in module os)

 		fpectl (module)

 		fpformat (module)

 		Fraction (class in fractions)

 		fractions (module)

 		
 frame

 		

 		execution, [1]

 		object

 		frame (ScrolledText.ScrolledText attribute)

 		FrameType (in module types)

 		
 FrameWork

 		

 		module

 		FrameWork (module)

 		
 free

 		

 		variable, [1]

 		free()

 		freeze utility

 		freeze_form() (fl.form method)

 		freeze_support() (in module multiprocessing)

 		frexp() (in module math)

 		
 from

 		

 		keyword

 		statement

 		from_address() (ctypes._CData method)

 		from_buffer() (ctypes._CData method)

 		from_buffer_copy() (ctypes._CData method)

 		from_decimal() (fractions.Fraction method)

 		from_float() (decimal.Decimal method)

 		

 		(fractions.Fraction method)

 		from_iterable() (itertools.chain class method)

 		from_param() (ctypes._CData method)

 		from_splittable() (email.charset.Charset method)

 		frombuf() (tarfile.TarInfo method)

 		fromchild (popen2.Popen3 attribute)

 		fromfd() (in module socket)

 		

 		(select.epoll method)

 		(select.kqueue method)

 		fromfile() (array.array method)

 		fromhex() (float method)

 		fromkeys() (collections.Counter method)

 		

 		(dict method)

 		fromlist() (array.array method)

 		fromordinal() (datetime.date class method)

 		

 		(datetime.datetime class method)

 		fromstring() (array.array method)

 		

 		(in module xml.etree.ElementTree)

 		fromstringlist() (in module xml.etree.ElementTree)

 		fromtarfile() (tarfile.TarInfo method)

 		fromtimestamp() (datetime.date class method)

 		

 		(datetime.datetime class method)

 		fromunicode() (array.array method)

 		fromutc() (datetime.tzinfo method)

 		
 frozenset

 		

 		object, [1]

 		frozenset (built-in class)

 		fstat() (in module os)

 		fstatvfs() (in module os)

 		fsum() (in module math)

 		fsync() (in module os)

 		FTP

 		

 		ftplib (standard module)

 		protocol, [1]

 		FTP (class in ftplib)

 		ftp_open() (urllib2.FTPHandler method)

 		ftp_proxy

 		FTP_TLS (class in ftplib)

 		FTPHandler (class in urllib2)

 		ftplib (module)

 		ftpmirror.py

 		ftruncate() (in module os)

 		Full

 		full() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		func (functools.partial attribute)

 		func_closure (function attribute)

 		func_code (function attribute)

 		

 		(function object attribute)

 		func_defaults (function attribute)

 		func_dict (function attribute)

 		func_doc (function attribute)

 		func_globals (function attribute)

 		func_name (function attribute)

 		funcattrs (2to3 fixer)

 		function

 		

 		anonymous

 		argument

 		call, [1], [2]

 		call, user-defined

 		definition, [1]

 		generator, [1]

 		name

 		object, [1], [2], [3], [4], [5]

 		user-defined

 		Function (class in symtable)

 		function() (in module new)

 		FunctionTestCase (class in unittest)

 		FunctionType (in module types)

 		functools (module)

 		funny_files (filecmp.dircmp attribute)

 		
 future

 		

 		statement

 		future (2to3 fixer)

 		future_builtins (module)

 		FutureWarning

G

 		

 		G.722

 		gaierror

 		gamma() (in module math)

 		gammavariate() (in module random)

 		garbage (in module gc)

 		garbage collection, [1]

 		gather() (curses.textpad.Textbox method)

 		gauss() (in module random)

 		gc (module)

 		gcd() (in module fractions)

 		
 gdbm

 		

 		module, [1], [2]

 		gdbm (module)

 		ge() (in module operator)

 		gen_lib_options() (in module distutils.ccompiler)

 		gen_preprocess_options() (in module distutils.ccompiler)

 		gen_uuid() (in module msilib)

 		generate_help() (distutils.fancy_getopt.FancyGetopt method)

 		generate_tokens() (in module tokenize)

 		generator, [1]

 		

 		expression

 		function, [1], [2]

 		iterator, [1]

 		object, [1], [2]

 		Generator (class in email.generator)

 		generator expression, [1]

 		GeneratorExit

 		

 		exception

 		GeneratorType (in module types)

 		
 generic

 		

 		special attribute

 		generic_visit() (ast.NodeVisitor method)

 		genops() (in module pickletools)

 		gensuitemodule (module)

 		get() (ConfigParser.ConfigParser method)

 		

 		(ConfigParser.RawConfigParser method)

 		(Queue.Queue method)

 		(dict method)

 		(email.message.Message method)

 		(in module webbrowser)

 		(mailbox.Mailbox method)

 		(multiprocessing.Queue method)

 		(multiprocessing.multiprocessing.queues.SimpleQueue method)

 		(multiprocessing.pool.AsyncResult method)

 		(ossaudiodev.oss_mixer_device method)

 		(rfc822.Message method)

 		(ttk.Combobox method)

 		(xml.etree.ElementTree.Element method)

 		get_all() (email.message.Message method)

 		

 		(wsgiref.headers.Headers method)

 		get_all_breaks() (bdb.Bdb method)

 		get_app() (wsgiref.simple_server.WSGIServer method)

 		get_archive_formats() (in module shutil)

 		get_begidx() (in module readline)

 		get_body_encoding() (email.charset.Charset method)

 		get_boundary() (email.message.Message method)

 		get_break() (bdb.Bdb method)

 		get_breaks() (bdb.Bdb method)

 		get_buffer() (xdrlib.Packer method)

 		

 		(xdrlib.Unpacker method)

 		get_ca_certs() (ssl.SSLContext method), [1]

 		get_channel_binding() (ssl.SSLSocket method)

 		get_charset() (email.message.Message method)

 		get_charsets() (email.message.Message method)

 		get_children() (symtable.SymbolTable method)

 		

 		(ttk.Treeview method)

 		get_close_matches() (in module difflib)

 		get_code() (imputil.BuiltinImporter method)

 		

 		(imputil.Importer method)

 		(zipimport.zipimporter method)

 		get_completer() (in module readline)

 		get_completer_delims() (in module readline)

 		get_completion_type() (in module readline)

 		get_config_h_filename() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_config_var() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_config_vars() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_content_charset() (email.message.Message method)

 		get_content_maintype() (email.message.Message method)

 		get_content_subtype() (email.message.Message method)

 		get_content_type() (email.message.Message method)

 		get_count() (in module gc)

 		get_current_history_length() (in module readline)

 		get_data() (in module pkgutil)

 		

 		(urllib2.Request method)

 		(zipimport.zipimporter method)

 		get_date() (mailbox.MaildirMessage method)

 		get_debug() (in module gc)

 		get_default() (argparse.ArgumentParser method)

 		get_default_compiler() (in module distutils.ccompiler)

 		get_default_domain() (in module nis)

 		get_default_type() (email.message.Message method)

 		get_default_verify_paths() (in module ssl)

 		get_dialect() (in module csv)

 		get_directory() (in module fl)

 		get_docstring() (in module ast)

 		get_doctest() (doctest.DocTestParser method)

 		get_endidx() (in module readline)

 		get_environ() (wsgiref.simple_server.WSGIRequestHandler method)

 		get_errno() (in module ctypes)

 		get_examples() (doctest.DocTestParser method)

 		get_field() (string.Formatter method)

 		get_file() (mailbox.Babyl method)

 		

 		(mailbox.MH method)

 		(mailbox.MMDF method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mailbox.mbox method)

 		get_file_breaks() (bdb.Bdb method)

 		get_filename() (email.message.Message method)

 		

 		(in module fl)

 		(zipimport.zipimporter method)

 		get_flags() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		get_folder() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		get_frees() (symtable.Function method)

 		get_from() (mailbox.mboxMessage method)

 		

 		(mailbox.MMDFMessage method)

 		get_full_url() (urllib2.Request method)

 		get_globals() (symtable.Function method)

 		get_grouped_opcodes() (difflib.SequenceMatcher method)

 		get_header() (urllib2.Request method)

 		get_history_item() (in module readline)

 		get_history_length() (in module readline)

 		get_host() (urllib2.Request method)

 		get_id() (symtable.SymbolTable method)

 		get_ident() (in module thread)

 		get_identifiers() (symtable.SymbolTable method)

 		get_importer() (in module pkgutil)

 		get_info() (mailbox.MaildirMessage method)

 		GET_ITER (opcode)

 		get_labels() (mailbox.Babyl method)

 		

 		(mailbox.BabylMessage method)

 		get_last_error() (in module ctypes)

 		get_line_buffer() (in module readline)

 		get_lineno() (symtable.SymbolTable method)

 		get_loader() (in module pkgutil)

 		get_locals() (symtable.Function method)

 		get_logger() (in module multiprocessing)

 		get_magic() (in module imp)

 		get_makefile_filename() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_matching_blocks() (difflib.SequenceMatcher method)

 		get_message() (mailbox.Mailbox method)

 		get_method() (urllib2.Request method)

 		get_methods() (symtable.Class method)

 		get_mouse() (in module fl)

 		get_name() (symtable.Symbol method)

 		

 		(symtable.SymbolTable method)

 		get_namespace() (symtable.Symbol method)

 		get_namespaces() (symtable.Symbol method)

 		get_nonstandard_attr() (cookielib.Cookie method)

 		get_nowait() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		get_objects() (in module gc)

 		get_opcodes() (difflib.SequenceMatcher method)

 		get_option() (optparse.OptionParser method)

 		get_option_group() (optparse.OptionParser method)

 		get_option_order() (distutils.fancy_getopt.FancyGetopt method)

 		get_origin_req_host() (urllib2.Request method)

 		get_osfhandle() (in module msvcrt)

 		get_output_charset() (email.charset.Charset method)

 		get_param() (email.message.Message method)

 		get_parameters() (symtable.Function method)

 		get_params() (email.message.Message method)

 		get_path() (in module sysconfig)

 		get_path_names() (in module sysconfig)

 		get_paths() (in module sysconfig)

 		get_pattern() (in module fl)

 		get_payload() (email.message.Message method)

 		get_platform() (in module distutils.util)

 		

 		(in module sysconfig)

 		get_poly() (in module turtle)

 		get_position() (xdrlib.Unpacker method)

 		get_python_inc() (in module distutils.sysconfig)

 		get_python_lib() (in module distutils.sysconfig)

 		get_python_version() (in module sysconfig)

 		get_recsrc() (ossaudiodev.oss_mixer_device method)

 		get_referents() (in module gc)

 		get_referrers() (in module gc)

 		get_request() (SocketServer.BaseServer method)

 		get_rgbmode() (in module fl)

 		get_scheme() (wsgiref.handlers.BaseHandler method)

 		get_scheme_names() (in module sysconfig)

 		get_selector() (urllib2.Request method)

 		get_sequences() (mailbox.MH method)

 		

 		(mailbox.MHMessage method)

 		get_server() (multiprocessing.managers.BaseManager method)

 		get_server_certificate() (in module ssl)

 		get_socket() (telnetlib.Telnet method)

 		get_source() (zipimport.zipimporter method)

 		get_special_folder_path() (built-in function)

 		get_stack() (bdb.Bdb method)

 		get_starttag_text() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		get_stderr() (wsgiref.handlers.BaseHandler method)

 		

 		(wsgiref.simple_server.WSGIRequestHandler method)

 		get_stdin() (wsgiref.handlers.BaseHandler method)

 		get_string() (mailbox.Mailbox method)

 		get_subdir() (mailbox.MaildirMessage method)

 		get_suffixes() (in module imp)

 		get_symbols() (symtable.SymbolTable method)

 		get_terminator() (asynchat.async_chat method)

 		get_threshold() (in module gc)

 		get_token() (shlex.shlex method)

 		get_type() (symtable.SymbolTable method)

 		

 		(urllib2.Request method)

 		get_unixfrom() (email.message.Message method)

 		get_usage() (optparse.OptionParser method)

 		get_value() (string.Formatter method)

 		get_version() (optparse.OptionParser method)

 		get_visible() (mailbox.BabylMessage method)

 		getabouttext() (FrameWork.Application method)

 		getacl() (imaplib.IMAP4 method)

 		getaddr() (rfc822.Message method)

 		getaddresses() (in module email.utils)

 		getaddrinfo() (in module socket)

 		getaddrlist() (rfc822.Message method)

 		getallmatchingheaders() (rfc822.Message method)

 		getannotation() (imaplib.IMAP4 method)

 		getargspec() (in module inspect)

 		GetArgv() (in module EasyDialogs)

 		getargvalues() (in module inspect)

 		getatime() (in module os.path)

 		getattr() (built-in function)

 		getAttribute() (xml.dom.Element method)

 		getAttributeNode() (xml.dom.Element method)

 		getAttributeNodeNS() (xml.dom.Element method)

 		getAttributeNS() (xml.dom.Element method)

 		GetBase() (xml.parsers.expat.xmlparser method)

 		getbegyx() (curses.window method)

 		getbkgd() (curses.window method)

 		getboolean() (ConfigParser.RawConfigParser method)

 		getByteStream() (xml.sax.xmlreader.InputSource method)

 		getcallargs() (in module inspect)

 		getcanvas() (in module turtle)

 		getcaps() (in module mailcap)

 		getch() (curses.window method)

 		

 		(in module msvcrt)

 		getCharacterStream() (xml.sax.xmlreader.InputSource method)

 		getche() (in module msvcrt)

 		getcheckinterval() (in module sys)

 		getChild() (logging.Logger method)

 		getChildNodes() (compiler.ast.Node method)

 		getChildren() (compiler.ast.Node method)

 		getchildren() (xml.etree.ElementTree.Element method)

 		getclasstree() (in module inspect)

 		GetColor() (in module ColorPicker)

 		GetColumnInfo() (msilib.View method)

 		getColumnNumber() (xml.sax.xmlreader.Locator method)

 		getcomments() (in module inspect)

 		getcompname() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getcomptype() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getContentHandler() (xml.sax.xmlreader.XMLReader method)

 		getcontext() (in module decimal)

 		

 		(mhlib.MH method)

 		GetCreatorAndType() (in module MacOS)

 		getctime() (in module os.path)

 		getcurrent() (mhlib.Folder method)

 		getcwd() (in module os)

 		getcwdu (2to3 fixer)

 		getcwdu() (in module os)

 		getdate() (rfc822.Message method)

 		getdate_tz() (rfc822.Message method)

 		getdecoder() (in module codecs)

 		getdefaultencoding() (in module sys)

 		getdefaultlocale() (in module locale)

 		getdefaulttimeout() (in module socket)

 		getdlopenflags() (in module sys)

 		getdoc() (in module inspect)

 		getDOMImplementation() (in module xml.dom)

 		getDTDHandler() (xml.sax.xmlreader.XMLReader method)

 		getEffectiveLevel() (logging.Logger method)

 		getegid() (in module os)

 		getElementsByTagName() (xml.dom.Document method)

 		

 		(xml.dom.Element method)

 		getElementsByTagNameNS() (xml.dom.Document method)

 		

 		(xml.dom.Element method)

 		getencoder() (in module codecs)

 		getencoding() (mimetools.Message method)

 		getEncoding() (xml.sax.xmlreader.InputSource method)

 		getEntityResolver() (xml.sax.xmlreader.XMLReader method)

 		getenv() (in module os)

 		getErrorHandler() (xml.sax.xmlreader.XMLReader method)

 		

 		GetErrorString() (in module MacOS)

 		geteuid() (in module os)

 		getEvent() (xml.dom.pulldom.DOMEventStream method)

 		getEventCategory() (logging.handlers.NTEventLogHandler method)

 		getEventType() (logging.handlers.NTEventLogHandler method)

 		getException() (xml.sax.SAXException method)

 		getFeature() (xml.sax.xmlreader.XMLReader method)

 		GetFieldCount() (msilib.Record method)

 		getfile() (in module inspect)

 		getfilesystemencoding() (in module sys)

 		getfirst() (cgi.FieldStorage method)

 		getfirstmatchingheader() (rfc822.Message method)

 		getfloat() (ConfigParser.RawConfigParser method)

 		getfmts() (ossaudiodev.oss_audio_device method)

 		getfqdn() (in module socket)

 		getframeinfo() (in module inspect)

 		getframerate() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getfullname() (mhlib.Folder method)

 		getgid() (in module os)

 		getgrall() (in module grp)

 		getgrgid() (in module grp)

 		getgrnam() (in module grp)

 		getgroups() (in module os)

 		getheader() (httplib.HTTPResponse method)

 		

 		(rfc822.Message method)

 		getheaders() (httplib.HTTPResponse method)

 		gethostbyaddr() (in module socket), [1]

 		gethostbyname() (in module socket)

 		gethostbyname_ex() (in module socket)

 		gethostname() (in module socket), [1]

 		getincrementaldecoder() (in module codecs)

 		getincrementalencoder() (in module codecs)

 		getinfo() (zipfile.ZipFile method)

 		getinnerframes() (in module inspect)

 		GetInputContext() (xml.parsers.expat.xmlparser method)

 		getint() (ConfigParser.RawConfigParser method)

 		GetInteger() (msilib.Record method)

 		getitem() (in module operator)

 		getiterator() (xml.etree.ElementTree.Element method)

 		

 		(xml.etree.ElementTree.ElementTree method)

 		getitimer() (in module signal)

 		getkey() (curses.window method)

 		getlast() (mhlib.Folder method)

 		GetLastError() (in module ctypes)

 		getLength() (xml.sax.xmlreader.Attributes method)

 		getLevelName() (in module logging)

 		getline() (in module linecache)

 		getLineNumber() (xml.sax.xmlreader.Locator method)

 		getlist() (cgi.FieldStorage method)

 		getloadavg() (in module os)

 		getlocale() (in module locale)

 		getLogger() (in module logging)

 		getLoggerClass() (in module logging)

 		getlogin() (in module os)

 		getmaintype() (mimetools.Message method)

 		getmark() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getmarkers() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getmaxyx() (curses.window method)

 		getmcolor() (in module fl)

 		getmember() (tarfile.TarFile method)

 		getmembers() (in module inspect)

 		

 		(tarfile.TarFile method)

 		getMessage() (logging.LogRecord method)

 		

 		(xml.sax.SAXException method)

 		getmessagefilename() (mhlib.Folder method)

 		getMessageID() (logging.handlers.NTEventLogHandler method)

 		getmodule() (in module inspect)

 		getmoduleinfo() (in module inspect)

 		getmodulename() (in module inspect)

 		getmouse() (in module curses)

 		getmro() (in module inspect)

 		getmtime() (in module os.path)

 		getname() (chunk.Chunk method)

 		getName() (threading.Thread method)

 		getNameByQName() (xml.sax.xmlreader.AttributesNS method)

 		getnameinfo() (in module socket)

 		getnames() (tarfile.TarFile method)

 		getNames() (xml.sax.xmlreader.Attributes method)

 		getnchannels() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getnframes() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getnode

 		getnode() (in module uuid)

 		getopt (module)

 		getopt() (distutils.fancy_getopt.FancyGetopt method)

 		

 		(in module getopt)

 		GetoptError

 		getouterframes() (in module inspect)

 		getoutput() (in module commands)

 		getpagesize() (in module resource)

 		getparam() (mimetools.Message method)

 		getparams() (aifc.aifc method)

 		

 		(in module al)

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getparyx() (curses.window method)

 		getpass (module)

 		getpass() (in module getpass)

 		GetPassWarning

 		getpath() (mhlib.MH method)

 		getpeercert() (ssl.SSLSocket method)

 		getpeername() (socket.socket method)

 		getpen() (in module turtle)

 		getpgid() (in module os)

 		getpgrp() (in module os)

 		getpid() (in module os)

 		getplist() (mimetools.Message method)

 		getpos() (HTMLParser.HTMLParser method)

 		getppid() (in module os)

 		getpreferredencoding() (in module locale)

 		getprofile() (in module sys)

 		

 		(mhlib.MH method)

 		GetProperty() (msilib.SummaryInformation method)

 		getProperty() (xml.sax.xmlreader.XMLReader method)

 		GetPropertyCount() (msilib.SummaryInformation method)

 		getprotobyname() (in module socket)

 		getproxies() (in module urllib)

 		getPublicId() (xml.sax.xmlreader.InputSource method)

 		

 		(xml.sax.xmlreader.Locator method)

 		getpwall() (in module pwd)

 		getpwnam() (in module pwd)

 		getpwuid() (in module pwd)

 		getQNameByName() (xml.sax.xmlreader.AttributesNS method)

 		getQNames() (xml.sax.xmlreader.AttributesNS method)

 		getquota() (imaplib.IMAP4 method)

 		getquotaroot() (imaplib.IMAP4 method)

 		getrandbits() (in module random)

 		getrawheader() (rfc822.Message method)

 		getreader() (in module codecs)

 		getrecursionlimit() (in module sys)

 		getrefcount() (in module sys)

 		getresgid() (in module os)

 		getresponse() (httplib.HTTPConnection method)

 		getresuid() (in module os)

 		getrlimit() (in module resource)

 		getroot() (xml.etree.ElementTree.ElementTree method)

 		getrusage() (in module resource)

 		getsample() (in module audioop)

 		getsampwidth() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getscreen() (in module turtle)

 		getscrollbarvalues() (FrameWork.ScrolledWindow method)

 		getsequences() (mhlib.Folder method)

 		getsequencesfilename() (mhlib.Folder method)

 		getservbyname() (in module socket)

 		getservbyport() (in module socket)

 		GetSetDescriptorType (in module types)

 		getshapes() (in module turtle)

 		getsid() (in module os)

 		getsignal() (in module signal)

 		getsitepackages() (in module site)

 		getsize() (chunk.Chunk method)

 		

 		(in module os.path)

 		getsizeof() (in module sys)

 		getsizes() (in module imgfile)

 		getslice() (in module operator)

 		getsockname() (socket.socket method)

 		getsockopt() (socket.socket method)

 		getsource() (in module inspect)

 		getsourcefile() (in module inspect)

 		getsourcelines() (in module inspect)

 		getspall() (in module spwd)

 		getspnam() (in module spwd)

 		getstate() (in module random)

 		getstatus() (in module commands)

 		getstatusoutput() (in module commands)

 		getstr() (curses.window method)

 		GetString() (msilib.Record method)

 		getSubject() (logging.handlers.SMTPHandler method)

 		getsubtype() (mimetools.Message method)

 		GetSummaryInformation() (msilib.Database method)

 		getSystemId() (xml.sax.xmlreader.InputSource method)

 		

 		(xml.sax.xmlreader.Locator method)

 		getsyx() (in module curses)

 		gettarinfo() (tarfile.TarFile method)

 		gettempdir() (in module tempfile)

 		gettempprefix() (in module tempfile)

 		getTestCaseNames() (unittest.TestLoader method)

 		gettext (module)

 		gettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		GetTicks() (in module MacOS)

 		gettimeout() (socket.socket method)

 		gettrace() (in module sys)

 		getturtle() (in module turtle)

 		gettype() (mimetools.Message method)

 		getType() (xml.sax.xmlreader.Attributes method)

 		getuid() (in module os)

 		geturl() (urlparse.ParseResult method)

 		getuser() (in module getpass)

 		getuserbase() (in module site)

 		getusersitepackages() (in module site)

 		getvalue() (io.BytesIO method)

 		

 		(StringIO.StringIO method)

 		(io.StringIO method)

 		getValue() (xml.sax.xmlreader.Attributes method)

 		getValueByQName() (xml.sax.xmlreader.AttributesNS method)

 		getwch() (in module msvcrt)

 		getwche() (in module msvcrt)

 		getweakrefcount() (in module weakref)

 		getweakrefs() (in module weakref)

 		getwelcome() (ftplib.FTP method)

 		

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		getwin() (in module curses)

 		getwindowsversion() (in module sys)

 		getwriter() (in module codecs)

 		getyx() (curses.window method)

 		gid (tarfile.TarInfo attribute)

 		GIL, [1]

 		GL (module)

 		gl (module)

 		
 glob

 		

 		module

 		glob (module)

 		glob() (in module glob)

 		

 		(msilib.Directory method)

 		
 global

 		

 		name binding

 		namespace

 		statement, [1], [2]

 		global interpreter lock, [1]

 		
 globals

 		

 		built-in function

 		globals() (built-in function)

 		globs (doctest.DocTest attribute)

 		gmtime() (in module time)

 		gname (tarfile.TarInfo attribute)

 		GNOME

 		GNU_FORMAT (in module tarfile)

 		gnu_getopt() (in module getopt)

 		got (doctest.DocTestFailure attribute)

 		goto() (in module turtle)

 		grammar

 		Graphical User Interface

 		GREATER (in module token)

 		GREATEREQUAL (in module token)

 		Greenwich Mean Time

 		grey22grey() (in module imageop)

 		grey2grey2() (in module imageop)

 		grey2grey4() (in module imageop)

 		grey2mono() (in module imageop)

 		grey42grey() (in module imageop)

 		group() (nntplib.NNTP method)

 		

 		(re.MatchObject method)

 		groupby() (in module itertools)

 		groupdict() (re.MatchObject method)

 		groupindex (re.RegexObject attribute)

 		grouping

 		groups (re.RegexObject attribute)

 		groups() (re.MatchObject method)

 		grp (module)

 		gt() (in module operator)

 		guess_all_extensions() (in module mimetypes)

 		

 		(mimetypes.MimeTypes method)

 		guess_extension() (in module mimetypes)

 		

 		(mimetypes.MimeTypes method)

 		guess_scheme() (in module wsgiref.util)

 		guess_type() (in module mimetypes)

 		

 		(mimetypes.MimeTypes method)

 		GUI

 		gzip (module)

 		GzipFile (class in gzip)

H

 		

 		halfdelay() (in module curses)

 		handle an exception

 		handle() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		

 		(SocketServer.BaseRequestHandler method)

 		(logging.Handler method)

 		(logging.Logger method)

 		(logging.NullHandler method)

 		(wsgiref.simple_server.WSGIRequestHandler method)

 		handle_accept() (asyncore.dispatcher method)

 		handle_charref() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_close() (asyncore.dispatcher method)

 		handle_comment() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_connect() (asyncore.dispatcher method)

 		handle_data() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_decl() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_endtag() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_entityref() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_error() (asyncore.dispatcher method)

 		

 		(SocketServer.BaseServer method)

 		handle_expt() (asyncore.dispatcher method)

 		handle_image() (htmllib.HTMLParser method)

 		handle_one_request() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		handle_pi() (HTMLParser.HTMLParser method)

 		handle_read() (asyncore.dispatcher method)

 		handle_request() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SocketServer.BaseServer method)

 		handle_startendtag() (HTMLParser.HTMLParser method)

 		handle_starttag() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_timeout() (SocketServer.BaseServer method)

 		handle_write() (asyncore.dispatcher method)

 		handleError() (logging.Handler method)

 		

 		(logging.handlers.SocketHandler method)

 		
 handler

 		

 		exception

 		handler() (in module cgitb)

 		HAS_ALPN (in module ssl)

 		has_children() (symtable.SymbolTable method)

 		has_colors() (in module curses)

 		has_data() (urllib2.Request method)

 		HAS_ECDH (in module ssl)

 		has_exec() (symtable.SymbolTable method)

 		has_extn() (smtplib.SMTP method)

 		has_function() (distutils.ccompiler.CCompiler method)

 		has_header() (csv.Sniffer method)

 		

 		(urllib2.Request method)

 		has_ic() (in module curses)

 		has_il() (in module curses)

 		has_import_star() (symtable.SymbolTable method)

 		has_ipv6 (in module socket)

 		has_key (2to3 fixer)

 		has_key() (bsddb.bsddbobject method)

 		

 		(dict method)

 		(email.message.Message method)

 		(in module curses)

 		(mailbox.Mailbox method)

 		has_nonstandard_attr() (cookielib.Cookie method)

 		HAS_NPN (in module ssl)

 		has_option() (ConfigParser.RawConfigParser method)

 		

 		(optparse.OptionParser method)

 		has_section() (ConfigParser.RawConfigParser method)

 		HAS_SNI (in module ssl)

 		hasattr() (built-in function)

 		hasAttribute() (xml.dom.Element method)

 		hasAttributeNS() (xml.dom.Element method)

 		hasAttributes() (xml.dom.Node method)

 		hasChildNodes() (xml.dom.Node method)

 		hascompare (in module dis)

 		hasconst (in module dis)

 		hasFeature() (xml.dom.DOMImplementation method)

 		hasfree (in module dis)

 		
 hash

 		

 		built-in function, [1], [2]

 		hash character

 		hash() (built-in function)

 		hash.block_size (in module hashlib)

 		hash.digest_size (in module hashlib)

 		hashable, [1]

 		Hashable (class in collections)

 		hashlib (module)

 		hashlib.algorithms (in module hashlib)

 		hashopen() (in module bsddb)

 		hasjabs (in module dis)

 		hasjrel (in module dis)

 		haslocal (in module dis)

 		hasname (in module dis)

 		HAVE_ARGUMENT (opcode)

 		have_unicode (in module test.test_support)

 		head() (nntplib.NNTP method)

 		Header (class in email.header)

 		header_encode() (email.charset.Charset method)

 		header_encoding (email.charset.Charset attribute)

 		header_items() (urllib2.Request method)

 		header_offset (zipfile.ZipInfo attribute)

 		HeaderError

 		HeaderParseError

 		
 headers

 		

 		MIME, [1]

 		headers (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		Headers (class in wsgiref.headers)

 		headers (rfc822.Message attribute)

 		

 		(xmlrpclib.ProtocolError attribute)

 		heading() (in module turtle)

 		

 		(ttk.Treeview method)

 		heapify() (in module heapq)

 		heapmin() (in module msvcrt)

 		heappop() (in module heapq)

 		heappush() (in module heapq)

 		heappushpop() (in module heapq)

 		heapq (module)

 		heapreplace() (in module heapq)

 		helo() (smtplib.SMTP method)

 		
 help

 		

 		built-in function

 		online

 		help (optparse.Option attribute)

 		help() (built-in function)

 		

 		(nntplib.NNTP method)

 		herror

 		
 hex

 		

 		built-in function

 		

 		hex (uuid.UUID attribute)

 		hex() (built-in function)

 		

 		(float method)

 		(in module future_builtins)

 		
 hexadecimal

 		

 		literals

 		hexadecimal literal

 		hexbin() (in module binhex)

 		hexdigest() (hashlib.hash method)

 		

 		(hmac.HMAC method)

 		(md5.md5 method)

 		(sha.sha method)

 		hexdigits (in module string)

 		hexlify() (in module binascii)

 		hexversion (in module sys)

 		hidden() (curses.panel.Panel method)

 		hide() (curses.panel.Panel method)

 		

 		(ttk.Notebook method)

 		hide_cookie2 (cookielib.CookiePolicy attribute)

 		hide_form() (fl.form method)

 		hideturtle() (in module turtle)

 		
 hierarchy

 		

 		type

 		HierarchyRequestErr

 		HIGHEST_PROTOCOL (in module pickle)

 		HKEY_CLASSES_ROOT (in module _winreg)

 		HKEY_CURRENT_CONFIG (in module _winreg)

 		HKEY_CURRENT_USER (in module _winreg)

 		HKEY_DYN_DATA (in module _winreg)

 		HKEY_LOCAL_MACHINE (in module _winreg)

 		HKEY_PERFORMANCE_DATA (in module _winreg)

 		HKEY_USERS (in module _winreg)

 		hline() (curses.window method)

 		HList (class in Tix)

 		hls_to_rgb() (in module colorsys)

 		hmac (module)

 		HOME, [1], [2], [3], [4], [5]

 		home() (in module turtle)

 		HOMEDRIVE, [1]

 		HOMEPATH, [1]

 		hook_compressed() (in module fileinput)

 		hook_encoded() (in module fileinput)

 		hosts (netrc.netrc attribute)

 		hotshot (module)

 		hotshot.stats (module)

 		hour (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		HRESULT (class in ctypes)

 		hStdError (subprocess.STARTUPINFO attribute)

 		hStdInput (subprocess.STARTUPINFO attribute)

 		hStdOutput (subprocess.STARTUPINFO attribute)

 		hsv_to_rgb() (in module colorsys)

 		ht() (in module turtle)

 		HTML, [1], [2]

 		HTMLCalendar (class in calendar)

 		HtmlDiff (class in difflib)

 		HtmlDiff.__init__() (in module difflib)

 		HtmlDiff.make_file() (in module difflib)

 		HtmlDiff.make_table() (in module difflib)

 		htmlentitydefs (module)

 		
 htmllib

 		

 		module

 		htmllib (module)

 		HTMLParseError, [1]

 		HTMLParser (class in htmllib), [1]

 		

 		(class in HTMLParser)

 		(module)

 		htonl() (in module socket)

 		htons() (in module socket)

 		
 HTTP

 		

 		httplib (standard module)

 		protocol, [1], [2], [3], [4]

 		http_error_301() (urllib2.HTTPRedirectHandler method)

 		http_error_302() (urllib2.HTTPRedirectHandler method)

 		http_error_303() (urllib2.HTTPRedirectHandler method)

 		http_error_307() (urllib2.HTTPRedirectHandler method)

 		http_error_401() (urllib2.HTTPBasicAuthHandler method)

 		

 		(urllib2.HTTPDigestAuthHandler method)

 		http_error_407() (urllib2.ProxyBasicAuthHandler method)

 		

 		(urllib2.ProxyDigestAuthHandler method)

 		http_error_auth_reqed() (urllib2.AbstractBasicAuthHandler method)

 		

 		(urllib2.AbstractDigestAuthHandler method)

 		http_error_default() (urllib2.BaseHandler method)

 		http_error_nnn() (urllib2.BaseHandler method)

 		http_open() (urllib2.HTTPHandler method)

 		HTTP_PORT (in module httplib)

 		http_proxy, [1], [2], [3]

 		http_response() (urllib2.HTTPErrorProcessor method)

 		http_version (wsgiref.handlers.BaseHandler attribute)

 		HTTPBasicAuthHandler (class in urllib2)

 		HTTPConnection (class in httplib)

 		HTTPCookieProcessor (class in urllib2)

 		httpd

 		HTTPDefaultErrorHandler (class in urllib2)

 		HTTPDigestAuthHandler (class in urllib2)

 		HTTPError

 		HTTPErrorProcessor (class in urllib2)

 		HTTPException

 		HTTPHandler (class in logging.handlers)

 		

 		(class in urllib2)

 		httplib (module)

 		HTTPMessage (class in httplib)

 		HTTPPasswordMgr (class in urllib2)

 		HTTPPasswordMgrWithDefaultRealm (class in urllib2)

 		HTTPRedirectHandler (class in urllib2)

 		HTTPResponse (class in httplib)

 		https_open() (urllib2.HTTPSHandler method)

 		HTTPS_PORT (in module httplib)

 		https_response() (urllib2.HTTPErrorProcessor method)

 		HTTPSConnection (class in httplib)

 		HTTPServer (class in BaseHTTPServer)

 		HTTPSHandler (class in urllib2)

 		hypertext

 		hypot() (in module math)

I

 		

 		I (in module re)

 		
 I/O control

 		

 		POSIX

 		UNIX

 		buffering, [1], [2]

 		tty

 		iadd() (in module operator)

 		iand() (in module operator)

 		IC (class in ic)

 		ic (module)

 		
 icglue

 		

 		module

 		iconcat() (in module operator)

 		icopen (module)

 		
 id

 		

 		built-in function

 		id() (built-in function)

 		

 		(unittest.TestCase method)

 		idcok() (curses.window method)

 		ident (in module cd)

 		

 		(select.kevent attribute)

 		(threading.Thread attribute)

 		identchars (cmd.Cmd attribute)

 		identifier, [1]

 		identify() (ttk.Notebook method)

 		

 		(ttk.Treeview method)

 		(ttk.Widget method)

 		identify_column() (ttk.Treeview method)

 		identify_element() (ttk.Treeview method)

 		identify_region() (ttk.Treeview method)

 		identify_row() (ttk.Treeview method)

 		
 identity

 		

 		test

 		identity of an object

 		idioms (2to3 fixer)

 		idiv() (in module operator)

 		IDLE, [1]

 		idle() (FrameWork.Application method)

 		IDLESTARTUP

 		idlok() (curses.window method)

 		IEEE-754

 		
 if

 		

 		statement, [1]

 		ifilter() (in module itertools)

 		ifilterfalse() (in module itertools)

 		ifloordiv() (in module operator)

 		iglob() (in module glob)

 		ignorableWhitespace() (xml.sax.handler.ContentHandler method)

 		ignore_errors() (in module codecs)

 		IGNORE_EXCEPTION_DETAIL (in module doctest)

 		ignore_patterns() (in module shutil)

 		IGNORECASE (in module re)

 		ihave() (nntplib.NNTP method)

 		
 ihooks

 		

 		module

 		ilshift() (in module operator)

 		im_class (method attribute), [1]

 		im_func (method attribute), [1], [2], [3]

 		im_self (method attribute), [1], [2]

 		imag (numbers.Complex attribute)

 		imageop (module)

 		imaginary literal

 		imap() (in module itertools)

 		

 		(multiprocessing.pool.multiprocessing.Pool method)

 		
 IMAP4

 		

 		protocol

 		IMAP4 (class in imaplib)

 		IMAP4.abort

 		IMAP4.error

 		IMAP4.readonly

 		
 IMAP4_SSL

 		

 		protocol

 		IMAP4_SSL (class in imaplib)

 		
 IMAP4_stream

 		

 		protocol

 		IMAP4_stream (class in imaplib)

 		imap_unordered() (multiprocessing.pool.multiprocessing.Pool method)

 		imaplib (module)

 		imgfile (module)

 		imghdr (module)

 		immedok() (curses.window method)

 		immutable

 		

 		data type

 		object, [1], [2]

 		immutable object

 		
 immutable sequence

 		

 		object

 		
 immutable types

 		

 		subclassing

 		ImmutableSet (class in sets)

 		imod() (in module operator)

 		
 imp

 		

 		module

 		imp (module)

 		ImpImporter (class in pkgutil)

 		ImpLoader (class in pkgutil)

 		
 import

 		

 		statement, [1], [2], [3], [4]

 		import (2to3 fixer)

 		import_file() (imputil.DynLoadSuffixImporter method)

 		import_fresh_module() (in module test.test_support)

 		IMPORT_FROM (opcode)

 		import_module() (in module importlib)

 		

 		(in module test.test_support)

 		IMPORT_NAME (opcode)

 		IMPORT_STAR (opcode)

 		import_top() (imputil.Importer method)

 		importer

 		Importer (class in imputil)

 		ImportError

 		

 		exception, [1], [2]

 		importing

 		importlib (module)

 		ImportManager (class in imputil)

 		imports (2to3 fixer)

 		imports2 (2to3 fixer)

 		ImportWarning

 		ImproperConnectionState

 		imputil (module)

 		imul() (in module operator)

 		
 in

 		

 		keyword

 		operator, [1], [2]

 		in_dll() (ctypes._CData method)

 		in_table_a1() (in module stringprep)

 		in_table_b1() (in module stringprep)

 		in_table_c11() (in module stringprep)

 		in_table_c11_c12() (in module stringprep)

 		in_table_c12() (in module stringprep)

 		in_table_c21() (in module stringprep)

 		in_table_c21_c22() (in module stringprep)

 		in_table_c22() (in module stringprep)

 		in_table_c3() (in module stringprep)

 		in_table_c4() (in module stringprep)

 		in_table_c5() (in module stringprep)

 		in_table_c6() (in module stringprep)

 		in_table_c7() (in module stringprep)

 		in_table_c8() (in module stringprep)

 		in_table_c9() (in module stringprep)

 		in_table_d1() (in module stringprep)

 		in_table_d2() (in module stringprep)

 		inc() (EasyDialogs.ProgressBar method)

 		inch() (curses.window method)

 		
 inclusive

 		

 		or

 		Incomplete

 		IncompleteRead

 		incr_item(), [1]

 		increment_lineno() (in module ast)

 		IncrementalDecoder (class in codecs)

 		IncrementalEncoder (class in codecs)

 		IncrementalNewlineDecoder (class in io)

 		IncrementalParser (class in xml.sax.xmlreader)

 		indent (doctest.Example attribute)

 		INDENT (in module token)

 		INDENT token

 		indentation

 		IndentationError

 		Independent JPEG Group

 		index (in module cd)

 		index operation

 		index() (array.array method)

 		

 		(in module operator)

 		(in module string)

 		(list method)

 		(str method)

 		(ttk.Notebook method)

 		(ttk.Treeview method)

 		IndexError

 		indexOf() (in module operator)

 		IndexSizeErr

 		indices() (slice method)

 		inet_aton() (in module socket)

 		inet_ntoa() (in module socket)

 		inet_ntop() (in module socket)

 		inet_pton() (in module socket)

 		Inexact (class in decimal)

 		infile (shlex.shlex attribute)

 		Infinity, [1]

 		info() (gettext.NullTranslations method)

 		

 		(in module logging)

 		(logging.Logger method)

 		infolist() (zipfile.ZipFile method)

 		InfoScrap() (in module Carbon.Scrap)

 		inheritance

 		ini file

 		init() (in module fm)

 		

 		(in module mimetypes)

 		init_builtin() (in module imp)

 		init_color() (in module curses)

 		init_database() (in module msilib)

 		init_frozen() (in module imp)

 		init_pair() (in module curses)

 		inited (in module mimetypes)

 		initgroups() (in module os)

 		initial_indent (textwrap.TextWrapper attribute)

 		initialize_options() (distutils.cmd.Command method)

 		initscr() (in module curses)

 		INPLACE_ADD (opcode)

 		INPLACE_AND (opcode)

 		INPLACE_DIVIDE (opcode)

 		INPLACE_FLOOR_DIVIDE (opcode)

 		INPLACE_LSHIFT (opcode)

 		INPLACE_MODULO (opcode)

 		INPLACE_MULTIPLY (opcode)

 		INPLACE_OR (opcode)

 		INPLACE_POWER (opcode)

 		INPLACE_RSHIFT (opcode)

 		INPLACE_SUBTRACT (opcode)

 		INPLACE_TRUE_DIVIDE (opcode)

 		INPLACE_XOR (opcode)

 		input

 		

 		built-in function, [1]

 		raw

 		input (2to3 fixer)

 		input() (built-in function)

 		

 		(in module fileinput)

 		input_charset (email.charset.Charset attribute)

 		input_codec (email.charset.Charset attribute)

 		InputOnly (class in Tix)

 		InputSource (class in xml.sax.xmlreader)

 		InputType (in module cStringIO)

 		inquiry (C type)

 		insch() (curses.window method)

 		insdelln() (curses.window method)

 		insert() (array.array method)

 		

 		(list method)

 		(ttk.Notebook method)

 		(ttk.Treeview method)

 		(xml.etree.ElementTree.Element method)

 		insert_text() (in module readline)

 		insertBefore() (xml.dom.Node method)

 		InsertionLoc (class in aetypes)

 		insertln() (curses.window method)

 		insnstr() (curses.window method)

 		insort() (in module bisect)

 		insort_left() (in module bisect)

 		insort_right() (in module bisect)

 		inspect (module)

 		insstr() (curses.window method)

 		install() (gettext.NullTranslations method)

 		

 		(imputil.ImportManager method)

 		(in module gettext)

 		install_opener() (in module urllib2)

 		installaehandler() (MiniAEFrame.AEServer method)

 		installAutoGIL() (in module autoGIL)

 		installHandler() (in module unittest)

 		
 instance

 		

 		call, [1]

 		class

 		object, [1], [2], [3], [4]

 		instance() (in module new)

 		instancemethod() (in module new)

 		InstanceType (in module types)

 		instate() (ttk.Widget method)

 		instr() (curses.window method)

 		instream (shlex.shlex attribute)

 		
 int

 		

 		built-in function, [1], [2]

 		int (built-in class)

 		

 		(uuid.UUID attribute)

 		Int2AP() (in module imaplib)

 		integer

 		

 		division

 		division, long

 		literals

 		literals, long

 		object, [1], [2]

 		representation

 		types, operations on

 		integer division

 		integer literal

 		Integral (class in numbers)

 		Integrated Development Environment

 		Intel/DVI ADPCM

 		interact() (code.InteractiveConsole method)

 		

 		(in module code)

 		(telnetlib.Telnet method)

 		interactive

 		interactive mode

 		InteractiveConsole (class in code)

 		InteractiveInterpreter (class in code)

 		intern (2to3 fixer)

 		intern() (built-in function)

 		internal type

 		internal_attr (zipfile.ZipInfo attribute)

 		Internaldate2tuple() (in module imaplib)

 		

 		internalSubset (xml.dom.DocumentType attribute)

 		Internet

 		Internet Config

 		interpolation, string (%)

 		InterpolationDepthError

 		InterpolationError

 		InterpolationMissingOptionError

 		InterpolationSyntaxError

 		interpreted

 		interpreter

 		interpreter lock

 		interpreter prompts

 		interrupt() (sqlite3.Connection method)

 		interrupt_main() (in module thread)

 		intersection() (set method)

 		intersection_update() (set method)

 		IntlText (class in aetypes)

 		IntlWritingCode (class in aetypes)

 		intro (cmd.Cmd attribute)

 		IntType (in module types)

 		

 		(in modules types)

 		InuseAttributeErr

 		inv() (in module operator)

 		InvalidAccessErr

 		InvalidCharacterErr

 		InvalidModificationErr

 		InvalidOperation (class in decimal)

 		InvalidStateErr

 		InvalidURL

 		inversion

 		invert() (in module operator)

 		invocation

 		io (module)

 		IOBase (class in io)

 		ioctl() (in module fcntl)

 		

 		(socket.socket method)

 		IOError

 		ior() (in module operator)

 		ipow() (in module operator)

 		irepeat() (in module operator)

 		IRIS Font Manager

 		
 IRIX

 		

 		threads

 		irshift() (in module operator)

 		
 is

 		

 		operator, [1]

 		
 is not

 		

 		operator, [1]

 		is_() (in module operator)

 		is_alive() (multiprocessing.Process method)

 		

 		(threading.Thread method)

 		is_assigned() (symtable.Symbol method)

 		is_blocked() (cookielib.DefaultCookiePolicy method)

 		is_builtin() (in module imp)

 		is_canonical() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		IS_CHARACTER_JUNK() (in module difflib)

 		is_data() (multifile.MultiFile method)

 		is_declared_global() (symtable.Symbol method)

 		is_empty() (asynchat.fifo method)

 		is_expired() (cookielib.Cookie method)

 		is_finite() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_free() (symtable.Symbol method)

 		is_frozen() (in module imp)

 		is_global() (symtable.Symbol method)

 		is_hop_by_hop() (in module wsgiref.util)

 		is_imported() (symtable.Symbol method)

 		is_infinite() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_integer() (float method)

 		is_jython (in module test.test_support)

 		IS_LINE_JUNK() (in module difflib)

 		is_linetouched() (curses.window method)

 		is_local() (symtable.Symbol method)

 		is_multipart() (email.message.Message method)

 		is_namespace() (symtable.Symbol method)

 		is_nan() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_nested() (symtable.SymbolTable method)

 		is_normal() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_not() (in module operator)

 		is_not_allowed() (cookielib.DefaultCookiePolicy method)

 		is_optimized() (symtable.SymbolTable method)

 		is_package() (zipimport.zipimporter method)

 		is_parameter() (symtable.Symbol method)

 		is_python_build() (in module sysconfig)

 		is_qnan() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_referenced() (symtable.Symbol method)

 		is_resource_enabled() (in module test.test_support)

 		is_scriptable() (in module gensuitemodule)

 		is_set() (threading.Event method)

 		is_signed() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_snan() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_subnormal() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_tarfile() (in module tarfile)

 		is_term_resized() (in module curses)

 		is_tracked() (in module gc)

 		is_unverifiable() (urllib2.Request method)

 		is_wintouched() (curses.window method)

 		is_zero() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_zipfile() (in module zipfile)

 		isabs() (in module os.path)

 		isabstract() (in module inspect)

 		isAlive() (threading.Thread method)

 		isalnum() (in module curses.ascii)

 		

 		(str method)

 		isalpha() (in module curses.ascii)

 		

 		(str method)

 		isascii() (in module curses.ascii)

 		isatty() (chunk.Chunk method)

 		

 		(file method)

 		(in module os)

 		(io.IOBase method)

 		isblank() (in module curses.ascii)

 		isblk() (tarfile.TarInfo method)

 		isbuiltin() (in module inspect)

 		isCallable() (in module operator)

 		ischr() (tarfile.TarInfo method)

 		isclass() (in module inspect)

 		iscntrl() (in module curses.ascii)

 		iscode() (in module inspect)

 		iscomment() (rfc822.Message method)

 		isctrl() (in module curses.ascii)

 		isDaemon() (threading.Thread method)

 		isdatadescriptor() (in module inspect)

 		isdecimal() (unicode method)

 		isdev() (tarfile.TarInfo method)

 		isdigit() (in module curses.ascii)

 		

 		(str method)

 		isdir() (in module os.path)

 		

 		(tarfile.TarInfo method)

 		isdisjoint() (set method)

 		isdown() (in module turtle)

 		iselement() (in module xml.etree.ElementTree)

 		isenabled() (in module gc)

 		isEnabledFor() (logging.Logger method)

 		isendwin() (in module curses)

 		ISEOF() (in module token)

 		isexpr() (in module parser)

 		

 		(parser.ST method)

 		isfifo() (tarfile.TarInfo method)

 		isfile() (in module os.path)

 		

 		(tarfile.TarInfo method)

 		isfirstline() (in module fileinput)

 		isframe() (in module inspect)

 		isfunction() (in module inspect)

 		isgenerator() (in module inspect)

 		isgeneratorfunction() (in module inspect)

 		isgetsetdescriptor() (in module inspect)

 		isgraph() (in module curses.ascii)

 		isheader() (rfc822.Message method)

 		isinf() (in module cmath)

 		

 		(in module math)

 		isinstance (2to3 fixer)

 		isinstance() (built-in function)

 		iskeyword() (in module keyword)

 		islast() (rfc822.Message method)

 		isleap() (in module calendar)

 		islice() (in module itertools)

 		islink() (in module os.path)

 		islnk() (tarfile.TarInfo method)

 		islower() (in module curses.ascii)

 		

 		(str method)

 		isMappingType() (in module operator)

 		ismemberdescriptor() (in module inspect)

 		ismeta() (in module curses.ascii)

 		ismethod() (in module inspect)

 		ismethoddescriptor() (in module inspect)

 		ismodule() (in module inspect)

 		ismount() (in module os.path)

 		isnan() (in module cmath)

 		

 		(in module math)

 		ISNONTERMINAL() (in module token)

 		isNumberType() (in module operator)

 		isnumeric() (unicode method)

 		isocalendar() (datetime.date method)

 		

 		(datetime.datetime method)

 		isoformat() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		isolation_level (sqlite3.Connection attribute)

 		isoweekday() (datetime.date method)

 		

 		(datetime.datetime method)

 		isprint() (in module curses.ascii)

 		ispunct() (in module curses.ascii)

 		isqueued() (in module fl)

 		isreadable() (in module pprint)

 		

 		(pprint.PrettyPrinter method)

 		isrecursive() (in module pprint)

 		

 		(pprint.PrettyPrinter method)

 		isreg() (tarfile.TarInfo method)

 		isReservedKey() (Cookie.Morsel method)

 		isroutine() (in module inspect)

 		isSameNode() (xml.dom.Node method)

 		isSequenceType() (in module operator)

 		isSet() (threading.Event method)

 		isspace() (in module curses.ascii)

 		

 		(str method)

 		isstdin() (in module fileinput)

 		issubclass() (built-in function)

 		issubset() (set method)

 		issuite() (in module parser)

 		

 		(parser.ST method)

 		issuperset() (set method)

 		issym() (tarfile.TarInfo method)

 		ISTERMINAL() (in module token)

 		istitle() (str method)

 		istraceback() (in module inspect)

 		isub() (in module operator)

 		isupper() (in module curses.ascii)

 		

 		(str method)

 		isvisible() (in module turtle)

 		isxdigit() (in module curses.ascii)

 		
 item

 		

 		sequence

 		string

 		item selection

 		item() (ttk.Treeview method)

 		

 		(xml.dom.NamedNodeMap method)

 		(xml.dom.NodeList method)

 		itemgetter() (in module operator)

 		items() (ConfigParser.ConfigParser method)

 		

 		(ConfigParser.RawConfigParser method)

 		(dict method)

 		(email.message.Message method)

 		(mailbox.Mailbox method)

 		(xml.etree.ElementTree.Element method)

 		itemsize (array.array attribute)

 		

 		(memoryview attribute)

 		ItemsView (class in collections)

 		iter() (built-in function)

 		

 		(xml.etree.ElementTree.Element method)

 		(xml.etree.ElementTree.ElementTree method)

 		iter_child_nodes() (in module ast)

 		iter_fields() (in module ast)

 		iter_importers() (in module pkgutil)

 		iter_modules() (in module pkgutil)

 		iterable

 		Iterable (class in collections)

 		IterableUserDict (class in UserDict)

 		iterator

 		Iterator (class in collections)

 		iterator protocol

 		iterdecode() (in module codecs)

 		iterdump (sqlite3.Connection attribute)

 		iterencode() (in module codecs)

 		

 		(json.JSONEncoder method)

 		iterfind() (xml.etree.ElementTree.Element method)

 		

 		(xml.etree.ElementTree.ElementTree method)

 		iteritems() (dict method)

 		

 		(mailbox.Mailbox method)

 		iterkeyrefs() (weakref.WeakKeyDictionary method)

 		iterkeys() (dict method)

 		

 		(mailbox.Mailbox method)

 		itermonthdates() (calendar.Calendar method)

 		itermonthdays() (calendar.Calendar method)

 		itermonthdays2() (calendar.Calendar method)

 		iterparse() (in module xml.etree.ElementTree)

 		itertext() (xml.etree.ElementTree.Element method)

 		itertools (2to3 fixer)

 		

 		(module)

 		itertools_imports (2to3 fixer)

 		itervaluerefs() (weakref.WeakValueDictionary method)

 		itervalues() (dict method)

 		

 		(mailbox.Mailbox method)

 		iterweekdays() (calendar.Calendar method)

 		ITIMER_PROF (in module signal)

 		ITIMER_REAL (in module signal)

 		ITIMER_VIRTUAL (in module signal)

 		ItimerError

 		itruediv() (in module operator)

 		ixor() (in module operator)

 		izip() (in module itertools)

 		izip_longest() (in module itertools)

J

 		

 		Jansen, Jack

 		
 Java

 		

 		language

 		java_ver() (in module platform)

 		JFIF, [1]

 		join() (in module os.path)

 		

 		(Queue.Queue method)

 		(in module string)

 		(multiprocessing.JoinableQueue method)

 		(multiprocessing.Process method)

 		(multiprocessing.pool.multiprocessing.Pool method)

 		(str method)

 		(threading.Thread method)

 		join_thread() (multiprocessing.Queue method)

 		JoinableQueue (class in multiprocessing)

 		joinfields() (in module string)

 		jpeg (module)

 		js_output() (Cookie.BaseCookie method)

 		

 		(Cookie.Morsel method)

 		

 		
 json

 		

 		module

 		json (module)

 		JSONDecoder (class in json)

 		JSONEncoder (class in json)

 		JUMP_ABSOLUTE (opcode)

 		JUMP_FORWARD (opcode)

 		JUMP_IF_FALSE_OR_POP (opcode)

 		JUMP_IF_TRUE_OR_POP (opcode)

 		jumpahead() (in module random)

K

 		

 		kbhit() (in module msvcrt)

 		KDEDIR

 		kevent() (in module select)

 		key

 		

 		(Cookie.Morsel attribute)

 		key function

 		key/datum pair

 		KEY_ALL_ACCESS (in module _winreg)

 		KEY_CREATE_LINK (in module _winreg)

 		KEY_CREATE_SUB_KEY (in module _winreg)

 		KEY_ENUMERATE_SUB_KEYS (in module _winreg)

 		KEY_EXECUTE (in module _winreg)

 		KEY_NOTIFY (in module _winreg)

 		KEY_QUERY_VALUE (in module _winreg)

 		KEY_READ (in module _winreg)

 		KEY_SET_VALUE (in module _winreg)

 		KEY_WOW64_32KEY (in module _winreg)

 		KEY_WOW64_64KEY (in module _winreg)

 		KEY_WRITE (in module _winreg)

 		KeyboardInterrupt

 		

 		(built-in exception), [1]

 		

 		KeyError

 		keyname() (in module curses)

 		keypad() (curses.window method)

 		keyrefs() (weakref.WeakKeyDictionary method)

 		keys() (bsddb.bsddbobject method)

 		

 		(dict method)

 		(email.message.Message method)

 		(mailbox.Mailbox method)

 		(sqlite3.Row method)

 		(xml.etree.ElementTree.Element method)

 		keysubst() (in module aetools)

 		KeysView (class in collections)

 		keyword

 		

 		elif

 		else, [1], [2], [3], [4]

 		except

 		finally, [1], [2], [3], [4]

 		from

 		in

 		yield

 		Keyword (class in aetypes)

 		keyword (module)

 		keyword argument

 		keywords (functools.partial attribute)

 		kill() (in module os)

 		

 		(subprocess.Popen method)

 		killchar() (in module curses)

 		killpg() (in module os)

 		
 knee

 		

 		module, [1]

 		knownfiles (in module mimetypes)

 		kqueue() (in module select)

 		kwlist (in module keyword)

L

 		

 		L (in module re)

 		label() (EasyDialogs.ProgressBar method)

 		LabelEntry (class in Tix)

 		LabelFrame (class in Tix)

 		lambda

 		

 		expression, [1]

 		LambdaType (in module types)

 		LANG, [1], [2], [3], [4]

 		LANGUAGE, [1]

 		
 language

 		

 		C, [1], [2], [3], [4]

 		Java

 		Pascal

 		large files

 		LargeZipFile

 		last (multifile.MultiFile attribute)

 		last() (bsddb.bsddbobject method)

 		

 		(dbhash.dbhash method)

 		(nntplib.NNTP method)

 		last_accepted (multiprocessing.connection.Listener attribute)

 		last_traceback (in module sys), [1]

 		last_type (in module sys)

 		last_value (in module sys)

 		lastChild (xml.dom.Node attribute)

 		lastcmd (cmd.Cmd attribute)

 		lastgroup (re.MatchObject attribute)

 		lastindex (re.MatchObject attribute)

 		lastpart() (MimeWriter.MimeWriter method)

 		lastrowid (sqlite3.Cursor attribute)

 		launch() (in module findertools)

 		launchurl() (ic.IC method)

 		

 		(in module ic)

 		layout() (ttk.Style method)

 		LBRACE (in module token)

 		LBYL

 		LC_ALL, [1]

 		

 		(in module locale)

 		LC_COLLATE (in module locale)

 		LC_CTYPE (in module locale)

 		LC_MESSAGES, [1]

 		

 		(in module locale)

 		LC_MONETARY (in module locale)

 		LC_NUMERIC (in module locale)

 		LC_TIME (in module locale)

 		lchflags() (in module os)

 		lchmod() (in module os)

 		lchown() (in module os)

 		LDCXXSHARED

 		ldexp() (in module math)

 		LDFLAGS

 		ldgettext() (in module gettext)

 		ldngettext() (in module gettext)

 		le() (in module operator)

 		leading whitespace

 		leapdays() (in module calendar)

 		leaveok() (curses.window method)

 		left (filecmp.dircmp attribute)

 		left() (in module turtle)

 		left_list (filecmp.dircmp attribute)

 		left_only (filecmp.dircmp attribute)

 		LEFTSHIFT (in module token)

 		LEFTSHIFTEQUAL (in module token)

 		
 len

 		

 		built-in function, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 		len() (built-in function)

 		length (xml.dom.NamedNodeMap attribute)

 		

 		(xml.dom.NodeList attribute)

 		LESS (in module token)

 		LESSEQUAL (in module token)

 		letters (in module string)

 		level (multifile.MultiFile attribute)

 		lexical analysis

 		lexical definitions

 		lexists() (in module os.path)

 		lgamma() (in module math)

 		lgettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		lib2to3 (module)

 		libc_ver() (in module platform)

 		library (in module dbm)

 		

 		(ssl.SSLError attribute)

 		library_dir_option() (distutils.ccompiler.CCompiler method)

 		library_filename() (distutils.ccompiler.CCompiler method)

 		library_option() (distutils.ccompiler.CCompiler method)

 		LibraryLoader (class in ctypes)

 		license (built-in variable)

 		LifoQueue (class in Queue)

 		light-weight processes

 		limit_denominator() (fractions.Fraction method)

 		lin2adpcm() (in module audioop)

 		lin2alaw() (in module audioop)

 		lin2lin() (in module audioop)

 		lin2ulaw() (in module audioop)

 		line continuation

 		line joining, [1]

 		line structure

 		line() (msilib.Dialog method)

 		line-buffered I/O

 		line_buffering (io.TextIOWrapper attribute)

 		line_num (csv.csvreader attribute)

 		linecache (module)

 		lineno (ast.AST attribute)

 		

 		(doctest.DocTest attribute)

 		(doctest.Example attribute)

 		(pyclbr.Class attribute)

 		(pyclbr.Function attribute)

 		(shlex.shlex attribute)

 		(xml.parsers.expat.ExpatError attribute)

 		lineno() (in module fileinput)

 		LINES, [1], [2]

 		linesep (in module os)

 		lineterminator (csv.Dialect attribute)

 		link() (distutils.ccompiler.CCompiler method)

 		

 		(in module os)

 		link_executable() (distutils.ccompiler.CCompiler method)

 		link_shared_lib() (distutils.ccompiler.CCompiler method)

 		link_shared_object() (distutils.ccompiler.CCompiler method)

 		linkmodel (in module MacOS)

 		linkname (tarfile.TarInfo attribute)

 		linux_distribution() (in module platform)

 		list

 		

 		assignment, target

 		comprehensions, [1]

 		deletion target

 		display

 		empty

 		expression, [1], [2]

 		object, [1], [2], [3], [4], [5], [6], [7], [8]

 		target, [1]

 		type, operations on

 		list (built-in class)

 		list comprehension

 		list() (imaplib.IMAP4 method)

 		

 		(multiprocessing.managers.SyncManager method)

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		(tarfile.TarFile method)

 		LIST_APPEND (opcode)

 		list_dialects() (in module csv)

 		list_folders() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		listallfolders() (mhlib.MH method)

 		listallsubfolders() (mhlib.MH method)

 		listdir() (in module dircache)

 		

 		(in module os)

 		listen() (asyncore.dispatcher method)

 		

 		(in module logging.config)

 		(in module turtle)

 		(socket.socket method)

 		Listener (class in multiprocessing.connection)

 		listfolders() (mhlib.MH method)

 		listmessages() (mhlib.Folder method)

 		listMethods() (xmlrpclib.ServerProxy.system method)

 		ListNoteBook (class in Tix)

 		listsubfolders() (mhlib.MH method)

 		ListType (in module types)

 		literal, [1]

 		literal_eval() (in module ast)

 		

 		
 literals

 		

 		complex number

 		floating point

 		hexadecimal

 		integer

 		long integer

 		numeric

 		octal

 		LittleEndianStructure (class in ctypes)

 		ljust() (in module string)

 		

 		(str method)

 		LK_LOCK (in module msvcrt)

 		LK_NBLCK (in module msvcrt)

 		LK_NBRLCK (in module msvcrt)

 		LK_RLCK (in module msvcrt)

 		LK_UNLCK (in module msvcrt)

 		LMTP (class in smtplib)

 		ln() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		LNAME

 		lngettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		load() (Cookie.BaseCookie method)

 		

 		(cookielib.FileCookieJar method)

 		(in module hotshot.stats)

 		(in module json)

 		(in module marshal)

 		(in module pickle)

 		(pickle.Unpickler method)

 		LOAD_ATTR (opcode)

 		load_cert_chain() (ssl.SSLContext method)

 		LOAD_CLOSURE (opcode)

 		load_compiled() (in module imp)

 		LOAD_CONST (opcode)

 		load_default_certs() (ssl.SSLContext method)

 		LOAD_DEREF (opcode)

 		load_dh_params() (ssl.SSLContext method)

 		load_dynamic() (in module imp)

 		load_extension() (sqlite3.Connection method)

 		LOAD_FAST (opcode)

 		LOAD_GLOBAL (opcode)

 		load_global() (pickle protocol)

 		LOAD_LOCALS (opcode)

 		
 load_module

 		

 		loader

 		load_module() (in module imp)

 		

 		(zipimport.zipimporter method)

 		LOAD_NAME (opcode)

 		load_source() (in module imp)

 		load_verify_locations() (ssl.SSLContext method)

 		loader, [1]

 		

 		load_module

 		LoadError

 		LoadKey() (in module _winreg)

 		LoadLibrary() (ctypes.LibraryLoader method)

 		loads() (in module json)

 		

 		(in module marshal)

 		(in module pickle)

 		(in module xmlrpclib)

 		loadTestsFromModule() (unittest.TestLoader method)

 		loadTestsFromName() (unittest.TestLoader method)

 		loadTestsFromNames() (unittest.TestLoader method)

 		loadTestsFromTestCase() (unittest.TestLoader method)

 		local (class in threading)

 		localcontext() (in module decimal)

 		LOCALE (in module re)

 		locale (module)

 		localeconv() (in module locale)

 		LocaleHTMLCalendar (class in calendar)

 		LocaleTextCalendar (class in calendar)

 		localName (xml.dom.Attr attribute)

 		

 		(xml.dom.Node attribute)

 		
 locals

 		

 		built-in function

 		locals() (built-in function)

 		localtime() (in module time)

 		Locator (class in xml.sax.xmlreader)

 		Lock (class in multiprocessing)

 		Lock() (in module threading)

 		lock() (mailbox.Babyl method)

 		

 		(mailbox.MH method)

 		(mailbox.MMDF method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mailbox.mbox method)

 		Lock() (multiprocessing.managers.SyncManager method)

 		lock() (mutex.mutex method)

 		

 		(posixfile.posixfile method)

 		lock, interpreter

 		lock_held() (in module imp)

 		locked() (thread.lock method)

 		lockf() (in module fcntl)

 		locking() (in module msvcrt)

 		LockType (in module thread)

 		log() (in module cmath)

 		

 		(in module logging)

 		(in module math)

 		(logging.Logger method)

 		log10() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module cmath)

 		(in module math)

 		log1p() (in module math)

 		log_date_time_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_error() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_exception() (wsgiref.handlers.BaseHandler method)

 		log_message() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_request() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_to_stderr() (in module multiprocessing)

 		logb() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		Logger (class in logging)

 		LoggerAdapter (class in logging)

 		
 logging

 		

 		Errors

 		logging (module)

 		logging.config (module)

 		logging.handlers (module)

 		Logical (class in aetypes)

 		logical line

 		logical_and() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		logical_invert() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		logical_or() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		logical_xor() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		login() (ftplib.FTP method)

 		

 		(imaplib.IMAP4 method)

 		(smtplib.SMTP method)

 		login_cram_md5() (imaplib.IMAP4 method)

 		LOGNAME, [1]

 		lognormvariate() (in module random)

 		logout() (imaplib.IMAP4 method)

 		LogRecord (class in logging)

 		
 long

 		

 		built-in function, [1], [2], [3]

 		integer division

 		integer literals

 		long (2to3 fixer)

 		

 		(built-in class)

 		
 long integer

 		

 		object, [1], [2]

 		long integer literal

 		long_info (in module sys)

 		LONG_MAX, [1]

 		longMessage (unittest.TestCase attribute)

 		longname() (in module curses)

 		LongType (in module types)

 		

 		(in modules types)

 		lookup() (in module codecs)

 		

 		(in module unicodedata)

 		(symtable.SymbolTable method)

 		(ttk.Style method)

 		lookup_error() (in module codecs)

 		LookupError

 		
 loop

 		

 		over mutable sequence

 		statement, [1], [2], [3]

 		
 loop control

 		

 		target

 		loop() (in module asyncore)

 		lower() (in module string)

 		

 		(str method)

 		lowercase (in module string)

 		LPAR (in module token)

 		lseek() (in module os)

 		lshift() (in module operator)

 		LSQB (in module token)

 		lstat() (in module os)

 		lstrip() (in module string)

 		

 		(str method)

 		lsub() (imaplib.IMAP4 method)

 		lt() (in module operator)

 		

 		(in module turtle)

 		Lundh, Fredrik

 		LWPCookieJar (class in cookielib)

M

 		

 		M (in module re)

 		mac_ver() (in module platform)

 		
 macerrors

 		

 		module

 		macerrors (module)

 		machine() (in module platform)

 		MacOS (module)

 		macostools (module)

 		macpath (module)

 		macresource (module)

 		macros (netrc.netrc attribute)

 		
 mailbox

 		

 		module

 		Mailbox (class in mailbox)

 		mailbox (module)

 		mailcap (module)

 		Maildir (class in mailbox)

 		MaildirMessage (class in mailbox)

 		MailmanProxy (class in smtpd)

 		main(), [1]

 		

 		(in module py_compile)

 		(in module unittest)

 		mainloop() (FrameWork.Application method)

 		

 		(in module turtle)

 		major() (in module os)

 		make_archive() (in module distutils.archive_util)

 		

 		(in module shutil)

 		MAKE_CLOSURE (opcode)

 		make_cookies() (cookielib.CookieJar method)

 		make_form() (in module fl)

 		MAKE_FUNCTION (opcode)

 		make_header() (in module email.header)

 		make_msgid() (in module email.utils)

 		make_parser() (in module xml.sax)

 		make_server() (in module wsgiref.simple_server)

 		make_tarball() (in module distutils.archive_util)

 		make_zipfile() (in module distutils.archive_util)

 		makedev() (in module os)

 		makedirs() (in module os)

 		makeelement() (xml.etree.ElementTree.Element method)

 		makefile() (socket method)

 		

 		(socket.socket method)

 		makefolder() (mhlib.MH method)

 		makeLogRecord() (in module logging)

 		makePickle() (logging.handlers.SocketHandler method)

 		makeRecord() (logging.Logger method)

 		makeSocket() (logging.handlers.DatagramHandler method)

 		

 		(logging.handlers.SocketHandler method)

 		maketrans() (in module string)

 		makeusermenus() (FrameWork.Application method)

 		malloc()

 		
 mangling

 		

 		name

 		map (2to3 fixer)

 		map() (built-in function)

 		

 		(in module future_builtins)

 		(multiprocessing.pool.multiprocessing.Pool method)

 		(ttk.Style method)

 		map_async() (multiprocessing.pool.multiprocessing.Pool method)

 		map_table_b2() (in module stringprep)

 		map_table_b3() (in module stringprep)

 		mapcolor() (in module fl)

 		mapfile() (ic.IC method)

 		

 		(in module ic)

 		mapLogRecord() (logging.handlers.HTTPHandler method)

 		mapping

 		

 		object, [1], [2], [3], [4], [5]

 		types, operations on

 		Mapping (class in collections)

 		mapping() (msilib.Control method)

 		MappingView (class in collections)

 		mapPriority() (logging.handlers.SysLogHandler method)

 		maps() (in module nis)

 		maptypecreator() (ic.IC method)

 		

 		(in module ic)

 		marshal (module)

 		
 marshalling

 		

 		objects

 		
 masking

 		

 		operations

 		match() (in module nis)

 		

 		(in module re)

 		(re.RegexObject method)

 		match_hostname() (in module ssl)

 		MatchObject (class in re)

 		
 math

 		

 		module, [1]

 		math (module)

 		
 max

 		

 		built-in function

 		max (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		(datetime.timedelta attribute)

 		max() (built-in function)

 		

 		(decimal.Context method)

 		(decimal.Decimal method)

 		(in module audioop)

 		MAX_INTERPOLATION_DEPTH (in module ConfigParser)

 		max_mag() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		maxarray (repr.Repr attribute)

 		maxdeque (repr.Repr attribute)

 		maxdict (repr.Repr attribute)

 		maxDiff (unittest.TestCase attribute)

 		maxfrozenset (repr.Repr attribute)

 		maxint (in module sys)

 		maxlen (collections.deque attribute)

 		MAXLEN (in module mimify)

 		maxlevel (repr.Repr attribute)

 		maxlist (repr.Repr attribute)

 		maxlong (repr.Repr attribute)

 		maxother (repr.Repr attribute)

 		maxpp() (in module audioop)

 		maxset (repr.Repr attribute)

 		maxsize (in module sys)

 		maxstring (repr.Repr attribute)

 		maxtuple (repr.Repr attribute)

 		maxunicode (in module sys)

 		maxval (EasyDialogs.ProgressBar attribute)

 		MAXYEAR (in module datetime)

 		MB_ICONASTERISK (in module winsound)

 		MB_ICONEXCLAMATION (in module winsound)

 		MB_ICONHAND (in module winsound)

 		MB_ICONQUESTION (in module winsound)

 		MB_OK (in module winsound)

 		mbox (class in mailbox)

 		mboxMessage (class in mailbox)

 		md5 (module)

 		md5() (in module md5)

 		MemberDescriptorType (in module types)

 		
 membership

 		

 		test

 		memmove() (in module ctypes)

 		MemoryError

 		MemoryHandler (class in logging.handlers)

 		memoryview (built-in class)

 		memset() (in module ctypes)

 		Menu() (in module FrameWork)

 		MenuBar() (in module FrameWork)

 		MenuItem() (in module FrameWork)

 		merge() (in module heapq)

 		Message (class in email.message)

 		

 		(class in mailbox)

 		(class in mhlib)

 		(class in mimetools)

 		(class in rfc822)

 		(in module mimetools)

 		message digest, MD5, [1]

 		Message() (in module EasyDialogs)

 		message_from_file() (in module email)

 		message_from_string() (in module email)

 		MessageBeep() (in module winsound)

 		MessageClass (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		MessageError

 		MessageParseError

 		meta() (in module curses)

 		meta_path (in module sys)

 		metaclass

 		

 		(2to3 fixer)

 		metavar (optparse.Option attribute)

 		Meter (class in Tix)

 		METH_CLASS (built-in variable)

 		METH_COEXIST (built-in variable)

 		METH_KEYWORDS (built-in variable)

 		METH_NOARGS (built-in variable)

 		METH_O (built-in variable)

 		METH_OLDARGS (built-in variable)

 		METH_STATIC (built-in variable)

 		METH_VARARGS (built-in variable)

 		method

 		

 		built-in

 		call

 		object, [1], [2], [3], [4], [5]

 		user-defined

 		method resolution order

 		

 		methodattrs (2to3 fixer)

 		methodcaller() (in module operator)

 		methodHelp() (xmlrpclib.ServerProxy.system method)

 		
 methods

 		

 		string

 		methods (pyclbr.Class attribute)

 		methodSignature() (xmlrpclib.ServerProxy.system method)

 		MethodType (in module types), [1], [2]

 		MH (class in mailbox)

 		

 		(class in mhlib)

 		mhlib (module)

 		MHMailbox (class in mailbox)

 		MHMessage (class in mailbox)

 		microsecond (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		
 MIME

 		

 		base64 encoding

 		content type

 		headers, [1]

 		quoted-printable encoding

 		mime_decode_header() (in module mimify)

 		mime_encode_header() (in module mimify)

 		MIMEApplication (class in email.mime.application)

 		MIMEAudio (class in email.mime.audio)

 		MIMEBase (class in email.mime.base)

 		MIMEImage (class in email.mime.image)

 		MIMEMessage (class in email.mime.message)

 		MIMEMultipart (class in email.mime.multipart)

 		MIMENonMultipart (class in email.mime.nonmultipart)

 		MIMEText (class in email.mime.text)

 		
 mimetools

 		

 		module

 		mimetools (module)

 		MimeTypes (class in mimetypes)

 		mimetypes (module)

 		MimeWriter (class in MimeWriter)

 		

 		(module)

 		mimify (module)

 		mimify() (in module mimify)

 		
 min

 		

 		built-in function

 		min (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		(datetime.timedelta attribute)

 		min() (built-in function)

 		

 		(decimal.Context method)

 		(decimal.Decimal method)

 		min_mag() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		MINEQUAL (in module token)

 		MiniAEFrame (module)

 		MiniApplication (class in MiniAEFrame)

 		minmax() (in module audioop)

 		minor() (in module os)

 		minus

 		MINUS (in module token)

 		minus() (decimal.Context method)

 		minute (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		MINYEAR (in module datetime)

 		mirrored() (in module unicodedata)

 		misc_header (cmd.Cmd attribute)

 		MissingSectionHeaderError

 		MIXERDEV

 		mkalias() (in module macostools)

 		mkd() (ftplib.FTP method)

 		mkdir() (in module os)

 		mkdtemp() (in module tempfile)

 		mkfifo() (in module os)

 		mknod() (in module os)

 		mkpath() (distutils.ccompiler.CCompiler method)

 		

 		(in module distutils.dir_util)

 		mkstemp() (in module tempfile)

 		mktemp() (in module tempfile)

 		mktime() (in module time)

 		mktime_tz() (in module email.utils)

 		

 		(in module rfc822)

 		mmap (class in mmap)

 		

 		(module)

 		MMDF (class in mailbox)

 		MmdfMailbox (class in mailbox)

 		MMDFMessage (class in mailbox)

 		mod() (in module operator)

 		mode (file attribute)

 		

 		(io.FileIO attribute)

 		(ossaudiodev.oss_audio_device attribute)

 		(tarfile.TarInfo attribute)

 		mode() (in module turtle)

 		modf() (in module math)

 		modified() (robotparser.RobotFileParser method)

 		Modify() (msilib.View method)

 		modify() (select.epoll method)

 		

 		(select.poll method)

 		module

 		

 		AL

 		CGIHTTPServer

 		FrameWork

 		SUNAUDIODEV

 		SimpleHTTPServer

 		__builtin__, [1], [2], [3], [4]

 		__main__, [1], [2], [3], [4], [5], [6], [7]

 		_locale

 		array

 		base64

 		bdb

 		binhex

 		bsddb, [1], [2], [3]

 		builtins

 		cPickle

 		cmd

 		compileall

 		copy

 		crypt

 		dbhash

 		dbm, [1], [2], [3]

 		dumbdbm

 		errno, [1]

 		exceptions

 		extension

 		fcntl

 		formatter

 		gdbm, [1], [2]

 		glob

 		htmllib

 		icglue

 		ihooks

 		imp

 		importing

 		json

 		knee, [1]

 		macerrors

 		mailbox

 		math, [1]

 		mimetools

 		namespace

 		object, [1], [2]

 		os, [1]

 		pickle, [1], [2], [3], [4]

 		pty

 		pwd

 		pyexpat

 		re, [1], [2]

 		readline

 		rexec

 		rfc822

 		rlcompleter

 		search path, [1], [2], [3], [4], [5], [6]

 		sgmllib

 		shelve

 		signal, [1]

 		sitecustomize

 		socket, [1]

 		stat

 		statvfs

 		string, [1], [2]

 		struct

 		sunaudiodev

 		sys, [1], [2], [3], [4], [5], [6]

 		thread

 		types

 		urllib

 		urlparse

 		usercustomize

 		uu

 		module (pyclbr.Class attribute)

 		

 		(pyclbr.Function attribute)

 		module() (in module new)

 		ModuleFinder (class in modulefinder)

 		modulefinder (module)

 		modules (in module sys), [1], [2]

 		

 		(modulefinder.ModuleFinder attribute)

 		ModuleType (in module types), [1]

 		modulo

 		mono2grey() (in module imageop)

 		month (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		month() (in module calendar)

 		month_abbr (in module calendar)

 		month_name (in module calendar)

 		monthcalendar() (in module calendar)

 		monthdatescalendar() (calendar.Calendar method)

 		monthdays2calendar() (calendar.Calendar method)

 		monthdayscalendar() (calendar.Calendar method)

 		monthrange() (in module calendar)

 		Morsel (class in Cookie)

 		most_common() (collections.Counter method)

 		mouseinterval() (in module curses)

 		mousemask() (in module curses)

 		move() (curses.panel.Panel method)

 		

 		(curses.window method)

 		(in module findertools)

 		(in module shutil)

 		(mmap.mmap method)

 		(ttk.Treeview method)

 		move_file() (distutils.ccompiler.CCompiler method)

 		

 		(in module distutils.file_util)

 		movemessage() (mhlib.Folder method)

 		MozillaCookieJar (class in cookielib)

 		MRO

 		mro() (class method)

 		msftoframe() (in module cd)

 		msg (httplib.HTTPResponse attribute)

 		msg() (telnetlib.Telnet method)

 		msi

 		msilib (module)

 		msvcrt (module)

 		mt_interact() (telnetlib.Telnet method)

 		mtime (tarfile.TarInfo attribute)

 		mtime() (robotparser.RobotFileParser method)

 		mul() (in module audioop)

 		

 		(in module operator)

 		MultiCall (class in xmlrpclib)

 		MultiFile (class in multifile)

 		multifile (module)

 		MULTILINE (in module re)

 		MultipartConversionError

 		multiplication

 		multiply() (decimal.Context method)

 		multiprocessing (module)

 		multiprocessing.connection (module)

 		multiprocessing.dummy (module)

 		multiprocessing.Manager() (in module multiprocessing.sharedctypes)

 		multiprocessing.managers (module)

 		multiprocessing.Pool (class in multiprocessing.pool)

 		multiprocessing.pool (module)

 		multiprocessing.queues.SimpleQueue (class in multiprocessing)

 		multiprocessing.sharedctypes (module)

 		mutable

 		

 		object, [1], [2]

 		sequence types

 		mutable object

 		
 mutable sequence

 		

 		loop over

 		object

 		MutableMapping (class in collections)

 		MutableSequence (class in collections)

 		MutableSet (class in collections)

 		MutableString (class in UserString)

 		mutex (class in mutex)

 		

 		(module)

 		mvderwin() (curses.window method)

 		mvwin() (curses.window method)

 		myrights() (imaplib.IMAP4 method)

N

 		

 		N_TOKENS (in module token)

 		name, [1], [2]

 		

 		binding, [1], [2], [3], [4], [5]

 		binding, global

 		class

 		function

 		mangling

 		rebinding

 		unbinding

 		name (cookielib.Cookie attribute)

 		

 		(doctest.DocTest attribute)

 		(file attribute)

 		(in module os)

 		NAME (in module token)

 		name (io.FileIO attribute)

 		

 		(multiprocessing.Process attribute)

 		(ossaudiodev.oss_audio_device attribute)

 		(pyclbr.Class attribute)

 		(pyclbr.Function attribute)

 		(tarfile.TarInfo attribute)

 		(threading.Thread attribute)

 		(xml.dom.Attr attribute)

 		(xml.dom.DocumentType attribute)

 		name() (in module unicodedata)

 		name2codepoint (in module htmlentitydefs)

 		named tuple

 		NamedTemporaryFile() (in module tempfile)

 		namedtuple() (in module collections)

 		NameError

 		

 		exception

 		NameError (built-in exception)

 		namelist() (zipfile.ZipFile method)

 		nameprep() (in module encodings.idna)

 		
 names

 		

 		private

 		namespace, [1]

 		

 		global

 		module

 		Namespace (class in argparse)

 		

 		(class in multiprocessing.managers)

 		namespace() (imaplib.IMAP4 method)

 		Namespace() (multiprocessing.managers.SyncManager method)

 		NAMESPACE_DNS (in module uuid)

 		NAMESPACE_OID (in module uuid)

 		NAMESPACE_URL (in module uuid)

 		NAMESPACE_X500 (in module uuid)

 		NamespaceErr

 		namespaceURI (xml.dom.Node attribute)

 		NaN, [1]

 		NannyNag

 		napms() (in module curses)

 		nargs (optparse.Option attribute)

 		Nav (module)

 		Navigation Services

 		ndiff() (in module difflib)

 		ndim (memoryview attribute)

 		ne (2to3 fixer)

 		ne() (in module operator)

 		neg() (in module operator)

 		negation

 		nested scope

 		nested() (in module contextlib)

 		netrc (class in netrc)

 		

 		(module)

 		NetrcParseError

 		netscape (cookielib.CookiePolicy attribute)

 		Network News Transfer Protocol

 		new (module)

 		new() (in module hmac)

 		

 		(in module md5)

 		(in module sha)

 		new-style class

 		new_alignment() (formatter.writer method)

 		new_compiler() (in module distutils.ccompiler)

 		new_font() (formatter.writer method)

 		new_margin() (formatter.writer method)

 		new_module() (in module imp)

 		new_panel() (in module curses.panel)

 		new_spacing() (formatter.writer method)

 		new_styles() (formatter.writer method)

 		newconfig() (in module al)

 		newer() (in module distutils.dep_util)

 		newer_group() (in module distutils.dep_util)

 		newer_pairwise() (in module distutils.dep_util)

 		newgroups() (nntplib.NNTP method)

 		
 newline

 		

 		suppression

 		NEWLINE (in module token)

 		NEWLINE token, [1]

 		newlines (file attribute)

 		

 		(io.TextIOBase attribute)

 		newnews() (nntplib.NNTP method)

 		newpad() (in module curses)

 		newwin() (in module curses)

 		next (2to3 fixer)

 		next() (bsddb.bsddbobject method)

 		

 		(built-in function)

 		(csv.csvreader method)

 		(dbhash.dbhash method)

 		(file method)

 		(generator method)

 		(iterator method)

 		(mailbox.oldmailbox method)

 		(multifile.MultiFile method)

 		(nntplib.NNTP method)

 		(tarfile.TarFile method)

 		(ttk.Treeview method)

 		next_minus() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		next_plus() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		next_toward() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		nextfile() (in module fileinput)

 		nextkey() (in module gdbm)

 		nextpart() (MimeWriter.MimeWriter method)

 		nextSibling (xml.dom.Node attribute)

 		ngettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		nice() (in module os)

 		nis (module)

 		NIST

 		NL (in module tokenize)

 		nl() (in module curses)

 		nl_langinfo() (in module locale)

 		nlargest() (in module heapq)

 		nlst() (ftplib.FTP method)

 		
 NNTP

 		

 		protocol

 		NNTP (class in nntplib)

 		NNTPDataError

 		NNTPError

 		nntplib (module)

 		NNTPPermanentError

 		NNTPProtocolError

 		NNTPReplyError

 		

 		NNTPTemporaryError

 		no_proxy, [1]

 		nocbreak() (in module curses)

 		NoDataAllowedErr

 		Node (class in compiler.ast)

 		node() (in module platform)

 		nodelay() (curses.window method)

 		nodeName (xml.dom.Node attribute)

 		NodeTransformer (class in ast)

 		nodeType (xml.dom.Node attribute)

 		nodeValue (xml.dom.Node attribute)

 		NodeVisitor (class in ast)

 		NODISC (in module cd)

 		noecho() (in module curses)

 		NOEXPR (in module locale)

 		nofill (htmllib.HTMLParser attribute)

 		nok_builtin_names (rexec.RExec attribute)

 		noload() (pickle.Unpickler method)

 		NoModificationAllowedErr

 		nonblock() (ossaudiodev.oss_audio_device method)

 		
 None

 		

 		object, [1], [2]

 		None (Built-in object)

 		

 		(built-in variable)

 		NoneType (in module types)

 		nonl() (in module curses)

 		nonzero (2to3 fixer)

 		noop() (imaplib.IMAP4 method)

 		

 		(poplib.POP3 method)

 		NoOptionError

 		NOP (opcode)

 		noqiflush() (in module curses)

 		noraw() (in module curses)

 		normalize() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module locale)

 		(in module unicodedata)

 		(xml.dom.Node method)

 		NORMALIZE_WHITESPACE (in module doctest)

 		normalvariate() (in module random)

 		normcase() (in module os.path)

 		normpath() (in module os.path)

 		NoSectionError

 		NoSuchMailboxError

 		
 not

 		

 		operator, [1]

 		
 not in

 		

 		operator, [1], [2]

 		not_() (in module operator)

 		NotANumber

 		notation

 		notationDecl() (xml.sax.handler.DTDHandler method)

 		NotationDeclHandler() (xml.parsers.expat.xmlparser method)

 		notations (xml.dom.DocumentType attribute)

 		NotConnected

 		NoteBook (class in Tix)

 		Notebook (class in ttk)

 		NotEmptyError

 		NOTEQUAL (in module token)

 		NotFoundErr

 		notify() (threading.Condition method)

 		notify_all() (threading.Condition method)

 		notifyAll() (threading.Condition method)

 		notimeout() (curses.window method)

 		
 NotImplemented

 		

 		object

 		NotImplemented (built-in variable)

 		NotImplementedError

 		NotImplementedType (in module types)

 		NotStandaloneHandler() (xml.parsers.expat.xmlparser method)

 		NotSupportedErr

 		noutrefresh() (curses.window method)

 		now() (datetime.datetime class method)

 		NProperty (class in aetypes)

 		NSIG (in module signal)

 		nsmallest() (in module heapq)

 		NT_OFFSET (in module token)

 		NTEventLogHandler (class in logging.handlers)

 		ntohl() (in module socket)

 		ntohs() (in module socket)

 		ntransfercmd() (ftplib.FTP method)

 		
 null

 		

 		operation

 		NullFormatter (class in formatter)

 		NullHandler (class in logging)

 		NullImporter (class in imp)

 		NullTranslations (class in gettext)

 		NullWriter (class in formatter)

 		number

 		

 		complex

 		floating point

 		Number (class in numbers)

 		NUMBER (in module token)

 		number_class() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		numbers (module)

 		numerator (numbers.Rational attribute)

 		
 numeric

 		

 		conversions

 		literals

 		object, [1], [2], [3], [4]

 		types, operations on

 		numeric literal

 		numeric() (in module unicodedata)

 		Numerical Python

 		numliterals (2to3 fixer)

 		nurbscurve() (in module gl)

 		nurbssurface() (in module gl)

 		nvarray() (in module gl)

O

 		

 		O_APPEND (in module os)

 		O_ASYNC (in module os)

 		O_BINARY (in module os)

 		O_CREAT (in module os)

 		O_DIRECT (in module os)

 		O_DIRECTORY (in module os)

 		O_DSYNC (in module os)

 		O_EXCL (in module os)

 		O_EXLOCK (in module os)

 		O_NDELAY (in module os)

 		O_NOATIME (in module os)

 		O_NOCTTY (in module os)

 		O_NOFOLLOW (in module os)

 		O_NOINHERIT (in module os)

 		O_NONBLOCK (in module os)

 		O_RANDOM (in module os)

 		O_RDONLY (in module os)

 		O_RDWR (in module os)

 		O_RSYNC (in module os)

 		O_SEQUENTIAL (in module os)

 		O_SHLOCK (in module os)

 		O_SHORT_LIVED (in module os)

 		O_SYNC (in module os)

 		O_TEMPORARY (in module os)

 		O_TEXT (in module os)

 		O_TRUNC (in module os)

 		O_WRONLY (in module os)

 		object, [1]

 		

 		Boolean, [1]

 		CObject

 		Capsule

 		Ellipsis

 		None, [1], [2]

 		NotImplemented

 		Unicode

 		buffer, [1]

 		built-in function, [1]

 		built-in method, [1]

 		bytearray, [1]

 		callable, [1]

 		class, [1], [2], [3], [4]

 		class instance, [1], [2], [3]

 		code, [1], [2], [3]

 		complex

 		complex number, [1]

 		deallocation

 		dictionary, [1], [2], [3], [4], [5], [6], [7]

 		file, [1], [2], [3], [4]

 		finalization

 		floating point, [1], [2]

 		frame

 		frozenset, [1]

 		function, [1], [2], [3], [4], [5]

 		generator, [1], [2]

 		immutable, [1], [2]

 		immutable sequence

 		instance, [1], [2], [3], [4]

 		integer, [1], [2]

 		list, [1], [2], [3], [4], [5], [6], [7], [8]

 		long integer, [1], [2]

 		mapping, [1], [2], [3], [4], [5]

 		method, [1], [2], [3], [4], [5]

 		module, [1], [2]

 		mutable, [1], [2]

 		mutable sequence

 		numeric, [1], [2], [3], [4]

 		plain integer

 		recursive

 		sequence, [1], [2], [3], [4], [5], [6], [7], [8]

 		set, [1], [2], [3]

 		set type

 		slice

 		socket

 		string, [1], [2], [3], [4]

 		traceback, [1], [2], [3], [4]

 		tuple, [1], [2], [3], [4], [5]

 		type, [1], [2]

 		unicode

 		user-defined function, [1], [2]

 		user-defined method

 		xrange, [1]

 		object (built-in class)

 		

 		(exceptions.UnicodeError attribute)

 		object_filenames() (distutils.ccompiler.CCompiler method)

 		
 objects

 		

 		comparing

 		flattening

 		marshalling

 		persistent

 		pickling

 		serializing

 		ObjectSpecifier (class in aetypes)

 		obufcount() (ossaudiodev.oss_audio_device method)

 		obuffree() (ossaudiodev.oss_audio_device method)

 		
 oct

 		

 		built-in function

 		oct() (built-in function)

 		

 		(in module future_builtins)

 		
 octal

 		

 		literals

 		octal literal

 		octdigits (in module string)

 		offset (xml.parsers.expat.ExpatError attribute)

 		OK (in module curses)

 		ok_builtin_modules (rexec.RExec attribute)

 		ok_file_types (rexec.RExec attribute)

 		ok_path (rexec.RExec attribute)

 		ok_posix_names (rexec.RExec attribute)

 		ok_sys_names (rexec.RExec attribute)

 		OleDLL (class in ctypes)

 		onclick() (in module turtle), [1]

 		ondrag() (in module turtle)

 		onecmd() (cmd.Cmd method)

 		onkey() (in module turtle)

 		onrelease() (in module turtle)

 		onscreenclick() (in module turtle)

 		ontimer() (in module turtle)

 		OP (in module token)

 		OP_ALL (in module ssl)

 		OP_CIPHER_SERVER_PREFERENCE (in module ssl)

 		OP_NO_COMPRESSION (in module ssl)

 		OP_NO_SSLv2 (in module ssl)

 		OP_NO_SSLv3 (in module ssl)

 		OP_NO_TLSv1 (in module ssl)

 		OP_NO_TLSv1_1 (in module ssl)

 		OP_NO_TLSv1_2 (in module ssl)

 		OP_SINGLE_DH_USE (in module ssl)

 		OP_SINGLE_ECDH_USE (in module ssl)

 		
 open

 		

 		built-in function, [1]

 		Open Scripting Architecture

 		open() (built-in function)

 		

 		(FrameWork.DialogWindow method)

 		(FrameWork.Window method)

 		(distutils.text_file.TextFile method)

 		(imaplib.IMAP4 method)

 		(in module aifc)

 		(in module anydbm)

 		(in module cd)

 		(in module codecs)

 		(in module dbhash)

 		(in module dbm)

 		(in module dl)

 		(in module dumbdbm)

 		(in module gdbm)

 		(in module gzip)

 		(in module io)

 		(in module os)

 		(in module ossaudiodev)

 		(in module posixfile)

 		(in module shelve)

 		(in module sunau)

 		(in module sunaudiodev)

 		(in module tarfile)

 		(in module wave)

 		(in module webbrowser)

 		(pipes.Template method)

 		(tarfile.TarFile class method)

 		(telnetlib.Telnet method)

 		(urllib.URLopener method)

 		(urllib2.OpenerDirector method)

 		(webbrowser.controller method)

 		(zipfile.ZipFile method)

 		open_new() (in module webbrowser)

 		

 		(webbrowser.controller method)

 		open_new_tab() (in module webbrowser)

 		

 		(webbrowser.controller method)

 		

 		open_osfhandle() (in module msvcrt)

 		open_unknown() (urllib.URLopener method)

 		OpenDatabase() (in module msilib)

 		opendir() (in module dircache)

 		OpenerDirector (class in urllib2)

 		openfolder() (mhlib.MH method)

 		openfp() (in module sunau)

 		

 		(in module wave)

 		OpenGL

 		OpenKey() (in module _winreg)

 		OpenKeyEx() (in module _winreg)

 		openlog() (in module syslog)

 		openmessage() (mhlib.Message method)

 		openmixer() (in module ossaudiodev)

 		openport() (in module al)

 		openpty() (in module os)

 		

 		(in module pty)

 		openrf() (in module MacOS)

 		
 OpenSSL

 		

 		(use in module hashlib)

 		(use in module ssl)

 		OPENSSL_VERSION (in module ssl)

 		OPENSSL_VERSION_INFO (in module ssl)

 		OPENSSL_VERSION_NUMBER (in module ssl)

 		OpenView() (msilib.Database method)

 		
 operation

 		

 		Boolean

 		binary arithmetic

 		binary bitwise

 		concatenation

 		extended slice

 		null

 		repetition

 		shifting

 		slice

 		subscript

 		unary arithmetic

 		unary bitwise

 		
 operations

 		

 		Boolean, [1]

 		bitwise

 		masking

 		shifting

 		
 operations on

 		

 		dictionary type

 		integer types

 		list type

 		mapping types

 		numeric types

 		sequence types, [1]

 		
 operator

 		

 		!=

 		%

 		&

 		*

 		**

 		+

 		-

 		/

 		//

 		<

 		<<

 		<=

 		==

 		>

 		>=

 		>>

 		^

 		and, [1], [2]

 		comparison

 		in, [1], [2]

 		is, [1]

 		is not, [1]

 		not, [1]

 		not in, [1], [2]

 		or, [1], [2]

 		overloading

 		precedence

 		ternary

 		operator (module)

 		operators

 		opmap (in module dis)

 		opname (in module dis)

 		optimize() (in module pickletools)

 		OptionGroup (class in optparse)

 		OptionMenu (class in Tix)

 		OptionParser (class in optparse)

 		options (doctest.Example attribute)

 		

 		(ssl.SSLContext attribute)

 		options() (ConfigParser.RawConfigParser method)

 		optionxform() (ConfigParser.RawConfigParser method)

 		optparse (module)

 		
 or

 		

 		bitwise

 		exclusive

 		inclusive

 		operator, [1], [2]

 		or_() (in module operator)

 		
 ord

 		

 		built-in function, [1], [2]

 		ord() (built-in function)

 		
 order

 		

 		evaluation

 		ordered_attributes (xml.parsers.expat.xmlparser attribute)

 		OrderedDict (class in collections)

 		Ordinal (class in aetypes)

 		origin_server (wsgiref.handlers.BaseHandler attribute)

 		
 os

 		

 		module, [1]

 		os (module)

 		os.path (module)

 		os_environ (wsgiref.handlers.BaseHandler attribute)

 		OSError

 		ossaudiodev (module)

 		OSSAudioError

 		output, [1]

 		

 		standard, [1]

 		output (subprocess.CalledProcessError attribute)

 		output() (Cookie.BaseCookie method)

 		

 		(Cookie.Morsel method)

 		output_charset (email.charset.Charset attribute)

 		output_charset() (gettext.NullTranslations method)

 		output_codec (email.charset.Charset attribute)

 		output_difference() (doctest.OutputChecker method)

 		OutputChecker (class in doctest)

 		OutputString() (Cookie.Morsel method)

 		OutputType (in module cStringIO)

 		Overflow (class in decimal)

 		OverflowError

 		

 		(built-in exception), [1], [2], [3], [4], [5]

 		overlay() (curses.window method)

 		
 overloading

 		

 		operator

 		Overmars, Mark

 		overwrite() (curses.window method)

P

 		

 		P_DETACH (in module os)

 		P_NOWAIT (in module os)

 		P_NOWAITO (in module os)

 		P_OVERLAY (in module os)

 		P_WAIT (in module os)

 		pack() (in module aepack)

 		

 		(in module struct)

 		(mailbox.MH method)

 		(struct.Struct method)

 		pack_array() (xdrlib.Packer method)

 		pack_bytes() (xdrlib.Packer method)

 		pack_double() (xdrlib.Packer method)

 		pack_farray() (xdrlib.Packer method)

 		pack_float() (xdrlib.Packer method)

 		pack_fopaque() (xdrlib.Packer method)

 		pack_fstring() (xdrlib.Packer method)

 		pack_into() (in module struct)

 		

 		(struct.Struct method)

 		pack_list() (xdrlib.Packer method)

 		pack_opaque() (xdrlib.Packer method)

 		pack_string() (xdrlib.Packer method)

 		package, [1], [2]

 		
 package variable

 		

 		__all__

 		Packer (class in xdrlib)

 		packevent() (in module aetools)

 		
 packing

 		

 		binary data

 		packing (widgets)

 		PAGER, [1]

 		pair_content() (in module curses)

 		pair_number() (in module curses)

 		PanedWindow (class in Tix)

 		parameter

 		

 		call semantics

 		difference from argument

 		function definition

 		value, default

 		pardir (in module os)

 		paren (2to3 fixer)

 		parent (urllib2.BaseHandler attribute)

 		parent() (ttk.Treeview method)

 		parenthesized form

 		parentNode (xml.dom.Node attribute)

 		paretovariate() (in module random)

 		parse() (doctest.DocTestParser method)

 		

 		(email.parser.Parser method)

 		(in module ast)

 		(in module cgi)

 		(in module compiler)

 		(in module xml.dom.minidom)

 		(in module xml.dom.pulldom)

 		(in module xml.etree.ElementTree)

 		(in module xml.sax)

 		(robotparser.RobotFileParser method)

 		(string.Formatter method)

 		(xml.etree.ElementTree.ElementTree method)

 		Parse() (xml.parsers.expat.xmlparser method)

 		parse() (xml.sax.xmlreader.XMLReader method)

 		parse_and_bind() (in module readline)

 		parse_args() (argparse.ArgumentParser method)

 		PARSE_COLNAMES (in module sqlite3)

 		parse_config_h() (in module sysconfig)

 		PARSE_DECLTYPES (in module sqlite3)

 		parse_header() (in module cgi)

 		parse_known_args() (argparse.ArgumentParser method)

 		parse_multipart() (in module cgi)

 		parse_qs() (in module cgi)

 		

 		(in module urlparse)

 		parse_qsl() (in module cgi)

 		

 		(in module urlparse)

 		parseaddr() (in module email.utils)

 		

 		(in module rfc822)

 		parsedate() (in module email.utils)

 		

 		(in module rfc822)

 		parsedate_tz() (in module email.utils)

 		

 		(in module rfc822)

 		parseFile() (in module compiler)

 		ParseFile() (xml.parsers.expat.xmlparser method)

 		ParseFlags() (in module imaplib)

 		parser

 		Parser (class in email.parser)

 		parser (module)

 		ParserCreate() (in module xml.parsers.expat)

 		ParserError

 		ParseResult (class in urlparse)

 		parsesequence() (mhlib.Folder method)

 		parsestr() (email.parser.Parser method)

 		parseString() (in module xml.dom.minidom)

 		

 		(in module xml.dom.pulldom)

 		(in module xml.sax)

 		parseurl() (ic.IC method)

 		

 		(in module ic)

 		
 parsing

 		

 		Python source code

 		URL

 		ParsingError

 		partial() (imaplib.IMAP4 method)

 		

 		(in module functools)

 		partition() (str method)

 		
 Pascal

 		

 		language

 		
 pass

 		

 		statement

 		pass_() (poplib.POP3 method)

 		Paste

 		PATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]

 		
 path

 		

 		configuration file

 		module search, [1], [2], [3], [4], [5], [6]

 		operations

 		path (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		

 		(cookielib.Cookie attribute)

 		(in module sys), [1], [2], [3]

 		Path browser

 		path_hooks (in module sys)

 		path_importer_cache (in module sys)

 		path_return_ok() (cookielib.CookiePolicy method)

 		pathconf() (in module os)

 		pathconf_names (in module os)

 		pathname2url() (in module urllib)

 		pathsep (in module os)

 		pattern (re.RegexObject attribute)

 		pause() (in module signal)

 		PAUSED (in module cd)

 		PAX_FORMAT (in module tarfile)

 		pax_headers (tarfile.TarFile attribute)

 		

 		(tarfile.TarInfo attribute)

 		pbkdf2_hmac() (in module hashlib)

 		pd() (in module turtle)

 		Pdb (class in pdb), [1]

 		pdb (module)

 		peek() (io.BufferedReader method)

 		PEM_cert_to_DER_cert() (in module ssl)

 		pen() (in module turtle)

 		pencolor() (in module turtle)

 		PendingDeprecationWarning

 		pendown() (in module turtle)

 		pensize() (in module turtle)

 		penup() (in module turtle)

 		PERCENT (in module token)

 		PERCENTEQUAL (in module token)

 		Performance

 		permutations() (in module itertools)

 		Persist() (msilib.SummaryInformation method)

 		persistence

 		
 persistent

 		

 		objects

 		persistent_id (pickle protocol)

 		persistent_load (pickle protocol)

 		pformat() (in module pprint)

 		

 		(pprint.PrettyPrinter method)

 		phase() (in module cmath)

 		Philbrick, Geoff

 		physical line, [1], [2]

 		pi (in module cmath)

 		

 		(in module math)

 		pick() (in module gl)

 		
 pickle

 		

 		module, [1], [2], [3], [4]

 		pickle (module)

 		pickle() (in module copy_reg)

 		PickleError

 		Pickler (class in pickle)

 		pickletools (module)

 		
 pickling

 		

 		objects

 		PicklingError

 		pid (multiprocessing.Process attribute)

 		

 		(popen2.Popen3 attribute)

 		(subprocess.Popen attribute)

 		PIL (the Python Imaging Library)

 		PIPE (in module subprocess)

 		Pipe() (in module multiprocessing)

 		pipe() (in module os)

 		PIPE_BUF (select.select attribute)

 		pipes (module)

 		PixMapWrapper (module)

 		PKG_DIRECTORY (in module imp)

 		pkgutil (module)

 		
 plain integer

 		

 		object

 		plain integer literal

 		PLAT

 		platform (in module sys), [1]

 		

 		(module)

 		platform() (in module platform)

 		PLAYING (in module cd)

 		PlaySound() (in module winsound)

 		
 plist

 		

 		file

 		plistlib (module)

 		plock() (in module os)

 		plus

 		PLUS (in module token)

 		plus() (decimal.Context method)

 		PLUSEQUAL (in module token)

 		pm() (in module pdb)

 		pnum (in module cd)

 		POINTER() (in module ctypes)

 		pointer() (in module ctypes)

 		polar() (in module cmath)

 		poll() (in module select)

 		

 		(multiprocessing.Connection method)

 		(popen2.Popen3 method)

 		(select.epoll method)

 		(select.poll method)

 		(subprocess.Popen method)

 		pop() (array.array method)

 		

 		(asynchat.fifo method)

 		(collections.deque method)

 		(dict method)

 		(list method)

 		(mailbox.Mailbox method)

 		(multifile.MultiFile method)

 		(set method)

 		
 POP3

 		

 		protocol

 		POP3 (class in poplib)

 		POP3_SSL (class in poplib)

 		pop_alignment() (formatter.formatter method)

 		POP_BLOCK (opcode)

 		pop_font() (formatter.formatter method)

 		POP_JUMP_IF_FALSE (opcode)

 		POP_JUMP_IF_TRUE (opcode)

 		pop_margin() (formatter.formatter method)

 		pop_source() (shlex.shlex method)

 		pop_style() (formatter.formatter method)

 		POP_TOP (opcode)

 		Popen (class in subprocess)

 		popen() (in module os), [1], [2]

 		

 		(in module platform)

 		popen2 (module)

 		popen2() (in module os)

 		

 		(in module popen2)

 		Popen3 (class in popen2)

 		popen3() (in module os)

 		

 		(in module popen2)

 		Popen4 (class in popen2)

 		popen4() (in module os)

 		

 		(in module popen2)

 		popitem() (collections.OrderedDict method)

 		

 		(dict method)

 		(mailbox.Mailbox method)

 		popleft() (collections.deque method)

 		poplib (module)

 		PopupMenu (class in Tix)

 		port (cookielib.Cookie attribute)

 		port_specified (cookielib.Cookie attribute)

 		PortableUnixMailbox (class in mailbox)

 		pos (re.MatchObject attribute)

 		pos() (in module operator)

 		

 		(in module turtle)

 		position() (in module turtle)

 		positional argument

 		
 POSIX

 		

 		I/O control

 		file object

 		threads

 		posix (module)

 		

 		(tarfile.TarFile attribute)

 		posixfile (module)

 		POSIXLY_CORRECT

 		post() (nntplib.NNTP method)

 		

 		(ossaudiodev.oss_audio_device method)

 		post_mortem() (in module pdb)

 		postcmd() (cmd.Cmd method)

 		postloop() (cmd.Cmd method)

 		
 pow

 		

 		built-in function, [1], [2], [3], [4], [5]

 		pow() (built-in function)

 		

 		(in module math)

 		(in module operator)

 		power() (decimal.Context method)

 		pprint (module)

 		pprint() (bdb.Breakpoint method)

 		

 		(in module pprint)

 		(pprint.PrettyPrinter method)

 		prcal() (in module calendar)

 		preamble (email.message.Message attribute)

 		
 precedence

 		

 		operator

 		precmd() (cmd.Cmd method)

 		prefix, [1], [2], [3]

 		PREFIX (in module distutils.sysconfig)

 		prefix (in module sys)

 		

 		(xml.dom.Attr attribute)

 		(xml.dom.Node attribute)

 		(zipimport.zipimporter attribute)

 		PREFIXES (in module site)

 		preloop() (cmd.Cmd method)

 		preorder() (compiler.visitor.ASTVisitor method)

 		prepare_input_source() (in module xml.sax.saxutils)

 		prepend() (pipes.Template method)

 		preprocess() (distutils.ccompiler.CCompiler method)

 		PrettyPrinter (class in pprint)

 		prev() (ttk.Treeview method)

 		previous() (bsddb.bsddbobject method)

 		

 		(dbhash.dbhash method)

 		previousSibling (xml.dom.Node attribute)

 		primary

 		
 print

 		

 		statement, [1], [2]

 		print (2to3 fixer)

 		print() (built-in function)

 		Print() (in module findertools)

 		print_callees() (pstats.Stats method)

 		print_callers() (pstats.Stats method)

 		print_directory() (in module cgi)

 		print_environ() (in module cgi)

 		print_environ_usage() (in module cgi)

 		print_exc() (in module traceback)

 		

 		(timeit.Timer method)

 		print_exception() (in module traceback)

 		PRINT_EXPR (opcode)

 		print_form() (in module cgi)

 		print_help() (argparse.ArgumentParser method)

 		PRINT_ITEM (opcode)

 		PRINT_ITEM_TO (opcode)

 		print_last() (in module traceback)

 		PRINT_NEWLINE (opcode)

 		PRINT_NEWLINE_TO (opcode)

 		print_stack() (in module traceback)

 		print_stats() (profile.Profile method)

 		

 		(pstats.Stats method)

 		print_tb() (in module traceback)

 		print_usage() (argparse.ArgumentParser method)

 		

 		(optparse.OptionParser method)

 		print_version() (optparse.OptionParser method)

 		printable (in module string)

 		printdir() (zipfile.ZipFile method)

 		printf-style formatting

 		PriorityQueue (class in Queue)

 		
 private

 		

 		names

 		prmonth() (calendar.TextCalendar method)

 		

 		(in module calendar)

 		
 procedure

 		

 		call

 		
 process

 		

 		group, [1]

 		id

 		id of parent

 		killing, [1]

 		signalling, [1]

 		Process (class in multiprocessing)

 		process() (logging.LoggerAdapter method)

 		process_message() (smtpd.SMTPServer method)

 		process_request() (SocketServer.BaseServer method)

 		processes, light-weight

 		processfile() (in module gensuitemodule)

 		processfile_fromresource() (in module gensuitemodule)

 		ProcessingInstruction() (in module xml.etree.ElementTree)

 		processingInstruction() (xml.sax.handler.ContentHandler method)

 		ProcessingInstructionHandler() (xml.parsers.expat.xmlparser method)

 		processor time

 		processor() (in module platform)

 		product() (in module itertools)

 		Profile (class in hotshot)

 		

 		(class in profile)

 		profile (module)

 		profile function, [1], [2]

 		profiler, [1]

 		profiling, deterministic

 		program

 		Progressbar (class in ttk)

 		ProgressBar() (in module EasyDialogs)

 		prompt (cmd.Cmd attribute)

 		prompt_user_passwd() (urllib.FancyURLopener method)

 		prompts, interpreter

 		propagate (logging.Logger attribute)

 		property (built-in class)

 		property list

 		property_declaration_handler (in module xml.sax.handler)

 		property_dom_node (in module xml.sax.handler)

 		property_lexical_handler (in module xml.sax.handler)

 		property_xml_string (in module xml.sax.handler)

 		prot_c() (ftplib.FTP_TLS method)

 		prot_p() (ftplib.FTP_TLS method)

 		proto (socket.socket attribute)

 		
 protocol

 		

 		CGI

 		FTP, [1]

 		HTTP, [1], [2], [3], [4]

 		IMAP4

 		IMAP4_SSL

 		IMAP4_stream

 		NNTP

 		POP3

 		SMTP

 		Telnet

 		context management

 		iterator

 		protocol (ssl.SSLContext attribute)

 		PROTOCOL_SSLv2 (in module ssl)

 		PROTOCOL_SSLv23 (in module ssl)

 		PROTOCOL_SSLv3 (in module ssl)

 		PROTOCOL_TLSv1 (in module ssl)

 		PROTOCOL_TLSv1_1 (in module ssl)

 		PROTOCOL_TLSv1_2 (in module ssl)

 		protocol_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		PROTOCOL_VERSION (imaplib.IMAP4 attribute)

 		ProtocolError (class in xmlrpclib)

 		proxy() (in module weakref)

 		proxyauth() (imaplib.IMAP4 method)

 		ProxyBasicAuthHandler (class in urllib2)

 		ProxyDigestAuthHandler (class in urllib2)

 		ProxyHandler (class in urllib2)

 		ProxyType (in module weakref)

 		ProxyTypes (in module weakref)

 		prstr() (in module fm)

 		pryear() (calendar.TextCalendar method)

 		ps1 (in module sys)

 		ps2 (in module sys)

 		pstats (module)

 		pthreads

 		ptime (in module cd)

 		
 pty

 		

 		module

 		pty (module)

 		pu() (in module turtle)

 		publicId (xml.dom.DocumentType attribute)

 		PullDOM (class in xml.dom.pulldom)

 		punctuation (in module string)

 		PureProxy (class in smtpd)

 		purge() (in module re)

 		Purpose.CLIENT_AUTH (in module ssl)

 		Purpose.SERVER_AUTH (in module ssl)

 		push() (asynchat.async_chat method)

 		

 		(asynchat.fifo method)

 		(code.InteractiveConsole method)

 		(multifile.MultiFile method)

 		push_alignment() (formatter.formatter method)

 		push_font() (formatter.formatter method)

 		push_margin() (formatter.formatter method)

 		push_source() (shlex.shlex method)

 		push_style() (formatter.formatter method)

 		push_token() (shlex.shlex method)

 		push_with_producer() (asynchat.async_chat method)

 		pushbutton() (msilib.Dialog method)

 		put() (multiprocessing.multiprocessing.queues.SimpleQueue method)

 		

 		(Queue.Queue method)

 		(multiprocessing.Queue method)

 		put_nowait() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		putch() (in module msvcrt)

 		putenv() (in module os)

 		putheader() (httplib.HTTPConnection method)

 		putp() (in module curses)

 		putrequest() (httplib.HTTPConnection method)

 		putsequences() (mhlib.Folder method)

 		putwch() (in module msvcrt)

 		putwin() (curses.window method)

 		
 pwd

 		

 		module

 		pwd (module)

 		pwd() (ftplib.FTP method)

 		pwlcurve() (in module gl)

 		py3kwarning (in module sys)

 		Py_AddPendingCall (C function)

 		Py_AddPendingCall()

 		Py_AtExit (C function)

 		Py_BEGIN_ALLOW_THREADS

 		

 		(C macro)

 		Py_BLOCK_THREADS (C macro)

 		Py_buffer (C type)

 		Py_buffer.buf (C member)

 		Py_buffer.internal (C member)

 		Py_buffer.itemsize (C member)

 		Py_buffer.ndim (C member)

 		Py_buffer.readonly (C member)

 		Py_buffer.shape (C member)

 		Py_buffer.strides (C member)

 		Py_buffer.suboffsets (C member)

 		Py_BuildValue (C function)

 		Py_CLEAR (C function)

 		py_compile (module)

 		PY_COMPILED (in module imp)

 		Py_CompileString (C function)

 		Py_CompileString(), [1], [2]

 		Py_CompileStringFlags (C function)

 		Py_complex (C type)

 		Py_DECREF (C function)

 		Py_DECREF()

 		Py_END_ALLOW_THREADS

 		

 		(C macro)

 		Py_END_OF_BUFFER (C variable)

 		Py_EndInterpreter (C function)

 		Py_EnterRecursiveCall (C function)

 		Py_eval_input (C variable)

 		Py_Exit (C function)

 		Py_False (C variable)

 		Py_FatalError (C function)

 		Py_FatalError()

 		Py_FdIsInteractive (C function)

 		Py_file_input (C variable)

 		Py_Finalize (C function)

 		Py_Finalize(), [1], [2], [3], [4]

 		Py_FindMethod (C function)

 		PY_FROZEN (in module imp)

 		Py_GetBuildInfo (C function)

 		Py_GetCompiler (C function)

 		Py_GetCopyright (C function)

 		Py_GetExecPrefix (C function)

 		Py_GetExecPrefix()

 		Py_GetPath (C function)

 		Py_GetPath(), [1]

 		Py_GetPlatform (C function)

 		Py_GetPrefix (C function)

 		Py_GetPrefix()

 		Py_GetProgramFullPath (C function)

 		Py_GetProgramFullPath()

 		Py_GetProgramName (C function)

 		Py_GetPythonHome (C function)

 		Py_GetVersion (C function)

 		Py_INCREF (C function)

 		Py_INCREF()

 		Py_Initialize (C function)

 		Py_Initialize(), [1], [2], [3]

 		Py_InitializeEx (C function)

 		Py_InitModule (C function)

 		Py_InitModule3 (C function)

 		Py_InitModule4 (C function)

 		Py_IsInitialized (C function)

 		Py_IsInitialized()

 		Py_LeaveRecursiveCall (C function)

 		Py_Main (C function)

 		Py_NewInterpreter (C function)

 		Py_None (C variable)

 		py_object (class in ctypes)

 		Py_PRINT_RAW

 		Py_REFCNT (C macro)

 		Py_RETURN_FALSE (C macro)

 		Py_RETURN_NONE (C macro)

 		Py_RETURN_TRUE (C macro)

 		Py_SetProgramName (C function)

 		Py_SetProgramName(), [1], [2], [3]

 		Py_SetPythonHome (C function)

 		Py_single_input (C variable)

 		Py_SIZE (C macro)

 		PY_SOURCE (in module imp)

 		PY_SSIZE_T_MAX

 		py_suffix_importer() (in module imputil)

 		Py_TPFLAGS_BASETYPE (built-in variable)

 		Py_TPFLAGS_CHECKTYPES (built-in variable)

 		Py_TPFLAGS_DEFAULT (built-in variable)

 		Py_TPFLAGS_GC (built-in variable)

 		Py_TPFLAGS_HAVE_CLASS (built-in variable)

 		Py_TPFLAGS_HAVE_GC (built-in variable)

 		Py_TPFLAGS_HAVE_GETCHARBUFFER (built-in variable), [1]

 		Py_TPFLAGS_HAVE_INPLACEOPS (built-in variable)

 		Py_TPFLAGS_HAVE_ITER (built-in variable)

 		Py_TPFLAGS_HAVE_RICHCOMPARE (built-in variable)

 		Py_TPFLAGS_HAVE_SEQUENCE_IN (built-in variable)

 		Py_TPFLAGS_HAVE_WEAKREFS (built-in variable)

 		Py_TPFLAGS_HEAPTYPE (built-in variable)

 		Py_TPFLAGS_READY (built-in variable)

 		Py_TPFLAGS_READYING (built-in variable)

 		Py_tracefunc (C type)

 		Py_True (C variable)

 		Py_TYPE (C macro)

 		Py_UNBLOCK_THREADS (C macro)

 		Py_UNICODE (C type)

 		Py_UNICODE_ISALNUM (C function)

 		Py_UNICODE_ISALPHA (C function)

 		Py_UNICODE_ISDECIMAL (C function)

 		Py_UNICODE_ISDIGIT (C function)

 		Py_UNICODE_ISLINEBREAK (C function)

 		Py_UNICODE_ISLOWER (C function)

 		Py_UNICODE_ISNUMERIC (C function)

 		Py_UNICODE_ISSPACE (C function)

 		Py_UNICODE_ISTITLE (C function)

 		Py_UNICODE_ISUPPER (C function)

 		Py_UNICODE_TODECIMAL (C function)

 		Py_UNICODE_TODIGIT (C function)

 		Py_UNICODE_TOLOWER (C function)

 		Py_UNICODE_TONUMERIC (C function)

 		Py_UNICODE_TOTITLE (C function)

 		Py_UNICODE_TOUPPER (C function)

 		Py_VaBuildValue (C function)

 		Py_VISIT (C function)

 		Py_XDECREF (C function)

 		Py_XDECREF()

 		Py_XINCREF (C function)

 		PyAnySet_Check (C function)

 		PyAnySet_CheckExact (C function)

 		PyArg_Parse (C function)

 		PyArg_ParseTuple (C function)

 		PyArg_ParseTuple()

 		PyArg_ParseTupleAndKeywords (C function)

 		PyArg_ParseTupleAndKeywords()

 		PyArg_UnpackTuple (C function)

 		PyArg_VaParse (C function)

 		PyArg_VaParseTupleAndKeywords (C function)

 		PyBool_Check (C function)

 		PyBool_FromLong (C function)

 		PyBuffer_Check (C function)

 		PyBuffer_FillContiguousStrides (C function)

 		PyBuffer_FillInfo (C function)

 		PyBuffer_FromMemory (C function)

 		PyBuffer_FromObject (C function)

 		PyBuffer_FromReadWriteMemory (C function)

 		PyBuffer_FromReadWriteObject (C function)

 		PyBuffer_IsContiguous (C function)

 		PyBuffer_New (C function)

 		PyBuffer_Release (C function)

 		PyBuffer_SizeFromFormat (C function)

 		PyBuffer_Type (C variable)

 		PyBufferObject (C type)

 		PyBufferProcs

 		

 		(C type)

 		PyByteArray_AS_STRING (C function)

 		PyByteArray_AsString (C function)

 		PyByteArray_Check (C function)

 		PyByteArray_CheckExact (C function)

 		PyByteArray_Concat (C function)

 		PyByteArray_FromObject (C function)

 		PyByteArray_FromStringAndSize (C function)

 		PyByteArray_GET_SIZE (C function)

 		PyByteArray_Resize (C function)

 		PyByteArray_Size (C function)

 		PyByteArray_Type (C variable)

 		PyByteArrayObject (C type)

 		PyCallable_Check (C function)

 		PyCallIter_Check (C function)

 		PyCallIter_New (C function)

 		PyCallIter_Type (C variable)

 		PyCapsule (C type)

 		PyCapsule_CheckExact (C function)

 		PyCapsule_Destructor (C type)

 		PyCapsule_GetContext (C function)

 		PyCapsule_GetDestructor (C function)

 		PyCapsule_GetName (C function)

 		PyCapsule_GetPointer (C function)

 		PyCapsule_Import (C function)

 		PyCapsule_IsValid (C function)

 		PyCapsule_New (C function)

 		PyCapsule_SetContext (C function)

 		PyCapsule_SetDestructor (C function)

 		PyCapsule_SetName (C function)

 		PyCapsule_SetPointer (C function)

 		PyCell_Check (C function)

 		PyCell_GET (C function)

 		PyCell_Get (C function)

 		PyCell_New (C function)

 		PyCell_SET (C function)

 		PyCell_Set (C function)

 		PyCell_Type (C variable)

 		PyCellObject (C type)

 		PyCFunction (C type)

 		PyClass_Check (C function)

 		PyClass_IsSubclass (C function)

 		PyClass_Type (C variable)

 		PyClassObject (C type)

 		pyclbr (module)

 		PyCObject (C type)

 		PyCObject_AsVoidPtr (C function)

 		PyCObject_Check (C function)

 		PyCObject_FromVoidPtr (C function)

 		PyCObject_FromVoidPtrAndDesc (C function)

 		PyCObject_GetDesc (C function)

 		PyCObject_SetVoidPtr (C function)

 		PyCode_Check (C function)

 		PyCode_GetNumFree (C function)

 		PyCode_New (C function)

 		PyCode_NewEmpty (C function)

 		PyCode_Type (C variable)

 		PyCodec_BackslashReplaceErrors (C function)

 		PyCodec_Decode (C function)

 		PyCodec_Decoder (C function)

 		PyCodec_Encode (C function)

 		PyCodec_Encoder (C function)

 		PyCodec_IgnoreErrors (C function)

 		PyCodec_IncrementalDecoder (C function)

 		PyCodec_IncrementalEncoder (C function)

 		PyCodec_KnownEncoding (C function)

 		PyCodec_LookupError (C function)

 		PyCodec_Register (C function)

 		PyCodec_RegisterError (C function)

 		PyCodec_ReplaceErrors (C function)

 		PyCodec_StreamReader (C function)

 		PyCodec_StreamWriter (C function)

 		PyCodec_StrictErrors (C function)

 		PyCodec_XMLCharRefReplaceErrors (C function)

 		PyCodeObject (C type)

 		PyCompileError

 		PyCompilerFlags (C type)

 		PyComplex_AsCComplex (C function)

 		PyComplex_Check (C function)

 		PyComplex_CheckExact (C function)

 		PyComplex_FromCComplex (C function)

 		PyComplex_FromDoubles (C function)

 		PyComplex_ImagAsDouble (C function)

 		PyComplex_RealAsDouble (C function)

 		PyComplex_Type (C variable)

 		PyComplexObject (C type)

 		PyDate_Check (C function)

 		PyDate_CheckExact (C function)

 		PyDate_FromDate (C function)

 		PyDate_FromTimestamp (C function)

 		PyDateTime_Check (C function)

 		PyDateTime_CheckExact (C function)

 		PyDateTime_DATE_GET_HOUR (C function)

 		PyDateTime_DATE_GET_MICROSECOND (C function)

 		PyDateTime_DATE_GET_MINUTE (C function)

 		PyDateTime_DATE_GET_SECOND (C function)

 		PyDateTime_FromDateAndTime (C function)

 		PyDateTime_FromTimestamp (C function)

 		PyDateTime_GET_DAY (C function)

 		PyDateTime_GET_MONTH (C function)

 		PyDateTime_GET_YEAR (C function)

 		PyDateTime_TIME_GET_HOUR (C function)

 		PyDateTime_TIME_GET_MICROSECOND (C function)

 		PyDateTime_TIME_GET_MINUTE (C function)

 		PyDateTime_TIME_GET_SECOND (C function)

 		PyDelta_Check (C function)

 		PyDelta_CheckExact (C function)

 		PyDelta_FromDSU (C function)

 		PyDescr_IsData (C function)

 		PyDescr_NewClassMethod (C function)

 		PyDescr_NewGetSet (C function)

 		PyDescr_NewMember (C function)

 		PyDescr_NewMethod (C function)

 		PyDescr_NewWrapper (C function)

 		PyDict_Check (C function)

 		PyDict_CheckExact (C function)

 		PyDict_Clear (C function)

 		PyDict_Contains (C function)

 		PyDict_Copy (C function)

 		PyDict_DelItem (C function)

 		PyDict_DelItemString (C function)

 		PyDict_GetItem (C function)

 		PyDict_GetItemString (C function)

 		PyDict_Items (C function)

 		PyDict_Keys (C function)

 		PyDict_Merge (C function)

 		PyDict_MergeFromSeq2 (C function)

 		PyDict_New (C function)

 		PyDict_Next (C function)

 		PyDict_SetItem (C function)

 		PyDict_SetItemString (C function)

 		PyDict_Size (C function)

 		PyDict_Type (C variable)

 		PyDict_Update (C function)

 		PyDict_Values (C function)

 		PyDictObject (C type)

 		PyDictProxy_New (C function)

 		PyDLL (class in ctypes)

 		pydoc (module)

 		PyErr_BadArgument (C function)

 		PyErr_BadInternalCall (C function)

 		PyErr_CheckSignals (C function)

 		PyErr_Clear (C function)

 		PyErr_Clear(), [1]

 		PyErr_ExceptionMatches (C function)

 		PyErr_ExceptionMatches()

 		PyErr_Fetch (C function)

 		PyErr_Fetch()

 		PyErr_Format (C function)

 		PyErr_GivenExceptionMatches (C function)

 		PyErr_NewException (C function)

 		PyErr_NewExceptionWithDoc (C function)

 		PyErr_NoMemory (C function)

 		PyErr_NormalizeException (C function)

 		PyErr_Occurred (C function)

 		PyErr_Occurred()

 		PyErr_Print (C function)

 		PyErr_PrintEx (C function)

 		PyErr_Restore (C function)

 		PyErr_Restore()

 		PyErr_SetExcFromWindowsErr (C function)

 		PyErr_SetExcFromWindowsErrWithFilename (C function)

 		PyErr_SetExcFromWindowsErrWithFilenameObject (C function)

 		PyErr_SetFromErrno (C function)

 		PyErr_SetFromErrnoWithFilename (C function)

 		PyErr_SetFromErrnoWithFilenameObject (C function)

 		PyErr_SetFromWindowsErr (C function)

 		PyErr_SetFromWindowsErrWithFilename (C function)

 		PyErr_SetFromWindowsErrWithFilenameObject (C function)

 		PyErr_SetInterrupt (C function)

 		PyErr_SetNone (C function)

 		PyErr_SetObject (C function)

 		PyErr_SetString (C function)

 		PyErr_SetString()

 		PyErr_Warn (C function)

 		PyErr_WarnEx (C function)

 		PyErr_WarnExplicit (C function)

 		PyErr_WarnPy3k (C function)

 		PyErr_WriteUnraisable (C function)

 		PyEval_AcquireLock (C function)

 		PyEval_AcquireLock()

 		PyEval_AcquireThread (C function)

 		PyEval_EvalCode (C function)

 		PyEval_EvalCodeEx (C function)

 		PyEval_EvalFrame (C function)

 		PyEval_EvalFrameEx (C function)

 		PyEval_GetBuiltins (C function)

 		PyEval_GetCallStats (C function)

 		PyEval_GetFrame (C function)

 		PyEval_GetFuncDesc (C function)

 		PyEval_GetFuncName (C function)

 		PyEval_GetGlobals (C function)

 		PyEval_GetLocals (C function)

 		PyEval_GetRestricted (C function)

 		PyEval_InitThreads (C function)

 		PyEval_InitThreads()

 		PyEval_MergeCompilerFlags (C function)

 		PyEval_ReInitThreads (C function)

 		PyEval_ReleaseLock (C function)

 		PyEval_ReleaseLock(), [1]

 		PyEval_ReleaseThread (C function)

 		PyEval_ReleaseThread()

 		PyEval_RestoreThread (C function)

 		PyEval_RestoreThread(), [1]

 		PyEval_SaveThread (C function)

 		PyEval_SaveThread(), [1]

 		PyEval_SetProfile (C function)

 		PyEval_SetTrace (C function)

 		PyEval_ThreadsInitialized (C function)

 		PyExc_ArithmeticError

 		PyExc_AssertionError

 		PyExc_AttributeError

 		PyExc_BaseException

 		PyExc_EnvironmentError

 		PyExc_EOFError

 		

 		PyExc_Exception

 		PyExc_FloatingPointError

 		PyExc_ImportError

 		PyExc_IndexError

 		PyExc_IOError

 		PyExc_KeyboardInterrupt

 		PyExc_KeyError

 		PyExc_LookupError

 		PyExc_MemoryError

 		PyExc_NameError

 		PyExc_NotImplementedError

 		PyExc_OSError

 		PyExc_OverflowError

 		PyExc_ReferenceError

 		PyExc_RuntimeError

 		PyExc_StandardError

 		PyExc_SyntaxError

 		PyExc_SystemError

 		PyExc_SystemExit

 		PyExc_TypeError

 		PyExc_ValueError

 		PyExc_WindowsError

 		PyExc_ZeroDivisionError

 		
 pyexpat

 		

 		module

 		PyFile_AsFile (C function)

 		PyFile_Check (C function)

 		PyFile_CheckExact (C function)

 		PyFile_DecUseCount (C function)

 		PyFile_FromFile (C function)

 		PyFile_FromString (C function)

 		PyFile_GetLine (C function)

 		PyFile_IncUseCount (C function)

 		PyFile_Name (C function)

 		PyFile_SetBufSize (C function)

 		PyFile_SetEncoding (C function)

 		PyFile_SetEncodingAndErrors (C function)

 		PyFile_SoftSpace (C function)

 		PyFile_Type (C variable)

 		PyFile_WriteObject (C function)

 		PyFile_WriteString (C function)

 		PyFileObject (C type)

 		PyFloat_AS_DOUBLE (C function)

 		PyFloat_AsDouble (C function)

 		PyFloat_AsReprString (C function)

 		PyFloat_AsString (C function)

 		PyFloat_Check (C function)

 		PyFloat_CheckExact (C function)

 		PyFloat_ClearFreeList (C function)

 		PyFloat_FromDouble (C function)

 		PyFloat_FromString (C function)

 		PyFloat_GetInfo (C function)

 		PyFloat_GetMax (C function)

 		PyFloat_GetMin (C function)

 		PyFloat_Type (C variable)

 		PyFloatObject (C type)

 		PyFrame_GetLineNumber (C function)

 		PyFrozenSet_Check (C function)

 		PyFrozenSet_CheckExact (C function)

 		PyFrozenSet_New (C function)

 		PyFrozenSet_Type (C variable)

 		PyFunction_Check (C function)

 		PyFunction_GetClosure (C function)

 		PyFunction_GetCode (C function)

 		PyFunction_GetDefaults (C function)

 		PyFunction_GetGlobals (C function)

 		PyFunction_GetModule (C function)

 		PyFunction_New (C function)

 		PyFunction_SetClosure (C function)

 		PyFunction_SetDefaults (C function)

 		PyFunction_Type (C variable)

 		PyFunctionObject (C type)

 		PYFUNCTYPE() (in module ctypes)

 		PyGen_Check (C function)

 		PyGen_CheckExact (C function)

 		PyGen_New (C function)

 		PyGen_Type (C variable)

 		PyGenObject (C type)

 		PyGILState_Ensure (C function)

 		PyGILState_GetThisThreadState (C function)

 		PyGILState_Release (C function)

 		PyImport_AddModule (C function)

 		PyImport_AppendInittab (C function)

 		PyImport_Cleanup (C function)

 		PyImport_ExecCodeModule (C function)

 		PyImport_ExecCodeModuleEx (C function)

 		PyImport_ExtendInittab (C function)

 		PyImport_FrozenModules (C variable)

 		PyImport_GetImporter (C function)

 		PyImport_GetMagicNumber (C function)

 		PyImport_GetModuleDict (C function)

 		PyImport_Import (C function)

 		PyImport_ImportFrozenModule (C function)

 		PyImport_ImportModule (C function)

 		PyImport_ImportModuleEx (C function)

 		PyImport_ImportModuleLevel (C function)

 		PyImport_ImportModuleNoBlock (C function)

 		PyImport_ReloadModule (C function)

 		PyIndex_Check (C function)

 		PyInstance_Check (C function)

 		PyInstance_New (C function)

 		PyInstance_NewRaw (C function)

 		PyInstance_Type (C variable)

 		PyInt_AS_LONG (C function)

 		PyInt_AsLong (C function)

 		PyInt_AsSsize_t (C function)

 		PyInt_AsUnsignedLongLongMask (C function)

 		PyInt_AsUnsignedLongMask (C function)

 		PyInt_Check (C function)

 		PyInt_CheckExact (C function)

 		PyInt_ClearFreeList (C function)

 		PyInt_FromLong (C function)

 		PyInt_FromSize_t (C function)

 		PyInt_FromSsize_t (C function)

 		PyInt_FromString (C function)

 		PyInt_GetMax (C function)

 		PyInt_Type (C variable)

 		PyInterpreterState (C type)

 		PyInterpreterState_Clear (C function)

 		PyInterpreterState_Delete (C function)

 		PyInterpreterState_Head (C function)

 		PyInterpreterState_New (C function)

 		PyInterpreterState_Next (C function)

 		PyInterpreterState_ThreadHead (C function)

 		PyIntObject (C type)

 		PyIter_Check (C function)

 		PyIter_Next (C function)

 		PyList_Append (C function)

 		PyList_AsTuple (C function)

 		PyList_Check (C function)

 		PyList_CheckExact (C function)

 		PyList_GET_ITEM (C function)

 		PyList_GET_SIZE (C function)

 		PyList_GetItem (C function)

 		PyList_GetItem()

 		PyList_GetSlice (C function)

 		PyList_Insert (C function)

 		PyList_New (C function)

 		PyList_Reverse (C function)

 		PyList_SET_ITEM (C function)

 		PyList_SetItem (C function)

 		PyList_SetItem()

 		PyList_SetSlice (C function)

 		PyList_Size (C function)

 		PyList_Sort (C function)

 		PyList_Type (C variable)

 		PyListObject (C type)

 		PyLong_AsDouble (C function)

 		PyLong_AsLong (C function)

 		PyLong_AsLongAndOverflow (C function)

 		PyLong_AsLongLong (C function)

 		PyLong_AsLongLongAndOverflow (C function)

 		PyLong_AsSsize_t (C function)

 		PyLong_AsUnsignedLong (C function)

 		PyLong_AsUnsignedLongLong (C function)

 		PyLong_AsUnsignedLongLongMask (C function)

 		PyLong_AsUnsignedLongMask (C function)

 		PyLong_AsVoidPtr (C function)

 		PyLong_Check (C function)

 		PyLong_CheckExact (C function)

 		PyLong_FromDouble (C function)

 		PyLong_FromLong (C function)

 		PyLong_FromLongLong (C function)

 		PyLong_FromSize_t (C function)

 		PyLong_FromSsize_t (C function)

 		PyLong_FromString (C function)

 		PyLong_FromUnicode (C function)

 		PyLong_FromUnsignedLong (C function)

 		PyLong_FromUnsignedLongLong (C function)

 		PyLong_FromVoidPtr (C function)

 		PyLong_Type (C variable)

 		PyLongObject (C type)

 		PyMapping_Check (C function)

 		PyMapping_DelItem (C function)

 		PyMapping_DelItemString (C function)

 		PyMapping_GetItemString (C function)

 		PyMapping_HasKey (C function)

 		PyMapping_HasKeyString (C function)

 		PyMapping_Items (C function)

 		PyMapping_Keys (C function)

 		PyMapping_Length (C function)

 		PyMapping_SetItemString (C function)

 		PyMapping_Size (C function)

 		PyMapping_Values (C function)

 		PyMappingMethods (C type)

 		PyMappingMethods.mp_ass_subscript (C member)

 		PyMappingMethods.mp_length (C member)

 		PyMappingMethods.mp_subscript (C member)

 		PyMarshal_ReadLastObjectFromFile (C function)

 		PyMarshal_ReadLongFromFile (C function)

 		PyMarshal_ReadObjectFromFile (C function)

 		PyMarshal_ReadObjectFromString (C function)

 		PyMarshal_ReadShortFromFile (C function)

 		PyMarshal_WriteLongToFile (C function)

 		PyMarshal_WriteObjectToFile (C function)

 		PyMarshal_WriteObjectToString (C function)

 		PyMem_Del (C function)

 		PyMem_Free (C function)

 		PyMem_Malloc (C function)

 		PyMem_New (C function)

 		PyMem_Realloc (C function)

 		PyMem_Resize (C function)

 		PyMemberDef (C type)

 		PyMemoryView_Check (C function)

 		PyMemoryView_FromBuffer (C function)

 		PyMemoryView_FromObject (C function)

 		PyMemoryView_GET_BUFFER (C function)

 		PyMemoryView_GetContiguous (C function)

 		PyMethod_Check (C function)

 		PyMethod_Class (C function)

 		PyMethod_ClearFreeList (C function)

 		PyMethod_Function (C function)

 		PyMethod_GET_CLASS (C function)

 		PyMethod_GET_FUNCTION (C function)

 		PyMethod_GET_SELF (C function)

 		PyMethod_New (C function)

 		PyMethod_Self (C function)

 		PyMethod_Type (C variable)

 		PyMethodDef (C type)

 		PyModule_AddIntConstant (C function)

 		PyModule_AddIntMacro (C function)

 		PyModule_AddObject (C function)

 		PyModule_AddStringConstant (C function)

 		PyModule_AddStringMacro (C function)

 		PyModule_Check (C function)

 		PyModule_CheckExact (C function)

 		PyModule_GetDict (C function)

 		PyModule_GetFilename (C function)

 		PyModule_GetName (C function)

 		PyModule_New (C function)

 		PyModule_Type (C variable)

 		PyNumber_Absolute (C function)

 		PyNumber_Add (C function)

 		PyNumber_And (C function)

 		PyNumber_AsSsize_t (C function)

 		PyNumber_Check (C function)

 		PyNumber_Coerce (C function)

 		PyNumber_CoerceEx (C function)

 		PyNumber_Divide (C function)

 		PyNumber_Divmod (C function)

 		PyNumber_Float (C function)

 		PyNumber_FloorDivide (C function)

 		PyNumber_Index (C function)

 		PyNumber_InPlaceAdd (C function)

 		PyNumber_InPlaceAnd (C function)

 		PyNumber_InPlaceDivide (C function)

 		PyNumber_InPlaceFloorDivide (C function)

 		PyNumber_InPlaceLshift (C function)

 		PyNumber_InPlaceMultiply (C function)

 		PyNumber_InPlaceOr (C function)

 		PyNumber_InPlacePower (C function)

 		PyNumber_InPlaceRemainder (C function)

 		PyNumber_InPlaceRshift (C function)

 		PyNumber_InPlaceSubtract (C function)

 		PyNumber_InPlaceTrueDivide (C function)

 		PyNumber_InPlaceXor (C function)

 		PyNumber_Int (C function)

 		PyNumber_Invert (C function)

 		PyNumber_Long (C function)

 		PyNumber_Lshift (C function)

 		PyNumber_Multiply (C function)

 		PyNumber_Negative (C function)

 		PyNumber_Or (C function)

 		PyNumber_Positive (C function)

 		PyNumber_Power (C function)

 		PyNumber_Remainder (C function)

 		PyNumber_Rshift (C function)

 		PyNumber_Subtract (C function)

 		PyNumber_ToBase (C function)

 		PyNumber_TrueDivide (C function)

 		PyNumber_Xor (C function)

 		PyNumberMethods (C type)

 		PyNumberMethods.nb_coerce (C member)

 		PyObject (C type)

 		PyObject._ob_next (C member)

 		PyObject._ob_prev (C member)

 		PyObject.ob_refcnt (C member)

 		PyObject.ob_type (C member)

 		PyObject_AsCharBuffer (C function)

 		PyObject_AsFileDescriptor (C function)

 		PyObject_AsReadBuffer (C function)

 		PyObject_AsWriteBuffer (C function)

 		PyObject_Bytes (C function)

 		PyObject_Call (C function)

 		PyObject_CallFunction (C function)

 		PyObject_CallFunctionObjArgs (C function)

 		PyObject_CallMethod (C function)

 		PyObject_CallMethodObjArgs (C function)

 		PyObject_CallObject (C function)

 		PyObject_CallObject()

 		PyObject_CheckBuffer (C function)

 		PyObject_CheckReadBuffer (C function)

 		PyObject_Cmp (C function)

 		PyObject_Compare (C function)

 		PyObject_Del (C function)

 		PyObject_DelAttr (C function)

 		PyObject_DelAttrString (C function)

 		PyObject_DelItem (C function)

 		PyObject_Dir (C function)

 		PyObject_GC_Del (C function)

 		PyObject_GC_New (C function)

 		PyObject_GC_NewVar (C function)

 		PyObject_GC_Resize (C function)

 		PyObject_GC_Track (C function)

 		PyObject_GC_UnTrack (C function)

 		PyObject_GenericGetAttr (C function)

 		PyObject_GenericSetAttr (C function)

 		PyObject_GetAttr (C function)

 		PyObject_GetAttrString (C function)

 		PyObject_GetBuffer (C function)

 		PyObject_GetItem (C function)

 		PyObject_GetIter (C function)

 		PyObject_HasAttr (C function)

 		PyObject_HasAttrString (C function)

 		PyObject_Hash (C function)

 		PyObject_HashNotImplemented (C function)

 		PyObject_HEAD (C macro)

 		PyObject_HEAD_INIT (C macro)

 		PyObject_Init (C function)

 		PyObject_InitVar (C function)

 		PyObject_IsInstance (C function)

 		PyObject_IsSubclass (C function)

 		PyObject_IsTrue (C function)

 		PyObject_Length (C function)

 		PyObject_New (C function)

 		PyObject_NewVar (C function)

 		PyObject_Not (C function)

 		PyObject_Print (C function)

 		PyObject_Repr (C function)

 		PyObject_RichCompare (C function)

 		PyObject_RichCompareBool (C function)

 		PyObject_SetAttr (C function)

 		PyObject_SetAttrString (C function)

 		PyObject_SetItem (C function)

 		PyObject_Size (C function)

 		PyObject_Str (C function)

 		PyObject_Type (C function)

 		PyObject_TypeCheck (C function)

 		PyObject_Unicode (C function)

 		PyObject_VAR_HEAD (C macro)

 		PyOpenGL

 		PyOS_AfterFork (C function)

 		PyOS_ascii_atof (C function)

 		PyOS_ascii_formatd (C function)

 		PyOS_ascii_strtod (C function)

 		PyOS_CheckStack (C function)

 		PyOS_double_to_string (C function)

 		PyOS_getsig (C function)

 		PyOS_setsig (C function)

 		PyOS_snprintf (C function)

 		PyOS_stricmp (C function)

 		PyOS_string_to_double (C function)

 		PyOS_strnicmp (C function)

 		PyOS_vsnprintf (C function)

 		PyParser_SimpleParseFile (C function)

 		PyParser_SimpleParseFileFlags (C function)

 		PyParser_SimpleParseString (C function)

 		PyParser_SimpleParseStringFlags (C function)

 		PyParser_SimpleParseStringFlagsFilename (C function)

 		
 PyPI

 		

 		(see Python Package Index (PyPI))

 		PyProperty_Type (C variable)

 		PyRun_AnyFile (C function)

 		PyRun_AnyFileEx (C function)

 		PyRun_AnyFileExFlags (C function)

 		PyRun_AnyFileFlags (C function)

 		PyRun_File (C function)

 		PyRun_FileEx (C function)

 		PyRun_FileExFlags (C function)

 		PyRun_FileFlags (C function)

 		PyRun_InteractiveLoop (C function)

 		PyRun_InteractiveLoopFlags (C function)

 		PyRun_InteractiveOne (C function)

 		PyRun_InteractiveOneFlags (C function)

 		PyRun_SimpleFile (C function)

 		PyRun_SimpleFileEx (C function)

 		PyRun_SimpleFileExFlags (C function)

 		PyRun_SimpleFileFlags (C function)

 		PyRun_SimpleString (C function)

 		PyRun_SimpleStringFlags (C function)

 		PyRun_String (C function)

 		PyRun_StringFlags (C function)

 		PySeqIter_Check (C function)

 		PySeqIter_New (C function)

 		PySeqIter_Type (C variable)

 		PySequence_Check (C function)

 		PySequence_Concat (C function)

 		PySequence_Contains (C function)

 		PySequence_Count (C function)

 		PySequence_DelItem (C function)

 		PySequence_DelSlice (C function)

 		PySequence_Fast (C function)

 		PySequence_Fast_GET_ITEM (C function)

 		PySequence_Fast_GET_SIZE (C function)

 		PySequence_Fast_ITEMS (C function)

 		PySequence_GetItem (C function)

 		PySequence_GetItem()

 		PySequence_GetSlice (C function)

 		PySequence_Index (C function)

 		PySequence_InPlaceConcat (C function)

 		PySequence_InPlaceRepeat (C function)

 		PySequence_ITEM (C function)

 		PySequence_Length (C function)

 		PySequence_List (C function)

 		PySequence_Repeat (C function)

 		PySequence_SetItem (C function)

 		PySequence_SetSlice (C function)

 		PySequence_Size (C function)

 		PySequence_Tuple (C function)

 		PySequenceMethods (C type)

 		PySequenceMethods.sq_ass_item (C member)

 		PySequenceMethods.sq_concat (C member)

 		PySequenceMethods.sq_contains (C member)

 		PySequenceMethods.sq_inplace_concat (C member)

 		PySequenceMethods.sq_inplace_repeat (C member)

 		PySequenceMethods.sq_item (C member)

 		PySequenceMethods.sq_length (C member)

 		PySequenceMethods.sq_repeat (C member)

 		PySet_Add (C function)

 		PySet_Check (C function)

 		PySet_Clear (C function)

 		PySet_Contains (C function)

 		PySet_Discard (C function)

 		PySet_GET_SIZE (C function)

 		PySet_New (C function)

 		PySet_Pop (C function)

 		PySet_Size (C function)

 		PySet_Type (C variable)

 		PySetObject (C type)

 		PySignal_SetWakeupFd (C function)

 		PySlice_Check (C function)

 		PySlice_GetIndices (C function)

 		PySlice_GetIndicesEx (C function)

 		PySlice_New (C function)

 		PySlice_Type (C variable)

 		PyString_AS_STRING (C function)

 		PyString_AsDecodedObject (C function)

 		PyString_AsEncodedObject (C function)

 		PyString_AsString (C function)

 		PyString_AsStringAndSize (C function)

 		PyString_Check (C function)

 		PyString_CheckExact (C function)

 		PyString_Concat (C function)

 		PyString_ConcatAndDel (C function)

 		PyString_Decode (C function)

 		PyString_Encode (C function)

 		PyString_Format (C function)

 		PyString_FromFormat (C function)

 		PyString_FromFormatV (C function)

 		PyString_FromString (C function)

 		PyString_FromString()

 		PyString_FromStringAndSize (C function)

 		PyString_GET_SIZE (C function)

 		PyString_InternFromString (C function)

 		PyString_InternInPlace (C function)

 		PyString_Size (C function)

 		PyString_Type (C variable)

 		PyStringObject (C type)

 		PySys_AddWarnOption (C function)

 		PySys_GetFile (C function)

 		PySys_GetObject (C function)

 		PySys_ResetWarnOptions (C function)

 		PySys_SetArgv (C function)

 		PySys_SetArgv()

 		PySys_SetArgvEx (C function)

 		PySys_SetArgvEx(), [1]

 		PySys_SetObject (C function)

 		PySys_SetPath (C function)

 		PySys_WriteStderr (C function)

 		PySys_WriteStdout (C function)

 		Python 3000

 		Python Editor

 		
 Python Enhancement Proposals

 		

 		PEP 100

 		PEP 11

 		PEP 205, [1]

 		PEP 207

 		PEP 208

 		PEP 217

 		PEP 218, [1], [2]

 		PEP 227, [1], [2]

 		PEP 229

 		PEP 230, [1]

 		PEP 232

 		PEP 234

 		PEP 236, [1], [2]

 		PEP 237, [1], [2], [3]

 		PEP 238, [1], [2], [3], [4], [5], [6]

 		PEP 241

 		PEP 243

 		PEP 249, [1], [2], [3]

 		PEP 252, [1]

 		PEP 253, [1], [2], [3], [4]

 		PEP 255, [1], [2], [3], [4], [5]

 		PEP 261, [1]

 		PEP 263, [1]

 		PEP 264

 		PEP 273, [1], [2]

 		PEP 275

 		PEP 277

 		PEP 278, [1]

 		PEP 279

 		PEP 282, [1], [2], [3]

 		PEP 285, [1]

 		PEP 288

 		PEP 289, [1], [2]

 		PEP 292, [1]

 		PEP 293

 		PEP 3000

 		PEP 301, [1]

 		PEP 302, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]

 		PEP 305, [1]

 		PEP 307, [1], [2], [3]

 		PEP 308, [1], [2]

 		PEP 309

 		PEP 3100

 		PEP 3101, [1], [2]

 		PEP 3105, [1]

 		PEP 3106

 		PEP 3110

 		PEP 3112, [1]

 		PEP 3116, [1]

 		PEP 3118

 		PEP 3119, [1], [2], [3]

 		PEP 3121

 		PEP 3127

 		PEP 3129

 		PEP 3137

 		PEP 314, [1]

 		PEP 3141, [1], [2]

 		PEP 318, [1], [2]

 		PEP 322, [1]

 		PEP 324, [1]

 		PEP 325

 		PEP 327

 		PEP 328, [1], [2], [3], [4]

 		PEP 331

 		PEP 333, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]

 		PEP 338, [1], [2]

 		PEP 339

 		PEP 341

 		PEP 342, [1], [2], [3], [4], [5]

 		PEP 343, [1], [2], [3], [4], [5], [6]

 		PEP 347

 		PEP 352, [1]

 		PEP 353, [1], [2]

 		PEP 356

 		PEP 357

 		PEP 361

 		PEP 366

 		PEP 370, [1], [2], [3], [4]

 		PEP 371

 		PEP 372

 		PEP 373

 		PEP 378, [1]

 		PEP 389

 		PEP 391

 		PEP 427

 		PEP 434

 		PEP 453, [1], [2], [3]

 		PEP 466, [1], [2], [3]

 		PEP 476, [1]

 		PEP 477, [1]

 		PEP 493, [1]

 		PEP 5, [1]

 		PEP 6

 		PEP 8, [1], [2], [3], [4]

 		Python Imaging Library

 		Python Package Index (PyPI)

 		

 		.pypirc file

 		PYTHON*

 		python_branch() (in module platform)

 		python_build() (in module platform)

 		python_compiler() (in module platform)

 		PYTHON_DOM

 		python_implementation() (in module platform)

 		python_revision() (in module platform)

 		python_version() (in module platform)

 		python_version_tuple() (in module platform)

 		PYTHONCASEOK

 		PYTHONDEBUG

 		PYTHONDOCS

 		PYTHONDONTWRITEBYTECODE, [1], [2], [3]

 		PYTHONDUMPREFS

 		PYTHONHASHSEED, [1]

 		PYTHONHOME, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 		Pythonic

 		PYTHONINSPECT, [1]

 		PYTHONIOENCODING

 		PYTHONNOUSERSITE, [1], [2]

 		PYTHONOPTIMIZE

 		PYTHONPATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]

 		PYTHONSTARTUP, [1], [2], [3], [4], [5], [6]

 		PYTHONUNBUFFERED

 		PYTHONUSERBASE, [1], [2]

 		PYTHONVERBOSE

 		PYTHONWARNINGS, [1], [2]

 		PYTHONY2K, [1], [2]

 		PyThreadState, [1]

 		

 		(C type)

 		PyThreadState_Clear (C function)

 		PyThreadState_Delete (C function)

 		PyThreadState_Get (C function)

 		PyThreadState_GetDict (C function)

 		PyThreadState_New (C function)

 		PyThreadState_Next (C function)

 		PyThreadState_SetAsyncExc (C function)

 		PyThreadState_Swap (C function)

 		PyTime_Check (C function)

 		PyTime_CheckExact (C function)

 		PyTime_FromTime (C function)

 		PyTrace_C_CALL (C variable)

 		PyTrace_C_EXCEPTION (C variable)

 		PyTrace_C_RETURN (C variable)

 		PyTrace_CALL (C variable)

 		PyTrace_EXCEPTION (C variable)

 		PyTrace_LINE (C variable)

 		PyTrace_RETURN (C variable)

 		PyTuple_Check (C function)

 		PyTuple_CheckExact (C function)

 		PyTuple_ClearFreeList (C function)

 		PyTuple_GET_ITEM (C function)

 		PyTuple_GET_SIZE (C function)

 		PyTuple_GetItem (C function)

 		PyTuple_GetSlice (C function)

 		PyTuple_New (C function)

 		PyTuple_Pack (C function)

 		PyTuple_SET_ITEM (C function)

 		PyTuple_SetItem (C function)

 		PyTuple_SetItem()

 		PyTuple_Size (C function)

 		PyTuple_Type (C variable)

 		PyTupleObject (C type)

 		PyType_Check (C function)

 		PyType_CheckExact (C function)

 		PyType_ClearCache (C function)

 		PyType_GenericAlloc (C function)

 		PyType_GenericNew (C function)

 		PyType_HasFeature (C function)

 		PyType_HasFeature()

 		PyType_IS_GC (C function)

 		PyType_IsSubtype (C function)

 		PyType_Modified (C function)

 		PyType_Ready (C function)

 		PyType_Type (C variable)

 		PyTypeObject (C type)

 		PyTypeObject.tp_alloc (C member)

 		PyTypeObject.tp_allocs (C member)

 		PyTypeObject.tp_as_buffer (C member)

 		PyTypeObject.tp_base (C member)

 		PyTypeObject.tp_bases (C member)

 		PyTypeObject.tp_basicsize (C member)

 		PyTypeObject.tp_cache (C member)

 		PyTypeObject.tp_call (C member)

 		PyTypeObject.tp_clear (C member)

 		PyTypeObject.tp_compare (C member)

 		PyTypeObject.tp_dealloc (C member)

 		PyTypeObject.tp_descr_get (C member)

 		PyTypeObject.tp_descr_set (C member)

 		PyTypeObject.tp_dict (C member)

 		PyTypeObject.tp_dictoffset (C member)

 		PyTypeObject.tp_doc (C member)

 		PyTypeObject.tp_flags (C member)

 		PyTypeObject.tp_free (C member)

 		PyTypeObject.tp_frees (C member)

 		PyTypeObject.tp_getattr (C member)

 		PyTypeObject.tp_getattro (C member)

 		PyTypeObject.tp_getset (C member)

 		PyTypeObject.tp_hash (C member)

 		PyTypeObject.tp_init (C member)

 		PyTypeObject.tp_is_gc (C member)

 		PyTypeObject.tp_itemsize (C member)

 		PyTypeObject.tp_iter (C member)

 		PyTypeObject.tp_iternext (C member)

 		PyTypeObject.tp_maxalloc (C member)

 		PyTypeObject.tp_members (C member)

 		PyTypeObject.tp_methods (C member)

 		PyTypeObject.tp_mro (C member)

 		PyTypeObject.tp_name (C member)

 		PyTypeObject.tp_new (C member)

 		PyTypeObject.tp_next (C member)

 		PyTypeObject.tp_print (C member)

 		PyTypeObject.tp_repr (C member)

 		PyTypeObject.tp_richcompare (C member)

 		PyTypeObject.tp_setattr (C member)

 		PyTypeObject.tp_setattro (C member)

 		PyTypeObject.tp_str (C member)

 		PyTypeObject.tp_subclasses (C member)

 		PyTypeObject.tp_traverse (C member)

 		PyTypeObject.tp_weaklist (C member)

 		PyTypeObject.tp_weaklistoffset (C member)

 		PyTZInfo_Check (C function)

 		PyTZInfo_CheckExact (C function)

 		PyUnicode_AS_DATA (C function)

 		PyUnicode_AS_UNICODE (C function)

 		PyUnicode_AsASCIIString (C function)

 		PyUnicode_AsCharmapString (C function)

 		PyUnicode_AsEncodedString (C function)

 		PyUnicode_AsLatin1String (C function)

 		PyUnicode_AsMBCSString (C function)

 		PyUnicode_AsRawUnicodeEscapeString (C function)

 		PyUnicode_AsUnicode (C function)

 		PyUnicode_AsUnicodeEscapeString (C function)

 		PyUnicode_AsUTF16String (C function)

 		PyUnicode_AsUTF32String (C function)

 		PyUnicode_AsUTF8String (C function)

 		PyUnicode_AsWideChar (C function)

 		PyUnicode_Check (C function)

 		PyUnicode_CheckExact (C function)

 		PyUnicode_ClearFreeList (C function)

 		PyUnicode_Compare (C function)

 		PyUnicode_Concat (C function)

 		PyUnicode_Contains (C function)

 		PyUnicode_Count (C function)

 		PyUnicode_Decode (C function)

 		PyUnicode_DecodeASCII (C function)

 		PyUnicode_DecodeCharmap (C function)

 		PyUnicode_DecodeLatin1 (C function)

 		PyUnicode_DecodeMBCS (C function)

 		PyUnicode_DecodeMBCSStateful (C function)

 		PyUnicode_DecodeRawUnicodeEscape (C function)

 		PyUnicode_DecodeUnicodeEscape (C function)

 		PyUnicode_DecodeUTF16 (C function)

 		PyUnicode_DecodeUTF16Stateful (C function)

 		PyUnicode_DecodeUTF32 (C function)

 		PyUnicode_DecodeUTF32Stateful (C function)

 		PyUnicode_DecodeUTF7 (C function)

 		PyUnicode_DecodeUTF7Stateful (C function)

 		PyUnicode_DecodeUTF8 (C function)

 		PyUnicode_DecodeUTF8Stateful (C function)

 		PyUnicode_Encode (C function)

 		PyUnicode_EncodeASCII (C function)

 		PyUnicode_EncodeCharmap (C function)

 		PyUnicode_EncodeLatin1 (C function)

 		PyUnicode_EncodeMBCS (C function)

 		PyUnicode_EncodeRawUnicodeEscape (C function)

 		PyUnicode_EncodeUnicodeEscape (C function)

 		PyUnicode_EncodeUTF16 (C function)

 		PyUnicode_EncodeUTF32 (C function)

 		PyUnicode_EncodeUTF7 (C function)

 		PyUnicode_EncodeUTF8 (C function)

 		PyUnicode_Find (C function)

 		PyUnicode_Format (C function)

 		PyUnicode_FromEncodedObject (C function)

 		PyUnicode_FromFormat (C function)

 		PyUnicode_FromFormatV (C function)

 		PyUnicode_FromObject (C function)

 		PyUnicode_FromString (C function)

 		PyUnicode_FromStringAndSize (C function)

 		PyUnicode_FromUnicode (C function)

 		PyUnicode_FromWideChar (C function)

 		PyUnicode_GET_DATA_SIZE (C function)

 		PyUnicode_GET_SIZE (C function)

 		PyUnicode_GetSize (C function)

 		PyUnicode_Join (C function)

 		PyUnicode_Replace (C function)

 		PyUnicode_RichCompare (C function)

 		PyUnicode_Split (C function)

 		PyUnicode_Splitlines (C function)

 		PyUnicode_Tailmatch (C function)

 		PyUnicode_Translate (C function)

 		PyUnicode_TranslateCharmap (C function)

 		PyUnicode_Type (C variable)

 		PyUnicodeDecodeError_Create (C function)

 		PyUnicodeDecodeError_GetEncoding (C function)

 		PyUnicodeDecodeError_GetEnd (C function)

 		PyUnicodeDecodeError_GetObject (C function)

 		PyUnicodeDecodeError_GetReason (C function)

 		PyUnicodeDecodeError_GetStart (C function)

 		PyUnicodeDecodeError_SetEnd (C function)

 		PyUnicodeDecodeError_SetReason (C function)

 		PyUnicodeDecodeError_SetStart (C function)

 		PyUnicodeEncodeError_Create (C function)

 		PyUnicodeEncodeError_GetEncoding (C function)

 		PyUnicodeEncodeError_GetEnd (C function)

 		PyUnicodeEncodeError_GetObject (C function)

 		PyUnicodeEncodeError_GetReason (C function)

 		PyUnicodeEncodeError_GetStart (C function)

 		PyUnicodeEncodeError_SetEnd (C function)

 		PyUnicodeEncodeError_SetReason (C function)

 		PyUnicodeEncodeError_SetStart (C function)

 		PyUnicodeObject (C type)

 		PyUnicodeTranslateError_Create (C function)

 		PyUnicodeTranslateError_GetEnd (C function)

 		PyUnicodeTranslateError_GetObject (C function)

 		PyUnicodeTranslateError_GetReason (C function)

 		PyUnicodeTranslateError_GetStart (C function)

 		PyUnicodeTranslateError_SetEnd (C function)

 		PyUnicodeTranslateError_SetReason (C function)

 		PyUnicodeTranslateError_SetStart (C function)

 		PyVarObject (C type)

 		PyVarObject.ob_size (C member)

 		PyVarObject_HEAD_INIT (C macro)

 		PyWeakref_Check (C function)

 		PyWeakref_CheckProxy (C function)

 		PyWeakref_CheckRef (C function)

 		PyWeakref_GET_OBJECT (C function)

 		PyWeakref_GetObject (C function)

 		PyWeakref_NewProxy (C function)

 		PyWeakref_NewRef (C function)

 		PyWrapper_New (C function)

 		PyZipFile (class in zipfile)

Q

 		

 		qdevice() (in module fl)

 		QDPoint (class in aetypes)

 		QDRectangle (class in aetypes)

 		qenter() (in module fl)

 		qiflush() (in module curses)

 		QName (class in xml.etree.ElementTree)

 		qread() (in module fl)

 		qreset() (in module fl)

 		qsize() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		qtest() (in module fl)

 		quantize() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		QueryInfoKey() (in module _winreg)

 		queryparams() (in module al)

 		QueryReflectionKey() (in module _winreg)

 		QueryValue() (in module _winreg)

 		QueryValueEx() (in module _winreg)

 		Queue (class in multiprocessing)

 		

 		(class in Queue)

 		(module)

 		queue (sched.scheduler attribute)

 		

 		Queue() (multiprocessing.managers.SyncManager method)

 		quick_ratio() (difflib.SequenceMatcher method)

 		quit (built-in variable)

 		quit() (ftplib.FTP method)

 		

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		(smtplib.SMTP method)

 		quopri (module)

 		quote() (in module email.utils)

 		

 		(in module pipes)

 		(in module rfc822)

 		(in module urllib)

 		QUOTE_ALL (in module csv)

 		QUOTE_MINIMAL (in module csv)

 		QUOTE_NONE (in module csv)

 		QUOTE_NONNUMERIC (in module csv)

 		quote_plus() (in module urllib)

 		quoteattr() (in module xml.sax.saxutils)

 		quotechar (csv.Dialect attribute)

 		
 quoted-printable

 		

 		encoding

 		
 quotes

 		

 		backward, [1]

 		reverse, [1]

 		quotes (shlex.shlex attribute)

 		quoting (csv.Dialect attribute)

R

 		

 		r_eval() (rexec.RExec method)

 		r_exec() (rexec.RExec method)

 		r_execfile() (rexec.RExec method)

 		r_import() (rexec.RExec method)

 		R_OK (in module os)

 		r_open() (rexec.RExec method)

 		r_reload() (rexec.RExec method)

 		r_unload() (rexec.RExec method)

 		radians() (in module math)

 		

 		(in module turtle)

 		RadioButtonGroup (class in msilib)

 		radiogroup() (msilib.Dialog method)

 		radix() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		RADIXCHAR (in module locale)

 		
 raise

 		

 		statement, [1]

 		raise (2to3 fixer)

 		raise an exception

 		RAISE_VARARGS (opcode)

 		
 raising

 		

 		exception

 		RAND_add() (in module ssl)

 		RAND_egd() (in module ssl)

 		RAND_status() (in module ssl)

 		randint() (in module random)

 		random (module)

 		random() (in module random)

 		randrange() (in module random)

 		
 range

 		

 		built-in function

 		Range (class in aetypes)

 		range() (built-in function)

 		ratecv() (in module audioop)

 		ratio() (difflib.SequenceMatcher method)

 		Rational (class in numbers)

 		raw (io.BufferedIOBase attribute)

 		raw input

 		raw string

 		raw() (in module curses)

 		raw_decode() (json.JSONDecoder method)

 		
 raw_input

 		

 		built-in function, [1]

 		raw_input (2to3 fixer)

 		raw_input() (built-in function)

 		

 		(code.InteractiveConsole method)

 		RawArray() (in module multiprocessing.sharedctypes)

 		RawConfigParser (class in ConfigParser)

 		RawDescriptionHelpFormatter (class in argparse)

 		RawIOBase (class in io)

 		RawPen (class in turtle)

 		RawTextHelpFormatter (class in argparse)

 		RawTurtle (class in turtle)

 		RawValue() (in module multiprocessing.sharedctypes)

 		RBRACE (in module token)

 		
 re

 		

 		module, [1], [2]

 		re (module)

 		

 		(re.MatchObject attribute)

 		read() (array.array method)

 		

 		(ConfigParser.RawConfigParser method)

 		(bz2.BZ2File method)

 		(chunk.Chunk method)

 		(codecs.StreamReader method)

 		(file method)

 		(httplib.HTTPResponse method)

 		(imaplib.IMAP4 method)

 		(in module imgfile)

 		(in module os)

 		(io.BufferedIOBase method)

 		(io.BufferedReader method)

 		(io.RawIOBase method)

 		(io.TextIOBase method)

 		(mimetypes.MimeTypes method)

 		(mmap.mmap method)

 		(multifile.MultiFile method)

 		(ossaudiodev.oss_audio_device method)

 		(robotparser.RobotFileParser method)

 		(zipfile.ZipFile method)

 		read1() (io.BufferedIOBase method)

 		

 		(io.BufferedReader method)

 		(io.BytesIO method)

 		read_all() (telnetlib.Telnet method)

 		read_byte() (mmap.mmap method)

 		read_eager() (telnetlib.Telnet method)

 		read_history_file() (in module readline)

 		read_init_file() (in module readline)

 		read_lazy() (telnetlib.Telnet method)

 		read_mime_types() (in module mimetypes)

 		READ_RESTRICTED

 		read_sb_data() (telnetlib.Telnet method)

 		read_some() (telnetlib.Telnet method)

 		read_token() (shlex.shlex method)

 		read_until() (telnetlib.Telnet method)

 		read_very_eager() (telnetlib.Telnet method)

 		read_very_lazy() (telnetlib.Telnet method)

 		read_windows_registry() (mimetypes.MimeTypes method)

 		READABLE (in module Tkinter)

 		readable() (asyncore.dispatcher method)

 		

 		(io.IOBase method)

 		readall() (io.RawIOBase method)

 		readbufferproc (C type)

 		reader() (in module csv)

 		ReadError

 		readfp() (ConfigParser.RawConfigParser method)

 		

 		(mimetypes.MimeTypes method)

 		readframes() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		readinto() (io.BufferedIOBase method)

 		

 		(io.RawIOBase method)

 		
 readline

 		

 		module

 		readline (module)

 		readline() (bz2.BZ2File method)

 		

 		(codecs.StreamReader method)

 		(distutils.text_file.TextFile method)

 		(file method), [1]

 		(imaplib.IMAP4 method)

 		(io.IOBase method)

 		(io.TextIOBase method)

 		(mmap.mmap method)

 		(multifile.MultiFile method)

 		readlines() (bz2.BZ2File method)

 		

 		(codecs.StreamReader method)

 		(distutils.text_file.TextFile method)

 		(file method)

 		(io.IOBase method)

 		(multifile.MultiFile method)

 		readlink() (in module os)

 		readmodule() (in module pyclbr)

 		readmodule_ex() (in module pyclbr)

 		READONLY

 		readonly (memoryview attribute)

 		readPlist() (in module plistlib)

 		readPlistFromResource() (in module plistlib)

 		readPlistFromString() (in module plistlib)

 		readscaled() (in module imgfile)

 		READY (in module cd)

 		ready() (multiprocessing.pool.AsyncResult method)

 		Real (class in numbers)

 		real (numbers.Complex attribute)

 		Real Media File Format

 		real_quick_ratio() (difflib.SequenceMatcher method)

 		realloc()

 		realpath() (in module os.path)

 		reason (exceptions.UnicodeError attribute)

 		

 		(httplib.HTTPResponse attribute)

 		(ssl.SSLError attribute)

 		(urllib2.HTTPError attribute)

 		(urllib2.URLError attribute)

 		reattach() (ttk.Treeview method)

 		
 rebinding

 		

 		name

 		reccontrols() (ossaudiodev.oss_mixer_device method)

 		recent() (imaplib.IMAP4 method)

 		rect() (in module cmath)

 		rectangle() (in module curses.textpad)

 		
 recursive

 		

 		object

 		recv() (asyncore.dispatcher method)

 		

 		(multiprocessing.Connection method)

 		(socket.socket method)

 		recv_bytes() (multiprocessing.Connection method)

 		recv_bytes_into() (multiprocessing.Connection method)

 		recv_into() (socket.socket method)

 		recvfrom() (socket.socket method)

 		recvfrom_into() (socket.socket method)

 		redirect_request() (urllib2.HTTPRedirectHandler method)

 		redisplay() (in module readline)

 		redraw_form() (fl.form method)

 		redrawln() (curses.window method)

 		redrawwin() (curses.window method)

 		reduce (2to3 fixer)

 		reduce() (built-in function)

 		

 		(in module functools)

 		ref (class in weakref)

 		
 reference

 		

 		attribute

 		reference count

 		reference counting

 		ReferenceError, [1]

 		ReferenceType (in module weakref)

 		refilemessages() (mhlib.Folder method)

 		refresh() (curses.window method)

 		REG_BINARY (in module _winreg)

 		REG_DWORD (in module _winreg)

 		REG_DWORD_BIG_ENDIAN (in module _winreg)

 		REG_DWORD_LITTLE_ENDIAN (in module _winreg)

 		REG_EXPAND_SZ (in module _winreg)

 		REG_FULL_RESOURCE_DESCRIPTOR (in module _winreg)

 		REG_LINK (in module _winreg)

 		REG_MULTI_SZ (in module _winreg)

 		REG_NONE (in module _winreg)

 		REG_RESOURCE_LIST (in module _winreg)

 		REG_RESOURCE_REQUIREMENTS_LIST (in module _winreg)

 		REG_SZ (in module _winreg)

 		RegexObject (class in re)

 		register() (abc.ABCMeta method)

 		

 		(in module atexit)

 		(in module codecs)

 		(in module webbrowser)

 		(multiprocessing.managers.BaseManager method)

 		(select.epoll method)

 		(select.poll method)

 		register_adapter() (in module sqlite3)

 		register_archive_format() (in module shutil)

 		register_converter() (in module sqlite3)

 		register_dialect() (in module csv)

 		register_error() (in module codecs)

 		register_function() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_instance() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_introspection_functions() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_multicall_functions() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_namespace() (in module xml.etree.ElementTree)

 		register_optionflag() (in module doctest)

 		register_shape() (in module turtle)

 		registerDOMImplementation() (in module xml.dom)

 		registerResult() (in module unittest)

 		
 relative

 		

 		URL

 		import

 		release() (in module platform)

 		

 		(logging.Handler method)

 		(multiprocessing.Lock method)

 		(multiprocessing.RLock method)

 		(thread.lock method)

 		(threading.Condition method)

 		(threading.Lock method)

 		(threading.RLock method)

 		(threading.Semaphore method)

 		release_lock() (in module imp)

 		
 reload

 		

 		built-in function, [1], [2], [3]

 		reload() (built-in function)

 		relpath() (in module os.path)

 		remainder() (decimal.Context method)

 		remainder_near() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		remove() (array.array method)

 		

 		(collections.deque method)

 		(in module os)

 		(list method)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(set method)

 		(xml.etree.ElementTree.Element method)

 		remove_flag() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		remove_folder() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		remove_history_item() (in module readline)

 		remove_label() (mailbox.BabylMessage method)

 		remove_option() (ConfigParser.RawConfigParser method)

 		

 		(optparse.OptionParser method)

 		remove_pyc() (msilib.Directory method)

 		remove_section() (ConfigParser.RawConfigParser method)

 		remove_sequence() (mailbox.MHMessage method)

 		remove_tree() (in module distutils.dir_util)

 		removeAttribute() (xml.dom.Element method)

 		removeAttributeNode() (xml.dom.Element method)

 		removeAttributeNS() (xml.dom.Element method)

 		removeChild() (xml.dom.Node method)

 		removedirs() (in module os)

 		removeFilter() (logging.Handler method)

 		

 		(logging.Logger method)

 		removeHandler() (in module unittest)

 		

 		(logging.Logger method)

 		removemessages() (mhlib.Folder method)

 		removeResult() (in module unittest)

 		rename() (ftplib.FTP method)

 		

 		(imaplib.IMAP4 method)

 		(in module os)

 		renames (2to3 fixer)

 		

 		renames() (in module os)

 		reorganize() (in module gdbm)

 		repeat() (in module itertools)

 		

 		(in module operator)

 		(in module timeit)

 		(timeit.Timer method)

 		
 repetition

 		

 		operation

 		replace() (curses.panel.Panel method)

 		

 		(datetime.date method)

 		(datetime.datetime method)

 		(datetime.time method)

 		(in module string)

 		(str method)

 		replace_errors() (in module codecs)

 		replace_header() (email.message.Message method)

 		replace_history_item() (in module readline)

 		replace_whitespace (textwrap.TextWrapper attribute)

 		replaceChild() (xml.dom.Node method)

 		ReplacePackage() (in module modulefinder)

 		report() (filecmp.dircmp method)

 		

 		(modulefinder.ModuleFinder method)

 		REPORT_CDIFF (in module doctest)

 		report_failure() (doctest.DocTestRunner method)

 		report_full_closure() (filecmp.dircmp method)

 		REPORT_NDIFF (in module doctest)

 		REPORT_ONLY_FIRST_FAILURE (in module doctest)

 		report_partial_closure() (filecmp.dircmp method)

 		report_start() (doctest.DocTestRunner method)

 		report_success() (doctest.DocTestRunner method)

 		REPORT_UDIFF (in module doctest)

 		report_unbalanced() (sgmllib.SGMLParser method)

 		report_unexpected_exception() (doctest.DocTestRunner method)

 		REPORTING_FLAGS (in module doctest)

 		
 repr

 		

 		built-in function, [1], [2], [3], [4], [5]

 		repr (2to3 fixer)

 		Repr (class in repr)

 		repr() (built-in function)

 		

 		(in module repr)

 		(repr.Repr method)

 		repr1() (repr.Repr method)

 		
 representation

 		

 		integer

 		Request (class in urllib2)

 		request() (httplib.HTTPConnection method)

 		request_queue_size (SocketServer.BaseServer attribute)

 		request_uri() (in module wsgiref.util)

 		request_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		RequestHandlerClass (SocketServer.BaseServer attribute)

 		requires() (in module test.test_support)

 		reserved (zipfile.ZipInfo attribute)

 		reserved word

 		RESERVED_FUTURE (in module uuid)

 		RESERVED_MICROSOFT (in module uuid)

 		RESERVED_NCS (in module uuid)

 		reset() (bdb.Bdb method)

 		

 		(HTMLParser.HTMLParser method)

 		(codecs.IncrementalDecoder method)

 		(codecs.IncrementalEncoder method)

 		(codecs.StreamReader method)

 		(codecs.StreamWriter method)

 		(in module dircache)

 		(in module turtle), [1]

 		(ossaudiodev.oss_audio_device method)

 		(pipes.Template method)

 		(sgmllib.SGMLParser method)

 		(xdrlib.Packer method)

 		(xdrlib.Unpacker method)

 		(xml.dom.pulldom.DOMEventStream method)

 		(xml.sax.xmlreader.IncrementalParser method)

 		reset_prog_mode() (in module curses)

 		reset_shell_mode() (in module curses)

 		resetbuffer() (code.InteractiveConsole method)

 		resetlocale() (in module locale)

 		resetscreen() (in module turtle)

 		resetty() (in module curses)

 		resetwarnings() (in module warnings)

 		resize() (curses.window method)

 		

 		(in module ctypes)

 		(mmap.mmap method)

 		resize_term() (in module curses)

 		resizemode() (in module turtle)

 		resizeterm() (in module curses)

 		resolution (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		(datetime.timedelta attribute)

 		resolveEntity() (xml.sax.handler.EntityResolver method)

 		resource (module)

 		ResourceDenied

 		response() (imaplib.IMAP4 method)

 		ResponseNotReady

 		responses (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		

 		(in module httplib)

 		restart() (in module findertools)

 		restore() (in module difflib)

 		RESTRICTED

 		
 restricted

 		

 		execution

 		restype (ctypes._FuncPtr attribute)

 		results() (trace.Trace method)

 		retr() (poplib.POP3 method)

 		retrbinary() (ftplib.FTP method)

 		retrieve() (urllib.URLopener method)

 		retrlines() (ftplib.FTP method)

 		
 return

 		

 		statement, [1], [2]

 		return_ok() (cookielib.CookiePolicy method)

 		RETURN_VALUE (opcode)

 		returncode (subprocess.CalledProcessError attribute)

 		

 		(subprocess.Popen attribute)

 		returns_unicode (xml.parsers.expat.xmlparser attribute)

 		
 reverse

 		

 		quotes, [1]

 		reverse() (array.array method)

 		

 		(collections.deque method)

 		(in module audioop)

 		(list method)

 		reverse_order() (pstats.Stats method)

 		reversed() (built-in function)

 		revert() (cookielib.FileCookieJar method)

 		rewind() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		rewindbody() (rfc822.Message method)

 		
 rexec

 		

 		module

 		RExec (class in rexec)

 		rexec (module)

 		
 RFC

 		

 		RFC 1014, [1]

 		RFC 1123

 		RFC 1321, [1]

 		RFC 1422

 		RFC 1521, [1], [2]

 		RFC 1522

 		RFC 1524, [1]

 		RFC 1725

 		RFC 1730

 		RFC 1738

 		RFC 1750

 		RFC 1766, [1]

 		RFC 1808, [1]

 		RFC 1832, [1]

 		RFC 1866

 		RFC 1869, [1]

 		RFC 1894

 		RFC 2033

 		RFC 2045, [1], [2], [3], [4], [5], [6]

 		RFC 2046, [1]

 		RFC 2047, [1], [2], [3], [4]

 		RFC 2060, [1]

 		RFC 2068

 		RFC 2104, [1]

 		RFC 2109, [1], [2], [3], [4], [5], [6]

 		RFC 2231, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 		RFC 2342

 		RFC 2368

 		RFC 2396, [1]

 		RFC 2487

 		RFC 2616, [1], [2], [3], [4]

 		RFC 2732, [1]

 		RFC 2774

 		RFC 2817

 		RFC 2818

 		RFC 2821

 		RFC 2822, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36]

 		RFC 2964

 		RFC 2965, [1], [2], [3]

 		RFC 3207

 		RFC 3229

 		RFC 3280

 		RFC 3454

 		RFC 3490, [1], [2], [3], [4]

 		RFC 3492, [1]

 		RFC 3493

 		RFC 3548, [1], [2], [3]

 		RFC 3986, [1], [2]

 		RFC 4122, [1], [2], [3], [4]

 		RFC 4217

 		RFC 4366

 		RFC 4627, [1]

 		RFC 5246

 		RFC 5280

 		RFC 5929

 		RFC 6066

 		RFC 6125

 		RFC 7159, [1], [2]

 		RFC 7301, [1]

 		RFC 821, [1]

 		RFC 822, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]

 		RFC 854, [1]

 		RFC 959

 		RFC 977

 		rfc2109 (cookielib.Cookie attribute)

 		rfc2109_as_netscape (cookielib.DefaultCookiePolicy attribute)

 		rfc2965 (cookielib.CookiePolicy attribute)

 		
 rfc822

 		

 		module

 		rfc822 (module)

 		rfc822_escape() (in module distutils.util)

 		RFC_4122 (in module uuid)

 		rfile (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		rfind() (in module string)

 		

 		(mmap.mmap method)

 		(str method)

 		rgb_to_hls() (in module colorsys)

 		rgb_to_hsv() (in module colorsys)

 		rgb_to_yiq() (in module colorsys)

 		RGBColor (class in aetypes)

 		right (filecmp.dircmp attribute)

 		right() (in module turtle)

 		right_list (filecmp.dircmp attribute)

 		right_only (filecmp.dircmp attribute)

 		RIGHTSHIFT (in module token)

 		RIGHTSHIFTEQUAL (in module token)

 		rindex() (in module string)

 		

 		(str method)

 		rjust() (in module string)

 		

 		(str method)

 		
 rlcompleter

 		

 		module

 		rlcompleter (module)

 		rlecode_hqx() (in module binascii)

 		rledecode_hqx() (in module binascii)

 		RLIM_INFINITY (in module resource)

 		RLIMIT_AS (in module resource)

 		RLIMIT_CORE (in module resource)

 		RLIMIT_CPU (in module resource)

 		RLIMIT_DATA (in module resource)

 		RLIMIT_FSIZE (in module resource)

 		RLIMIT_MEMLOCK (in module resource)

 		RLIMIT_NOFILE (in module resource)

 		RLIMIT_NPROC (in module resource)

 		RLIMIT_OFILE (in module resource)

 		RLIMIT_RSS (in module resource)

 		RLIMIT_STACK (in module resource)

 		RLIMIT_VMEM (in module resource)

 		RLock (class in multiprocessing)

 		RLock() (in module threading)

 		

 		(multiprocessing.managers.SyncManager method)

 		rmd() (ftplib.FTP method)

 		rmdir() (in module os)

 		RMFF

 		rms() (in module audioop)

 		rmtree() (in module shutil)

 		rnopen() (in module bsddb)

 		RO

 		RobotFileParser (class in robotparser)

 		robotparser (module)

 		robots.txt

 		rollback() (sqlite3.Connection method)

 		ROT_FOUR (opcode)

 		ROT_THREE (opcode)

 		ROT_TWO (opcode)

 		rotate() (collections.deque method)

 		

 		(decimal.Context method)

 		(decimal.Decimal method)

 		RotatingFileHandler (class in logging.handlers)

 		round() (built-in function)

 		Rounded (class in decimal)

 		Row (class in sqlite3)

 		row_factory (sqlite3.Connection attribute)

 		rowcount (sqlite3.Cursor attribute)

 		RPAR (in module token)

 		rpartition() (str method)

 		rpc_paths (SimpleXMLRPCServer.SimpleXMLRPCRequestHandler attribute)

 		rpop() (poplib.POP3 method)

 		rset() (poplib.POP3 method)

 		rshift() (in module operator)

 		rsplit() (in module string)

 		

 		(str method)

 		RSQB (in module token)

 		rstrip() (in module string)

 		

 		(str method)

 		rt() (in module turtle)

 		RTLD_LAZY (in module dl)

 		RTLD_NOW (in module dl)

 		ruler (cmd.Cmd attribute)

 		Run script

 		run() (bdb.Bdb method)

 		

 		(distutils.cmd.Command method)

 		(doctest.DocTestRunner method)

 		(hotshot.Profile method)

 		(in module pdb)

 		(in module profile)

 		(multiprocessing.Process method)

 		(pdb.Pdb method)

 		(profile.Profile method)

 		(sched.scheduler method)

 		(threading.Thread method)

 		(trace.Trace method)

 		(unittest.TestCase method)

 		(unittest.TestSuite method)

 		(wsgiref.handlers.BaseHandler method)

 		run_docstring_examples() (in module doctest)

 		run_module() (in module runpy)

 		run_path() (in module runpy)

 		run_script() (modulefinder.ModuleFinder method)

 		run_setup() (in module distutils.core)

 		run_unittest() (in module test.test_support)

 		runcall() (bdb.Bdb method)

 		

 		(hotshot.Profile method)

 		(in module pdb)

 		(pdb.Pdb method)

 		(profile.Profile method)

 		runcode() (code.InteractiveInterpreter method)

 		runctx() (bdb.Bdb method)

 		

 		(hotshot.Profile method)

 		(in module profile)

 		(profile.Profile method)

 		(trace.Trace method)

 		runeval() (bdb.Bdb method)

 		

 		(in module pdb)

 		(pdb.Pdb method)

 		runfunc() (trace.Trace method)

 		runpy (module)

 		runsource() (code.InteractiveInterpreter method)

 		runtime_library_dir_option() (distutils.ccompiler.CCompiler method)

 		RuntimeError

 		

 		exception

 		runtimemodel (in module MacOS)

 		RuntimeWarning

 		RUSAGE_BOTH (in module resource)

 		RUSAGE_CHILDREN (in module resource)

 		RUSAGE_SELF (in module resource)

S

 		

 		S (in module re)

 		S_ENFMT (in module stat)

 		s_eval() (rexec.RExec method)

 		s_exec() (rexec.RExec method)

 		s_execfile() (rexec.RExec method)

 		S_IEXEC (in module stat)

 		S_IFBLK (in module stat)

 		S_IFCHR (in module stat)

 		S_IFDIR (in module stat)

 		S_IFIFO (in module stat)

 		S_IFLNK (in module stat)

 		S_IFMT() (in module stat)

 		S_IFREG (in module stat)

 		S_IFSOCK (in module stat)

 		S_IMODE() (in module stat)

 		s_import() (rexec.RExec method)

 		S_IREAD (in module stat)

 		S_IRGRP (in module stat)

 		S_IROTH (in module stat)

 		S_IRUSR (in module stat)

 		S_IRWXG (in module stat)

 		S_IRWXO (in module stat)

 		S_IRWXU (in module stat)

 		S_ISBLK() (in module stat)

 		S_ISCHR() (in module stat)

 		S_ISDIR() (in module stat)

 		S_ISFIFO() (in module stat)

 		S_ISGID (in module stat)

 		S_ISLNK() (in module stat)

 		S_ISREG() (in module stat)

 		S_ISSOCK() (in module stat)

 		S_ISUID (in module stat)

 		S_ISVTX (in module stat)

 		S_IWGRP (in module stat)

 		S_IWOTH (in module stat)

 		S_IWRITE (in module stat)

 		S_IWUSR (in module stat)

 		S_IXGRP (in module stat)

 		S_IXOTH (in module stat)

 		S_IXUSR (in module stat)

 		s_reload() (rexec.RExec method)

 		s_unload() (rexec.RExec method)

 		safe_substitute() (string.Template method)

 		SafeConfigParser (class in ConfigParser)

 		saferepr() (in module pprint)

 		same_files (filecmp.dircmp attribute)

 		same_quantum() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		samefile() (in module os.path)

 		sameopenfile() (in module os.path)

 		samestat() (in module os.path)

 		sample() (in module random)

 		save() (cookielib.FileCookieJar method)

 		save_bgn() (htmllib.HTMLParser method)

 		save_end() (htmllib.HTMLParser method)

 		SaveKey() (in module _winreg)

 		savetty() (in module curses)

 		SAX2DOM (class in xml.dom.pulldom)

 		SAXException

 		SAXNotRecognizedException

 		SAXNotSupportedException

 		SAXParseException

 		scale() (in module imageop)

 		scaleb() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		scalebarvalues() (FrameWork.ScrolledWindow method)

 		scanf()

 		sched (module)

 		scheduler (class in sched)

 		schema (in module msilib)

 		sci() (in module fpformat)

 		scope, [1]

 		Scrap Manager

 		Screen (class in turtle)

 		screensize() (in module turtle)

 		script_from_examples() (in module doctest)

 		scroll() (curses.window method)

 		scrollbar_callback() (FrameWork.ScrolledWindow method)

 		scrollbars() (FrameWork.ScrolledWindow method)

 		ScrolledCanvas (class in turtle)

 		ScrolledText (module)

 		scrollok() (curses.window method)

 		
 search

 		

 		path, module, [1], [2], [3], [4], [5], [6]

 		search() (imaplib.IMAP4 method)

 		

 		(in module re)

 		(re.RegexObject method)

 		SEARCH_ERROR (in module imp)

 		second (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		section_divider() (multifile.MultiFile method)

 		sections() (ConfigParser.RawConfigParser method)

 		secure (cookielib.Cookie attribute)

 		Secure Hash Algorithm

 		secure hash algorithm, SHA1, SHA224, SHA256, SHA384, SHA512

 		Secure Sockets Layer

 		
 security

 		

 		CGI

 		see() (ttk.Treeview method)

 		seed() (in module random)

 		seek() (bz2.BZ2File method)

 		

 		(chunk.Chunk method)

 		(file method)

 		(io.IOBase method)

 		(io.TextIOBase method)

 		(mmap.mmap method)

 		(multifile.MultiFile method)

 		SEEK_CUR (in module os)

 		

 		(in module posixfile)

 		SEEK_END (in module os)

 		

 		(in module posixfile)

 		SEEK_SET (in module os)

 		

 		(in module posixfile)

 		seekable() (io.IOBase method)

 		segcountproc (C type)

 		Select (class in Tix)

 		select (module)

 		select() (imaplib.IMAP4 method)

 		

 		(in module gl)

 		(in module select)

 		(ttk.Notebook method)

 		selected_alpn_protocol() (ssl.SSLSocket method)

 		selected_npn_protocol() (ssl.SSLSocket method)

 		selection() (ttk.Treeview method)

 		selection_add() (ttk.Treeview method)

 		selection_remove() (ttk.Treeview method)

 		selection_set() (ttk.Treeview method)

 		selection_toggle() (ttk.Treeview method)

 		Semaphore (class in multiprocessing)

 		

 		(class in threading)

 		Semaphore() (multiprocessing.managers.SyncManager method)

 		semaphores, binary

 		SEMI (in module token)

 		send() (aetools.TalkTo method)

 		

 		(asyncore.dispatcher method)

 		(generator method)

 		(httplib.HTTPConnection method)

 		(imaplib.IMAP4 method)

 		(logging.handlers.DatagramHandler method)

 		(logging.handlers.SocketHandler method)

 		(multiprocessing.Connection method)

 		(socket.socket method)

 		send_bytes() (multiprocessing.Connection method)

 		send_error() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		send_flowing_data() (formatter.writer method)

 		send_header() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		send_hor_rule() (formatter.writer method)

 		send_label_data() (formatter.writer method)

 		send_line_break() (formatter.writer method)

 		send_literal_data() (formatter.writer method)

 		send_paragraph() (formatter.writer method)

 		send_response() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		send_signal() (subprocess.Popen method)

 		sendall() (socket.socket method)

 		sendcmd() (ftplib.FTP method)

 		sendfile() (wsgiref.handlers.BaseHandler method)

 		sendmail() (smtplib.SMTP method)

 		sendto() (socket.socket method)

 		sep (in module os)

 		Separator() (in module FrameWork)

 		sequence

 		

 		item

 		iteration

 		object, [1], [2], [3], [4], [5], [6], [7], [8]

 		types, mutable

 		types, operations on, [1]

 		Sequence (class in collections)

 		sequence (in module msilib)

 		sequence2st() (in module parser)

 		sequenceIncludes() (in module operator)

 		SequenceMatcher (class in difflib), [1]

 		SerialCookie (class in Cookie)

 		
 serializing

 		

 		objects

 		serve_forever() (SocketServer.BaseServer method)

 		
 server

 		

 		WWW, [1]

 		server (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		server_activate() (SocketServer.BaseServer method)

 		server_address (SocketServer.BaseServer attribute)

 		server_bind() (SocketServer.BaseServer method)

 		server_close() (SocketServer.BaseServer method)

 		server_software (wsgiref.handlers.BaseHandler attribute)

 		server_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		

 		(SimpleHTTPServer.SimpleHTTPRequestHandler attribute)

 		ServerProxy (class in xmlrpclib)

 		session_stats() (ssl.SSLContext method)

 		
 set

 		

 		display

 		object, [1], [2], [3]

 		set (built-in class)

 		Set (class in collections)

 		

 		(class in sets)

 		Set Breakpoint

 		
 set type

 		

 		object

 		set() (ConfigParser.RawConfigParser method)

 		

 		(ConfigParser.SafeConfigParser method)

 		(Cookie.Morsel method)

 		(EasyDialogs.ProgressBar method)

 		(ossaudiodev.oss_mixer_device method)

 		(test.test_support.EnvironmentVarGuard method)

 		(threading.Event method)

 		(ttk.Combobox method)

 		(ttk.Treeview method)

 		(xml.etree.ElementTree.Element method)

 		set_all()

 		set_allowed_domains() (cookielib.DefaultCookiePolicy method)

 		set_alpn_protocols() (ssl.SSLContext method)

 		set_app() (wsgiref.simple_server.WSGIServer method)

 		set_authorizer() (sqlite3.Connection method)

 		set_blocked_domains() (cookielib.DefaultCookiePolicy method)

 		set_boundary() (email.message.Message method)

 		set_break() (bdb.Bdb method)

 		set_charset() (email.message.Message method)

 		set_children() (ttk.Treeview method)

 		set_ciphers() (ssl.SSLContext method)

 		set_completer() (in module readline)

 		set_completer_delims() (in module readline)

 		set_completion_display_matches_hook() (in module readline)

 		set_continue() (bdb.Bdb method)

 		set_conversion_mode() (in module ctypes)

 		set_cookie() (cookielib.CookieJar method)

 		set_cookie_if_ok() (cookielib.CookieJar method)

 		set_current() (msilib.Feature method)

 		set_date() (mailbox.MaildirMessage method)

 		set_debug() (in module gc)

 		set_debuglevel() (ftplib.FTP method)

 		

 		(httplib.HTTPConnection method)

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		(smtplib.SMTP method)

 		(telnetlib.Telnet method)

 		set_default_type() (email.message.Message method)

 		set_default_verify_paths() (ssl.SSLContext method)

 		set_defaults() (argparse.ArgumentParser method)

 		

 		(optparse.OptionParser method)

 		set_ecdh_curve() (ssl.SSLContext method)

 		set_errno() (in module ctypes)

 		set_event_call_back() (in module fl)

 		set_executable() (in module multiprocessing)

 		set_executables() (distutils.ccompiler.CCompiler method)

 		set_flags() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		set_form_position() (fl.form method)

 		set_from() (mailbox.mboxMessage method)

 		

 		(mailbox.MMDFMessage method)

 		set_graphics_mode() (in module fl)

 		set_history_length() (in module readline)

 		set_include_dirs() (distutils.ccompiler.CCompiler method)

 		set_info() (mailbox.MaildirMessage method)

 		set_labels() (mailbox.BabylMessage method)

 		set_last_error() (in module ctypes)

 		set_libraries() (distutils.ccompiler.CCompiler method)

 		set_library_dirs() (distutils.ccompiler.CCompiler method)

 		SET_LINENO (opcode)

 		set_link_objects() (distutils.ccompiler.CCompiler method)

 		set_literal (2to3 fixer)

 		set_location() (bsddb.bsddbobject method)

 		set_next() (bdb.Bdb method)

 		set_nonstandard_attr() (cookielib.Cookie method)

 		set_npn_protocols() (ssl.SSLContext method)

 		set_ok() (cookielib.CookiePolicy method)

 		set_option_negotiation_callback() (telnetlib.Telnet method)

 		set_output_charset() (gettext.NullTranslations method)

 		set_param() (email.message.Message method)

 		set_pasv() (ftplib.FTP method)

 		set_payload() (email.message.Message method)

 		set_policy() (cookielib.CookieJar method)

 		set_position() (xdrlib.Unpacker method)

 		set_pre_input_hook() (in module readline)

 		set_progress_handler() (sqlite3.Connection method)

 		set_proxy() (urllib2.Request method)

 		set_python_build() (in module distutils.sysconfig)

 		set_quit() (bdb.Bdb method)

 		set_recsrc() (ossaudiodev.oss_mixer_device method)

 		set_return() (bdb.Bdb method)

 		set_runtime_library_dirs() (distutils.ccompiler.CCompiler method)

 		set_seq1() (difflib.SequenceMatcher method)

 		set_seq2() (difflib.SequenceMatcher method)

 		set_seqs() (difflib.SequenceMatcher method)

 		set_sequences() (mailbox.MH method)

 		

 		(mailbox.MHMessage method)

 		set_server_documentation() (DocXMLRPCServer.DocCGIXMLRPCRequestHandler method)

 		

 		(DocXMLRPCServer.DocXMLRPCServer method)

 		set_server_name() (DocXMLRPCServer.DocCGIXMLRPCRequestHandler method)

 		

 		(DocXMLRPCServer.DocXMLRPCServer method)

 		set_server_title() (DocXMLRPCServer.DocCGIXMLRPCRequestHandler method)

 		

 		(DocXMLRPCServer.DocXMLRPCServer method)

 		set_servername_callback() (ssl.SSLContext method)

 		set_spacing() (formatter.formatter method)

 		set_startup_hook() (in module readline)

 		set_step() (bdb.Bdb method)

 		set_subdir() (mailbox.MaildirMessage method)

 		set_terminator() (asynchat.async_chat method)

 		set_threshold() (in module gc)

 		set_trace() (bdb.Bdb method)

 		

 		(in module bdb)

 		(in module pdb)

 		(pdb.Pdb method)

 		set_tunnel() (httplib.HTTPConnection method)

 		set_type() (email.message.Message method)

 		set_unittest_reportflags() (in module doctest)

 		set_unixfrom() (email.message.Message method)

 		set_until() (bdb.Bdb method)

 		set_url() (robotparser.RobotFileParser method)

 		set_usage() (optparse.OptionParser method)

 		set_userptr() (curses.panel.Panel method)

 		set_visible() (mailbox.BabylMessage method)

 		set_wakeup_fd() (in module signal)

 		setacl() (imaplib.IMAP4 method)

 		setannotation() (imaplib.IMAP4 method)

 		setarrowcursor() (in module FrameWork)

 		setattr() (built-in function)

 		setAttribute() (xml.dom.Element method)

 		setAttributeNode() (xml.dom.Element method)

 		setAttributeNodeNS() (xml.dom.Element method)

 		setAttributeNS() (xml.dom.Element method)

 		SetBase() (xml.parsers.expat.xmlparser method)

 		setblocking() (socket.socket method)

 		setByteStream() (xml.sax.xmlreader.InputSource method)

 		setcbreak() (in module tty)

 		setCharacterStream() (xml.sax.xmlreader.InputSource method)

 		setcheckinterval() (in module sys), [1]

 		setcomptype() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setContentHandler() (xml.sax.xmlreader.XMLReader method)

 		setcontext() (in module decimal)

 		

 		(mhlib.MH method)

 		SetCreatorAndType() (in module MacOS)

 		setcurrent() (mhlib.Folder method)

 		setDaemon() (threading.Thread method)

 		setdefault() (dict method)

 		setdefaultencoding() (in module sys)

 		setdefaulttimeout() (in module socket)

 		setdlopenflags() (in module sys)

 		setDocumentLocator() (xml.sax.handler.ContentHandler method)

 		setDTDHandler() (xml.sax.xmlreader.XMLReader method)

 		setegid() (in module os)

 		setEncoding() (xml.sax.xmlreader.InputSource method)

 		setEntityResolver() (xml.sax.xmlreader.XMLReader method)

 		setErrorHandler() (xml.sax.xmlreader.XMLReader method)

 		seteuid() (in module os)

 		setFeature() (xml.sax.xmlreader.XMLReader method)

 		setfirstweekday() (in module calendar)

 		setfmt() (ossaudiodev.oss_audio_device method)

 		setFormatter() (logging.Handler method)

 		setframerate() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setgid() (in module os)

 		setgroups() (in module os)

 		seth() (in module turtle)

 		setheading() (in module turtle)

 		SetInteger() (msilib.Record method)

 		setitem() (in module operator)

 		setitimer() (in module signal)

 		setlast() (mhlib.Folder method)

 		setLevel() (logging.Handler method)

 		

 		(logging.Logger method)

 		setliteral() (sgmllib.SGMLParser method)

 		setlocale() (in module locale)

 		setLocale() (xml.sax.xmlreader.XMLReader method)

 		setLoggerClass() (in module logging)

 		setlogmask() (in module syslog)

 		setmark() (aifc.aifc method)

 		setMaxConns() (urllib2.CacheFTPHandler method)

 		setmode() (in module msvcrt)

 		setName() (threading.Thread method)

 		setnchannels() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setnframes() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setnomoretags() (sgmllib.SGMLParser method)

 		setoption() (in module jpeg)

 		SetParamEntityParsing() (xml.parsers.expat.xmlparser method)

 		setparameters() (ossaudiodev.oss_audio_device method)

 		setparams() (aifc.aifc method)

 		

 		(in module al)

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setpassword() (zipfile.ZipFile method)

 		setpath() (in module fm)

 		setpgid() (in module os)

 		setpgrp() (in module os)

 		setpos() (aifc.aifc method)

 		

 		(in module turtle)

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		setposition() (in module turtle)

 		setprofile() (in module sys)

 		

 		(in module threading)

 		SetProperty() (msilib.SummaryInformation method)

 		setProperty() (xml.sax.xmlreader.XMLReader method)

 		setPublicId() (xml.sax.xmlreader.InputSource method)

 		setquota() (imaplib.IMAP4 method)

 		setraw() (in module tty)

 		setrecursionlimit() (in module sys)

 		setregid() (in module os)

 		setresgid() (in module os)

 		setresuid() (in module os)

 		setreuid() (in module os)

 		setrlimit() (in module resource)

 		sets (module)

 		setsampwidth() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setscrreg() (curses.window method)

 		setsid() (in module os)

 		setslice() (in module operator)

 		setsockopt() (socket.socket method)

 		setstate() (in module random)

 		SetStream() (msilib.Record method)

 		SetString() (msilib.Record method)

 		setSystemId() (xml.sax.xmlreader.InputSource method)

 		setsyx() (in module curses)

 		setTarget() (logging.handlers.MemoryHandler method)

 		settiltangle() (in module turtle)

 		settimeout() (socket.socket method)

 		setTimeout() (urllib2.CacheFTPHandler method)

 		settrace() (in module sys)

 		

 		(in module threading)

 		settscdump() (in module sys)

 		settypecreator() (ic.IC method)

 		

 		(in module ic)

 		setuid() (in module os)

 		setundobuffer() (in module turtle)

 		setup() (in module distutils.core)

 		

 		(SocketServer.BaseRequestHandler method)

 		(in module turtle)

 		setUp() (unittest.TestCase method)

 		setup_environ() (wsgiref.handlers.BaseHandler method)

 		SETUP_EXCEPT (opcode)

 		SETUP_FINALLY (opcode)

 		SETUP_LOOP (opcode)

 		setup_testing_defaults() (in module wsgiref.util)

 		SETUP_WITH (opcode)

 		setUpClass() (unittest.TestCase method)

 		setupterm() (in module curses)

 		SetValue() (in module _winreg)

 		SetValueEx() (in module _winreg)

 		setvbuf()

 		setwatchcursor() (in module FrameWork)

 		setworldcoordinates() (in module turtle)

 		setx() (in module turtle)

 		sety() (in module turtle)

 		SF_APPEND (in module stat)

 		SF_ARCHIVED (in module stat)

 		SF_IMMUTABLE (in module stat)

 		SF_NOUNLINK (in module stat)

 		SF_SNAPSHOT (in module stat)

 		SGML

 		
 sgmllib

 		

 		module

 		sgmllib (module)

 		SGMLParseError

 		SGMLParser (class in sgmllib)

 		

 		(in module sgmllib)

 		sha (module)

 		Shape (class in turtle)

 		shape (memoryview attribute)

 		shape() (in module turtle)

 		shapesize() (in module turtle)

 		shared_object_filename() (distutils.ccompiler.CCompiler method)

 		Shelf (class in shelve)

 		
 shelve

 		

 		module

 		shelve (module)

 		shift() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		shift_path_info() (in module wsgiref.util)

 		
 shifting

 		

 		operation

 		operations

 		shlex (class in shlex)

 		

 		(module)

 		shortDescription() (unittest.TestCase method)

 		shouldFlush() (logging.handlers.BufferingHandler method)

 		

 		(logging.handlers.MemoryHandler method)

 		shouldStop (unittest.TestResult attribute)

 		show() (curses.panel.Panel method)

 		show_choice() (in module fl)

 		show_compilers() (in module distutils.ccompiler)

 		show_file_selector() (in module fl)

 		show_form() (fl.form method)

 		show_input() (in module fl)

 		show_message() (in module fl)

 		show_question() (in module fl)

 		

 		showsyntaxerror() (code.InteractiveInterpreter method)

 		showtraceback() (code.InteractiveInterpreter method)

 		showturtle() (in module turtle)

 		showwarning() (in module warnings)

 		shuffle() (in module random)

 		shutdown() (imaplib.IMAP4 method)

 		

 		(SocketServer.BaseServer method)

 		(in module findertools)

 		(in module logging)

 		(multiprocessing.managers.BaseManager method)

 		(socket.socket method)

 		shutil (module)

 		SIG_DFL (in module signal)

 		SIG_IGN (in module signal)

 		SIGINT, [1]

 		siginterrupt() (in module signal)

 		
 signal

 		

 		module, [1]

 		signal (module)

 		signal() (in module signal)

 		
 simple

 		

 		statement

 		Simple Mail Transfer Protocol

 		SimpleCookie (class in Cookie)

 		simplefilter() (in module warnings)

 		SimpleHandler (class in wsgiref.handlers)

 		SimpleHTTPRequestHandler (class in SimpleHTTPServer)

 		
 SimpleHTTPServer

 		

 		module

 		SimpleHTTPServer (module)

 		SimpleXMLRPCRequestHandler (class in SimpleXMLRPCServer)

 		SimpleXMLRPCServer (class in SimpleXMLRPCServer)

 		

 		(module)

 		sin() (in module cmath)

 		

 		(in module math)

 		
 singleton

 		

 		tuple

 		sinh() (in module cmath)

 		

 		(in module math)

 		site (module)

 		
 site command line option

 		

 		--user-base

 		--user-site

 		
 site-packages

 		

 		directory

 		
 site-python

 		

 		directory

 		
 sitecustomize

 		

 		module

 		size (struct.Struct attribute)

 		

 		(tarfile.TarInfo attribute)

 		size() (ftplib.FTP method)

 		

 		(mmap.mmap method)

 		Sized (class in collections)

 		sizeof() (in module ctypes)

 		SKIP (in module doctest)

 		skip() (chunk.Chunk method)

 		

 		(in module unittest)

 		skipIf() (in module unittest)

 		skipinitialspace (csv.Dialect attribute)

 		skipped (unittest.TestResult attribute)

 		skippedEntity() (xml.sax.handler.ContentHandler method)

 		SkipTest

 		skipTest() (unittest.TestCase method)

 		skipUnless() (in module unittest)

 		SLASH (in module token)

 		SLASHEQUAL (in module token)

 		slave() (nntplib.NNTP method)

 		sleep() (in module findertools)

 		

 		(in module time)

 		slice, [1]

 		

 		assignment

 		built-in function, [1], [2]

 		object

 		operation

 		slice (built-in class)

 		SLICE+0 (opcode)

 		SLICE+1 (opcode)

 		SLICE+2 (opcode)

 		SLICE+3 (opcode)

 		SliceType (in module types), [1]

 		slicing, [1], [2]

 		

 		assignment

 		extended

 		SmartCookie (class in Cookie)

 		
 SMTP

 		

 		protocol

 		SMTP (class in smtplib)

 		SMTP_SSL (class in smtplib)

 		SMTPAuthenticationError

 		SMTPConnectError

 		smtpd (module)

 		SMTPDataError

 		SMTPException

 		SMTPHandler (class in logging.handlers)

 		SMTPHeloError

 		smtplib (module)

 		SMTPRecipientsRefused

 		SMTPResponseException

 		SMTPSenderRefused

 		SMTPServer (class in smtpd)

 		SMTPServerDisconnected

 		SND_ALIAS (in module winsound)

 		SND_ASYNC (in module winsound)

 		SND_FILENAME (in module winsound)

 		SND_LOOP (in module winsound)

 		SND_MEMORY (in module winsound)

 		SND_NODEFAULT (in module winsound)

 		SND_NOSTOP (in module winsound)

 		SND_NOWAIT (in module winsound)

 		SND_PURGE (in module winsound)

 		sndhdr (module)

 		sniff() (csv.Sniffer method)

 		Sniffer (class in csv)

 		SOCK_DGRAM (in module socket)

 		SOCK_RAW (in module socket)

 		SOCK_RDM (in module socket)

 		SOCK_SEQPACKET (in module socket)

 		SOCK_STREAM (in module socket)

 		
 socket

 		

 		module, [1]

 		object

 		socket (module)

 		

 		(SocketServer.BaseServer attribute)

 		socket() (imaplib.IMAP4 method)

 		

 		(in module socket), [1]

 		socket_type (SocketServer.BaseServer attribute)

 		SocketHandler (class in logging.handlers)

 		socketpair() (in module socket)

 		SocketServer (module)

 		SocketType (in module socket)

 		softspace (file attribute), [1]

 		SOMAXCONN (in module socket)

 		sort() (imaplib.IMAP4 method)

 		

 		(list method)

 		sort_stats() (pstats.Stats method)

 		sorted() (built-in function)

 		sortTestMethodsUsing (unittest.TestLoader attribute)

 		source (doctest.Example attribute)

 		

 		(shlex.shlex attribute)

 		source character set

 		sourcehook() (shlex.shlex method)

 		space

 		span() (re.MatchObject method)

 		spawn() (distutils.ccompiler.CCompiler method)

 		

 		(in module pty)

 		spawnl() (in module os)

 		spawnle() (in module os)

 		spawnlp() (in module os)

 		spawnlpe() (in module os)

 		spawnv() (in module os)

 		spawnve() (in module os)

 		spawnvp() (in module os)

 		spawnvpe() (in module os)

 		
 special

 		

 		attribute

 		attribute, generic

 		special method

 		specified_attributes (xml.parsers.expat.xmlparser attribute)

 		speed() (in module turtle)

 		

 		(ossaudiodev.oss_audio_device method)

 		splash() (in module MacOS)

 		split() (in module os.path)

 		

 		(in module re)

 		(in module shlex)

 		(in module string)

 		(re.RegexObject method)

 		(str method)

 		split_quoted() (in module distutils.util)

 		splitdrive() (in module os.path)

 		splitext() (in module os.path)

 		splitfields() (in module string)

 		splitlines() (str method)

 		SplitResult (class in urlparse)

 		splitunc() (in module os.path)

 		SpooledTemporaryFile() (in module tempfile)

 		sprintf-style formatting

 		spwd (module)

 		sqlite3 (module)

 		sqlite_version (in module sqlite3)

 		sqlite_version_info (in module sqlite3)

 		sqrt() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module cmath)

 		(in module math)

 		SSL

 		ssl (module)

 		ssl() (imaplib.IMAP4_SSL method)

 		ssl_version (ftplib.FTP_TLS attribute)

 		SSLContext (class in ssl)

 		SSLEOFError

 		SSLError

 		SSLSyscallError

 		SSLWantReadError

 		SSLWantWriteError

 		SSLZeroReturnError

 		st() (in module turtle)

 		st2list() (in module parser)

 		st2tuple() (in module parser)

 		ST_ATIME (in module stat)

 		ST_CTIME (in module stat)

 		ST_DEV (in module stat)

 		ST_GID (in module stat)

 		ST_INO (in module stat)

 		ST_MODE (in module stat)

 		ST_MTIME (in module stat)

 		ST_NLINK (in module stat)

 		ST_SIZE (in module stat)

 		ST_UID (in module stat)

 		
 stack

 		

 		execution

 		trace

 		stack viewer

 		stack() (in module inspect)

 		stack_size() (in module thread)

 		

 		(in module threading)

 		
 stackable

 		

 		streams

 		stamp() (in module turtle)

 		
 standard

 		

 		output, [1]

 		Standard C

 		standard input

 		standard_b64decode() (in module base64)

 		standard_b64encode() (in module base64)

 		StandardError

 		standarderror (2to3 fixer)

 		standend() (curses.window method)

 		standout() (curses.window method)

 		STAR (in module token)

 		STAREQUAL (in module token)

 		starmap() (in module itertools)

 		start (exceptions.UnicodeError attribute)

 		

 		(slice object attribute), [1]

 		start() (hotshot.Profile method)

 		

 		(multiprocessing.Process method)

 		(multiprocessing.managers.BaseManager method)

 		(re.MatchObject method)

 		(threading.Thread method)

 		(ttk.Progressbar method)

 		(xml.etree.ElementTree.TreeBuilder method)

 		start_color() (in module curses)

 		start_component() (msilib.Directory method)

 		start_new_thread() (in module thread)

 		startbody() (MimeWriter.MimeWriter method)

 		StartCdataSectionHandler() (xml.parsers.expat.xmlparser method)

 		StartDoctypeDeclHandler() (xml.parsers.expat.xmlparser method)

 		startDocument() (xml.sax.handler.ContentHandler method)

 		startElement() (xml.sax.handler.ContentHandler method)

 		StartElementHandler() (xml.parsers.expat.xmlparser method)

 		startElementNS() (xml.sax.handler.ContentHandler method)

 		STARTF_USESHOWWINDOW (in module subprocess)

 		STARTF_USESTDHANDLES (in module subprocess)

 		startfile() (in module os)

 		startmultipartbody() (MimeWriter.MimeWriter method)

 		StartNamespaceDeclHandler() (xml.parsers.expat.xmlparser method)

 		startPrefixMapping() (xml.sax.handler.ContentHandler method)

 		startswith() (str method)

 		startTest() (unittest.TestResult method)

 		startTestRun() (unittest.TestResult method)

 		starttls() (smtplib.SMTP method)

 		STARTUPINFO (class in subprocess)

 		
 stat

 		

 		module

 		stat (module)

 		stat() (in module os)

 		

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		stat_float_times() (in module os)

 		state() (ttk.Widget method)

 		statement

 		

 		*, [1]

 		**, [1]

 		@

 		assert, [1]

 		assignment, [1]

 		assignment, augmented

 		break, [1], [2], [3], [4]

 		class

 		compound

 		continue, [1], [2], [3], [4]

 		def

 		del, [1], [2], [3]

 		except

 		exec, [1], [2]

 		expression

 		for, [1], [2], [3], [4]

 		from

 		future

 		global, [1], [2]

 		if, [1]

 		import, [1], [2], [3], [4]

 		loop, [1], [2], [3]

 		pass

 		print, [1], [2]

 		raise, [1]

 		return, [1], [2]

 		simple

 		try, [1], [2]

 		while, [1], [2], [3]

 		with, [1]

 		yield

 		statement grouping

 		
 staticmethod

 		

 		built-in function

 		staticmethod() (built-in function)

 		Stats (class in pstats)

 		status (httplib.HTTPResponse attribute)

 		status() (imaplib.IMAP4 method)

 		
 statvfs

 		

 		module

 		statvfs (module)

 		statvfs() (in module os)

 		STD_ERROR_HANDLE (in module subprocess)

 		STD_INPUT_HANDLE (in module subprocess)

 		STD_OUTPUT_HANDLE (in module subprocess)

 		StdButtonBox (class in Tix)

 		stderr (in module sys), [1], [2]

 		

 		(subprocess.Popen attribute)

 		stdin (in module sys), [1], [2]

 		

 		(subprocess.Popen attribute)

 		stdio

 		STDOUT (in module subprocess)

 		stdout (in module sys), [1], [2], [3]

 		

 		(subprocess.Popen attribute)

 		Stein, Greg

 		step (slice object attribute), [1]

 		step() (ttk.Progressbar method)

 		stereocontrols() (ossaudiodev.oss_mixer_device method)

 		STILL (in module cd)

 		stop (slice object attribute), [1]

 		stop() (hotshot.Profile method)

 		

 		(ttk.Progressbar method)

 		(unittest.TestResult method)

 		STOP_CODE (opcode)

 		stop_here() (bdb.Bdb method)

 		StopIteration

 		

 		exception, [1]

 		stopListening() (in module logging.config)

 		stopTest() (unittest.TestResult method)

 		stopTestRun() (unittest.TestResult method)

 		storbinary() (ftplib.FTP method)

 		store() (imaplib.IMAP4 method)

 		STORE_ACTIONS (optparse.Option attribute)

 		STORE_ATTR (opcode)

 		STORE_DEREF (opcode)

 		STORE_FAST (opcode)

 		STORE_GLOBAL (opcode)

 		STORE_MAP (opcode)

 		STORE_NAME (opcode)

 		STORE_SLICE+0 (opcode)

 		STORE_SLICE+1 (opcode)

 		STORE_SLICE+2 (opcode)

 		STORE_SLICE+3 (opcode)

 		STORE_SUBSCR (opcode)

 		storlines() (ftplib.FTP method)

 		
 str

 		

 		built-in function, [1], [2], [3]

 		format

 		str (built-in class)

 		str() (in module locale)

 		strcoll() (in module locale)

 		StreamError

 		StreamHandler (class in logging)

 		StreamReader (class in codecs)

 		StreamReaderWriter (class in codecs)

 		StreamRecoder (class in codecs)

 		StreamRequestHandler (class in SocketServer)

 		streams

 		

 		stackable

 		StreamWriter (class in codecs)

 		strerror()

 		

 		(in module os)

 		strftime() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		(in module time)

 		strict (csv.Dialect attribute)

 		strict_domain (cookielib.DefaultCookiePolicy attribute)

 		strict_errors() (in module codecs)

 		strict_ns_domain (cookielib.DefaultCookiePolicy attribute)

 		strict_ns_set_initial_dollar (cookielib.DefaultCookiePolicy attribute)

 		strict_ns_set_path (cookielib.DefaultCookiePolicy attribute)

 		strict_ns_unverifiable (cookielib.DefaultCookiePolicy attribute)

 		strict_rfc2965_unverifiable (cookielib.DefaultCookiePolicy attribute)

 		strides (memoryview attribute)

 		
 string

 		

 		Unicode

 		comparison

 		conversion, [1], [2]

 		formatting

 		interpolation

 		item

 		methods

 		module, [1], [2]

 		object, [1], [2], [3], [4]

 		STRING (in module token)

 		string (module)

 		

 		(re.MatchObject attribute)

 		string literal

 		string_at() (in module ctypes)

 		StringIO (class in io)

 		

 		(class in StringIO)

 		(module)

 		StringIO() (in module cStringIO)

 		stringprep (module)

 		strings, documentation, [1]

 		StringType (in module types), [1]

 		StringTypes (in module types)

 		strip() (in module string)

 		

 		(str method)

 		strip_dirs() (pstats.Stats method)

 		stripspaces (curses.textpad.Textbox attribute)

 		strptime() (datetime.datetime class method)

 		

 		(in module time)

 		strtobool() (in module distutils.util)

 		
 struct

 		

 		module

 		Struct (class in struct)

 		struct (module)

 		struct sequence

 		struct_time (class in time)

 		Structure (class in ctypes)

 		
 structures

 		

 		C

 		strxfrm() (in module locale)

 		STType (in module parser)

 		
 style

 		

 		coding

 		Style (class in ttk)

 		StyledText (class in aetypes)

 		sub() (in module operator)

 		

 		(in module re)

 		(re.RegexObject method)

 		sub_commands (distutils.cmd.Command attribute)

 		
 subclassing

 		

 		immutable types

 		subdirs (filecmp.dircmp attribute)

 		SubElement() (in module xml.etree.ElementTree)

 		SubMenu() (in module FrameWork)

 		subn() (in module re)

 		

 		(re.RegexObject method)

 		Subnormal (class in decimal)

 		subpad() (curses.window method)

 		subprocess (module)

 		subscribe() (imaplib.IMAP4 method)

 		
 subscript

 		

 		assignment

 		operation

 		subscription, [1], [2], [3]

 		

 		assignment

 		subsequent_indent (textwrap.TextWrapper attribute)

 		subst_vars() (in module distutils.util)

 		substitute() (string.Template method)

 		subtract() (collections.Counter method)

 		

 		(decimal.Context method)

 		subtraction

 		subversion (in module sys)

 		subwin() (curses.window method)

 		successful() (multiprocessing.pool.AsyncResult method)

 		suffix_map (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		suite

 		suite() (in module parser)

 		suiteClass (unittest.TestLoader attribute)

 		sum() (built-in function)

 		sum_list()

 		sum_sequence(), [1]

 		summarize() (doctest.DocTestRunner method)

 		sunau (module)

 		
 SUNAUDIODEV

 		

 		module

 		
 sunaudiodev

 		

 		module

 		SUNAUDIODEV (module)

 		sunaudiodev (module)

 		super (pyclbr.Class attribute)

 		super() (built-in function)

 		supports_unicode_filenames (in module os.path)

 		
 suppression

 		

 		newline

 		SW_HIDE (in module subprocess)

 		swapcase() (in module string)

 		

 		(str method)

 		sym() (dl.dl method)

 		sym_name (in module symbol)

 		Symbol (class in symtable)

 		symbol (module)

 		SymbolTable (class in symtable)

 		symlink() (in module os)

 		symmetric_difference() (set method)

 		symmetric_difference_update() (set method)

 		symtable (module)

 		symtable() (in module symtable)

 		sync() (bsddb.bsddbobject method)

 		

 		(dbhash.dbhash method)

 		(dumbdbm.dumbdbm method)

 		(in module gdbm)

 		(ossaudiodev.oss_audio_device method)

 		(shelve.Shelf method)

 		syncdown() (curses.window method)

 		synchronized() (in module multiprocessing.sharedctypes)

 		SyncManager (class in multiprocessing.managers)

 		syncok() (curses.window method)

 		syncup() (curses.window method)

 		syntax, [1]

 		SyntaxErr

 		SyntaxError

 		SyntaxWarning

 		
 sys

 		

 		module, [1], [2], [3], [4], [5], [6]

 		sys (module)

 		sys.exc_info

 		sys.exc_traceback

 		sys.last_traceback

 		sys.meta_path

 		sys.modules

 		sys.path

 		sys.path_hooks

 		sys.path_importer_cache

 		sys.stderr

 		sys.stdin

 		sys.stdout

 		sys_exc (2to3 fixer)

 		sys_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		SysBeep() (in module MacOS)

 		sysconf() (in module os)

 		sysconf_names (in module os)

 		sysconfig (module)

 		syslog (module)

 		syslog() (in module syslog)

 		SysLogHandler (class in logging.handlers)

 		system() (in module os)

 		

 		(in module platform)

 		system_alias() (in module platform)

 		SystemError

 		

 		(built-in exception), [1]

 		SystemExit

 		

 		(built-in exception)

 		systemId (xml.dom.DocumentType attribute)

 		SystemRandom (class in random)

 		SystemRoot

T

 		

 		T_FMT (in module locale)

 		T_FMT_AMPM (in module locale)

 		tab

 		tab() (ttk.Notebook method)

 		TabError

 		tabnanny (module)

 		tabs() (ttk.Notebook method)

 		
 tabular

 		

 		data

 		tag (xml.etree.ElementTree.Element attribute)

 		tag_bind() (ttk.Treeview method)

 		tag_configure() (ttk.Treeview method)

 		tag_has() (ttk.Treeview method)

 		tagName (xml.dom.Element attribute)

 		tail (xml.etree.ElementTree.Element attribute)

 		takewhile() (in module itertools)

 		TalkTo (class in aetools)

 		tan() (in module cmath)

 		

 		(in module math)

 		tanh() (in module cmath)

 		

 		(in module math)

 		TarError

 		TarFile (class in tarfile), [1]

 		tarfile (module)

 		TarFileCompat (class in tarfile)

 		TarFileCompat.TAR_GZIPPED (in module tarfile)

 		TarFileCompat.TAR_PLAIN (in module tarfile)

 		target

 		

 		deletion

 		list, [1]

 		list assignment

 		list, deletion

 		loop control

 		target (xml.dom.ProcessingInstruction attribute)

 		TarInfo (class in tarfile)

 		task_done() (multiprocessing.JoinableQueue method)

 		

 		(Queue.Queue method)

 		tb_frame (traceback attribute)

 		tb_lasti (traceback attribute)

 		tb_lineno (traceback attribute)

 		tb_lineno() (in module traceback)

 		tb_next (traceback attribute)

 		tcdrain() (in module termios)

 		tcflow() (in module termios)

 		tcflush() (in module termios)

 		tcgetattr() (in module termios)

 		tcgetpgrp() (in module os)

 		Tcl() (in module Tkinter)

 		TCL_LIBRARY

 		TCPServer (class in SocketServer)

 		tcsendbreak() (in module termios)

 		tcsetattr() (in module termios)

 		tcsetpgrp() (in module os)

 		tearDown() (unittest.TestCase method)

 		tearDownClass() (unittest.TestCase method)

 		tee() (in module itertools)

 		tell() (aifc.aifc method), [1]

 		

 		(bz2.BZ2File method)

 		(chunk.Chunk method)

 		(file method)

 		(io.IOBase method)

 		(io.TextIOBase method)

 		(mmap.mmap method)

 		(multifile.MultiFile method)

 		(sunau.AU_read method)

 		(sunau.AU_write method)

 		(wave.Wave_read method)

 		(wave.Wave_write method)

 		Telnet (class in telnetlib)

 		telnetlib (module)

 		TEMP

 		tempdir (in module tempfile)

 		tempfile (module)

 		Template (class in pipes)

 		

 		(class in string)

 		template (in module tempfile)

 		

 		(string.Template attribute)

 		tempnam() (in module os)

 		
 temporary

 		

 		file

 		file name

 		TemporaryFile() (in module tempfile)

 		TERM, [1]

 		termattrs() (in module curses)

 		terminate() (multiprocessing.pool.multiprocessing.Pool method)

 		

 		(multiprocessing.Process method)

 		(subprocess.Popen method)

 		termination model

 		termios (module)

 		termname() (in module curses)

 		
 ternary

 		

 		operator

 		
 test

 		

 		identity

 		membership

 		test (doctest.DocTestFailure attribute)

 		

 		(doctest.UnexpectedException attribute)

 		(module)

 		test() (in module cgi)

 		

 		(mutex.mutex method)

 		test.test_support (module)

 		testandset() (mutex.mutex method)

 		TestCase (class in unittest)

 		TestFailed

 		testfile() (in module doctest)

 		TESTFN (in module test.test_support)

 		TestLoader (class in unittest)

 		testMethodPrefix (unittest.TestLoader attribute)

 		testmod() (in module doctest)

 		TestResult (class in unittest)

 		tests (in module imghdr)

 		testsource() (in module doctest)

 		testsRun (unittest.TestResult attribute)

 		TestSuite (class in unittest)

 		testzip() (zipfile.ZipFile method)

 		text (in module msilib)

 		

 		(xml.etree.ElementTree.Element attribute)

 		text() (msilib.Dialog method)

 		text_factory (sqlite3.Connection attribute)

 		Textbox (class in curses.textpad)

 		TextCalendar (class in calendar)

 		textdomain() (in module gettext)

 		TextFile (class in distutils.text_file)

 		TextIOBase (class in io)

 		TextIOWrapper (class in io)

 		TextTestResult (class in unittest)

 		TextTestRunner (class in unittest)

 		textwrap (module)

 		TextWrapper (class in textwrap)

 		theme_create() (ttk.Style method)

 		theme_names() (ttk.Style method)

 		theme_settings() (ttk.Style method)

 		theme_use() (ttk.Style method)

 		THOUSEP (in module locale)

 		
 thread

 		

 		module

 		Thread (class in threading)

 		thread (module)

 		thread() (imaplib.IMAP4 method)

 		ThreadError

 		threading (module)

 		ThreadingMixIn (class in SocketServer)

 		ThreadingTCPServer (class in SocketServer)

 		ThreadingUDPServer (class in SocketServer)

 		
 threads

 		

 		IRIX

 		POSIX

 		throw (2to3 fixer)

 		throw() (generator method)

 		tie() (in module fl)

 		tigetflag() (in module curses)

 		tigetnum() (in module curses)

 		tigetstr() (in module curses)

 		TILDE (in module token)

 		tilt() (in module turtle)

 		tiltangle() (in module turtle)

 		time (class in datetime)

 		

 		(module)

 		time() (datetime.datetime method)

 		

 		(in module time)

 		Time2Internaldate() (in module imaplib)

 		timedelta (class in datetime)

 		TimedRotatingFileHandler (class in logging.handlers)

 		timegm() (in module calendar)

 		timeit (module)

 		
 timeit command line option

 		

 		-c, --clock

 		-h, --help

 		-n N, --number=N

 		-r N, --repeat=N

 		-s S, --setup=S

 		-t, --time

 		-v, --verbose

 		timeit() (in module timeit)

 		

 		(timeit.Timer method)

 		timeout

 		

 		(SocketServer.BaseServer attribute)

 		timeout() (curses.window method)

 		Timer (class in threading)

 		

 		(class in timeit)

 		times() (in module os)

 		timetuple() (datetime.date method)

 		

 		(datetime.datetime method)

 		timetz() (datetime.datetime method)

 		timezone (in module time)

 		title() (EasyDialogs.ProgressBar method)

 		

 		(in module turtle)

 		(str method)

 		Tix

 		

 		(class in Tix)

 		(module)

 		tix_addbitmapdir() (Tix.tixCommand method)

 		

 		tix_cget() (Tix.tixCommand method)

 		tix_configure() (Tix.tixCommand method)

 		tix_filedialog() (Tix.tixCommand method)

 		tix_getbitmap() (Tix.tixCommand method)

 		tix_getimage() (Tix.tixCommand method)

 		TIX_LIBRARY

 		tix_option_get() (Tix.tixCommand method)

 		tix_resetoptions() (Tix.tixCommand method)

 		tixCommand (class in Tix)

 		Tk

 		

 		(class in Tkinter)

 		Tk Option Data Types

 		TK_LIBRARY

 		Tkinter

 		

 		(module)

 		TList (class in Tix)

 		TLS

 		TMP, [1]

 		TMP_MAX (in module os)

 		TMPDIR, [1]

 		tmpfile() (in module os)

 		tmpnam() (in module os)

 		to_eng_string() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		to_integral() (decimal.Decimal method)

 		to_integral_exact() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		to_integral_value() (decimal.Decimal method)

 		to_sci_string() (decimal.Context method)

 		to_splittable() (email.charset.Charset method)

 		ToASCII() (in module encodings.idna)

 		tobuf() (tarfile.TarInfo method)

 		tobytes() (memoryview method)

 		tochild (popen2.Popen3 attribute)

 		today() (datetime.date class method)

 		

 		(datetime.datetime class method)

 		tofile() (array.array method)

 		tok_name (in module token)

 		token

 		

 		(module)

 		(shlex.shlex attribute)

 		tokeneater() (in module tabnanny)

 		TokenError

 		tokenize (module)

 		tokenize() (in module tokenize)

 		tolist() (array.array method)

 		

 		(memoryview method)

 		(parser.ST method)

 		tomono() (in module audioop)

 		toordinal() (datetime.date method)

 		

 		(datetime.datetime method)

 		top() (curses.panel.Panel method)

 		

 		(poplib.POP3 method)

 		top_panel() (in module curses.panel)

 		toprettyxml() (xml.dom.minidom.Node method)

 		tostereo() (in module audioop)

 		tostring() (array.array method)

 		

 		(in module xml.etree.ElementTree)

 		tostringlist() (in module xml.etree.ElementTree)

 		total_changes (sqlite3.Connection attribute)

 		total_ordering() (in module functools)

 		total_seconds() (datetime.timedelta method)

 		totuple() (parser.ST method)

 		touched() (in module macostools)

 		touchline() (curses.window method)

 		touchwin() (curses.window method)

 		tounicode() (array.array method)

 		ToUnicode() (in module encodings.idna)

 		tovideo() (in module imageop)

 		towards() (in module turtle)

 		toxml() (xml.dom.minidom.Node method)

 		tp_as_mapping (C member)

 		tp_as_number (C member)

 		tp_as_sequence (C member)

 		tparm() (in module curses)

 		
 trace

 		

 		stack

 		Trace (class in trace)

 		trace (module)

 		
 trace command line option

 		

 		--help

 		--ignore-dir=<dir>

 		--ignore-module=<mod>

 		--version

 		-C, --coverdir=<dir>

 		-R, --no-report

 		-T, --trackcalls

 		-c, --count

 		-f, --file=<file>

 		-g, --timing

 		-l, --listfuncs

 		-m, --missing

 		-r, --report

 		-s, --summary

 		-t, --trace

 		trace function, [1], [2]

 		trace() (in module inspect)

 		trace_dispatch() (bdb.Bdb method)

 		
 traceback

 		

 		object, [1], [2], [3], [4]

 		traceback (module)

 		traceback_limit (wsgiref.handlers.BaseHandler attribute)

 		tracebacklimit (in module sys)

 		
 tracebacks

 		

 		in CGI scripts

 		TracebackType (in module types)

 		tracer() (in module turtle), [1]

 		
 trailing

 		

 		comma, [1]

 		transfercmd() (ftplib.FTP method)

 		TransientResource (class in test.test_support)

 		translate() (in module fnmatch)

 		

 		(in module string)

 		(str method)

 		translation() (in module gettext)

 		Transport Layer Security

 		traverseproc (C type)

 		Tree (class in Tix)

 		TreeBuilder (class in xml.etree.ElementTree)

 		Treeview (class in ttk)

 		triangular() (in module random)

 		triple-quoted string, [1]

 		True, [1], [2]

 		true

 		True (built-in variable)

 		truediv() (in module operator)

 		trunc() (in module math), [1]

 		truncate() (file method)

 		

 		(io.IOBase method)

 		
 truth

 		

 		value

 		truth() (in module operator)

 		
 try

 		

 		statement, [1], [2]

 		ttk

 		

 		(module)

 		ttob() (in module imgfile)

 		
 tty

 		

 		I/O control

 		tty (module)

 		ttyname() (in module os)

 		
 tuple

 		

 		built-in function, [1]

 		display

 		empty, [1]

 		object, [1], [2], [3], [4], [5]

 		singleton

 		tuple() (built-in function)

 		tuple2st() (in module parser)

 		tuple_params (2to3 fixer)

 		TupleType (in module types), [1]

 		turnoff_sigfpe() (in module fpectl)

 		turnon_sigfpe() (in module fpectl)

 		Turtle (class in turtle)

 		turtle (module)

 		turtles() (in module turtle)

 		TurtleScreen (class in turtle)

 		turtlesize() (in module turtle)

 		Tutt, Bill

 		type, [1]

 		

 		Boolean

 		built-in function, [1], [2], [3]

 		data

 		hierarchy

 		immutable data

 		object, [1], [2]

 		operations on dictionary

 		operations on list

 		type (built-in class)

 		Type (class in aetypes)

 		type (optparse.Option attribute)

 		

 		(socket.socket attribute)

 		(tarfile.TarInfo attribute)

 		type of an object

 		TYPE_CHECKER (optparse.Option attribute)

 		typeahead() (in module curses)

 		typecode (array.array attribute)

 		TYPED_ACTIONS (optparse.Option attribute)

 		typed_subpart_iterator() (in module email.iterators)

 		TypeError

 		

 		exception

 		
 types

 		

 		built-in

 		module

 		mutable sequence

 		operations on integer

 		operations on mapping

 		operations on numeric

 		operations on sequence, [1]

 		types (2to3 fixer)

 		

 		(module)

 		TYPES (optparse.Option attribute)

 		types, internal

 		types_map (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		types_map_inv (mimetypes.MimeTypes attribute)

 		TypeType (in module types), [1]

 		TZ, [1], [2], [3], [4]

 		tzinfo (class in datetime)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		tzname (in module time)

 		tzname() (datetime.datetime method)

 		

 		(datetime.time method)

 		(datetime.tzinfo method)

 		tzset() (in module time)

U

 		

 		U (in module re)

 		u-LAW, [1], [2], [3]

 		ucd_3_2_0 (in module unicodedata)

 		udata (select.kevent attribute)

 		UDPServer (class in SocketServer)

 		UF_APPEND (in module stat)

 		UF_COMPRESSED (in module stat)

 		UF_HIDDEN (in module stat)

 		UF_IMMUTABLE (in module stat)

 		UF_NODUMP (in module stat)

 		UF_NOUNLINK (in module stat)

 		UF_OPAQUE (in module stat)

 		ugettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		uid (tarfile.TarInfo attribute)

 		uid() (imaplib.IMAP4 method)

 		uidl() (poplib.POP3 method)

 		ulaw2lin() (in module audioop)

 		ULONG_MAX

 		umask() (in module os)

 		uname (tarfile.TarInfo attribute)

 		uname() (in module os)

 		

 		(in module platform)

 		
 unary

 		

 		arithmetic operation

 		bitwise operation

 		UNARY_CONVERT (opcode)

 		UNARY_INVERT (opcode)

 		UNARY_NEGATIVE (opcode)

 		UNARY_NOT (opcode)

 		UNARY_POSITIVE (opcode)

 		
 unbinding

 		

 		name

 		UnboundLocalError, [1]

 		UnboundMethodType (in module types)

 		unbuffered I/O

 		
 UNC paths

 		

 		and os.makedirs()

 		unconsumed_tail (zlib.Decompress attribute)

 		unctrl() (in module curses)

 		

 		(in module curses.ascii)

 		undefine_macro() (distutils.ccompiler.CCompiler method)

 		Underflow (class in decimal)

 		undo() (in module turtle)

 		undobufferentries() (in module turtle)

 		undoc_header (cmd.Cmd attribute)

 		unescape() (in module xml.sax.saxutils)

 		UnexpectedException

 		unexpectedSuccesses (unittest.TestResult attribute)

 		unfreeze_form() (fl.form method)

 		ungetch() (in module curses)

 		

 		(in module msvcrt)

 		ungetmouse() (in module curses)

 		ungettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		ungetwch() (in module msvcrt)

 		unhexlify() (in module binascii)

 		
 unichr

 		

 		built-in function

 		unichr() (built-in function)

 		Unicode, [1], [2]

 		

 		database

 		object

 		
 unicode

 		

 		built-in function, [1], [2], [3]

 		object

 		unicode (2to3 fixer)

 		UNICODE (in module re)

 		Unicode Consortium

 		unicode() (built-in function)

 		unicodedata (module)

 		UnicodeDecodeError

 		UnicodeEncodeError

 		UnicodeError

 		UnicodeTranslateError

 		UnicodeType (in module types)

 		UnicodeWarning

 		unidata_version (in module unicodedata)

 		unified_diff() (in module difflib)

 		uniform() (in module random)

 		UnimplementedFileMode

 		uninstall() (imputil.ImportManager method)

 		Union (class in ctypes)

 		union() (set method)

 		unittest (module)

 		
 unittest command line option

 		

 		-b, --buffer

 		-c, --catch

 		-f, --failfast

 		
 unittest-discover command line option

 		

 		-p, --pattern pattern

 		-s, --start-directory directory

 		-t, --top-level-directory directory

 		-v, --verbose

 		universal newlines

 		

 		What's new, [1], [2], [3]

 		bz2.BZ2File class

 		file.newlines attribute

 		io.IncrementalNewlineDecoder class

 		io.TextIOWrapper class

 		open() (in module io)

 		open() built-in function

 		str.splitlines method

 		subprocess module

 		zipfile.ZipFile.open method

 		UNIX

 		

 		I/O control

 		file control

 		UnixDatagramServer (class in SocketServer)

 		unixfrom (rfc822.Message attribute)

 		UnixMailbox (class in mailbox)

 		UnixStreamServer (class in SocketServer)

 		Unknown (class in aetypes)

 		unknown_charref() (sgmllib.SGMLParser method)

 		unknown_decl() (HTMLParser.HTMLParser method)

 		unknown_endtag() (sgmllib.SGMLParser method)

 		unknown_entityref() (sgmllib.SGMLParser method)

 		unknown_open() (urllib2.BaseHandler method)

 		

 		(urllib2.UnknownHandler method)

 		unknown_starttag() (sgmllib.SGMLParser method)

 		UnknownHandler (class in urllib2)

 		UnknownProtocol

 		UnknownTransferEncoding

 		unlink() (in module os)

 		

 		(xml.dom.minidom.Node method)

 		unlock() (mailbox.Babyl method)

 		

 		(mailbox.MH method)

 		(mailbox.MMDF method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mailbox.mbox method)

 		(mutex.mutex method)

 		unmimify() (in module mimify)

 		unpack() (in module aepack)

 		

 		(in module struct)

 		(struct.Struct method)

 		unpack_array() (xdrlib.Unpacker method)

 		unpack_bytes() (xdrlib.Unpacker method)

 		unpack_double() (xdrlib.Unpacker method)

 		unpack_farray() (xdrlib.Unpacker method)

 		unpack_float() (xdrlib.Unpacker method)

 		unpack_fopaque() (xdrlib.Unpacker method)

 		unpack_from() (in module struct)

 		

 		(struct.Struct method)

 		unpack_fstring() (xdrlib.Unpacker method)

 		unpack_list() (xdrlib.Unpacker method)

 		unpack_opaque() (xdrlib.Unpacker method)

 		

 		UNPACK_SEQUENCE (opcode)

 		unpack_string() (xdrlib.Unpacker method)

 		Unpacker (class in xdrlib)

 		unpackevent() (in module aetools)

 		unparsedEntityDecl() (xml.sax.handler.DTDHandler method)

 		UnparsedEntityDeclHandler() (xml.parsers.expat.xmlparser method)

 		Unpickler (class in pickle)

 		UnpicklingError

 		unqdevice() (in module fl)

 		unquote() (in module email.utils)

 		

 		(in module rfc822)

 		(in module urllib)

 		unquote_plus() (in module urllib)

 		unreachable object

 		unreadline() (distutils.text_file.TextFile method)

 		unrecognized escape sequence

 		unregister() (select.epoll method)

 		

 		(select.poll method)

 		unregister_archive_format() (in module shutil)

 		unregister_dialect() (in module csv)

 		unset() (test.test_support.EnvironmentVarGuard method)

 		unsetenv() (in module os)

 		unsubscribe() (imaplib.IMAP4 method)

 		UnsupportedOperation

 		untokenize() (in module tokenize)

 		untouchwin() (curses.window method)

 		unused_data (zlib.Decompress attribute)

 		unwrap() (ssl.SSLSocket method)

 		up() (in module turtle)

 		update() (collections.Counter method)

 		

 		(dict method)

 		(hashlib.hash method)

 		(hmac.HMAC method)

 		(in module turtle)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(md5.md5 method)

 		(set method)

 		(sha.sha method)

 		(trace.CoverageResults method)

 		update_panels() (in module curses.panel)

 		update_visible() (mailbox.BabylMessage method)

 		update_wrapper() (in module functools)

 		updatescrollbars() (FrameWork.ScrolledWindow method)

 		upper() (in module string)

 		

 		(str method)

 		uppercase (in module string)

 		urandom() (in module os)

 		URL, [1], [2], [3], [4]

 		

 		parsing

 		relative

 		url (xmlrpclib.ProtocolError attribute)

 		url2pathname() (in module urllib)

 		urlcleanup() (in module urllib)

 		urldefrag() (in module urlparse)

 		urlencode() (in module urllib)

 		URLError

 		urljoin() (in module urlparse)

 		
 urllib

 		

 		module

 		urllib (2to3 fixer)

 		

 		(module)

 		urllib2 (module)

 		urlopen() (in module urllib)

 		

 		(in module urllib2)

 		URLopener (class in urllib)

 		
 urlparse

 		

 		module

 		urlparse (module)

 		urlparse() (in module urlparse)

 		urlretrieve() (in module urllib)

 		urlsafe_b64decode() (in module base64)

 		urlsafe_b64encode() (in module base64)

 		urlsplit() (in module urlparse)

 		urlunparse() (in module urlparse)

 		urlunsplit() (in module urlparse)

 		urn (uuid.UUID attribute)

 		use_default_colors() (in module curses)

 		use_env() (in module curses)

 		use_rawinput (cmd.Cmd attribute)

 		UseForeignDTD() (xml.parsers.expat.xmlparser method)

 		USER

 		
 user

 		

 		configuration file

 		effective id

 		id

 		id, setting

 		user (module)

 		user() (poplib.POP3 method)

 		
 user-defined

 		

 		function

 		function call

 		method

 		
 user-defined function

 		

 		object, [1], [2]

 		
 user-defined method

 		

 		object

 		USER_BASE

 		

 		(in module site)

 		user_call() (bdb.Bdb method)

 		user_exception() (bdb.Bdb method)

 		user_line() (bdb.Bdb method)

 		user_return() (bdb.Bdb method)

 		USER_SITE (in module site)

 		
 usercustomize

 		

 		module

 		UserDict (class in UserDict)

 		

 		(module)

 		UserList (class in UserList)

 		

 		(module)

 		USERNAME

 		USERPROFILE, [1]

 		userptr() (curses.panel.Panel method)

 		UserString (class in UserString)

 		

 		(module)

 		UserWarning

 		USTAR_FORMAT (in module tarfile)

 		UTC

 		utcfromtimestamp() (datetime.datetime class method)

 		utcnow() (datetime.datetime class method)

 		utcoffset() (datetime.datetime method)

 		

 		(datetime.time method)

 		(datetime.tzinfo method)

 		utctimetuple() (datetime.datetime method)

 		utime() (in module os)

 		
 uu

 		

 		module

 		uu (module)

 		UUID (class in uuid)

 		uuid (module)

 		uuid1

 		uuid1() (in module uuid)

 		uuid3

 		uuid3() (in module uuid)

 		uuid4

 		uuid4() (in module uuid)

 		uuid5

 		uuid5() (in module uuid)

 		UuidCreate() (in module msilib)

V

 		

 		validator() (in module wsgiref.validate)

 		
 value

 		

 		default parameter

 		truth

 		value (Cookie.Morsel attribute)

 		

 		(cookielib.Cookie attribute)

 		(ctypes._SimpleCData attribute)

 		(xml.dom.Attr attribute)

 		value of an object

 		Value() (in module multiprocessing)

 		

 		(in module multiprocessing.sharedctypes)

 		(multiprocessing.managers.SyncManager method)

 		value_decode() (Cookie.BaseCookie method)

 		value_encode() (Cookie.BaseCookie method)

 		ValueError

 		

 		exception

 		valuerefs() (weakref.WeakValueDictionary method)

 		
 values

 		

 		Boolean

 		writing, [1]

 		values() (dict method)

 		

 		(email.message.Message method)

 		(mailbox.Mailbox method)

 		ValuesView (class in collections)

 		
 variable

 		

 		free, [1]

 		variant (uuid.UUID attribute)

 		varray() (in module gl)

 		vars() (built-in function)

 		VBAR (in module token)

 		vbar (ScrolledText.ScrolledText attribute)

 		VBAREQUAL (in module token)

 		Vec2D (class in turtle)

 		VERBOSE (in module re)

 		verbose (in module tabnanny)

 		

 		(in module test.test_support)

 		verify() (smtplib.SMTP method)

 		VERIFY_CRL_CHECK_CHAIN (in module ssl)

 		VERIFY_CRL_CHECK_LEAF (in module ssl)

 		

 		VERIFY_DEFAULT (in module ssl)

 		verify_flags (ssl.SSLContext attribute)

 		verify_mode (ssl.SSLContext attribute)

 		verify_request() (SocketServer.BaseServer method)

 		VERIFY_X509_STRICT (in module ssl)

 		VERIFY_X509_TRUSTED_FIRST (in module ssl)

 		version (cookielib.Cookie attribute)

 		

 		(httplib.HTTPResponse attribute)

 		(in module curses)

 		(in module marshal)

 		(in module sqlite3)

 		(in module sys), [1], [2], [3]

 		(urllib.URLopener attribute)

 		(uuid.UUID attribute)

 		version() (in module ensurepip)

 		

 		(in module platform)

 		(ssl.SSLSocket method)

 		version_info (in module sqlite3)

 		

 		(in module sys)

 		version_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		vformat() (string.Formatter method)

 		videoreader (module)

 		viewitems() (dict method)

 		viewkeys() (dict method)

 		viewvalues() (dict method)

 		virtual environment

 		virtual machine

 		visit() (ast.NodeVisitor method)

 		visitproc (C type)

 		vline() (curses.window method)

 		VMSError

 		vnarray() (in module gl)

 		voidcmd() (ftplib.FTP method)

 		volume (zipfile.ZipInfo attribute)

 		vonmisesvariate() (in module random)

W

 		

 		W (module)

 		W_OK (in module os)

 		wait() (in module os)

 		

 		(multiprocessing.pool.AsyncResult method)

 		(popen2.Popen3 method)

 		(subprocess.Popen method)

 		(threading.Condition method)

 		(threading.Event method)

 		wait3() (in module os)

 		wait4() (in module os)

 		waitpid() (in module os)

 		walk() (email.message.Message method)

 		

 		(in module ast)

 		(in module compiler)

 		(in module compiler.visitor)

 		(in module os)

 		(in module os.path)

 		walk_packages() (in module pkgutil)

 		want (doctest.Example attribute)

 		warn() (distutils.ccompiler.CCompiler method)

 		

 		(distutils.text_file.TextFile method)

 		(in module warnings)

 		warn_explicit() (in module warnings)

 		Warning

 		warning() (in module logging)

 		

 		(logging.Logger method)

 		(xml.sax.handler.ErrorHandler method)

 		warnings

 		

 		(module)

 		WarningsRecorder (class in test.test_support)

 		warnoptions (in module sys)

 		warnpy3k() (in module warnings)

 		wasSuccessful() (unittest.TestResult method)

 		WatchedFileHandler (class in logging.handlers)

 		wave (module)

 		WCONTINUED (in module os)

 		WCOREDUMP() (in module os)

 		WeakKeyDictionary (class in weakref)

 		weakref (module)

 		WeakSet (class in weakref)

 		WeakValueDictionary (class in weakref)

 		webbrowser (module)

 		weekday() (datetime.date method)

 		

 		(datetime.datetime method)

 		(in module calendar)

 		weekheader() (in module calendar)

 		weibullvariate() (in module random)

 		WEXITSTATUS() (in module os)

 		wfile (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		what() (in module imghdr)

 		

 		(in module sndhdr)

 		whathdr() (in module sndhdr)

 		whichdb (module)

 		whichdb() (in module whichdb)

 		
 while

 		

 		statement, [1], [2], [3]

 		whitespace

 		

 		(in module string)

 		(shlex.shlex attribute)

 		whitespace_split (shlex.shlex attribute)

 		whseed() (in module random)

 		WichmannHill (class in random)

 		Widget (class in ttk)

 		width (textwrap.TextWrapper attribute)

 		width() (in module turtle)

 		WIFCONTINUED() (in module os)

 		WIFEXITED() (in module os)

 		WIFSIGNALED() (in module os)

 		WIFSTOPPED() (in module os)

 		Wimp$ScrapDir

 		win32_ver() (in module platform)

 		WinDLL (class in ctypes)

 		window manager (widgets)

 		window() (curses.panel.Panel method)

 		Window() (in module FrameWork)

 		window_height() (in module turtle), [1]

 		window_width() (in module turtle), [1]

 		windowbounds() (in module FrameWork)

 		Windows ini file

 		WindowsError

 		WinError() (in module ctypes)

 		WINFUNCTYPE() (in module ctypes)

 		

 		WinSock

 		winsound (module)

 		winver (in module sys)

 		
 with

 		

 		statement, [1]

 		WITH_CLEANUP (opcode)

 		WMAvailable() (in module MacOS)

 		WNOHANG (in module os)

 		wordchars (shlex.shlex attribute)

 		World Wide Web, [1], [2], [3]

 		wrap() (in module textwrap)

 		

 		(textwrap.TextWrapper method)

 		wrap_socket() (in module ssl)

 		

 		(ssl.SSLContext method)

 		wrap_text() (in module distutils.fancy_getopt)

 		wrapper() (in module curses)

 		wraps() (in module functools)

 		WRITABLE (in module Tkinter)

 		writable() (asyncore.dispatcher method)

 		

 		(io.IOBase method)

 		write() (array.array method)

 		

 		(ConfigParser.RawConfigParser method)

 		(bz2.BZ2File method)

 		(code.InteractiveInterpreter method)

 		(codecs.StreamWriter method)

 		(email.generator.Generator method)

 		(file method)

 		(in module imgfile)

 		(in module os)

 		(in module turtle)

 		(io.BufferedIOBase method)

 		(io.BufferedWriter method)

 		(io.RawIOBase method)

 		(io.TextIOBase method)

 		(mmap.mmap method)

 		(ossaudiodev.oss_audio_device method)

 		(telnetlib.Telnet method)

 		(xml.etree.ElementTree.ElementTree method)

 		(zipfile.ZipFile method)

 		write_byte() (mmap.mmap method)

 		write_docstringdict() (in module turtle)

 		write_file() (in module distutils.file_util)

 		write_history_file() (in module readline)

 		WRITE_RESTRICTED

 		write_results() (trace.CoverageResults method)

 		writeall() (ossaudiodev.oss_audio_device method)

 		writebufferproc (C type)

 		writeframes() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		writeframesraw() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		writeheader() (csv.DictWriter method)

 		writelines() (bz2.BZ2File method)

 		

 		(codecs.StreamWriter method)

 		(file method)

 		(io.IOBase method)

 		writePlist() (in module plistlib)

 		writePlistToResource() (in module plistlib)

 		writePlistToString() (in module plistlib)

 		writepy() (zipfile.PyZipFile method)

 		writer (formatter.formatter attribute)

 		writer() (in module csv)

 		writerow() (csv.csvwriter method)

 		writerows() (csv.csvwriter method)

 		writestr() (zipfile.ZipFile method)

 		writexml() (xml.dom.minidom.Node method)

 		
 writing

 		

 		values, [1]

 		WrongDocumentErr

 		ws_comma (2to3 fixer)

 		wsgi_file_wrapper (wsgiref.handlers.BaseHandler attribute)

 		wsgi_multiprocess (wsgiref.handlers.BaseHandler attribute)

 		wsgi_multithread (wsgiref.handlers.BaseHandler attribute)

 		wsgi_run_once (wsgiref.handlers.BaseHandler attribute)

 		wsgiref (module)

 		wsgiref.handlers (module)

 		wsgiref.headers (module)

 		wsgiref.simple_server (module)

 		wsgiref.util (module)

 		wsgiref.validate (module)

 		WSGIRequestHandler (class in wsgiref.simple_server)

 		WSGIServer (class in wsgiref.simple_server)

 		wShowWindow (subprocess.STARTUPINFO attribute)

 		WSTOPSIG() (in module os)

 		wstring_at() (in module ctypes)

 		WTERMSIG() (in module os)

 		WUNTRACED (in module os)

 		WWW, [1], [2], [3]

 		

 		server, [1]

X

 		

 		X (in module re)

 		X509 certificate

 		X_OK (in module os)

 		xatom() (imaplib.IMAP4 method)

 		xcor() (in module turtle)

 		XDR, [1]

 		xdrlib (module)

 		xgtitle() (nntplib.NNTP method)

 		xhdr() (nntplib.NNTP method)

 		XHTML

 		XHTML_NAMESPACE (in module xml.dom)

 		xml (module)

 		XML() (in module xml.etree.ElementTree)

 		xml.dom (module)

 		xml.dom.minidom (module)

 		xml.dom.pulldom (module)

 		xml.etree.ElementTree (module)

 		xml.parsers.expat (module)

 		xml.sax (module)

 		xml.sax.handler (module)

 		xml.sax.saxutils (module)

 		xml.sax.xmlreader (module)

 		

 		XML_NAMESPACE (in module xml.dom)

 		xmlcharrefreplace_errors() (in module codecs)

 		XmlDeclHandler() (xml.parsers.expat.xmlparser method)

 		XMLFilterBase (class in xml.sax.saxutils)

 		XMLGenerator (class in xml.sax.saxutils)

 		XMLID() (in module xml.etree.ElementTree)

 		XMLNS_NAMESPACE (in module xml.dom)

 		XMLParser (class in xml.etree.ElementTree)

 		XMLParserType (in module xml.parsers.expat)

 		XMLReader (class in xml.sax.xmlreader)

 		xmlrpclib (module)

 		
 xor

 		

 		bitwise

 		xor() (in module operator)

 		xover() (nntplib.NNTP method)

 		xpath() (nntplib.NNTP method)

 		
 xrange

 		

 		built-in function

 		object, [1]

 		xrange (2to3 fixer)

 		xrange() (built-in function)

 		XRangeType (in module types)

 		xreadlines (2to3 fixer)

 		xreadlines() (bz2.BZ2File method)

 		

 		(file method)

 		xview() (ttk.Treeview method)

Y

 		

 		Y2K

 		ycor() (in module turtle)

 		year (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		Year 2000

 		Year 2038

 		yeardatescalendar() (calendar.Calendar method)

 		yeardays2calendar() (calendar.Calendar method)

 		

 		yeardayscalendar() (calendar.Calendar method)

 		YESEXPR (in module locale)

 		
 yield

 		

 		expression

 		keyword

 		statement

 		YIELD_VALUE (opcode)

 		yiq_to_rgb() (in module colorsys)

 		yview() (ttk.Treeview method)

Z

 		

 		Zen of Python

 		ZeroDivisionError

 		

 		exception

 		zfill() (in module string)

 		

 		(str method)

 		zip (2to3 fixer)

 		zip() (built-in function)

 		

 		(in module future_builtins)

 		ZIP_DEFLATED (in module zipfile)

 		ZIP_STORED (in module zipfile)

 		

 		ZipFile (class in zipfile)

 		zipfile (module)

 		zipimport (module)

 		zipimporter (class in zipimport)

 		ZipImportError

 		ZipInfo (class in zipfile)

 		zlib (module)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-F.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – F

 		

 		f_back (frame attribute)

 		F_BAVAIL (in module statvfs)

 		F_BFREE (in module statvfs)

 		F_BLOCKS (in module statvfs)

 		F_BSIZE (in module statvfs)

 		f_builtins (frame attribute)

 		f_code (frame attribute)

 		f_exc_traceback (frame attribute)

 		f_exc_type (frame attribute)

 		f_exc_value (frame attribute)

 		F_FAVAIL (in module statvfs)

 		F_FFREE (in module statvfs)

 		F_FILES (in module statvfs)

 		F_FLAG (in module statvfs)

 		F_FRSIZE (in module statvfs)

 		f_globals (frame attribute)

 		f_lasti (frame attribute)

 		f_lineno (frame attribute)

 		f_locals (frame attribute)

 		F_NAMEMAX (in module statvfs)

 		F_OK (in module os)

 		f_restricted (frame attribute)

 		f_trace (frame attribute)

 		fabs() (in module math)

 		factorial() (in module math)

 		fail() (unittest.TestCase method)

 		failfast (unittest.TestResult attribute)

 		failureException (unittest.TestCase attribute)

 		failures (unittest.TestResult attribute)

 		False, [1], [2]

 		false

 		False (Built-in object)

 		

 		(built-in variable)

 		family (socket.socket attribute)

 		fancy_getopt() (in module distutils.fancy_getopt)

 		FancyGetopt (class in distutils.fancy_getopt)

 		FancyURLopener (class in urllib)

 		fatalError() (xml.sax.handler.ErrorHandler method)

 		Fault (class in xmlrpclib)

 		faultCode (xmlrpclib.Fault attribute)

 		faultString (xmlrpclib.Fault attribute)

 		fchdir() (in module os)

 		fchmod() (in module os)

 		fchown() (in module os)

 		FCICreate() (in module msilib)

 		
 fcntl

 		

 		module

 		fcntl (module)

 		fcntl() (in module fcntl), [1]

 		fd() (in module turtle)

 		fdatasync() (in module os)

 		fdopen() (in module os)

 		Feature (class in msilib)

 		feature_external_ges (in module xml.sax.handler)

 		feature_external_pes (in module xml.sax.handler)

 		feature_namespace_prefixes (in module xml.sax.handler)

 		feature_namespaces (in module xml.sax.handler)

 		feature_string_interning (in module xml.sax.handler)

 		feature_validation (in module xml.sax.handler)

 		feed() (email.parser.FeedParser method)

 		

 		(HTMLParser.HTMLParser method)

 		(sgmllib.SGMLParser method)

 		(xml.etree.ElementTree.XMLParser method)

 		(xml.sax.xmlreader.IncrementalParser method)

 		FeedParser (class in email.parser)

 		fetch() (imaplib.IMAP4 method)

 		Fetch() (msilib.View method)

 		fetchall() (sqlite3.Cursor method)

 		fetchmany() (sqlite3.Cursor method)

 		fetchone() (sqlite3.Cursor method)

 		fflags (select.kevent attribute)

 		field_size_limit() (in module csv)

 		fieldnames (csv.csvreader attribute)

 		fields (uuid.UUID attribute)

 		fifo (class in asynchat)

 		
 file

 		

 		.ini

 		.pdbrc

 		.pythonrc.py

 		built-in function

 		byte-code, [1], [2]

 		configuration

 		copying

 		debugger configuration

 		descriptor

 		large files

 		mime.types

 		object, [1], [2], [3], [4]

 		path configuration

 		plist

 		temporary

 		user configuration

 		file (pyclbr.Class attribute)

 		

 		(pyclbr.Function attribute)

 		
 file ...

 		

 		compileall command line option

 		
 file control

 		

 		UNIX

 		
 file name

 		

 		temporary

 		file object

 		

 		POSIX

 		file() (built-in function)

 		

 		(posixfile.posixfile method)

 		file-like object

 		file_created() (built-in function)

 		file_dispatcher (class in asyncore)

 		file_open() (urllib2.FileHandler method)

 		file_size (zipfile.ZipInfo attribute)

 		file_wrapper (class in asyncore)

 		filecmp (module)

 		fileConfig() (in module logging.config)

 		FileCookieJar (class in cookielib)

 		FileEntry (class in Tix)

 		FileHandler (class in logging)

 		

 		(class in urllib2)

 		FileInput (class in fileinput)

 		fileinput (module)

 		FileIO (class in io)

 		filelineno() (in module fileinput)

 		filename (cookielib.FileCookieJar attribute)

 		

 		(doctest.DocTest attribute)

 		(zipfile.ZipInfo attribute)

 		filename() (in module fileinput)

 		filename_only (in module tabnanny)

 		
 filenames

 		

 		pathname expansion

 		wildcard expansion

 		fileno() (file method)

 		

 		(SocketServer.BaseServer method)

 		(hotshot.Profile method)

 		(httplib.HTTPResponse method)

 		(in module fileinput)

 		(io.IOBase method)

 		(multiprocessing.Connection method)

 		(ossaudiodev.oss_audio_device method)

 		(ossaudiodev.oss_mixer_device method)

 		(select.epoll method)

 		(select.kqueue method)

 		(socket.socket method)

 		(telnetlib.Telnet method)

 		fileopen() (in module posixfile)

 		FileSelectBox (class in Tix)

 		FileType (class in argparse)

 		

 		(in module types), [1]

 		FileWrapper (class in wsgiref.util)

 		fill() (in module textwrap)

 		

 		(in module turtle)

 		(textwrap.TextWrapper method)

 		fillcolor() (in module turtle)

 		filter (2to3 fixer)

 		Filter (class in logging)

 		filter (select.kevent attribute)

 		filter() (built-in function)

 		

 		(in module curses)

 		(in module fnmatch)

 		(in module future_builtins)

 		(logging.Filter method)

 		(logging.Handler method)

 		(logging.Logger method)

 		filterwarnings() (in module warnings)

 		finalization, of objects

 		finalize_options() (distutils.cmd.Command method)

 		
 finally

 		

 		keyword, [1], [2], [3], [4]

 		find() (doctest.DocTestFinder method)

 		

 		(in module gettext)

 		(in module string)

 		(mmap.mmap method)

 		(str method)

 		(xml.etree.ElementTree.Element method)

 		(xml.etree.ElementTree.ElementTree method)

 		find_first() (fl.form method)

 		find_global() (pickle protocol)

 		find_last() (fl.form method)

 		find_library() (in module ctypes.util)

 		find_library_file() (distutils.ccompiler.CCompiler method)

 		find_loader() (in module pkgutil)

 		find_longest_match() (difflib.SequenceMatcher method)

 		
 find_module

 		

 		finder

 		find_module() (imp.NullImporter method)

 		

 		(in module imp)

 		(zipimport.zipimporter method)

 		find_msvcrt() (in module ctypes.util)

 		find_user_password() (urllib2.HTTPPasswordMgr method)

 		findall() (in module re)

 		

 		(re.RegexObject method)

 		(xml.etree.ElementTree.Element method)

 		(xml.etree.ElementTree.ElementTree method)

 		findCaller() (logging.Logger method)

 		finder, [1]

 		

 		find_module

 		findertools (module)

 		findfactor() (in module audioop)

 		findfile() (in module test.test_support)

 		findfit() (in module audioop)

 		findfont() (in module fm)

 		finditer() (in module re)

 		

 		(re.RegexObject method)

 		findlabels() (in module dis)

 		findlinestarts() (in module dis)

 		findmatch() (in module mailcap)

 		findmax() (in module audioop)

 		findtext() (xml.etree.ElementTree.Element method)

 		

 		(xml.etree.ElementTree.ElementTree method)

 		finish() (SocketServer.BaseRequestHandler method)

 		finish_request() (SocketServer.BaseServer method)

 		first() (asynchat.fifo method)

 		

 		(bsddb.bsddbobject method)

 		(dbhash.dbhash method)

 		firstChild (xml.dom.Node attribute)

 		firstkey() (in module gdbm)

 		firstweekday() (in module calendar)

 		fix() (in module fpformat)

 		fix_missing_locations() (in module ast)

 		fix_sentence_endings (textwrap.TextWrapper attribute)

 		FL (module)

 		fl (module)

 		flag_bits (zipfile.ZipInfo attribute)

 		flags (in module sys)

 		

 		(re.RegexObject attribute)

 		(select.kevent attribute)

 		flags() (posixfile.posixfile method)

 		flash() (in module curses)

 		

 		flatten() (email.generator.Generator method)

 		
 flattening

 		

 		objects

 		
 float

 		

 		built-in function, [1], [2], [3]

 		float (built-in class)

 		float_info (in module sys)

 		float_repr_style (in module sys)

 		
 floating point

 		

 		literals

 		number

 		object, [1], [2]

 		floating point literal

 		FloatingPointError, [1]

 		FloatType (in module types)

 		

 		(in modules types)

 		flock() (in module fcntl)

 		floor division

 		floor() (in module math), [1]

 		floordiv() (in module operator)

 		flp (module)

 		flush() (bz2.BZ2Compressor method)

 		

 		(file method)

 		(formatter.writer method)

 		(io.BufferedWriter method)

 		(io.IOBase method)

 		(logging.Handler method)

 		(logging.StreamHandler method)

 		(logging.handlers.BufferingHandler method)

 		(logging.handlers.MemoryHandler method)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mmap.mmap method)

 		(zlib.Compress method)

 		(zlib.Decompress method)

 		flush_softspace() (formatter.formatter method)

 		flushheaders() (MimeWriter.MimeWriter method)

 		flushinp() (in module curses)

 		FlushKey() (in module _winreg)

 		fm (module)

 		fma() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		fmod() (in module math)

 		fnmatch (module)

 		fnmatch() (in module fnmatch)

 		fnmatchcase() (in module fnmatch)

 		focus() (ttk.Treeview method)

 		Folder (class in mhlib)

 		Font Manager, IRIS

 		fontpath() (in module fm)

 		fopen()

 		
 for

 		

 		statement, [1], [2], [3], [4]

 		FOR_ITER (opcode)

 		forget() (in module test.test_support)

 		

 		(ttk.Notebook method)

 		fork() (in module os)

 		

 		(in module pty)

 		ForkingMixIn (class in SocketServer)

 		ForkingTCPServer (class in SocketServer)

 		ForkingUDPServer (class in SocketServer)

 		forkpty() (in module os)

 		Form (class in Tix)

 		
 format

 		

 		str

 		format (memoryview attribute)

 		

 		(struct.Struct attribute)

 		format() (built-in function)

 		

 		(in module locale)

 		(logging.Formatter method)

 		(logging.Handler method)

 		(pprint.PrettyPrinter method)

 		(str method)

 		(string.Formatter method)

 		format_exc() (in module traceback)

 		format_exception() (in module traceback)

 		format_exception_only() (in module traceback)

 		format_field() (string.Formatter method)

 		format_help() (argparse.ArgumentParser method)

 		format_list() (in module traceback)

 		format_stack() (in module traceback)

 		format_stack_entry() (bdb.Bdb method)

 		format_string() (in module locale)

 		format_tb() (in module traceback)

 		format_usage() (argparse.ArgumentParser method)

 		formataddr() (in module email.utils)

 		formatargspec() (in module inspect)

 		formatargvalues() (in module inspect)

 		formatdate() (in module email.utils)

 		FormatError

 		FormatError() (in module ctypes)

 		formatException() (logging.Formatter method)

 		formatmonth() (calendar.HTMLCalendar method)

 		

 		(calendar.TextCalendar method)

 		
 formatter

 		

 		module

 		Formatter (class in logging)

 		

 		(class in string)

 		formatter (htmllib.HTMLParser attribute)

 		

 		(module)

 		formatTime() (logging.Formatter method)

 		formatting, string (%)

 		formatwarning() (in module warnings)

 		formatyear() (calendar.HTMLCalendar method)

 		

 		(calendar.TextCalendar method)

 		formatyearpage() (calendar.HTMLCalendar method)

 		FORMS Library

 		forward() (in module turtle)

 		found_terminator() (asynchat.async_chat method)

 		fp (rfc822.Message attribute)

 		fpathconf() (in module os)

 		fpectl (module)

 		fpformat (module)

 		Fraction (class in fractions)

 		fractions (module)

 		
 frame

 		

 		execution, [1]

 		object

 		frame (ScrolledText.ScrolledText attribute)

 		FrameType (in module types)

 		
 FrameWork

 		

 		module

 		FrameWork (module)

 		
 free

 		

 		variable, [1]

 		free()

 		freeze utility

 		freeze_form() (fl.form method)

 		freeze_support() (in module multiprocessing)

 		frexp() (in module math)

 		
 from

 		

 		keyword

 		statement

 		from_address() (ctypes._CData method)

 		from_buffer() (ctypes._CData method)

 		from_buffer_copy() (ctypes._CData method)

 		from_decimal() (fractions.Fraction method)

 		from_float() (decimal.Decimal method)

 		

 		(fractions.Fraction method)

 		from_iterable() (itertools.chain class method)

 		from_param() (ctypes._CData method)

 		from_splittable() (email.charset.Charset method)

 		frombuf() (tarfile.TarInfo method)

 		fromchild (popen2.Popen3 attribute)

 		fromfd() (in module socket)

 		

 		(select.epoll method)

 		(select.kqueue method)

 		fromfile() (array.array method)

 		fromhex() (float method)

 		fromkeys() (collections.Counter method)

 		

 		(dict method)

 		fromlist() (array.array method)

 		fromordinal() (datetime.date class method)

 		

 		(datetime.datetime class method)

 		fromstring() (array.array method)

 		

 		(in module xml.etree.ElementTree)

 		fromstringlist() (in module xml.etree.ElementTree)

 		fromtarfile() (tarfile.TarInfo method)

 		fromtimestamp() (datetime.date class method)

 		

 		(datetime.datetime class method)

 		fromunicode() (array.array method)

 		fromutc() (datetime.tzinfo method)

 		
 frozenset

 		

 		object, [1]

 		frozenset (built-in class)

 		fstat() (in module os)

 		fstatvfs() (in module os)

 		fsum() (in module math)

 		fsync() (in module os)

 		FTP

 		

 		ftplib (standard module)

 		protocol, [1]

 		FTP (class in ftplib)

 		ftp_open() (urllib2.FTPHandler method)

 		ftp_proxy

 		FTP_TLS (class in ftplib)

 		FTPHandler (class in urllib2)

 		ftplib (module)

 		ftpmirror.py

 		ftruncate() (in module os)

 		Full

 		full() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		func (functools.partial attribute)

 		func_closure (function attribute)

 		func_code (function attribute)

 		

 		(function object attribute)

 		func_defaults (function attribute)

 		func_dict (function attribute)

 		func_doc (function attribute)

 		func_globals (function attribute)

 		func_name (function attribute)

 		funcattrs (2to3 fixer)

 		function

 		

 		anonymous

 		argument

 		call, [1], [2]

 		call, user-defined

 		definition, [1]

 		generator, [1]

 		name

 		object, [1], [2], [3], [4], [5]

 		user-defined

 		Function (class in symtable)

 		function() (in module new)

 		FunctionTestCase (class in unittest)

 		FunctionType (in module types)

 		functools (module)

 		funny_files (filecmp.dircmp attribute)

 		
 future

 		

 		statement

 		future (2to3 fixer)

 		future_builtins (module)

 		FutureWarning

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-M.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – M

 		

 		M (in module re)

 		mac_ver() (in module platform)

 		
 macerrors

 		

 		module

 		macerrors (module)

 		machine() (in module platform)

 		MacOS (module)

 		macostools (module)

 		macpath (module)

 		macresource (module)

 		macros (netrc.netrc attribute)

 		
 mailbox

 		

 		module

 		Mailbox (class in mailbox)

 		mailbox (module)

 		mailcap (module)

 		Maildir (class in mailbox)

 		MaildirMessage (class in mailbox)

 		MailmanProxy (class in smtpd)

 		main(), [1]

 		

 		(in module py_compile)

 		(in module unittest)

 		mainloop() (FrameWork.Application method)

 		

 		(in module turtle)

 		major() (in module os)

 		make_archive() (in module distutils.archive_util)

 		

 		(in module shutil)

 		MAKE_CLOSURE (opcode)

 		make_cookies() (cookielib.CookieJar method)

 		make_form() (in module fl)

 		MAKE_FUNCTION (opcode)

 		make_header() (in module email.header)

 		make_msgid() (in module email.utils)

 		make_parser() (in module xml.sax)

 		make_server() (in module wsgiref.simple_server)

 		make_tarball() (in module distutils.archive_util)

 		make_zipfile() (in module distutils.archive_util)

 		makedev() (in module os)

 		makedirs() (in module os)

 		makeelement() (xml.etree.ElementTree.Element method)

 		makefile() (socket method)

 		

 		(socket.socket method)

 		makefolder() (mhlib.MH method)

 		makeLogRecord() (in module logging)

 		makePickle() (logging.handlers.SocketHandler method)

 		makeRecord() (logging.Logger method)

 		makeSocket() (logging.handlers.DatagramHandler method)

 		

 		(logging.handlers.SocketHandler method)

 		maketrans() (in module string)

 		makeusermenus() (FrameWork.Application method)

 		malloc()

 		
 mangling

 		

 		name

 		map (2to3 fixer)

 		map() (built-in function)

 		

 		(in module future_builtins)

 		(multiprocessing.pool.multiprocessing.Pool method)

 		(ttk.Style method)

 		map_async() (multiprocessing.pool.multiprocessing.Pool method)

 		map_table_b2() (in module stringprep)

 		map_table_b3() (in module stringprep)

 		mapcolor() (in module fl)

 		mapfile() (ic.IC method)

 		

 		(in module ic)

 		mapLogRecord() (logging.handlers.HTTPHandler method)

 		mapping

 		

 		object, [1], [2], [3], [4], [5]

 		types, operations on

 		Mapping (class in collections)

 		mapping() (msilib.Control method)

 		MappingView (class in collections)

 		mapPriority() (logging.handlers.SysLogHandler method)

 		maps() (in module nis)

 		maptypecreator() (ic.IC method)

 		

 		(in module ic)

 		marshal (module)

 		
 marshalling

 		

 		objects

 		
 masking

 		

 		operations

 		match() (in module nis)

 		

 		(in module re)

 		(re.RegexObject method)

 		match_hostname() (in module ssl)

 		MatchObject (class in re)

 		
 math

 		

 		module, [1]

 		math (module)

 		
 max

 		

 		built-in function

 		max (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		(datetime.timedelta attribute)

 		max() (built-in function)

 		

 		(decimal.Context method)

 		(decimal.Decimal method)

 		(in module audioop)

 		MAX_INTERPOLATION_DEPTH (in module ConfigParser)

 		max_mag() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		maxarray (repr.Repr attribute)

 		maxdeque (repr.Repr attribute)

 		maxdict (repr.Repr attribute)

 		maxDiff (unittest.TestCase attribute)

 		maxfrozenset (repr.Repr attribute)

 		maxint (in module sys)

 		maxlen (collections.deque attribute)

 		MAXLEN (in module mimify)

 		maxlevel (repr.Repr attribute)

 		maxlist (repr.Repr attribute)

 		maxlong (repr.Repr attribute)

 		maxother (repr.Repr attribute)

 		maxpp() (in module audioop)

 		maxset (repr.Repr attribute)

 		maxsize (in module sys)

 		maxstring (repr.Repr attribute)

 		maxtuple (repr.Repr attribute)

 		maxunicode (in module sys)

 		maxval (EasyDialogs.ProgressBar attribute)

 		MAXYEAR (in module datetime)

 		MB_ICONASTERISK (in module winsound)

 		MB_ICONEXCLAMATION (in module winsound)

 		MB_ICONHAND (in module winsound)

 		MB_ICONQUESTION (in module winsound)

 		MB_OK (in module winsound)

 		mbox (class in mailbox)

 		mboxMessage (class in mailbox)

 		md5 (module)

 		md5() (in module md5)

 		MemberDescriptorType (in module types)

 		
 membership

 		

 		test

 		memmove() (in module ctypes)

 		MemoryError

 		MemoryHandler (class in logging.handlers)

 		memoryview (built-in class)

 		memset() (in module ctypes)

 		Menu() (in module FrameWork)

 		MenuBar() (in module FrameWork)

 		MenuItem() (in module FrameWork)

 		merge() (in module heapq)

 		Message (class in email.message)

 		

 		(class in mailbox)

 		(class in mhlib)

 		(class in mimetools)

 		(class in rfc822)

 		(in module mimetools)

 		message digest, MD5, [1]

 		Message() (in module EasyDialogs)

 		message_from_file() (in module email)

 		message_from_string() (in module email)

 		MessageBeep() (in module winsound)

 		MessageClass (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		MessageError

 		MessageParseError

 		meta() (in module curses)

 		meta_path (in module sys)

 		metaclass

 		

 		(2to3 fixer)

 		metavar (optparse.Option attribute)

 		Meter (class in Tix)

 		METH_CLASS (built-in variable)

 		METH_COEXIST (built-in variable)

 		METH_KEYWORDS (built-in variable)

 		METH_NOARGS (built-in variable)

 		METH_O (built-in variable)

 		METH_OLDARGS (built-in variable)

 		METH_STATIC (built-in variable)

 		METH_VARARGS (built-in variable)

 		method

 		

 		built-in

 		call

 		object, [1], [2], [3], [4], [5]

 		user-defined

 		method resolution order

 		

 		methodattrs (2to3 fixer)

 		methodcaller() (in module operator)

 		methodHelp() (xmlrpclib.ServerProxy.system method)

 		
 methods

 		

 		string

 		methods (pyclbr.Class attribute)

 		methodSignature() (xmlrpclib.ServerProxy.system method)

 		MethodType (in module types), [1], [2]

 		MH (class in mailbox)

 		

 		(class in mhlib)

 		mhlib (module)

 		MHMailbox (class in mailbox)

 		MHMessage (class in mailbox)

 		microsecond (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		
 MIME

 		

 		base64 encoding

 		content type

 		headers, [1]

 		quoted-printable encoding

 		mime_decode_header() (in module mimify)

 		mime_encode_header() (in module mimify)

 		MIMEApplication (class in email.mime.application)

 		MIMEAudio (class in email.mime.audio)

 		MIMEBase (class in email.mime.base)

 		MIMEImage (class in email.mime.image)

 		MIMEMessage (class in email.mime.message)

 		MIMEMultipart (class in email.mime.multipart)

 		MIMENonMultipart (class in email.mime.nonmultipart)

 		MIMEText (class in email.mime.text)

 		
 mimetools

 		

 		module

 		mimetools (module)

 		MimeTypes (class in mimetypes)

 		mimetypes (module)

 		MimeWriter (class in MimeWriter)

 		

 		(module)

 		mimify (module)

 		mimify() (in module mimify)

 		
 min

 		

 		built-in function

 		min (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		(datetime.timedelta attribute)

 		min() (built-in function)

 		

 		(decimal.Context method)

 		(decimal.Decimal method)

 		min_mag() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		MINEQUAL (in module token)

 		MiniAEFrame (module)

 		MiniApplication (class in MiniAEFrame)

 		minmax() (in module audioop)

 		minor() (in module os)

 		minus

 		MINUS (in module token)

 		minus() (decimal.Context method)

 		minute (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		MINYEAR (in module datetime)

 		mirrored() (in module unicodedata)

 		misc_header (cmd.Cmd attribute)

 		MissingSectionHeaderError

 		MIXERDEV

 		mkalias() (in module macostools)

 		mkd() (ftplib.FTP method)

 		mkdir() (in module os)

 		mkdtemp() (in module tempfile)

 		mkfifo() (in module os)

 		mknod() (in module os)

 		mkpath() (distutils.ccompiler.CCompiler method)

 		

 		(in module distutils.dir_util)

 		mkstemp() (in module tempfile)

 		mktemp() (in module tempfile)

 		mktime() (in module time)

 		mktime_tz() (in module email.utils)

 		

 		(in module rfc822)

 		mmap (class in mmap)

 		

 		(module)

 		MMDF (class in mailbox)

 		MmdfMailbox (class in mailbox)

 		MMDFMessage (class in mailbox)

 		mod() (in module operator)

 		mode (file attribute)

 		

 		(io.FileIO attribute)

 		(ossaudiodev.oss_audio_device attribute)

 		(tarfile.TarInfo attribute)

 		mode() (in module turtle)

 		modf() (in module math)

 		modified() (robotparser.RobotFileParser method)

 		Modify() (msilib.View method)

 		modify() (select.epoll method)

 		

 		(select.poll method)

 		module

 		

 		AL

 		CGIHTTPServer

 		FrameWork

 		SUNAUDIODEV

 		SimpleHTTPServer

 		__builtin__, [1], [2], [3], [4]

 		__main__, [1], [2], [3], [4], [5], [6], [7]

 		_locale

 		array

 		base64

 		bdb

 		binhex

 		bsddb, [1], [2], [3]

 		builtins

 		cPickle

 		cmd

 		compileall

 		copy

 		crypt

 		dbhash

 		dbm, [1], [2], [3]

 		dumbdbm

 		errno, [1]

 		exceptions

 		extension

 		fcntl

 		formatter

 		gdbm, [1], [2]

 		glob

 		htmllib

 		icglue

 		ihooks

 		imp

 		importing

 		json

 		knee, [1]

 		macerrors

 		mailbox

 		math, [1]

 		mimetools

 		namespace

 		object, [1], [2]

 		os, [1]

 		pickle, [1], [2], [3], [4]

 		pty

 		pwd

 		pyexpat

 		re, [1], [2]

 		readline

 		rexec

 		rfc822

 		rlcompleter

 		search path, [1], [2], [3], [4], [5], [6]

 		sgmllib

 		shelve

 		signal, [1]

 		sitecustomize

 		socket, [1]

 		stat

 		statvfs

 		string, [1], [2]

 		struct

 		sunaudiodev

 		sys, [1], [2], [3], [4], [5], [6]

 		thread

 		types

 		urllib

 		urlparse

 		usercustomize

 		uu

 		module (pyclbr.Class attribute)

 		

 		(pyclbr.Function attribute)

 		module() (in module new)

 		ModuleFinder (class in modulefinder)

 		modulefinder (module)

 		modules (in module sys), [1], [2]

 		

 		(modulefinder.ModuleFinder attribute)

 		ModuleType (in module types), [1]

 		modulo

 		mono2grey() (in module imageop)

 		month (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		month() (in module calendar)

 		month_abbr (in module calendar)

 		month_name (in module calendar)

 		monthcalendar() (in module calendar)

 		monthdatescalendar() (calendar.Calendar method)

 		monthdays2calendar() (calendar.Calendar method)

 		monthdayscalendar() (calendar.Calendar method)

 		monthrange() (in module calendar)

 		Morsel (class in Cookie)

 		most_common() (collections.Counter method)

 		mouseinterval() (in module curses)

 		mousemask() (in module curses)

 		move() (curses.panel.Panel method)

 		

 		(curses.window method)

 		(in module findertools)

 		(in module shutil)

 		(mmap.mmap method)

 		(ttk.Treeview method)

 		move_file() (distutils.ccompiler.CCompiler method)

 		

 		(in module distutils.file_util)

 		movemessage() (mhlib.Folder method)

 		MozillaCookieJar (class in cookielib)

 		MRO

 		mro() (class method)

 		msftoframe() (in module cd)

 		msg (httplib.HTTPResponse attribute)

 		msg() (telnetlib.Telnet method)

 		msi

 		msilib (module)

 		msvcrt (module)

 		mt_interact() (telnetlib.Telnet method)

 		mtime (tarfile.TarInfo attribute)

 		mtime() (robotparser.RobotFileParser method)

 		mul() (in module audioop)

 		

 		(in module operator)

 		MultiCall (class in xmlrpclib)

 		MultiFile (class in multifile)

 		multifile (module)

 		MULTILINE (in module re)

 		MultipartConversionError

 		multiplication

 		multiply() (decimal.Context method)

 		multiprocessing (module)

 		multiprocessing.connection (module)

 		multiprocessing.dummy (module)

 		multiprocessing.Manager() (in module multiprocessing.sharedctypes)

 		multiprocessing.managers (module)

 		multiprocessing.Pool (class in multiprocessing.pool)

 		multiprocessing.pool (module)

 		multiprocessing.queues.SimpleQueue (class in multiprocessing)

 		multiprocessing.sharedctypes (module)

 		mutable

 		

 		object, [1], [2]

 		sequence types

 		mutable object

 		
 mutable sequence

 		

 		loop over

 		object

 		MutableMapping (class in collections)

 		MutableSequence (class in collections)

 		MutableSet (class in collections)

 		MutableString (class in UserString)

 		mutex (class in mutex)

 		

 		(module)

 		mvderwin() (curses.window method)

 		mvwin() (curses.window method)

 		myrights() (imaplib.IMAP4 method)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-B.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – B

 		

 		b16decode() (in module base64)

 		b16encode() (in module base64)

 		b2a_base64() (in module binascii)

 		b2a_hex() (in module binascii)

 		b2a_hqx() (in module binascii)

 		b2a_qp() (in module binascii)

 		b2a_uu() (in module binascii)

 		b32decode() (in module base64)

 		b32encode() (in module base64)

 		b64decode() (in module base64)

 		b64encode() (in module base64)

 		Babyl (class in mailbox)

 		BabylMailbox (class in mailbox)

 		BabylMessage (class in mailbox)

 		back() (in module turtle)

 		back-quotes, [1]

 		BACKQUOTE (in module token)

 		backslash character

 		backslashreplace_errors() (in module codecs)

 		
 backward

 		

 		quotes, [1]

 		backward() (in module turtle)

 		backward_compatible (in module imageop)

 		BadStatusLine

 		BadZipfile

 		Balloon (class in Tix)

 		bare except

 		
 base64

 		

 		encoding

 		module

 		base64 (module)

 		BaseCGIHandler (class in wsgiref.handlers)

 		BaseCookie (class in Cookie)

 		BaseException

 		BaseHandler (class in urllib2)

 		

 		(class in wsgiref.handlers)

 		BaseHTTPRequestHandler (class in BaseHTTPServer)

 		BaseHTTPServer (module)

 		BaseManager (class in multiprocessing.managers)

 		basename() (in module os.path)

 		BaseProxy (class in multiprocessing.managers)

 		BaseRequestHandler (class in SocketServer)

 		BaseServer (class in SocketServer)

 		basestring (2to3 fixer)

 		basestring() (built-in function)

 		basicConfig() (in module logging)

 		BasicContext (class in decimal)

 		Bastion (module)

 		Bastion() (in module Bastion)

 		BastionClass (class in Bastion)

 		baudrate() (in module curses)

 		bbox() (ttk.Treeview method)

 		
 bdb

 		

 		module

 		Bdb (class in bdb)

 		bdb (module)

 		BdbQuit

 		BDFL

 		bdist_msi (class in distutils.command.bdist_msi)

 		beep() (in module curses)

 		Beep() (in module winsound)

 		begin_fill() (in module turtle)

 		begin_poly() (in module turtle)

 		below() (curses.panel.Panel method)

 		Benchmarking

 		benchmarking

 		betavariate() (in module random)

 		bgcolor() (in module turtle)

 		bgn_group() (fl.form method)

 		bgpic() (in module turtle)

 		bias() (in module audioop)

 		bidirectional() (in module unicodedata)

 		BigEndianStructure (class in ctypes)

 		bin() (built-in function)

 		
 binary

 		

 		arithmetic operation

 		bitwise operation

 		data, packing

 		Binary (class in msilib)

 		

 		(class in xmlrpclib)

 		binary literal

 		binary semaphores

 		BINARY_ADD (opcode)

 		BINARY_AND (opcode)

 		BINARY_DIVIDE (opcode)

 		BINARY_FLOOR_DIVIDE (opcode)

 		BINARY_LSHIFT (opcode)

 		BINARY_MODULO (opcode)

 		BINARY_MULTIPLY (opcode)

 		BINARY_OR (opcode)

 		BINARY_POWER (opcode)

 		BINARY_RSHIFT (opcode)

 		BINARY_SUBSCR (opcode)

 		BINARY_SUBTRACT (opcode)

 		BINARY_TRUE_DIVIDE (opcode)

 		BINARY_XOR (opcode)

 		binascii (module)

 		bind (widgets)

 		bind() (asyncore.dispatcher method)

 		

 		(socket.socket method)

 		bind_textdomain_codeset() (in module gettext)

 		
 binding

 		

 		global name

 		name, [1], [2], [3], [4], [5]

 		bindtextdomain() (in module gettext)

 		
 binhex

 		

 		module

 		binhex (module)

 		binhex() (in module binhex)

 		bisect (module)

 		bisect() (in module bisect)

 		bisect_left() (in module bisect)

 		bisect_right() (in module bisect)

 		bit_length() (int method)

 		

 		(long method)

 		bitmap() (msilib.Dialog method)

 		
 bitwise

 		

 		and

 		operation, binary

 		operation, unary

 		operations

 		or

 		xor

 		bk() (in module turtle)

 		bkgd() (curses.window method)

 		

 		bkgdset() (curses.window method)

 		blank line

 		block

 		

 		code

 		blocked_domains() (cookielib.DefaultCookiePolicy method)

 		BlockingIOError

 		BLOCKSIZE (in module cd)

 		blocksize (in module sha)

 		BNF, [1]

 		body() (nntplib.NNTP method)

 		body_encode() (email.charset.Charset method)

 		body_encoding (email.charset.Charset attribute)

 		body_line_iterator() (in module email.iterators)

 		BOM (in module codecs)

 		BOM_BE (in module codecs)

 		BOM_LE (in module codecs)

 		BOM_UTF16 (in module codecs)

 		BOM_UTF16_BE (in module codecs)

 		BOM_UTF16_LE (in module codecs)

 		BOM_UTF32 (in module codecs)

 		BOM_UTF32_BE (in module codecs)

 		BOM_UTF32_LE (in module codecs)

 		BOM_UTF8 (in module codecs)

 		bool (built-in class)

 		
 Boolean

 		

 		object, [1]

 		operation

 		operations, [1]

 		type

 		values

 		Boolean (class in aetypes)

 		boolean() (in module xmlrpclib)

 		BooleanType (in module types)

 		bootstrap() (in module ensurepip)

 		border() (curses.window method)

 		bottom() (curses.panel.Panel method)

 		bottom_panel() (in module curses.panel)

 		BoundaryError

 		BoundedSemaphore (class in multiprocessing)

 		BoundedSemaphore() (in module threading)

 		

 		(multiprocessing.managers.SyncManager method)

 		box() (curses.window method)

 		
 break

 		

 		statement, [1], [2], [3], [4]

 		break_anywhere() (bdb.Bdb method)

 		break_here() (bdb.Bdb method)

 		break_long_words (textwrap.TextWrapper attribute)

 		BREAK_LOOP (opcode)

 		break_on_hyphens (textwrap.TextWrapper attribute)

 		Breakpoint (class in bdb)

 		breakpoints

 		BROWSER, [1]

 		
 bsddb

 		

 		module, [1], [2], [3]

 		bsddb (module)

 		BsdDbShelf (class in shelve)

 		btopen() (in module bsddb)

 		
 buffer

 		

 		built-in function

 		object, [1]

 		buffer (2to3 fixer)

 		

 		(io.TextIOBase attribute)

 		(unittest.TestResult attribute)

 		buffer interface

 		buffer size, I/O

 		buffer() (built-in function)

 		buffer_info() (array.array method)

 		buffer_size (xml.parsers.expat.xmlparser attribute)

 		buffer_text (xml.parsers.expat.xmlparser attribute)

 		buffer_used (xml.parsers.expat.xmlparser attribute)

 		BufferedIOBase (class in io)

 		BufferedRandom (class in io)

 		BufferedReader (class in io)

 		BufferedRWPair (class in io)

 		BufferedWriter (class in io)

 		BufferError

 		BufferingHandler (class in logging.handlers)

 		BufferTooShort

 		BufferType (in module types), [1]

 		BUFSIZ (in module macostools)

 		bufsize() (ossaudiodev.oss_audio_device method)

 		BUILD_CLASS (opcode)

 		BUILD_LIST (opcode)

 		BUILD_MAP (opcode)

 		build_opener() (in module urllib2)

 		BUILD_SET (opcode)

 		BUILD_SLICE (opcode)

 		BUILD_TUPLE (opcode)

 		buildtools (module)

 		
 built-in

 		

 		method

 		types

 		
 built-in function

 		

 		__import__

 		abs, [1]

 		apply, [1], [2]

 		buffer

 		bytes

 		call

 		chr, [1]

 		classmethod

 		cmp, [1], [2], [3]

 		coerce

 		compile, [1], [2], [3], [4]

 		complex, [1]

 		divmod, [1], [2]

 		eval, [1], [2], [3], [4], [5], [6], [7]

 		execfile, [1]

 		file

 		float, [1], [2], [3]

 		globals

 		hash, [1], [2]

 		help

 		hex

 		id

 		input, [1]

 		int, [1], [2]

 		len, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 		locals

 		long, [1], [2], [3]

 		max

 		min

 		object, [1]

 		oct

 		open, [1]

 		ord, [1], [2]

 		pow, [1], [2], [3], [4], [5]

 		range

 		raw_input, [1]

 		reload, [1], [2], [3]

 		repr, [1], [2], [3], [4], [5]

 		slice, [1], [2]

 		staticmethod

 		str, [1], [2], [3]

 		tuple, [1]

 		type, [1], [2], [3]

 		unichr

 		unicode, [1], [2], [3]

 		xrange

 		
 built-in method

 		

 		call

 		object, [1]

 		builtin_module_names (in module sys)

 		BuiltinFunctionType (in module types)

 		BuiltinImporter (class in imputil)

 		BuiltinMethodType (in module types)

 		
 builtins

 		

 		module

 		ButtonBox (class in Tix)

 		bye() (in module turtle)

 		byref() (in module ctypes)

 		byte

 		
 byte-code

 		

 		file, [1], [2]

 		byte_compile() (in module distutils.util)

 		bytearray

 		

 		object, [1]

 		bytearray (built-in class)

 		bytecode, [1]

 		byteorder (in module sys)

 		
 bytes

 		

 		built-in function

 		bytes (uuid.UUID attribute)

 		bytes-like object

 		bytes_le (uuid.UUID attribute)

 		BytesIO (class in io)

 		byteswap() (array.array method)

 		bz2 (module)

 		BZ2Compressor (class in bz2)

 		BZ2Decompressor (class in bz2)

 		BZ2File (class in bz2)

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

 © Copyright 1990-2016, Python Software Foundation.

 The Python Software Foundation is a non-profit corporation.
 Please donate.

 Last updated on Jun 25, 2016.
 Found a bug?

 Created using Sphinx 1.4.4.

genindex-Symbols.html

 Navigation

 		
 index

 		
 modules |

 		[image:]

 		Python »

 		
 Python 2.7.12 documentation »

Index – Symbols

 		

 		
 !=

 		

 		operator

 		
 %

 		

 		operator

 		% formatting

 		% interpolation

 		
 %=

 		

 		augmented assignment

 		%PATH%

 		
 &

 		

 		operator

 		
 &=

 		

 		augmented assignment

 		
 *

 		

 		in function calls

 		operator

 		statement, [1]

 		
 **

 		

 		in function calls

 		operator

 		statement, [1]

 		
 **=

 		

 		augmented assignment

 		
 *=

 		

 		augmented assignment

 		
 +

 		

 		operator

 		
 +=

 		

 		augmented assignment

 		
 -

 		

 		operator

 		
 --help

 		

 		command line option

 		trace command line option

 		
 --ignore-dir=<dir>

 		

 		trace command line option

 		
 --ignore-module=<mod>

 		

 		trace command line option

 		
 --user-base

 		

 		site command line option

 		
 --user-site

 		

 		site command line option

 		
 --version

 		

 		command line option

 		trace command line option

 		
 -3

 		

 		command line option

 		
 -=

 		

 		augmented assignment

 		
 -?

 		

 		command line option

 		
 -B

 		

 		command line option

 		
 -b, --buffer

 		

 		unittest command line option

 		
 -c <command>

 		

 		command line option

 		
 -c, --catch

 		

 		unittest command line option

 		
 -c, --clock

 		

 		timeit command line option

 		
 -c, --count

 		

 		trace command line option

 		
 -C, --coverdir=<dir>

 		

 		trace command line option

 		
 -d

 		

 		command line option

 		
 -d destdir

 		

 		compileall command line option

 		
 -E

 		

 		command line option

 		
 -f

 		

 		compileall command line option

 		
 -f, --failfast

 		

 		unittest command line option

 		
 -f, --file=<file>

 		

 		trace command line option

 		
 -g, --timing

 		

 		trace command line option

 		
 -h

 		

 		command line option

 		
 -h, --help

 		

 		timeit command line option

 		
 -i

 		

 		command line option

 		
 -i list

 		

 		compileall command line option

 		
 -J

 		

 		command line option

 		
 -l

 		

 		compileall command line option

 		
 -l, --listfuncs

 		

 		trace command line option

 		
 -m <module-name>

 		

 		command line option

 		
 -m, --missing

 		

 		trace command line option

 		
 -n N, --number=N

 		

 		timeit command line option

 		
 -O

 		

 		command line option

 		
 -OO

 		

 		command line option

 		
 -p, --pattern pattern

 		

 		unittest-discover command line option

 		

 		
 -q

 		

 		compileall command line option

 		
 -Q <arg>

 		

 		command line option

 		
 -R

 		

 		command line option

 		
 -r N, --repeat=N

 		

 		timeit command line option

 		
 -R, --no-report

 		

 		trace command line option

 		
 -r, --report

 		

 		trace command line option

 		
 -S

 		

 		command line option

 		
 -s

 		

 		command line option

 		
 -s S, --setup=S

 		

 		timeit command line option

 		
 -s, --start-directory directory

 		

 		unittest-discover command line option

 		
 -s, --summary

 		

 		trace command line option

 		
 -t

 		

 		command line option

 		
 -t, --time

 		

 		timeit command line option

 		
 -t, --top-level-directory directory

 		

 		unittest-discover command line option

 		
 -t, --trace

 		

 		trace command line option

 		
 -T, --trackcalls

 		

 		trace command line option

 		
 -U

 		

 		command line option

 		
 -u

 		

 		command line option

 		
 -V

 		

 		command line option

 		
 -v

 		

 		command line option

 		
 -v, --verbose

 		

 		timeit command line option

 		unittest-discover command line option

 		
 -W arg

 		

 		command line option

 		
 -X

 		

 		command line option

 		
 -x

 		

 		command line option

 		
 -x regex

 		

 		compileall command line option

 		...

 		
 .ini

 		

 		file

 		
 .pdbrc

 		

 		file

 		.pypirc file

 		
 .pythonrc.py

 		

 		file

 		
 /

 		

 		operator

 		
 //

 		

 		operator

 		
 //=

 		

 		augmented assignment

 		
 /=

 		

 		augmented assignment

 		2to3

 		
 <

 		

 		operator

 		
 <<

 		

 		operator

 		
 <<=

 		

 		augmented assignment

 		
 <=

 		

 		operator

 		<protocol>_proxy

 		
 =

 		

 		assignment statement

 		
 ==

 		

 		operator

 		
 >

 		

 		operator

 		
 >=

 		

 		operator

 		
 >>

 		

 		operator

 		
 >>=

 		

 		augmented assignment

 		>>>

 		
 @

 		

 		statement

 		
 ^

 		

 		operator

