
Python Tutorial
Release 2.6.6

Guido van Rossum
Fred L. Drake, Jr., editor

August 24, 2010

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Whetting Your Appetite 3

2 Using the Python Interpreter 5
2.1 Invoking the Interpreter . 5
2.2 The Interpreter and Its Environment . 6

3 An Informal Introduction to Python 9
3.1 Using Python as a Calculator . 9
3.2 First Steps Towards Programming . 17

4 More Control Flow Tools 19
4.1 if Statements . 19
4.2 for Statements . 19
4.3 The range() Function . 20
4.4 break and continue Statements, and else Clauses on Loops 20
4.5 pass Statements . 21
4.6 Defining Functions . 21
4.7 More on Defining Functions . 23
4.8 Intermezzo: Coding Style . 27

5 Data Structures 29
5.1 More on Lists . 29
5.2 The del statement . 33
5.3 Tuples and Sequences . 33
5.4 Sets . 34
5.5 Dictionaries . 35
5.6 Looping Techniques . 36
5.7 More on Conditions . 37
5.8 Comparing Sequences and Other Types . 37

6 Modules 39
6.1 More on Modules . 40
6.2 Standard Modules . 42
6.3 The dir() Function . 42
6.4 Packages . 43

7 Input and Output 47
7.1 Fancier Output Formatting . 47
7.2 Reading and Writing Files . 50

i

8 Errors and Exceptions 53
8.1 Syntax Errors . 53
8.2 Exceptions . 53
8.3 Handling Exceptions . 54
8.4 Raising Exceptions . 56
8.5 User-defined Exceptions . 56
8.6 Defining Clean-up Actions . 57
8.7 Predefined Clean-up Actions . 58

9 Classes 61
9.1 A Word About Names and Objects . 61
9.2 Python Scopes and Namespaces . 61
9.3 A First Look at Classes . 63
9.4 Random Remarks . 65
9.5 Inheritance . 66
9.6 Private Variables . 68
9.7 Odds and Ends . 68
9.8 Exceptions Are Classes Too . 68
9.9 Iterators . 69
9.10 Generators . 70
9.11 Generator Expressions . 71

10 Brief Tour of the Standard Library 73
10.1 Operating System Interface . 73
10.2 File Wildcards . 73
10.3 Command Line Arguments . 74
10.4 Error Output Redirection and Program Termination . 74
10.5 String Pattern Matching . 74
10.6 Mathematics . 74
10.7 Internet Access . 75
10.8 Dates and Times . 75
10.9 Data Compression . 76
10.10 Performance Measurement . 76
10.11 Quality Control . 76
10.12 Batteries Included . 77

11 Brief Tour of the Standard Library – Part II 79
11.1 Output Formatting . 79
11.2 Templating . 80
11.3 Working with Binary Data Record Layouts . 81
11.4 Multi-threading . 81
11.5 Logging . 82
11.6 Weak References . 82
11.7 Tools for Working with Lists . 83
11.8 Decimal Floating Point Arithmetic . 84

12 What Now? 87

13 Interactive Input Editing and History Substitution 89
13.1 Line Editing . 89
13.2 History Substitution . 89
13.3 Key Bindings . 89
13.4 Alternatives to the Interactive Interpreter . 91

14 Floating Point Arithmetic: Issues and Limitations 93

ii

14.1 Representation Error . 95

A Glossary 97

B About these documents 103
B.1 Contributors to the Python Documentation . 103

C History and License 105
C.1 History of the software . 105
C.2 Terms and conditions for accessing or otherwise using Python . 106
C.3 Licenses and Acknowledgements for Incorporated Software . 108

D Copyright 117

Index 119

iii

iv

Python Tutorial, Release 2.6.6

Release 2.6

Date August 24, 2010

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together with its
interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most
platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all ma-
jor platforms from the Python Web site, http://www.python.org/, and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules, programs and tools, and additional
documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system. It
helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the tutorial
can be read off-line as well.

For a description of standard objects and modules, see The Python Standard Library (in The Python Library Reference).
The Python Language Reference (in The Python Language Reference) gives a more formal definition of the language.
To write extensions in C or C++, read Extending and Embedding the Python Interpreter (in Extending and Embedding
Python) and Python/C API Reference Manual (in The Python/C API). There are also several books covering Python in
depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs, and
you will be ready to learn more about the various Python library modules described in The Python Standard Library
(in The Python Library Reference).

The Glossary is also worth going through.

CONTENTS 1

http://www.python.org/

Python Tutorial, Release 2.6.6

2 CONTENTS

CHAPTER

ONE

WHETTING YOUR APPETITE

If you do much work on computers, eventually you find that there’s some task you’d like to automate. For example,
you may wish to perform a search-and-replace over a large number of text files, or rename and rearrange a bunch of
photo files in a complicated way. Perhaps you’d like to write a small custom database, or a specialized GUI application,
or a simple game.

If you’re a professional software developer, you may have to work with several C/C++/Java libraries but find the usual
write/compile/test/re-compile cycle is too slow. Perhaps you’re writing a test suite for such a library and find writing
the testing code a tedious task. Or maybe you’ve written a program that could use an extension language, and you
don’t want to design and implement a whole new language for your application.

Python is just the language for you.

You could write a Unix shell script or Windows batch files for some of these tasks, but shell scripts are best at moving
around files and changing text data, not well-suited for GUI applications or games. You could write a C/C++/Java
program, but it can take a lot of development time to get even a first-draft program. Python is simpler to use, available
on Windows, Mac OS X, and Unix operating systems, and will help you get the job done more quickly.

Python is simple to use, but it is a real programming language, offering much more structure and support for large pro-
grams than shell scripts or batch files can offer. On the other hand, Python also offers much more error checking than
C, and, being a very-high-level language, it has high-level data types built in, such as flexible arrays and dictionaries.
Because of its more general data types Python is applicable to a much larger problem domain than Awk or even Perl,
yet many things are at least as easy in Python as in those languages.

Python allows you to split your program into modules that can be reused in other Python programs. It comes with a
large collection of standard modules that you can use as the basis of your programs — or as examples to start learning
to program in Python. Some of these modules provide things like file I/O, system calls, sockets, and even interfaces to
graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, which makes it easy to experiment with
features of the language, to write throw-away programs, or to test functions during bottom-up program development.
It is also a handy desk calculator.

Python enables programs to be written compactly and readably. Programs written in Python are typically much shorter
than equivalent C, C++, or Java programs, for several reasons:

• the high-level data types allow you to express complex operations in a single statement;

• statement grouping is done by indentation instead of beginning and ending brackets;

• no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that may
only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you can

3

Python Tutorial, Release 2.6.6

link the Python interpreter into an application written in C and use it as an extension or command language for that
application.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing to do with
reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

Now that you are all excited about Python, you’ll want to examine it in some more detail. Since the best way to learn
a language is to use it, the tutorial invites you to play with the Python interpreter as you read.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system through examples, beginning
with simple expressions, statements and data types, through functions and modules, and finally touching upon ad-
vanced concepts like exceptions and user-defined classes.

4 Chapter 1. Whetting Your Appetite

CHAPTER

TWO

USING THE PYTHON INTERPRETER

2.1 Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python on those machines where it is available;
putting /usr/local/bin in your Unix shell’s search path makes it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives is an installation option, other places are
possible; check with your local Python guru or system administrator. (E.g., /usr/local/python is a popular
alternative location.)

On Windows machines, the Python installation is usually placed in C:\Python26, though you can change this when
you’re running the installer. To add this directory to your path, you can type the following command into the command
prompt in a DOS box:

set path=%path%;C:\python26

Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at the primary prompt causes the
interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the following
command: quit().

The interpreter’s line-editing features usually aren’t very sophisticated. On Unix, whoever installed the interpreter
may have enabled support for the GNU readline library, which adds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether command line editing is supported is typing Control-P to the
first Python prompt you get. If it beeps, you have command line editing; see Appendix Interactive Input Editing and
History Substitution for an introduction to the keys. If nothing appears to happen, or if ^P is echoed, command line
editing isn’t available; you’ll only be able to use backspace to remove characters from the current line.

The interpreter operates somewhat like the Unix shell: when called with standard input connected to a tty device, it
reads and executes commands interactively; when called with a file name argument or with a file as standard input, it
reads and executes a script from that file.

A second way of starting the interpreter is python -c command [arg] ..., which executes the statement(s)
in command, analogous to the shell’s -c option. Since Python statements often contain spaces or other characters that
are special to the shell, it is usually advised to quote command in its entirety with single quotes.

Some Python modules are also useful as scripts. These can be invoked using python -m module [arg] ...,
which executes the source file for module as if you had spelled out its full name on the command line.

Note that there is a difference between python file and python <file. In the latter case, input requests
from the program, such as calls to input() and raw_input(), are satisfied from file. Since this file has already
been read until the end by the parser before the program starts executing, the program will encounter end-of-file
immediately. In the former case (which is usually what you want) they are satisfied from whatever file or device is
connected to standard input of the Python interpreter.

5

Python Tutorial, Release 2.6.6

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passing -i before the script. (This does not work if the script is read from standard input, for the
same reason as explained in the previous paragraph.)

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are passed to the script in the
variable sys.argv, which is a list of strings. Its length is at least one; when no script and no arguments are given,
sys.argv[0] is an empty string. When the script name is given as ’-’ (meaning standard input), sys.argv[0]
is set to ’-’. When -c command is used, sys.argv[0] is set to ’-c’. When -m module is used, sys.argv[0]
is set to the full name of the located module. Options found after -c command or -m module are not consumed by the
Python interpreter’s option processing but left in sys.argv for the command or module to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive mode. In this mode it prompts for
the next command with the primary prompt, usually three greater-than signs (>>>); for continuation lines it prompts
with the secondary prompt, by default three dots (...). The interpreter prints a welcome message stating its version
number and a copyright notice before printing the first prompt:

python
Python 2.6 (#1, Feb 28 2007, 00:02:06)
Type "help", "copyright", "credits" or "license" for more information.
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look at this if statement:

>>> the_world_is_flat = 1
>>> if the_world_is_flat:
... print "Be careful not to fall off!"
...
Be careful not to fall off!

2.2 The Interpreter and Its Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it then returns
to the primary prompt; when input came from a file, it exits with a nonzero exit status after printing the stack trace.
(Exceptions handled by an except clause in a try statement are not errors in this context.) Some errors are uncon-
ditionally fatal and cause an exit with a nonzero exit; this applies to internal inconsistencies and some cases of running
out of memory. All error messages are written to the standard error stream; normal output from executed commands
is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels the input and
returns to the primary prompt. 1 Typing an interrupt while a command is executing raises the KeyboardInterrupt
exception, which may be handled by a try statement.

1 A problem with the GNU Readline package may prevent this.

6 Chapter 2. Using the Python Interpreter

Python Tutorial, Release 2.6.6

2.2.2 Executable Python Scripts

On BSD’ish Unix systems, Python scripts can be made directly executable, like shell scripts, by putting the line

#! /usr/bin/env python

(assuming that the interpreter is on the user’s PATH) at the beginning of the script and giving the file an executable
mode. The #! must be the first two characters of the file. On some platforms, this first line must end with a Unix-style
line ending (’\n’), not a Windows (’\r\n’) line ending. Note that the hash, or pound, character, ’#’, is used to
start a comment in Python.

The script can be given an executable mode, or permission, using the chmod command:

$ chmod +x myscript.py

On Windows systems, there is no notion of an “executable mode”. The Python installer automatically associates .py
files with python.exe so that a double-click on a Python file will run it as a script. The extension can also be .pyw,
in that case, the console window that normally appears is suppressed.

2.2.3 Source Code Encoding

It is possible to use encodings different than ASCII in Python source files. The best way to do it is to put one more
special comment line right after the #! line to define the source file encoding:

-*- coding: encoding -*-

With that declaration, all characters in the source file will be treated as having the encoding encoding, and it will be
possible to directly write Unicode string literals in the selected encoding. The list of possible encodings can be found
in the Python Library Reference, in the section on codecs.

For example, to write Unicode literals including the Euro currency symbol, the ISO-8859-15 encoding can be used,
with the Euro symbol having the ordinal value 164. This script will print the value 8364 (the Unicode codepoint
corresponding to the Euro symbol) and then exit:

-*- coding: iso-8859-15 -*-

currency = u"C"
print ord(currency)

If your editor supports saving files as UTF-8 with a UTF-8 byte order mark (aka BOM), you can use that in-
stead of an encoding declaration. IDLE supports this capability if Options/General/Default Source
Encoding/UTF-8 is set. Notice that this signature is not understood in older Python releases (2.2 and earlier),
and also not understood by the operating system for script files with #! lines (only used on Unix systems).

By using UTF-8 (either through the signature or an encoding declaration), characters of most languages in the world
can be used simultaneously in string literals and comments. Using non-ASCII characters in identifiers is not supported.
To display all these characters properly, your editor must recognize that the file is UTF-8, and it must use a font that
supports all the characters in the file.

2.2.4 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed every time the
interpreter is started. You can do this by setting an environment variable named PYTHONSTARTUP to the name of
a file containing your start-up commands. This is similar to the .profile feature of the Unix shells.

This file is only read in interactive sessions, not when Python reads commands from a script, and not when /dev/tty
is given as the explicit source of commands (which otherwise behaves like an interactive session). It is executed in

2.2. The Interpreter and Its Environment 7

Python Tutorial, Release 2.6.6

the same namespace where interactive commands are executed, so that objects that it defines or imports can be used
without qualification in the interactive session. You can also change the prompts sys.ps1 and sys.ps2 in this file.

If you want to read an additional start-up file from the current directory, you can program this in the global start-up
file using code like if os.path.isfile(’.pythonrc.py’): execfile(’.pythonrc.py’). If you
want to use the startup file in a script, you must do this explicitly in the script:

import os
filename = os.environ.get(’PYTHONSTARTUP’)
if filename and os.path.isfile(filename):

execfile(filename)

8 Chapter 2. Using the Python Interpreter

CHAPTER

THREE

AN INFORMAL INTRODUCTION TO
PYTHON

In the following examples, input and output are distinguished by the presence or absence of prompts (>>> and ...):
to repeat the example, you must type everything after the prompt, when the prompt appears; lines that do not begin
with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an example means
you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments in
Python start with the hash character, #, and extend to the end of the physical line. A comment may appear at the start
of a line or following whitespace or code, but not within a string literal. A hash character within a string literal is just
a hash character. Since comments are to clarify code and are not interpreted by Python, they may be omitted when
typing in examples.

Some examples:

this is the first comment
SPAM = 1 # and this is the second comment

... and now a third!
STRING = "# This is not a comment."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt, >>>. (It shouldn’t
take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operators +, -, * and / work just like in most other languages (for example, Pascal or
C); parentheses can be used for grouping. For example:

>>> 2+2
4
>>> # This is a comment
... 2+2
4
>>> 2+2 # and a comment on the same line as code
4
>>> (50-5*6)/4

9

Python Tutorial, Release 2.6.6

5
>>> # Integer division returns the floor:
... 7/3
2
>>> 7/-3
-3

The equal sign (’=’) is used to assign a value to a variable. Afterwards, no result is displayed before the next
interactive prompt:

>>> width = 20
>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>> x = y = z = 0 # Zero x, y and z
>>> x
0
>>> y
0
>>> z
0

Variables must be “defined” (assigned a value) before they can be used, or an error will occur:

>>> # try to access an undefined variable
... n
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name ’n’ is not defined

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 3 * 3.75 / 1.5
7.5
>>> 7.0 / 2
3.5

Complex numbers are also supported; imaginary numbers are written with a suffix of j or J. Complex numbers with
a nonzero real component are written as (real+imagj), or can be created with the complex(real, imag)
function.

>>> 1j * 1J
(-1+0j)
>>> 1j * complex(0,1)
(-1+0j)
>>> 3+1j*3
(3+3j)
>>> (3+1j)*3
(9+3j)
>>> (1+2j)/(1+1j)
(1.5+0.5j)

Complex numbers are always represented as two floating point numbers, the real and imaginary part. To extract these
parts from a complex number z, use z.real and z.imag.

10 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.6.6

>>> a=1.5+0.5j
>>> a.real
1.5
>>> a.imag
0.5

The conversion functions to floating point and integer (float(), int() and long()) don’t work for complex
numbers — there is no one correct way to convert a complex number to a real number. Use abs(z) to get its
magnitude (as a float) or z.real to get its real part.

>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: can’t convert complex to float; use abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0

In interactive mode, the last printed expression is assigned to the variable _. This means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create an
independent local variable with the same name masking the built-in variable with its magic behavior.

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be enclosed
in single quotes or double quotes:

>>> ’spam eggs’
’spam eggs’
>>> ’doesn\’t’
"doesn’t"
>>> "doesn’t"
"doesn’t"
>>> ’"Yes," he said.’
’"Yes," he said.’
>>> "\"Yes,\" he said."
’"Yes," he said.’
>>> ’"Isn\’t," she said.’
’"Isn\’t," she said.’

String literals can span multiple lines in several ways. Continuation lines can be used, with a backslash as the last
character on the line indicating that the next line is a logical continuation of the line:

3.1. Using Python as a Calculator 11

Python Tutorial, Release 2.6.6

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\
significant."

print hello

Note that newlines still need to be embedded in the string using \n; the newline following the trailing backslash is
discarded. This example would print the following:

This is a rather long string containing
several lines of text just as you would do in C.

Note that whitespace at the beginning of the line is significant.

Or, strings can be surrounded in a pair of matching triple-quotes: """ or ”’. End of lines do not need to be escaped
when using triple-quotes, but they will be included in the string.

print """
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

"""

produces the following output:

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

If we make the string literal a “raw” string, \n sequences are not converted to newlines, but the backslash at the end
of the line, and the newline character in the source, are both included in the string as data. Thus, the example:

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

print hello

would print:

This is a rather long string containing\n\
several lines of text much as you would do in C.

The interpreter prints the result of string operations in the same way as they are typed for input: inside quotes, and with
quotes and other funny characters escaped by backslashes, to show the precise value. The string is enclosed in double
quotes if the string contains a single quote and no double quotes, else it’s enclosed in single quotes. (The print
statement, described later, can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) with the + operator, and repeated with *:

>>> word = ’Help’ + ’A’
>>> word
’HelpA’
>>> ’<’ + word*5 + ’>’
’<HelpAHelpAHelpAHelpAHelpA>’

Two string literals next to each other are automatically concatenated; the first line above could also have been written
word = ’Help’ ’A’; this only works with two literals, not with arbitrary string expressions:

>>> ’str’ ’ing’ # <- This is ok
’string’
>>> ’str’.strip() + ’ing’ # <- This is ok

12 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.6.6

’string’
>>> ’str’.strip() ’ing’ # <- This is invalid

File "<stdin>", line 1, in ?
’str’.strip() ’ing’

^
SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string has subscript (index) 0. There is no
separate character type; a character is simply a string of size one. Like in Icon, substrings can be specified with the
slice notation: two indices separated by a colon.

>>> word[4]
’A’
>>> word[0:2]
’He’
>>> word[2:4]
’lp’

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the size
of the string being sliced.

>>> word[:2] # The first two characters
’He’
>>> word[2:] # Everything except the first two characters
’lpA’

Unlike a C string, Python strings cannot be changed. Assigning to an indexed position in the string results in an error:

>>> word[0] = ’x’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object does not support item assignment
>>> word[:1] = ’Splat’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object does not support slice assignment

However, creating a new string with the combined content is easy and efficient:

>>> ’x’ + word[1:]
’xelpA’
>>> ’Splat’ + word[4]
’SplatA’

Here’s a useful invariant of slice operations: s[:i] + s[i:] equals s.

>>> word[:2] + word[2:]
’HelpA’
>>> word[:3] + word[3:]
’HelpA’

Degenerate slice indices are handled gracefully: an index that is too large is replaced by the string size, an upper bound
smaller than the lower bound returns an empty string.

>>> word[1:100]
’elpA’
>>> word[10:]
’’
>>> word[2:1]
’’

3.1. Using Python as a Calculator 13

Python Tutorial, Release 2.6.6

Indices may be negative numbers, to start counting from the right. For example:

>>> word[-1] # The last character
’A’
>>> word[-2] # The last-but-one character
’p’
>>> word[-2:] # The last two characters
’pA’
>>> word[:-2] # Everything except the last two characters
’Hel’

But note that -0 is really the same as 0, so it does not count from the right!

>>> word[-0] # (since -0 equals 0)
’H’

Out-of-range negative slice indices are truncated, but don’t try this for single-element (non-slice) indices:

>>> word[-100:]
’HelpA’
>>> word[-10] # error
Traceback (most recent call last):

File "<stdin>", line 1, in ?
IndexError: string index out of range

One way to remember how slices work is to think of the indices as pointing between characters, with the left edge of
the first character numbered 0. Then the right edge of the last character of a string of n characters has index n, for
example:

+---+---+---+---+---+
| H | e | l | p | A |
+---+---+---+---+---+
0 1 2 3 4 5

-5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the second row gives the corresponding
negative indices. The slice from i to j consists of all characters between the edges labeled i and j, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For example,
the length of word[1:3] is 2.

The built-in function len() returns the length of a string:

>>> s = ’supercalifragilisticexpialidocious’
>>> len(s)
34

See Also:

Sequence Types — str, unicode, list, tuple, buffer, xrange (in The Python Library Reference) Strings, and the Uni-
code strings described in the next section, are examples of sequence types, and support the common operations
supported by such types.

String Methods (in The Python Library Reference) Both strings and Unicode strings support a large number of
methods for basic transformations and searching.

String Formatting (in The Python Library Reference) Information about string formatting with str.format() is
described here.

String Formatting Operations (in The Python Library Reference) The old formatting operations invoked when
strings and Unicode strings are the left operand of the % operator are described in more detail here.

14 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.6.6

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to the programmer: the Unicode object. It
can be used to store and manipulate Unicode data (see http://www.unicode.org/) and integrates well with the existing
string objects, providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every script used in modern and ancient
texts. Previously, there were only 256 possible ordinals for script characters. Texts were typically bound to a code
page which mapped the ordinals to script characters. This lead to very much confusion especially with respect to
internationalization (usually written as i18n — ’i’ + 18 characters + ’n’) of software. Unicode solves these
problems by defining one code page for all scripts.

Creating Unicode strings in Python is just as simple as creating normal strings:

>>> u’Hello World !’
u’Hello World !’

The small ’u’ in front of the quote indicates that a Unicode string is supposed to be created. If you want to include
special characters in the string, you can do so by using the Python Unicode-Escape encoding. The following example
shows how:

>>> u’Hello\u0020World !’
u’Hello World !’

The escape sequence \u0020 indicates to insert the Unicode character with the ordinal value 0x0020 (the space
character) at the given position.

Other characters are interpreted by using their respective ordinal values directly as Unicode ordinals. If you have
literal strings in the standard Latin-1 encoding that is used in many Western countries, you will find it convenient that
the lower 256 characters of Unicode are the same as the 256 characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You have to prefix the opening quote with
‘ur’ to have Python use the Raw-Unicode-Escape encoding. It will only apply the above \uXXXX conversion if there
is an uneven number of backslashes in front of the small ‘u’.

>>> ur’Hello\u0020World !’
u’Hello World !’
>>> ur’Hello\\u0020World !’
u’Hello\\\\u0020World !’

The raw mode is most useful when you have to enter lots of backslashes, as can be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways of creating Unicode strings on the
basis of a known encoding. The built-in function unicode() provides access to all registered Unicode codecs
(COders and DECoders). Some of the more well known encodings which these codecs can convert are Latin-1, ASCII,
UTF-8, and UTF-16. The latter two are variable-length encodings that store each Unicode character in one or more
bytes. The default encoding is normally set to ASCII, which passes through characters in the range 0 to 127 and
rejects any other characters with an error. When a Unicode string is printed, written to a file, or converted with
str(), conversion takes place using this default encoding.

>>> u"abc"
u’abc’
>>> str(u"abc")
’abc’
>>> u"äöü"
u’\xe4\xf6\xfc’
>>> str(u"äöü")
Traceback (most recent call last):

File "<stdin>", line 1, in ?
UnicodeEncodeError: ’ascii’ codec can’t encode characters in position 0-2: ordinal not in range(128)

3.1. Using Python as a Calculator 15

http://www.unicode.org/

Python Tutorial, Release 2.6.6

To convert a Unicode string into an 8-bit string using a specific encoding, Unicode objects provide an encode()
method that takes one argument, the name of the encoding. Lowercase names for encodings are preferred.

>>> u"äöü".encode(’utf-8’)
’\xc3\xa4\xc3\xb6\xc3\xbc’

If you have data in a specific encoding and want to produce a corresponding Unicode string from it, you can use the
unicode() function with the encoding name as the second argument.

>>> unicode(’\xc3\xa4\xc3\xb6\xc3\xbc’, ’utf-8’)
u’\xe4\xf6\xfc’

3.1.4 Lists

Python knows a number of compound data types, used to group together other values. The most versatile is the list,
which can be written as a list of comma-separated values (items) between square brackets. List items need not all have
the same type.

>>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

>>> a[0]
’spam’
>>> a[3]
1234
>>> a[-2]
100
>>> a[1:-1]
[’eggs’, 100]
>>> a[:2] + [’bacon’, 2*2]
[’spam’, ’eggs’, ’bacon’, 4]
>>> 3*a[:3] + [’Boo!’]
[’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’Boo!’]

All slice operations return a new list containing the requested elements. This means that the following slice returns a
shallow copy of the list a:

>>> a[:]
[’spam’, ’eggs’, 100, 1234]

Unlike strings, which are immutable, it is possible to change individual elements of a list:

>>> a
[’spam’, ’eggs’, 100, 1234]
>>> a[2] = a[2] + 23
>>> a
[’spam’, ’eggs’, 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list or clear it entirely:

>>> # Replace some items:
... a[0:2] = [1, 12]
>>> a
[1, 12, 123, 1234]
>>> # Remove some:
... a[0:2] = []

16 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.6.6

>>> a
[123, 1234]
>>> # Insert some:
... a[1:1] = [’bletch’, ’xyzzy’]
>>> a
[123, ’bletch’, ’xyzzy’, 1234]
>>> # Insert (a copy of) itself at the beginning
>>> a[:0] = a
>>> a
[123, ’bletch’, ’xyzzy’, 1234, 123, ’bletch’, ’xyzzy’, 1234]
>>> # Clear the list: replace all items with an empty list
>>> a[:] = []
>>> a
[]

The built-in function len() also applies to lists:

>>> a = [’a’, ’b’, ’c’, ’d’]
>>> len(a)
4

It is possible to nest lists (create lists containing other lists), for example:

>>> q = [2, 3]
>>> p = [1, q, 4]
>>> len(p)
3
>>> p[1]
[2, 3]
>>> p[1][0]
2
>>> p[1].append(’xtra’) # See section 5.1
>>> p
[1, [2, 3, ’xtra’], 4]
>>> q
[2, 3, ’xtra’]

Note that in the last example, p[1] and q really refer to the same object! We’ll come back to object semantics later.

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of the Fibonacci series as follows:

>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
... print b
... a, b = b, a+b
...
1
1
2
3

3.2. First Steps Towards Programming 17

Python Tutorial, Release 2.6.6

5
8

This example introduces several new features.

• The first line contains a multiple assignment: the variables a and b simultaneously get the new values 0 and 1.
On the last line this is used again, demonstrating that the expressions on the right-hand side are all evaluated
first before any of the assignments take place. The right-hand side expressions are evaluated from the left to the
right.

• The while loop executes as long as the condition (here: b < 10) remains true. In Python, like in C, any non-
zero integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequences are false. The test used in the example is a simple
comparison. The standard comparison operators are written the same as in C: < (less than), > (greater than), ==
(equal to), <= (less than or equal to), >= (greater than or equal to) and != (not equal to).

• The body of the loop is indented: indentation is Python’s way of grouping statements. Python does not (yet!)
provide an intelligent input line editing facility, so you have to type a tab or space(s) for each indented line.
In practice you will prepare more complicated input for Python with a text editor; most text editors have an
auto-indent facility. When a compound statement is entered interactively, it must be followed by a blank line to
indicate completion (since the parser cannot guess when you have typed the last line). Note that each line within
a basic block must be indented by the same amount.

• The print statement writes the value of the expression(s) it is given. It differs from just writing the expression
you want to write (as we did earlier in the calculator examples) in the way it handles multiple expressions and
strings. Strings are printed without quotes, and a space is inserted between items, so you can format things
nicely, like this:

>>> i = 256*256
>>> print ’The value of i is’, i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>> a, b = 0, 1
>>> while b < 1000:
... print b,
... a, b = b, a+b
...
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last line was not completed.

18 Chapter 3. An Informal Introduction to Python

CHAPTER

FOUR

MORE CONTROL FLOW TOOLS

Besides the while statement just introduced, Python knows the usual control flow statements known from other
languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is the if statement. For example:

>>> x = int(raw_input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... x = 0
... print ’Negative changed to zero’
... elif x == 0:
... print ’Zero’
... elif x == 1:
... print ’Single’
... else:
... print ’More’
...
More

There can be zero or more elif parts, and the else part is optional. The keyword ‘elif‘ is short for ‘else if’, and
is useful to avoid excessive indentation. An if ... elif ... elif ... sequence is a substitute for the switch or case
statements found in other languages.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating
over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration
step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a list or a string), in
the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
... a = [’cat’, ’window’, ’defenestrate’]
>>> for x in a:
... print x, len(x)
...
cat 3

19

Python Tutorial, Release 2.6.6

window 6
defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence types,
such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items) you must
iterate over a copy. The slice notation makes this particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire list
... if len(x) > 6: a.insert(0, x)
...
>>> a
[’defenestrate’, ’cat’, ’window’, ’defenestrate’]

4.3 The range() Function

If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It generates lists
containing arithmetic progressions:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; range(10) generates a list of 10 values, the legal indices
for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the ‘step’):

>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, you can combine range() and len() as follows:

>>> a = [’Mary’, ’had’, ’a’, ’little’, ’lamb’]
>>> for i in range(len(a)):
... print i, a[i]
...
0 Mary
1 had
2 a
3 little
4 lamb

In most such cases, however, it is convenient to use the enumerate() function, see Looping Techniques.

4.4 break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the smallest enclosing for or while loop.

The continue statement, also borrowed from C, continues with the next iteration of the loop.

Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of the list (with
for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement.
This is exemplified by the following loop, which searches for prime numbers:

20 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.6.6

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print n, ’equals’, x, ’*’, n/x
... break
... else:
... # loop fell through without finding a factor
... print n, ’is a prime number’
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program requires
no action. For example:

>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)
...

This is commonly used for creating minimal classes:

>>> class MyEmptyClass:
... pass
...

Another place pass can be used is as a place-holder for a function or conditional body when you are working on new
code, allowing you to keep thinking at a more abstract level. The pass is silently ignored:

>>> def initlog(*args):
... pass # Remember to implement this!
...

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while a < n:
... print a,
... a, b = b, a+b
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

4.5. pass Statements 21

Python Tutorial, Release 2.6.6

The keyword def introduces a function definition. It must be followed by the function name and the parenthesized list
of formal parameters. The statements that form the body of the function start at the next line, and must be indented.

The first statement of the function body can optionally be a string literal; this string literal is the function’s documenta-
tion string, or docstring. (More about docstrings can be found in the section Documentation Strings.) There are tools
which use docstrings to automatically produce online or printed documentation, or to let the user interactively browse
through code; it’s good practice to include docstrings in code that you write, so make a habit of it.

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely,
all variable assignments in a function store the value in the local symbol table; whereas variable references first look
in the local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and
finally in the table of built-in names. Thus, global variables cannot be directly assigned a value within a function
(unless named in a global statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not
the value of the object). 1 When a function calls another function, a new local symbol table is created for that call.

A function definition introduces the function name in the current symbol table. The value of the function name has a
type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which
can then also be used as a function. This serves as a general renaming mechanism:

>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89

Coming from other languages, you might object that fib is not a function but a procedure since it doesn’t return a
value. In fact, even functions without a return statement do return a value, albeit a rather boring one. This value is
called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be the
only value written. You can see it if you really want to using print:

>>> fib(0)
>>> print fib(0)
None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while a < n:
... result.append(a) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

• The return statement returns with a value from a function. return without an expression argument returns
None. Falling off the end of a function also returns None.

1 Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee
makes to it (items inserted into a list).

22 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.6.6

• The statement result.append(a) calls a method of the list object result. A method is a function that
‘belongs’ to an object and is named obj.methodname, where obj is some object (this may be an expression),
and methodname is the name of a method that is defined by the object’s type. Different types define different
methods. Methods of different types may have the same name without causing ambiguity. (It is possible to
define your own object types and methods, using classes, see Classes) The method append() shown in the
example is defined for list objects; it adds a new element at the end of the list. In this example it is equivalent to
result = result + [a], but more efficient.

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be called
with fewer arguments than it is defined to allow. For example:

def ask_ok(prompt, retries=4, complaint=’Yes or no, please!’):
while True:

ok = raw_input(prompt)
if ok in (’y’, ’ye’, ’yes’):

return True
if ok in (’n’, ’no’, ’nop’, ’nope’):

return False
retries = retries - 1
if retries < 0:

raise IOError(’refusenik user’)
print complaint

This function can be called in several ways:

• giving only the mandatory argument: ask_ok(’Do you really want to quit?’)

• giving one of the optional arguments: ask_ok(’OK to overwrite the file?’, 2)

• or even giving all arguments: ask_ok(’OK to overwrite the file?’, 2, ’Come on, only
yes or no!’)

This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.

The default values are evaluated at the point of function definition in the defining scope, so that

i = 5

def f(arg=i):
print arg

i = 6
f()

will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable
object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

4.7. More on Defining Functions 23

Python Tutorial, Release 2.6.6

def f(a, L=[]):
L.append(a)
return L

print f(1)
print f(2)
print f(3)

This will print

[1]
[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f(a, L=None):
if L is None:

L = []
L.append(a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form keyword = value. For instance, the following
function:

def parrot(voltage, state=’a stiff’, action=’voom’, type=’Norwegian Blue’):
print "-- This parrot wouldn’t", action,
print "if you put", voltage, "volts through it."
print "-- Lovely plumage, the", type
print "-- It’s", state, "!"

could be called in any of the following ways:

parrot(1000)
parrot(action = ’VOOOOOM’, voltage = 1000000)
parrot(’a thousand’, state = ’pushing up the daisies’)
parrot(’a million’, ’bereft of life’, ’jump’)

but the following calls would all be invalid:

parrot() # required argument missing
parrot(voltage=5.0, ’dead’) # non-keyword argument following keyword
parrot(110, voltage=220) # duplicate value for argument
parrot(actor=’John Cleese’) # unknown keyword

In general, an argument list must have any positional arguments followed by any keyword arguments, where the
keywords must be chosen from the formal parameter names. It’s not important whether a formal parameter has a
default value or not. No argument may receive a value more than once — formal parameter names corresponding to
positional arguments cannot be used as keywords in the same calls. Here’s an example that fails due to this restriction:

>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument ’a’

24 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.6.6

When a final formal parameter of the form **name is present, it receives a dictionary (see Mapping Types — dict
(in The Python Library Reference)) containing all keyword arguments except for those corresponding to a formal
parameter. This may be combined with a formal parameter of the form *name (described in the next subsection)
which receives a tuple containing the positional arguments beyond the formal parameter list. (*name must occur
before **name.) For example, if we define a function like this:

def cheeseshop(kind, *arguments, **keywords):
print "-- Do you have any", kind, "?"
print "-- I’m sorry, we’re all out of", kind
for arg in arguments: print arg
print "-" * 40
keys = keywords.keys()
keys.sort()
for kw in keys: print kw, ":", keywords[kw]

It could be called like this:

cheeseshop("Limburger", "It’s very runny, sir.",
"It’s really very, VERY runny, sir.",
shopkeeper=’Michael Palin’,
client="John Cleese",
sketch="Cheese Shop Sketch")

and of course it would print:

-- Do you have any Limburger ?
-- I’m sorry, we’re all out of Limburger
It’s very runny, sir.
It’s really very, VERY runny, sir.
--
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that the sort() method of the list of keyword argument names is called before printing the contents of the
keywords dictionary; if this is not done, the order in which the arguments are printed is undefined.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of argu-
ments. These arguments will be wrapped up in a tuple (see Tuples and Sequences). Before the variable number of
arguments, zero or more normal arguments may occur.

def write_multiple_items(file, separator, *args):
file.write(separator.join(args))

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the built-in range() function expects separate start and
stop arguments. If they are not available separately, write the function call with the *-operator to unpack the arguments
out of a list or tuple:

>>> range(3, 6) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]

4.7. More on Defining Functions 25

Python Tutorial, Release 2.6.6

>>> range(*args) # call with arguments unpacked from a list
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the **-operator:

>>> def parrot(voltage, state=’a stiff’, action=’voom’):
... print "-- This parrot wouldn’t", action,
... print "if you put", voltage, "volts through it.",
... print "E’s", state, "!"
...
>>> d = {"voltage": "four million", "state": "bleedin’ demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn’t VOOM if you put four million volts through it. E’s bleedin’ demised !

4.7.5 Lambda Forms

By popular demand, a few features commonly found in functional programming languages like Lisp have been added
to Python. With the lambda keyword, small anonymous functions can be created. Here’s a function that returns
the sum of its two arguments: lambda a, b: a+b. Lambda forms can be used wherever function objects are
required. They are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a
normal function definition. Like nested function definitions, lambda forms can reference variables from the containing
scope:

>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

4.7.6 Documentation Strings

There are emerging conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly
state the object’s name or type, since these are available by other means (except if the name happens to be a verb
describing a function’s operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the summary
from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documen-
tation have to strip indentation if desired. This is done using the following convention. The first non-blank line after
the first line of the string determines the amount of indentation for the entire documentation string. (We can’t use
the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string
literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of the string. Lines that
are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of
whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
... """Do nothing, but document it.

26 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.6.6

...

... No, really, it doesn’t do anything.

... """

... pass

...
>>> print my_function.__doc__
Do nothing, but document it.

No, really, it doesn’t do anything.

4.8 Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style.
Most languages can be written (or more concise, formatted) in different styles; some are more readable than others.
Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously
for that.

For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and
eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points
extracted for you:

• Use 4-space indentation, and no tabs.

4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation
(easier to read). Tabs introduce confusion, and are best left out.

• Wrap lines so that they don’t exceed 79 characters.

This helps users with small displays and makes it possible to have several code files side-by-side on larger
displays.

• Use blank lines to separate functions and classes, and larger blocks of code inside functions.

• When possible, put comments on a line of their own.

• Use docstrings.

• Use spaces around operators and after commas, but not directly inside bracketing constructs: a = f(1, 2)
+ g(3, 4).

• Name your classes and functions consistently; the convention is to use CamelCase for classes and
lower_case_with_underscores for functions and methods. Always use self as the name for the
first method argument (see A First Look at Classes for more on classes and methods).

• Don’t use fancy encodings if your code is meant to be used in international environments. Plain ASCII works
best in any case.

4.8. Intermezzo: Coding Style 27

http://www.python.org/dev/peps/pep-0008

Python Tutorial, Release 2.6.6

28 Chapter 4. More Control Flow Tools

CHAPTER

FIVE

DATA STRUCTURES

This chapter describes some things you’ve learned about already in more detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

append(x)
Add an item to the end of the list; equivalent to a[len(a):] = [x].

extend(L)
Extend the list by appending all the items in the given list; equivalent to a[len(a):] = L.

insert(i, x)
Insert an item at a given position. The first argument is the index of the element before which to in-
sert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is equivalent to
a.append(x).

remove(x)
Remove the first item from the list whose value is x. It is an error if there is no such item.

pop([i])
Remove the item at the given position in the list, and return it. If no index is specified, a.pop() removes
and returns the last item in the list. (The square brackets around the i in the method signature denote that
the parameter is optional, not that you should type square brackets at that position. You will see this notation
frequently in the Python Library Reference.)

index(x)
Return the index in the list of the first item whose value is x. It is an error if there is no such item.

count(x)
Return the number of times x appears in the list.

sort()
Sort the items of the list, in place.

reverse()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.25), a.count(’x’)
2 1 0
>>> a.insert(2, -1)

29

Python Tutorial, Release 2.6.6

>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stack, use append(). To retrieve an item from the top of the
stack, use pop() without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

5.1.2 Using Lists as Queues

It is also possible to use a list as a queue, where the first element added is the first element retrieved (“first-in, first-
out”); however, lists are not efficient for this purpose. While appends and pops from the end of list are fast, doing
inserts or pops from the beginning of a list is slow (because all of the other elements have to be shifted by one).

To implement a queue, use collections.deque which was designed to have fast appends and pops from both
ends. For example:

>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
’Eric’
>>> queue.popleft() # The second to arrive now leaves
’John’

30 Chapter 5. Data Structures

Python Tutorial, Release 2.6.6

>>> queue # Remaining queue in order of arrival
deque([’Michael’, ’Terry’, ’Graham’])

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used with lists: filter(), map(), and reduce().

filter(function, sequence) returns a sequence consisting of those items from the sequence for which
function(item) is true. If sequence is a string or tuple, the result will be of the same type; otherwise,
it is always a list. For example, to compute some primes:

>>> def f(x): return x % 2 != 0 and x % 3 != 0
...
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

map(function, sequence) calls function(item) for each of the sequence’s items and returns a list of the
return values. For example, to compute some cubes:

>>> def cube(x): return x*x*x
...
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there are sequences and
is called with the corresponding item from each sequence (or None if some sequence is shorter than another). For
example:

>>> seq = range(8)
>>> def add(x, y): return x+y
...
>>> map(add, seq, seq)
[0, 2, 4, 6, 8, 10, 12, 14]

reduce(function, sequence) returns a single value constructed by calling the binary function function on
the first two items of the sequence, then on the result and the next item, and so on. For example, to compute the sum
of the numbers 1 through 10:

>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55

If there’s only one item in the sequence, its value is returned; if the sequence is empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the starting value is returned for an empty
sequence, and the function is first applied to the starting value and the first sequence item, then to the result and the
next item, and so on. For example,

>>> def sum(seq):
... def add(x,y): return x+y
... return reduce(add, seq, 0)
...
>>> sum(range(1, 11))
55
>>> sum([])
0

5.1. More on Lists 31

Python Tutorial, Release 2.6.6

Don’t use this example’s definition of sum(): since summing numbers is such a common need, a built-in function
sum(sequence) is already provided, and works exactly like this. New in version 2.3.

5.1.4 List Comprehensions

List comprehensions provide a concise way to create lists without resorting to use of map(), filter() and/or
lambda. The resulting list definition tends often to be clearer than lists built using those constructs. Each list
comprehension consists of an expression followed by a for clause, then zero or more for or if clauses. The result
will be a list resulting from evaluating the expression in the context of the for and if clauses which follow it. If the
expression would evaluate to a tuple, it must be parenthesized.

>>> freshfruit = [’ banana’, ’ loganberry ’, ’passion fruit ’]
>>> [weapon.strip() for weapon in freshfruit]
[’banana’, ’loganberry’, ’passion fruit’]
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec] # error - parens required for tuples

File "<stdin>", line 1, in ?
[x, x**2 for x in vec]

^
SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]
[(2, 4), (4, 16), (6, 36)]
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

List comprehensions are much more flexible than map() and can be applied to complex expressions and nested
functions:

>>> [str(round(355/113.0, i)) for i in range(1,6)]
[’3.1’, ’3.14’, ’3.142’, ’3.1416’, ’3.14159’]

5.1.5 Nested List Comprehensions

If you’ve got the stomach for it, list comprehensions can be nested. They are a powerful tool but – like all powerful
tools – they need to be used carefully, if at all.

Consider the following example of a 3x3 matrix held as a list containing three lists, one list per row:

>>> mat = [
... [1, 2, 3],
... [4, 5, 6],

32 Chapter 5. Data Structures

Python Tutorial, Release 2.6.6

... [7, 8, 9],

...]

Now, if you wanted to swap rows and columns, you could use a list comprehension:

>>> print [[row[i] for row in mat] for i in [0, 1, 2]]
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

Special care has to be taken for the nested list comprehension:

To avoid apprehension when nesting list comprehensions, read from right to left.

A more verbose version of this snippet shows the flow explicitly:

for i in [0, 1, 2]:
for row in mat:

print row[i],
print

In real world, you should prefer built-in functions to complex flow statements. The zip() function would do a great
job for this use case:

>>> zip(*mat)
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

See Unpacking Argument Lists for details on the asterisk in this line.

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value: the del statement. This differs from
the pop() method which returns a value. The del statement can also be used to remove slices from a list or clear the
entire list (which we did earlier by assignment of an empty list to the slice). For example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

del can also be used to delete entire variables:

>>> del a

Referencing the name a hereafter is an error (at least until another value is assigned to it). We’ll find other uses for
del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are two
examples of sequence data types (see Sequence Types — str, unicode, list, tuple, buffer, xrange (in The Python Library
Reference)). Since Python is an evolving language, other sequence data types may be added. There is also another
standard sequence data type: the tuple.

5.2. The del statement 33

Python Tutorial, Release 2.6.6

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, ’hello!’
>>> t[0]
12345
>>> t
(12345, 54321, ’hello!’)
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, ’hello!’), (1, 2, 3, 4, 5))

As you see, on output tuples are always enclosed in parentheses, so that nested tuples are interpreted correctly; they
may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if the tuple
is part of a larger expression).

Tuples have many uses. For example: (x, y) coordinate pairs, employee records from a database, etc. Tuples, like
strings, are immutable: it is not possible to assign to the individual items of a tuple (you can simulate much of the
same effect with slicing and concatenation, though). It is also possible to create tuples which contain mutable objects,
such as lists.

A special problem is the construction of tuples containing 0 or 1 items: the syntax has some extra quirks to accom-
modate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is constructed by
following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly, but effective. For
example:

>>> empty = ()
>>> singleton = ’hello’, # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
(’hello’,)

The statement t = 12345, 54321, ’hello!’ is an example of tuple packing: the values 12345, 54321 and
’hello!’ are packed together in a tuple. The reverse operation is also possible:

>>> x, y, z = t

This is called, appropriately enough, sequence unpacking and works for any sequence on the right-hand side. Sequence
unpacking requires the list of variables on the left to have the same number of elements as the length of the sequence.
Note that multiple assignment is really just a combination of tuple packing and sequence unpacking.

5.4 Sets

Python also includes a data type for sets. A set is an unordered collection with no duplicate elements. Basic uses
include membership testing and eliminating duplicate entries. Set objects also support mathematical operations like
union, intersection, difference, and symmetric difference.

Here is a brief demonstration:

>>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> fruit = set(basket) # create a set without duplicates
>>> fruit
set([’orange’, ’pear’, ’apple’, ’banana’])
>>> ’orange’ in fruit # fast membership testing

34 Chapter 5. Data Structures

Python Tutorial, Release 2.6.6

True
>>> ’crabgrass’ in fruit
False

>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set(’abracadabra’)
>>> b = set(’alacazam’)
>>> a # unique letters in a
set([’a’, ’r’, ’b’, ’c’, ’d’])
>>> a - b # letters in a but not in b
set([’r’, ’d’, ’b’])
>>> a | b # letters in either a or b
set([’a’, ’c’, ’r’, ’d’, ’b’, ’m’, ’z’, ’l’])
>>> a & b # letters in both a and b
set([’a’, ’c’])
>>> a ^ b # letters in a or b but not both
set([’r’, ’d’, ’b’, ’m’, ’z’, ’l’])

5.5 Dictionaries

Another useful data type built into Python is the dictionary (see Mapping Types — dict (in The Python Library Refer-
ence)). Dictionaries are sometimes found in other languages as “associative memories” or “associative arrays”. Unlike
sequences, which are indexed by a range of numbers, dictionaries are indexed by keys, which can be any immutable
type; strings and numbers can always be keys. Tuples can be used as keys if they contain only strings, numbers, or
tuples; if a tuple contains any mutable object either directly or indirectly, it cannot be used as a key. You can’t use lists
as keys, since lists can be modified in place using index assignments, slice assignments, or methods like append()
and extend().

It is best to think of a dictionary as an unordered set of key: value pairs, with the requirement that the keys are unique
(within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a comma-separated list of key:value
pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries are written on
output.

The main operations on a dictionary are storing a value with some key and extracting the value given the key. It is also
possible to delete a key:value pair with del. If you store using a key that is already in use, the old value associated
with that key is forgotten. It is an error to extract a value using a non-existent key.

The keys() method of a dictionary object returns a list of all the keys used in the dictionary, in arbitrary order (if you
want it sorted, just apply the sort() method to the list of keys). To check whether a single key is in the dictionary,
use the in keyword.

Here is a small example using a dictionary:

>>> tel = {’jack’: 4098, ’sape’: 4139}
>>> tel[’guido’] = 4127
>>> tel
{’sape’: 4139, ’guido’: 4127, ’jack’: 4098}
>>> tel[’jack’]
4098
>>> del tel[’sape’]
>>> tel[’irv’] = 4127
>>> tel
{’guido’: 4127, ’irv’: 4127, ’jack’: 4098}
>>> tel.keys()

5.5. Dictionaries 35

Python Tutorial, Release 2.6.6

[’guido’, ’irv’, ’jack’]
>>> ’guido’ in tel
True

The dict() constructor builds dictionaries directly from lists of key-value pairs stored as tuples. When the pairs
form a pattern, list comprehensions can compactly specify the key-value list.

>>> dict([(’sape’, 4139), (’guido’, 4127), (’jack’, 4098)])
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}
>>> dict([(x, x**2) for x in (2, 4, 6)]) # use a list comprehension
{2: 4, 4: 16, 6: 36}

Later in the tutorial, we will learn about Generator Expressions which are even better suited for the task of supplying
key-values pairs to the dict() constructor.

When the keys are simple strings, it is sometimes easier to specify pairs using keyword arguments:

>>> dict(sape=4139, guido=4127, jack=4098)
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}

5.6 Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the
iteritems() method.

>>> knights = {’gallahad’: ’the pure’, ’robin’: ’the brave’}
>>> for k, v in knights.iteritems():
... print k, v
...
gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved at the same time using
the enumerate() function.

>>> for i, v in enumerate([’tic’, ’tac’, ’toe’]):
... print i, v
...
0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the entries can be paired with the zip() function.

>>> questions = [’name’, ’quest’, ’favorite color’]
>>> answers = [’lancelot’, ’the holy grail’, ’blue’]
>>> for q, a in zip(questions, answers):
... print ’What is your {0}? It is {1}.’.format(q, a)
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward direction and then call the reversed()
function.

>>> for i in reversed(xrange(1,10,2)):
... print i

36 Chapter 5. Data Structures

Python Tutorial, Release 2.6.6

...
9
7
5
3
1

To loop over a sequence in sorted order, use the sorted() function which returns a new sorted list while leaving the
source unaltered.

>>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> for f in sorted(set(basket)):
... print f
...
apple
banana
orange
pear

5.7 More on Conditions

The conditions used in while and if statements can contain any operators, not just comparisons.

The comparison operators in and not in check whether a value occurs (does not occur) in a sequence. The operators
is and is not compare whether two objects are really the same object; this only matters for mutable objects like
lists. All comparison operators have the same priority, which is lower than that of all numerical operators.

Comparisons can be chained. For example, a < b == c tests whether a is less than b and moreover b equals c.

Comparisons may be combined using the Boolean operators and and or, and the outcome of a comparison (or of any
other Boolean expression) may be negated with not. These have lower priorities than comparison operators; between
them, not has the highest priority and or the lowest, so that A and not B or C is equivalent to (A and (not
B)) or C. As always, parentheses can be used to express the desired composition.

The Boolean operators and and or are so-called short-circuit operators: their arguments are evaluated from left to
right, and evaluation stops as soon as the outcome is determined. For example, if A and C are true but B is false, A
and B and C does not evaluate the expression C. When used as a general value and not as a Boolean, the return
value of a short-circuit operator is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> string1, string2, string3 = ’’, ’Trondheim’, ’Hammer Dance’
>>> non_null = string1 or string2 or string3
>>> non_null
’Trondheim’

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble about this,
but it avoids a common class of problems encountered in C programs: typing = in an expression when ==was intended.

5.8 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type. The comparison uses lexicographical
ordering: first the first two items are compared, and if they differ this determines the outcome of the comparison; if
they are equal, the next two items are compared, and so on, until either sequence is exhausted. If two items to be

5.7. More on Conditions 37

Python Tutorial, Release 2.6.6

compared are themselves sequences of the same type, the lexicographical comparison is carried out recursively. If all
items of two sequences compare equal, the sequences are considered equal. If one sequence is an initial sub-sequence
of the other, the shorter sequence is the smaller (lesser) one. Lexicographical ordering for strings uses the ASCII
ordering for individual characters. Some examples of comparisons between sequences of the same type:

(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
’ABC’ < ’C’ < ’Pascal’ < ’Python’
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, (’aa’, ’ab’)) < (1, 2, (’abc’, ’a’), 4)

Note that comparing objects of different types is legal. The outcome is deterministic but arbitrary: the types are
ordered by their name. Thus, a list is always smaller than a string, a string is always smaller than a tuple, etc. 1 Mixed
numeric types are compared according to their numeric value, so 0 equals 0.0, etc.

1 The rules for comparing objects of different types should not be relied upon; they may change in a future version of the language.

38 Chapter 5. Data Structures

CHAPTER

SIX

MODULES

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables) are
lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to prepare the
input for the interpreter and running it with that file as input instead. This is known as creating a script. As your
program gets longer, you may want to split it into several files for easier maintenance. You may also want to use a
handy function that you’ve written in several programs without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance of the
interpreter. Such a file is called a module; definitions from a module can be imported into other modules or into the
main module (the collection of variables that you have access to in a script executed at the top level and in calculator
mode).

A module is a file containing Python definitions and statements. The file name is the module name with the suffix
.py appended. Within a module, the module’s name (as a string) is available as the value of the global variable
__name__. For instance, use your favorite text editor to create a file called fibo.py in the current directory with
the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:

print b,
a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

This does not enter the names of the functions defined in fibo directly in the current symbol table; it only enters the
module name fibo there. Using the module name you can access the functions:

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

39

Python Tutorial, Release 2.6.6

>>> fibo.__name__
’fibo’

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions. These statements are intended to initialize
the module. They are executed only the first time the module is imported somewhere. 1

Each module has its own private symbol table, which is used as the global symbol table by all functions defined in
the module. Thus, the author of a module can use global variables in the module without worrying about accidental
clashes with a user’s global variables. On the other hand, if you know what you are doing you can touch a module’s
global variables with the same notation used to refer to its functions, modname.itemname.

Modules can import other modules. It is customary but not required to place all import statements at the beginning
of a module (or script, for that matter). The imported module names are placed in the importing module’s global
symbol table.

There is a variant of the import statement that imports names from a module directly into the importing module’s
symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the example,
fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_).

Note that in general the practice of importing * from a module or package is frowned upon, since it often causes poorly
readable code. However, it is okay to use it to save typing in interactive sessions.

Note: For efficiency reasons, each module is only imported once per interpreter session. Therefore, if you change your
modules, you must restart the interpreter – or, if it’s just one module you want to test interactively, use reload(),
e.g. reload(modulename).

6.1.1 Executing modules as scripts

When you run a Python module with

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with the __name__ set to "__main__". That
means that by adding this code at the end of your module:

1 In fact function definitions are also ‘statements’ that are ‘executed’; the execution of a module-level function enters the function name in the
module’s global symbol table.

40 Chapter 6. Modules

Python Tutorial, Release 2.6.6

if __name__ == "__main__":
import sys
fib(int(sys.argv[1]))

you can make the file usable as a script as well as an importable module, because the code that parses the command
line only runs if the module is executed as the “main” file:

$ python fibo.py 50
1 1 2 3 5 8 13 21 34

If the module is imported, the code is not run:

>>> import fibo
>>>

This is often used either to provide a convenient user interface to a module, or for testing purposes (running the module
as a script executes a test suite).

6.1.2 The Module Search Path

When a module named spam is imported, the interpreter searches for a file named spam.py in the current direc-
tory, and then in the list of directories specified by the environment variable PYTHONPATH. This has the same
syntax as the shell variable PATH, that is, a list of directory names. When PYTHONPATH is not set, or when
the file is not found there, the search continues in an installation-dependent default path; on Unix, this is usually
.:/usr/local/lib/python.

Actually, modules are searched in the list of directories given by the variable sys.path which is initialized from
the directory containing the input script (or the current directory), PYTHONPATH and the installation- dependent
default. This allows Python programs that know what they’re doing to modify or replace the module search path.
Note that because the directory containing the script being run is on the search path, it is important that the script not
have the same name as a standard module, or Python will attempt to load the script as a module when that module is
imported. This will generally be an error. See section Standard Modules for more information.

6.1.3 “Compiled” Python files

As an important speed-up of the start-up time for short programs that use a lot of standard modules, if a file called
spam.pyc exists in the directory where spam.py is found, this is assumed to contain an already-“byte-compiled”
version of the module spam. The modification time of the version of spam.py used to create spam.pyc is recorded
in spam.pyc, and the .pyc file is ignored if these don’t match.

Normally, you don’t need to do anything to create the spam.pyc file. Whenever spam.py is successfully compiled,
an attempt is made to write the compiled version to spam.pyc. It is not an error if this attempt fails; if for any reason
the file is not written completely, the resulting spam.pyc file will be recognized as invalid and thus ignored later. The
contents of the spam.pyc file are platform independent, so a Python module directory can be shared by machines of
different architectures.

Some tips for experts:

• When the Python interpreter is invoked with the -O flag, optimized code is generated and stored in .pyo files.
The optimizer currently doesn’t help much; it only removes assert statements. When -O is used, all bytecode
is optimized; .pyc files are ignored and .py files are compiled to optimized bytecode.

• Passing two -O flags to the Python interpreter (-OO) will cause the bytecode compiler to perform optimizations
that could in some rare cases result in malfunctioning programs. Currently only __doc__ strings are removed
from the bytecode, resulting in more compact .pyo files. Since some programs may rely on having these
available, you should only use this option if you know what you’re doing.

6.1. More on Modules 41

Python Tutorial, Release 2.6.6

• A program doesn’t run any faster when it is read from a .pyc or .pyo file than when it is read from a .py file;
the only thing that’s faster about .pyc or .pyo files is the speed with which they are loaded.

• When a script is run by giving its name on the command line, the bytecode for the script is never written to a
.pyc or .pyo file. Thus, the startup time of a script may be reduced by moving most of its code to a module
and having a small bootstrap script that imports that module. It is also possible to name a .pyc or .pyo file
directly on the command line.

• It is possible to have a file called spam.pyc (or spam.pyo when -O is used) without a file spam.py for the
same module. This can be used to distribute a library of Python code in a form that is moderately hard to reverse
engineer.

• The module compileall can create .pyc files (or .pyo files when -O is used) for all modules in a directory.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate document, the Python Library Reference
(“Library Reference” hereafter). Some modules are built into the interpreter; these provide access to operations that are
not part of the core of the language but are nevertheless built in, either for efficiency or to provide access to operating
system primitives such as system calls. The set of such modules is a configuration option which also depends on the
underlying platform For example, the winreg module is only provided on Windows systems. One particular module
deserves some attention: sys, which is built into every Python interpreter. The variables sys.ps1 and sys.ps2
define the strings used as primary and secondary prompts:

>>> import sys
>>> sys.ps1
’>>> ’
>>> sys.ps2
’... ’
>>> sys.ps1 = ’C> ’
C> print ’Yuck!’
Yuck!
C>

These two variables are only defined if the interpreter is in interactive mode.

The variable sys.path is a list of strings that determines the interpreter’s search path for modules. It is initialized
to a default path taken from the environment variable PYTHONPATH, or from a built-in default if PYTHONPATH
is not set. You can modify it using standard list operations:

>>> import sys
>>> sys.path.append(’/ufs/guido/lib/python’)

6.3 The dir() Function

The built-in function dir() is used to find out which names a module defines. It returns a sorted list of strings:

>>> import fibo, sys
>>> dir(fibo)
[’__name__’, ’fib’, ’fib2’]
>>> dir(sys)
[’__displayhook__’, ’__doc__’, ’__excepthook__’, ’__name__’, ’__stderr__’,
’__stdin__’, ’__stdout__’, ’_getframe’, ’api_version’, ’argv’,
’builtin_module_names’, ’byteorder’, ’callstats’, ’copyright’,
’displayhook’, ’exc_clear’, ’exc_info’, ’exc_type’, ’excepthook’,

42 Chapter 6. Modules

Python Tutorial, Release 2.6.6

’exec_prefix’, ’executable’, ’exit’, ’getdefaultencoding’, ’getdlopenflags’,
’getrecursionlimit’, ’getrefcount’, ’hexversion’, ’maxint’, ’maxunicode’,
’meta_path’, ’modules’, ’path’, ’path_hooks’, ’path_importer_cache’,
’platform’, ’prefix’, ’ps1’, ’ps2’, ’setcheckinterval’, ’setdlopenflags’,
’setprofile’, ’setrecursionlimit’, ’settrace’, ’stderr’, ’stdin’, ’stdout’,
’version’, ’version_info’, ’warnoptions’]

Without arguments, dir() lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir()
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’a’, ’fib’, ’fibo’, ’sys’]

Note that it lists all types of names: variables, modules, functions, etc. dir() does not list the names of built-in
functions and variables. If you want a list of those, they are defined in the standard module __builtin__:

>>> import __builtin__
>>> dir(__builtin__)
[’ArithmeticError’, ’AssertionError’, ’AttributeError’, ’DeprecationWarning’,
’EOFError’, ’Ellipsis’, ’EnvironmentError’, ’Exception’, ’False’,
’FloatingPointError’, ’FutureWarning’, ’IOError’, ’ImportError’,
’IndentationError’, ’IndexError’, ’KeyError’, ’KeyboardInterrupt’,
’LookupError’, ’MemoryError’, ’NameError’, ’None’, ’NotImplemented’,
’NotImplementedError’, ’OSError’, ’OverflowError’,
’PendingDeprecationWarning’, ’ReferenceError’, ’RuntimeError’,
’RuntimeWarning’, ’StandardError’, ’StopIteration’, ’SyntaxError’,
’SyntaxWarning’, ’SystemError’, ’SystemExit’, ’TabError’, ’True’,
’TypeError’, ’UnboundLocalError’, ’UnicodeDecodeError’,
’UnicodeEncodeError’, ’UnicodeError’, ’UnicodeTranslateError’,
’UserWarning’, ’ValueError’, ’Warning’, ’WindowsError’,
’ZeroDivisionError’, ’_’, ’__debug__’, ’__doc__’, ’__import__’,
’__name__’, ’abs’, ’apply’, ’basestring’, ’bool’, ’buffer’,
’callable’, ’chr’, ’classmethod’, ’cmp’, ’coerce’, ’compile’,
’complex’, ’copyright’, ’credits’, ’delattr’, ’dict’, ’dir’, ’divmod’,
’enumerate’, ’eval’, ’execfile’, ’exit’, ’file’, ’filter’, ’float’,
’frozenset’, ’getattr’, ’globals’, ’hasattr’, ’hash’, ’help’, ’hex’,
’id’, ’input’, ’int’, ’intern’, ’isinstance’, ’issubclass’, ’iter’,
’len’, ’license’, ’list’, ’locals’, ’long’, ’map’, ’max’, ’min’,
’object’, ’oct’, ’open’, ’ord’, ’pow’, ’property’, ’quit’, ’range’,
’raw_input’, ’reduce’, ’reload’, ’repr’, ’reversed’, ’round’, ’set’,
’setattr’, ’slice’, ’sorted’, ’staticmethod’, ’str’, ’sum’, ’super’,
’tuple’, ’type’, ’unichr’, ’unicode’, ’vars’, ’xrange’, ’zip’]

6.4 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example, the
module name A.B designates a submodule named B in a package named A. Just like the use of modules saves the
authors of different modules from having to worry about each other’s global variable names, the use of dotted module
names saves the authors of multi-module packages like NumPy or the Python Imaging Library from having to worry
about each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and sound
data. There are many different sound file formats (usually recognized by their extension, for example: .wav, .aiff,

6.4. Packages 43

Python Tutorial, Release 2.6.6

.au), so you may need to create and maintain a growing collection of modules for the conversion between the various
file formats. There are also many different operations you might want to perform on sound data (such as mixing,
adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be writing a
never-ending stream of modules to perform these operations. Here’s a possible structure for your package (expressed
in terms of a hierarchical filesystem):

sound/ Top-level package
__init__.py Initialize the sound package
formats/ Subpackage for file format conversions

__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...

effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...

filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...

When importing the package, Python searches through the directories on sys.path looking for the package subdi-
rectory.

The __init__.py files are required to make Python treat the directories as containing packages; this is done to
prevent directories with a common name, such as string, from unintentionally hiding valid modules that occur later
on the module search path. In the simplest case, __init__.py can just be an empty file, but it can also execute
initialization code for the package or set the __all__ variable, described later.

Users of the package can import individual modules from the package, for example:

import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.

sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

44 Chapter 6. Modules

Python Tutorial, Release 2.6.6

Note that when using from package import item, the item can be either a submodule (or subpackage) of the
package, or some other name defined in the package, like a function, class or variable. The import statement first
tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it fails to
find it, an ImportError exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must
be a package; the last item can be a module or a package but can’t be a class or function or variable defined in the
previous item.

6.4.1 Importing * From a Package

Now what happens when the user writes from sound.effects import *? Ideally, one would hope that this
somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all. This
could take a long time and importing sub-modules might have unwanted side-effects that should only happen when
the sub-module is explicitly imported.

The only solution is for the package author to provide an explicit index of the package. The import statement
uses the following convention: if a package’s __init__.py code defines a list named __all__, it is taken to
be the list of module names that should be imported when from package import * is encountered. It is up
to the package author to keep this list up-to-date when a new version of the package is released. Package authors
may also decide not to support it, if they don’t see a use for importing * from their package. For example, the file
sounds/effects/__init__.py could contain the following code:

__all__ = ["echo", "surround", "reverse"]

This would mean that from sound.effects import * would import the three named submodules of the
sound package.

If __all__ is not defined, the statement from sound.effects import * does not import all submodules
from the package sound.effects into the current namespace; it only ensures that the package sound.effects
has been imported (possibly running any initialization code in __init__.py) and then imports whatever names are
defined in the package. This includes any names defined (and submodules explicitly loaded) by __init__.py. It
also includes any submodules of the package that were explicitly loaded by previous import statements. Consider
this code:

import sound.effects.echo
import sound.effects.surround
from sound.effects import *

In this example, the echo and surround modules are imported in the current namespace because they are defined in
the sound.effects package when the from...import statement is executed. (This also works when __all__
is defined.)

Although certain modules are designed to export only names that follow certain patterns when you use import *, it
is still considered bad practise in production code.

Remember, there is nothing wrong with using from Package import specific_submodule! In fact, this
is the recommended notation unless the importing module needs to use submodules with the same name from different
packages.

6.4.2 Intra-package References

The submodules often need to refer to each other. For example, the surround module might use the echo module.
In fact, such references are so common that the import statement first looks in the containing package before looking
in the standard module search path. Thus, the surround module can simply use import echo or from echo
import echofilter. If the imported module is not found in the current package (the package of which the
current module is a submodule), the import statement looks for a top-level module with the given name.

6.4. Packages 45

Python Tutorial, Release 2.6.6

When packages are structured into subpackages (as with the sound package in the example), you can use absolute
imports to refer to submodules of siblings packages. For example, if the module sound.filters.vocoder needs
to use the echo module in the sound.effects package, it can use from sound.effects import echo.

Starting with Python 2.5, in addition to the implicit relative imports described above, you can write explicit relative
imports with the from module import name form of import statement. These explicit relative imports use
leading dots to indicate the current and parent packages involved in the relative import. From the surround module
for example, you might use:

from . import echo
from .. import formats
from ..filters import equalizer

Note that both explicit and implicit relative imports are based on the name of the current module. Since the name
of the main module is always "__main__", modules intended for use as the main module of a Python application
should always use absolute imports.

6.4.3 Packages in Multiple Directories

Packages support one more special attribute, __path__. This is initialized to be a list containing the name of the
directory holding the package’s __init__.py before the code in that file is executed. This variable can be modified;
doing so affects future searches for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules found in a package.

46 Chapter 6. Modules

CHAPTER

SEVEN

INPUT AND OUTPUT

There are several ways to present the output of a program; data can be printed in a human-readable form, or written to
a file for future use. This chapter will discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we’ve encountered two ways of writing values: expression statements and the print statement. (A third way
is using the write() method of file objects; the standard output file can be referenced as sys.stdout. See the
Library Reference for more information on this.) Often you’ll want more control over the formatting of your output
than simply printing space-separated values. There are two ways to format your output; the first way is to do all the
string handling yourself; using string slicing and concatenation operations you can create any layout you can imagine.
The standard module string contains some useful operations for padding strings to a given column width; these will
be discussed shortly. The second way is to use the str.format() method.

One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any value
to a string: pass it to the repr() or str() functions.

The str() function is meant to return representations of values which are fairly human-readable, while repr()
is meant to generate representations which can be read by the interpreter (or will force a SyntaxError if there
is not equivalent syntax). For objects which don’t have a particular representation for human consumption, str()
will return the same value as repr(). Many values, such as numbers or structures like lists and dictionaries, have
the same representation using either function. Strings and floating point numbers, in particular, have two distinct
representations.

Some examples:

>>> s = ’Hello, world.’
>>> str(s)
’Hello, world.’
>>> repr(s)
"’Hello, world.’"
>>> str(0.1)
’0.1’
>>> repr(0.1)
’0.10000000000000001’
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = ’The value of x is ’ + repr(x) + ’, and y is ’ + repr(y) + ’...’
>>> print s
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:

47

Python Tutorial, Release 2.6.6

... hello = ’hello, world\n’
>>> hellos = repr(hello)
>>> print hellos
’hello, world\n’
>>> # The argument to repr() may be any Python object:
... repr((x, y, (’spam’, ’eggs’)))
"(32.5, 40000, (’spam’, ’eggs’))"

Here are two ways to write a table of squares and cubes:

>>> for x in range(1, 11):
... print repr(x).rjust(2), repr(x*x).rjust(3),
... # Note trailing comma on previous line
... print repr(x*x*x).rjust(4)
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

>>> for x in range(1,11):
... print ’{0:2d} {1:3d} {2:4d}’.format(x, x*x, x*x*x)
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

(Note that in the first example, one space between each column was added by the way print works: it always adds
spaces between its arguments.)

This example demonstrates the rjust() method of string objects, which right-justifies a string in a field of a given
width by padding it with spaces on the left. There are similar methods ljust() and center(). These methods
do not write anything, they just return a new string. If the input string is too long, they don’t truncate it, but return it
unchanged; this will mess up your column lay-out but that’s usually better than the alternative, which would be lying
about a value. (If you really want truncation you can always add a slice operation, as in x.ljust(n)[:n].)

There is another method, zfill(), which pads a numeric string on the left with zeros. It understands about plus and
minus signs:

>>> ’12’.zfill(5)
’00012’
>>> ’-3.14’.zfill(7)
’-003.14’
>>> ’3.14159265359’.zfill(5)

48 Chapter 7. Input and Output

Python Tutorial, Release 2.6.6

’3.14159265359’

Basic usage of the str.format() method looks like this:

>>> print ’We are the {0} who say "{1}!"’.format(’knights’, ’Ni’)
We are the knights who say "Ni!"

The brackets and characters within them (called format fields) are replaced with the objects passed into the format()
method. A number in the brackets refers to the position of the object passed into the format() method.

>>> print ’{0} and {1}’.format(’spam’, ’eggs’)
spam and eggs
>>> print ’{1} and {0}’.format(’spam’, ’eggs’)
eggs and spam

If keyword arguments are used in the format() method, their values are referred to by using the name of the
argument.

>>> print ’This {food} is {adjective}.’.format(
... food=’spam’, adjective=’absolutely horrible’)
This spam is absolutely horrible.

Positional and keyword arguments can be arbitrarily combined:

>>> print ’The story of {0}, {1}, and {other}.’.format(’Bill’, ’Manfred’,
... other=’Georg’)
The story of Bill, Manfred, and Georg.

’!s’ (apply str()) and ’!r’ (apply repr()) can be used to convert the value before it is formatted.

>>> import math
>>> print ’The value of PI is approximately {0}.’.format(math.pi)
The value of PI is approximately 3.14159265359.
>>> print ’The value of PI is approximately {0!r}.’.format(math.pi)
The value of PI is approximately 3.141592653589793.

An optional ’:’ and format specifier can follow the field name. This allows greater control over how the value is
formatted. The following example truncates Pi to three places after the decimal.

>>> import math
>>> print ’The value of PI is approximately {0:.3f}.’.format(math.pi)
The value of PI is approximately 3.142.

Passing an integer after the ’:’ will cause that field to be a minimum number of characters wide. This is useful for
making tables pretty.

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 7678}
>>> for name, phone in table.items():
... print ’{0:10} ==> {1:10d}’.format(name, phone)
...
Jack ==> 4098
Dcab ==> 7678
Sjoerd ==> 4127

If you have a really long format string that you don’t want to split up, it would be nice if you could reference the
variables to be formatted by name instead of by position. This can be done by simply passing the dict and using square
brackets ’[]’ to access the keys

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 8637678}
>>> print (’Jack: {0[Jack]:d}; Sjoerd: {0[Sjoerd]:d}; ’
... ’Dcab: {0[Dcab]:d}’.format(table))
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

7.1. Fancier Output Formatting 49

Python Tutorial, Release 2.6.6

This could also be done by passing the table as keyword arguments with the ‘**’ notation.

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 8637678}
>>> print ’Jack: {Jack:d}; Sjoerd: {Sjoerd:d}; Dcab: {Dcab:d}’.format(**table)
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new built-in vars() function, which returns a dictionary contain-
ing all local variables.

For a complete overview of string formatting with str.format(), see Format String Syntax (in The Python Library
Reference).

7.1.1 Old string formatting

The % operator can also be used for string formatting. It interprets the left argument much like a sprintf()-style
format string to be applied to the right argument, and returns the string resulting from this formatting operation. For
example:

>>> import math
>>> print ’The value of PI is approximately %5.3f.’ % math.pi
The value of PI is approximately 3.142.

Since str.format() is quite new, a lot of Python code still uses the % operator. However, because this old style of
formatting will eventually be removed from the language, str.format() should generally be used.

More information can be found in the String Formatting Operations (in The Python Library Reference) section.

7.2 Reading and Writing Files

open() returns a file object, and is most commonly used with two arguments: open(filename, mode).

>>> f = open(’/tmp/workfile’, ’w’)
>>> print f
<open file ’/tmp/workfile’, mode ’w’ at 80a0960>

The first argument is a string containing the filename. The second argument is another string containing a few charac-
ters describing the way in which the file will be used. mode can be ’r’ when the file will only be read, ’w’ for only
writing (an existing file with the same name will be erased), and ’a’ opens the file for appending; any data written
to the file is automatically added to the end. ’r+’ opens the file for both reading and writing. The mode argument is
optional; ’r’ will be assumed if it’s omitted.

On Windows, ’b’ appended to the mode opens the file in binary mode, so there are also modes like ’rb’, ’wb’,
and ’r+b’. Python on Windows makes a distinction between text and binary files; the end-of-line characters in text
files are automatically altered slightly when data is read or written. This behind-the-scenes modification to file data
is fine for ASCII text files, but it’ll corrupt binary data like that in JPEG or EXE files. Be very careful to use binary
mode when reading and writing such files. On Unix, it doesn’t hurt to append a ’b’ to the mode, so you can use it
platform-independently for all binary files.

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object called f has already been created.

To read a file’s contents, call f.read(size), which reads some quantity of data and returns it as a string. size is an
optional numeric argument. When size is omitted or negative, the entire contents of the file will be read and returned;
it’s your problem if the file is twice as large as your machine’s memory. Otherwise, at most size bytes are read and
returned. If the end of the file has been reached, f.read() will return an empty string ("").

50 Chapter 7. Input and Output

Python Tutorial, Release 2.6.6

>>> f.read()
’This is the entire file.\n’
>>> f.read()
’’

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string, and is only
omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unambiguous; if
f.readline() returns an empty string, the end of the file has been reached, while a blank line is represented by
’\n’, a string containing only a single newline.

>>> f.readline()
’This is the first line of the file.\n’
>>> f.readline()
’Second line of the file\n’
>>> f.readline()
’’

f.readlines() returns a list containing all the lines of data in the file. If given an optional parameter sizehint,
it reads that many bytes from the file and enough more to complete a line, and returns the lines from that. This is
often used to allow efficient reading of a large file by lines, but without having to load the entire file in memory. Only
complete lines will be returned.

>>> f.readlines()
[’This is the first line of the file.\n’, ’Second line of the file\n’]

An alternative approach to reading lines is to loop over the file object. This is memory efficient, fast, and leads to
simpler code:

>>> for line in f:
print line,

This is the first line of the file.
Second line of the file

The alternative approach is simpler but does not provide as fine-grained control. Since the two approaches manage
line buffering differently, they should not be mixed.

f.write(string) writes the contents of string to the file, returning None.

>>> f.write(’This is a test\n’)

To write something other than a string, it needs to be converted to a string first:

>>> value = (’the answer’, 42)
>>> s = str(value)
>>> f.write(s)

f.tell() returns an integer giving the file object’s current position in the file, measured in bytes from the beginning
of the file. To change the file object’s position, use f.seek(offset, from_what). The position is computed
from adding offset to a reference point; the reference point is selected by the from_what argument. A from_what value
of 0 measures from the beginning of the file, 1 uses the current file position, and 2 uses the end of the file as the
reference point. from_what can be omitted and defaults to 0, using the beginning of the file as the reference point.

>>> f = open(’/tmp/workfile’, ’r+’)
>>> f.write(’0123456789abcdef’)
>>> f.seek(5) # Go to the 6th byte in the file
>>> f.read(1)
’5’
>>> f.seek(-3, 2) # Go to the 3rd byte before the end

7.2. Reading and Writing Files 51

Python Tutorial, Release 2.6.6

>>> f.read(1)
’d’

When you’re done with a file, call f.close() to close it and free up any system resources taken up by the open file.
After calling f.close(), attempts to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: I/O operation on closed file

It is good practice to use the with keyword when dealing with file objects. This has the advantage that the file is
properly closed after its suite finishes, even if an exception is raised on the way. It is also much shorter than writing
equivalent try-finally blocks:

>>> with open(’/tmp/workfile’, ’r’) as f:
... read_data = f.read()
>>> f.closed
True

File objects have some additional methods, such as isatty() and truncate() which are less frequently used;
consult the Library Reference for a complete guide to file objects.

7.2.2 The pickle Module

Strings can easily be written to and read from a file. Numbers take a bit more effort, since the read() method only
returns strings, which will have to be passed to a function like int(), which takes a string like ’123’ and returns
its numeric value 123. However, when you want to save more complex data types like lists, dictionaries, or class
instances, things get a lot more complicated.

Rather than have users be constantly writing and debugging code to save complicated data types, Python provides a
standard module called pickle. This is an amazing module that can take almost any Python object (even some forms
of Python code!), and convert it to a string representation; this process is called pickling. Reconstructing the object
from the string representation is called unpickling. Between pickling and unpickling, the string representing the object
may have been stored in a file or data, or sent over a network connection to some distant machine.

If you have an object x, and a file object f that’s been opened for writing, the simplest way to pickle the object takes
only one line of code:

pickle.dump(x, f)

To unpickle the object again, if f is a file object which has been opened for reading:

x = pickle.load(f)

(There are other variants of this, used when pickling many objects or when you don’t want to write the pickled data to
a file; consult the complete documentation for pickle in the Python Library Reference.)

pickle is the standard way to make Python objects which can be stored and reused by other programs or by a future
invocation of the same program; the technical term for this is a persistent object. Because pickle is so widely used,
many authors who write Python extensions take care to ensure that new data types such as matrices can be properly
pickled and unpickled.

52 Chapter 7. Input and Output

CHAPTER

EIGHT

ERRORS AND EXCEPTIONS

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have probably
seen some. There are (at least) two distinguishable kinds of errors: syntax errors and exceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you are
still learning Python:

>>> while True print ’Hello world’
File "<stdin>", line 1, in ?

while True print ’Hello world’
^

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point in the line where the
error was detected. The error is caused by (or at least detected at) the token preceding the arrow: in the example,
the error is detected at the keyword print, since a colon (’:’) is missing before it. File name and line number are
printed so you know where to look in case the input came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute it.
Errors detected during execution are called exceptions and are not unconditionally fatal: you will soon learn how to
handle them in Python programs. Most exceptions are not handled by programs, however, and result in error messages
as shown here:

>>> 10 * (1/0)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name ’spam’ is not defined
>>> ’2’ + 2
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: cannot concatenate ’str’ and ’int’ objects

53

Python Tutorial, Release 2.6.6

The last line of the error message indicates what happened. Exceptions come in different types, and the type is printed
as part of the message: the types in the example are ZeroDivisionError, NameError and TypeError. The
string printed as the exception type is the name of the built-in exception that occurred. This is true for all built-in
exceptions, but need not be true for user-defined exceptions (although it is a useful convention). Standard exception
names are built-in identifiers (not reserved keywords).

The rest of the line provides detail based on the type of exception and what caused it.

The preceding part of the error message shows the context where the exception happened, in the form of a stack
traceback. In general it contains a stack traceback listing source lines; however, it will not display lines read from
standard input.

Built-in Exceptions (in The Python Library Reference) lists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user
for input until a valid integer has been entered, but allows the user to interrupt the program (using Control-C
or whatever the operating system supports); note that a user-generated interruption is signalled by raising the
KeyboardInterrupt exception.

>>> while True:
... try:
... x = int(raw_input("Please enter a number: "))
... break
... except ValueError:
... print "Oops! That was no valid number. Try again..."
...

The try statement works as follows.

• First, the try clause (the statement(s) between the try and except keywords) is executed.

• If no exception occurs, the except clause is skipped and execution of the try statement is finished.

• If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then if its type
matches the exception named after the except keyword, the except clause is executed, and then execution
continues after the try statement.

• If an exception occurs which does not match the exception named in the except clause, it is passed on to outer
try statements; if no handler is found, it is an unhandled exception and execution stops with a message as
shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one
handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other
handlers of the same try statement. An except clause may name multiple exceptions as a parenthesized tuple, for
example:

... except (RuntimeError, TypeError, NameError):

... pass

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme caution, since it
is easy to mask a real programming error in this way! It can also be used to print an error message and then re-raise
the exception (allowing a caller to handle the exception as well):

import sys

try:
f = open(’myfile.txt’)

54 Chapter 8. Errors and Exceptions

Python Tutorial, Release 2.6.6

s = f.readline()
i = int(s.strip())

except IOError as (errno, strerror):
print "I/O error({0}): {1}".format(errno, strerror)

except ValueError:
print "Could not convert data to an integer."

except:
print "Unexpected error:", sys.exc_info()[0]
raise

The try ... except statement has an optional else clause, which, when present, must follow all except clauses. It is
useful for code that must be executed if the try clause does not raise an exception. For example:

for arg in sys.argv[1:]:
try:

f = open(arg, ’r’)
except IOError:

print ’cannot open’, arg
else:

print arg, ’has’, len(f.readlines()), ’lines’
f.close()

The use of the else clause is better than adding additional code to the try clause because it avoids accidentally
catching an exception that wasn’t raised by the code being protected by the try ... except statement.

When an exception occurs, it may have an associated value, also known as the exception’s argument. The presence
and type of the argument depend on the exception type.

The except clause may specify a variable after the exception name (or tuple). The variable is bound to an exception in-
stance with the arguments stored in instance.args. For convenience, the exception instance defines __str__()
so the arguments can be printed directly without having to reference .args.

One may also instantiate an exception first before raising it and add any attributes to it as desired.

>>> try:
... raise Exception(’spam’, ’eggs’)
... except Exception as inst:
... print type(inst) # the exception instance
... print inst.args # arguments stored in .args
... print inst # __str__ allows args to printed directly
... x, y = inst # __getitem__ allows args to be unpacked directly
... print ’x =’, x
... print ’y =’, y
...
<type ’exceptions.Exception’>
(’spam’, ’eggs’)
(’spam’, ’eggs’)
x = spam
y = eggs

If an exception has an argument, it is printed as the last part (‘detail’) of the message for unhandled exceptions.

Exception handlers don’t just handle exceptions if they occur immediately in the try clause, but also if they occur
inside functions that are called (even indirectly) in the try clause. For example:

>>> def this_fails():
... x = 1/0
...
>>> try:

8.3. Handling Exceptions 55

Python Tutorial, Release 2.6.6

... this_fails()

... except ZeroDivisionError as detail:

... print ’Handling run-time error:’, detail

...
Handling run-time error: integer division or modulo by zero

8.4 Raising Exceptions

The raise statement allows the programmer to force a specified exception to occur. For example:

>>> raise NameError(’HiThere’)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: HiThere

The argument to raise is an exception class or instance to be raised. There is a deprecated alternate syntax that
separates class and constructor arguments; the above could be written as raise NameError, ’HiThere’. Since
it once was the only one available, the latter form is prevalent in older code.

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form of the raise
statement allows you to re-raise the exception:

>>> try:
... raise NameError(’HiThere’)
... except NameError:
... print ’An exception flew by!’
... raise
...
An exception flew by!
Traceback (most recent call last):

File "<stdin>", line 2, in ?
NameError: HiThere

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class (see Classes for more about Python
classes). Exceptions should typically be derived from the Exception class, either directly or indirectly. For example:

>>> class MyError(Exception):
... def __init__(self, value):
... self.value = value
... def __str__(self):
... return repr(self.value)
...
>>> try:
... raise MyError(2*2)
... except MyError as e:
... print ’My exception occurred, value:’, e.value
...
My exception occurred, value: 4
>>> raise MyError(’oops!’)
Traceback (most recent call last):

56 Chapter 8. Errors and Exceptions

Python Tutorial, Release 2.6.6

File "<stdin>", line 1, in ?
__main__.MyError: ’oops!’

In this example, the default __init__() of Exception has been overridden. The new behavior simply creates the
value attribute. This replaces the default behavior of creating the args attribute.

Exception classes can be defined which do anything any other class can do, but are usually kept simple, often only
offering a number of attributes that allow information about the error to be extracted by handlers for the exception.
When creating a module that can raise several distinct errors, a common practice is to create a base class for exceptions
defined by that module, and subclass that to create specific exception classes for different error conditions:

class Error(Exception):
"""Base class for exceptions in this module."""
pass

class InputError(Error):
"""Exception raised for errors in the input.

Attributes:
expr -- input expression in which the error occurred
msg -- explanation of the error

"""

def __init__(self, expr, msg):
self.expr = expr
self.msg = msg

class TransitionError(Error):
"""Raised when an operation attempts a state transition that’s not
allowed.

Attributes:
prev -- state at beginning of transition
next -- attempted new state
msg -- explanation of why the specific transition is not allowed

"""

def __init__(self, prev, next, msg):
self.prev = prev
self.next = next
self.msg = msg

Most exceptions are defined with names that end in “Error,” similar to the naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may occur in functions they define. More
information on classes is presented in chapter Classes.

8.6 Defining Clean-up Actions

The try statement has another optional clause which is intended to define clean-up actions that must be executed
under all circumstances. For example:

>>> try:
... raise KeyboardInterrupt
... finally:

8.6. Defining Clean-up Actions 57

Python Tutorial, Release 2.6.6

... print ’Goodbye, world!’

...
Goodbye, world!
KeyboardInterrupt

A finally clause is always executed before leaving the try statement, whether an exception has occurred or not. When
an exception has occurred in the try clause and has not been handled by an except clause (or it has occurred in a
except or else clause), it is re-raised after the finally clause has been executed. The finally clause is also
executed “on the way out” when any other clause of the try statement is left via a break, continue or return
statement. A more complicated example (having except and finally clauses in the same try statement works
as of Python 2.5):

>>> def divide(x, y):
... try:
... result = x / y
... except ZeroDivisionError:
... print "division by zero!"
... else:
... print "result is", result
... finally:
... print "executing finally clause"
...
>>> divide(2, 1)
result is 2
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: ’str’ and ’str’

As you can see, the finally clause is executed in any event. The TypeError raised by dividing two strings is not
handled by the except clause and therefore re-raised after the finally clause has been executed.

In real world applications, the finally clause is useful for releasing external resources (such as files or network
connections), regardless of whether the use of the resource was successful.

8.7 Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object is no longer needed, regardless of
whether or not the operation using the object succeeded or failed. Look at the following example, which tries to open
a file and print its contents to the screen.

for line in open("myfile.txt"):
print line

The problem with this code is that it leaves the file open for an indeterminate amount of time after the code has finished
executing. This is not an issue in simple scripts, but can be a problem for larger applications. The with statement
allows objects like files to be used in a way that ensures they are always cleaned up promptly and correctly.

with open("myfile.txt") as f:
for line in f:

58 Chapter 8. Errors and Exceptions

Python Tutorial, Release 2.6.6

print line

After the statement is executed, the file f is always closed, even if a problem was encountered while processing the
lines. Other objects which provide predefined clean-up actions will indicate this in their documentation.

8.7. Predefined Clean-up Actions 59

Python Tutorial, Release 2.6.6

60 Chapter 8. Errors and Exceptions

CHAPTER

NINE

CLASSES

Python’s class mechanism adds classes to the language with a minimum of new syntax and semantics. It is a mixture
of the class mechanisms found in C++ and Modula-3. As is true for modules, classes in Python do not put an absolute
barrier between definition and user, but rather rely on the politeness of the user not to “break into the definition.”
The most important features of classes are retained with full power, however: the class inheritance mechanism allows
multiple base classes, a derived class can override any methods of its base class or classes, and a method can call the
method of a base class with the same name. Objects can contain an arbitrary amount of data.

In C++ terminology, all class members (including the data members) are public, and all member functions are virtual.
As in Modula-3, there are no shorthands for referencing the object’s members from its methods: the method function
is declared with an explicit first argument representing the object, which is provided implicitly by the call. As in
Smalltalk, classes themselves are objects. This provides semantics for importing and renaming. Unlike C++ and
Modula-3, built-in types can be used as base classes for extension by the user. Also, like in C++, most built-in
operators with special syntax (arithmetic operators, subscripting etc.) can be redefined for class instances.

(Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++
terms. I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++, but I
expect that few readers have heard of it.)

9.1 A Word About Names and Objects

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is known
as aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be safely ignored
when dealing with immutable basic types (numbers, strings, tuples). However, aliasing has a possibly surprising effect
on the semantics of Python code involving mutable objects such as lists, dictionaries, and most other types. This is
usually used to the benefit of the program, since aliases behave like pointers in some respects. For example, passing
an object is cheap since only a pointer is passed by the implementation; and if a function modifies an object passed as
an argument, the caller will see the change — this eliminates the need for two different argument passing mechanisms
as in Pascal.

9.2 Python Scopes and Namespaces

Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions play some
neat tricks with namespaces, and you need to know how scopes and namespaces work to fully understand what’s going
on. Incidentally, knowledge about this subject is useful for any advanced Python programmer.

Let’s begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python dictionaries,
but that’s normally not noticeable in any way (except for performance), and it may change in the future. Examples

61

Python Tutorial, Release 2.6.6

of namespaces are: the set of built-in names (containing functions such as abs(), and built-in exception names); the
global names in a module; and the local names in a function invocation. In a sense the set of attributes of an object
also form a namespace. The important thing to know about namespaces is that there is absolutely no relation between
names in different namespaces; for instance, two different modules may both define a function maximize without
confusion — users of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot — for example, in the expression z.real, real is
an attribute of the object z. Strictly speaking, references to names in modules are attribute references: in the expression
modname.funcname, modname is a module object and funcname is an attribute of it. In this case there happens
to be a straightforward mapping between the module’s attributes and the global names defined in the module: they
share the same namespace! 1

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes
are writable: you can write modname.the_answer = 42. Writable attributes may also be deleted with the del
statement. For example, del modname.the_answer will remove the attribute the_answer from the object
named by modname.

Namespaces are created at different moments and have different lifetimes. The namespace containing the built-in
names is created when the Python interpreter starts up, and is never deleted. The global namespace for a module
is created when the module definition is read in; normally, module namespaces also last until the interpreter quits.
The statements executed by the top-level invocation of the interpreter, either read from a script file or interactively,
are considered part of a module called __main__, so they have their own global namespace. (The built-in names
actually also live in a module; this is called __builtin__.)

The local namespace for a function is created when the function is called, and deleted when the function returns or
raises an exception that is not handled within the function. (Actually, forgetting would be a better way to describe
what actually happens.) Of course, recursive invocations each have their own local namespace.

A scope is a textual region of a Python program where a namespace is directly accessible. “Directly accessible” here
means that an unqualified reference to a name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any time during execution, there are at least
three nested scopes whose namespaces are directly accessible:

• the innermost scope, which is searched first, contains the local names

• the scopes of any enclosing functions, which are searched starting with the nearest enclosing scope, contains
non-local, but also non-global names

• the next-to-last scope contains the current module’s global names

• the outermost scope (searched last) is the namespace containing built-in names

If a name is declared global, then all references and assignments go directly to the middle scope containing the
module’s global names. Otherwise, all variables found outside of the innermost scope are read-only (an attempt to
write to such a variable will simply create a new local variable in the innermost scope, leaving the identically named
outer variable unchanged).

Usually, the local scope references the local names of the (textually) current function. Outside functions, the local
scope references the same namespace as the global scope: the module’s namespace. Class definitions place yet another
namespace in the local scope.

It is important to realize that scopes are determined textually: the global scope of a function defined in a module
is that module’s namespace, no matter from where or by what alias the function is called. On the other hand, the
actual search for names is done dynamically, at run time — however, the language definition is evolving towards static
name resolution, at “compile” time, so don’t rely on dynamic name resolution! (In fact, local variables are already
determined statically.)

1 Except for one thing. Module objects have a secret read-only attribute called __dict__ which returns the dictionary used to implement
the module’s namespace; the name __dict__ is an attribute but not a global name. Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like post-mortem debuggers.

62 Chapter 9. Classes

Python Tutorial, Release 2.6.6

A special quirk of Python is that – if no global statement is in effect – assignments to names always go into the
innermost scope. Assignments do not copy data — they just bind names to objects. The same is true for deletions: the
statement del x removes the binding of x from the namespace referenced by the local scope. In fact, all operations
that introduce new names use the local scope: in particular, import statements and function definitions bind the
module or function name in the local scope. (The global statement can be used to indicate that particular variables
live in the global scope.)

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>
.
.
.
<statement-N>

Class definitions, like function definitions (def statements) must be executed before they have any effect. (You could
conceivably place a class definition in a branch of an if statement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other statements are allowed,
and sometimes useful — we’ll come back to this later. The function definitions inside a class normally have a peculiar
form of argument list, dictated by the calling conventions for methods — again, this is explained later.

When a class definition is entered, a new namespace is created, and used as the local scope — thus, all assignments to
local variables go into this new namespace. In particular, function definitions bind the name of the new function here.

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around the
contents of the namespace created by the class definition; we’ll learn more about class objects in the next section. The
original local scope (the one in effect just before the class definition was entered) is reinstated, and the class object is
bound here to the class name given in the class definition header (ClassName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for all attribute references in Python: obj.name. Valid attribute
names are all the names that were in the class’s namespace when the class object was created. So, if the class definition
looked like this:

class MyClass:
"""A simple example class"""
i = 12345
def f(self):

return ’hello world’

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a function object, respec-
tively. Class attributes can also be assigned to, so you can change the value of MyClass.i by assignment. __doc__
is also a valid attribute, returning the docstring belonging to the class: "A simple example class".

9.3. A First Look at Classes 63

Python Tutorial, Release 2.6.6

Class instantiation uses function notation. Just pretend that the class object is a parameterless function that returns a
new instance of the class. For example (assuming the above class):

x = MyClass()

creates a new instance of the class and assigns this object to the local variable x.

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects with
instances customized to a specific initial state. Therefore a class may define a special method named __init__(),
like this:

def __init__(self):
self.data = []

When a class defines an __init__() method, class instantiation automatically invokes __init__() for the
newly-created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass()

Of course, the __init__() method may have arguments for greater flexibility. In that case, arguments given to the
class instantiation operator are passed on to __init__(). For example,

>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0, -4.5)
>>> x.r, x.i
(3.0, -4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are attribute refer-
ences. There are two kinds of valid attribute names, data attributes and methods.

data attributes correspond to “instance variables” in Smalltalk, and to “data members” in C++. Data attributes need
not be declared; like local variables, they spring into existence when they are first assigned to. For example, if x is the
instance of MyClass created above, the following piece of code will print the value 16, without leaving a trace:

x.counter = 1
while x.counter < 10:

x.counter = x.counter * 2
print x.counter
del x.counter

The other kind of instance attribute reference is a method. A method is a function that “belongs to” an object. (In
Python, the term method is not unique to class instances: other object types can have methods as well. For example,
list objects have methods called append, insert, remove, sort, and so on. However, in the following discussion, we’ll
use the term method exclusively to mean methods of class instance objects, unless explicitly stated otherwise.) Valid
method names of an instance object depend on its class. By definition, all attributes of a class that are function objects
define corresponding methods of its instances. So in our example, x.f is a valid method reference, since MyClass.f
is a function, but x.i is not, since MyClass.i is not. But x.f is not the same thing as MyClass.f— it is a method
object, not a function object.

9.3.4 Method Objects

Usually, a method is called right after it is bound:

64 Chapter 9. Classes

Python Tutorial, Release 2.6.6

x.f()

In the MyClass example, this will return the string ’hello world’. However, it is not necessary to call a method
right away: x.f is a method object, and can be stored away and called at a later time. For example:

xf = x.f
while True:

print xf()

will continue to print hello world until the end of time.

What exactly happens when a method is called? You may have noticed that x.f() was called without an argument
above, even though the function definition for f() specified an argument. What happened to the argument? Surely
Python raises an exception when a function that requires an argument is called without any — even if the argument
isn’t actually used...

Actually, you may have guessed the answer: the special thing about methods is that the object is passed as the first
argument of the function. In our example, the call x.f() is exactly equivalent to MyClass.f(x). In general,
calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list
that is created by inserting the method’s object before the first argument.

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When an
instance attribute is referenced that isn’t a data attribute, its class is searched. If the name denotes a valid class attribute
that is a function object, a method object is created by packing (pointers to) the instance object and the function object
just found together in an abstract object: this is the method object. When the method object is called with an argument
list, a new argument list is constructed from the instance object and the argument list, and the function object is called
with this new argument list.

9.4 Random Remarks

Data attributes override method attributes with the same name; to avoid accidental name conflicts, which may cause
hard-to-find bugs in large programs, it is wise to use some kind of convention that minimizes the chance of conflicts.
Possible conventions include capitalizing method names, prefixing data attribute names with a small unique string
(perhaps just an underscore), or using verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object. In other words,
classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce
data hiding — it is all based upon convention. (On the other hand, the Python implementation, written in C, can
completely hide implementation details and control access to an object if necessary; this can be used by extensions to
Python written in C.)

Clients should use data attributes with care — clients may mess up invariants maintained by the methods by stamping
on their data attributes. Note that clients may add data attributes of their own to an instance object without affecting
the validity of the methods, as long as name conflicts are avoided — again, a naming convention can save a lot of
headaches here.

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this actually
increases the readability of methods: there is no chance of confusing local variables and instance variables when
glancing through a method.

Often, the first argument of a method is called self. This is nothing more than a convention: the name self has
absolutely no special meaning to Python. Note, however, that by not following the convention your code may be less
readable to other Python programmers, and it is also conceivable that a class browser program might be written that
relies upon such a convention.

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the
function definition is textually enclosed in the class definition: assigning a function object to a local variable in the
class is also ok. For example:

9.4. Random Remarks 65

Python Tutorial, Release 2.6.6

Function defined outside the class
def f1(self, x, y):

return min(x, x+y)

class C:
f = f1
def g(self):

return ’hello world’
h = g

Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all methods of
instances of C — h being exactly equivalent to g. Note that this practice usually only serves to confuse the reader of a
program.

Methods may call other methods by using method attributes of the self argument:

class Bag:
def __init__(self):

self.data = []
def add(self, x):

self.data.append(x)
def addtwice(self, x):

self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope associated with a
method is the module containing the class definition. (The class itself is never used as a global scope.) While one
rarely encounters a good reason for using global data in a method, there are many legitimate uses of the global scope:
for one thing, functions and modules imported into the global scope can be used by methods, as well as functions and
classes defined in it. Usually, the class containing the method is itself defined in this global scope, and in the next
section we’ll find some good reasons why a method would want to reference its own class.

Each value is an object, and therefore has a class (also called its type). It is stored as object.__class__.

9.5 Inheritance

Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The syntax for
a derived class definition looks like this:

class DerivedClassName(BaseClassName):
<statement-1>
.
.
.
<statement-N>

The name BaseClassName must be defined in a scope containing the derived class definition. In place of a base
class name, other arbitrary expressions are also allowed. This can be useful, for example, when the base class is
defined in another module:

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed, the
base class is remembered. This is used for resolving attribute references: if a requested attribute is not found in the
class, the search proceeds to look in the base class. This rule is applied recursively if the base class itself is derived
from some other class.

66 Chapter 9. Classes

Python Tutorial, Release 2.6.6

There’s nothing special about instantiation of derived classes: DerivedClassName() creates a new instance of
the class. Method references are resolved as follows: the corresponding class attribute is searched, descending down
the chain of base classes if necessary, and the method reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges when calling
other methods of the same object, a method of a base class that calls another method defined in the same base class
may end up calling a method of a derived class that overrides it. (For C++ programmers: all methods in Python are
effectively virtual.)

An overriding method in a derived class may in fact want to extend rather than simply replace the base
class method of the same name. There is a simple way to call the base class method directly: just call
BaseClassName.methodname(self, arguments). This is occasionally useful to clients as well. (Note
that this only works if the base class is accessible as BaseClassName in the global scope.)

Python has two built-in functions that work with inheritance:

• Use isinstance() to check an instance’s type: isinstance(obj, int) will be True only if
obj.__class__ is int or some class derived from int.

• Use issubclass() to check class inheritance: issubclass(bool, int) is True since bool is a
subclass of int. However, issubclass(unicode, str) is False since unicode is not a subclass of
str (they only share a common ancestor, basestring).

9.5.1 Multiple Inheritance

Python supports a limited form of multiple inheritance as well. A class definition with multiple base classes looks like
this:

class DerivedClassName(Base1, Base2, Base3):
<statement-1>
.
.
.
<statement-N>

For old-style classes, the only rule is depth-first, left-to-right. Thus, if an attribute is not found in
DerivedClassName, it is searched in Base1, then (recursively) in the base classes of Base1, and only if it
is not found there, it is searched in Base2, and so on.

(To some people breadth first — searching Base2 and Base3 before the base classes of Base1 — looks more
natural. However, this would require you to know whether a particular attribute of Base1 is actually defined in
Base1 or in one of its base classes before you can figure out the consequences of a name conflict with an attribute of
Base2. The depth-first rule makes no differences between direct and inherited attributes of Base1.)

For new-style classes, the method resolution order changes dynamically to support cooperative calls to super().
This approach is known in some other multiple-inheritance languages as call-next-method and is more powerful than
the super call found in single-inheritance languages.

With new-style classes, dynamic ordering is necessary because all cases of multiple inheritance exhibit one or more
diamond relationships (where one at least one of the parent classes can be accessed through multiple paths from the
bottommost class). For example, all new-style classes inherit from object, so any case of multiple inheritance
provides more than one path to reach object. To keep the base classes from being accessed more than once, the
dynamic algorithm linearizes the search order in a way that preserves the left-to-right ordering specified in each class,
that calls each parent only once, and that is monotonic (meaning that a class can be subclassed without affecting the
precedence order of its parents). Taken together, these properties make it possible to design reliable and extensible
classes with multiple inheritance. For more detail, see http://www.python.org/download/releases/2.3/mro/.

9.5. Inheritance 67

http://www.python.org/download/releases/2.3/mro/

Python Tutorial, Release 2.6.6

9.6 Private Variables

“Private” instance variables that cannot be accessed except from inside an object, don’t exist in Python. However, there
is a convention that is followed by most Python code: a name prefixed with an underscore (e.g. _spam) should be
treated as a non-public part of the API (whether it is a function, a method or a data member). It should be considered
an implementation detail and subject to change without notice.

Since there is a valid use-case for class-private members (namely to avoid name clashes of names with names
defined by subclasses), there is limited support for such a mechanism, called name mangling. Any identifier of
the form __spam (at least two leading underscores, at most one trailing underscore) is textually replaced with
_classname__spam, where classname is the current class name with leading underscore(s) stripped. This
mangling is done without regard to the syntactic position of the identifier, as long as it occurs within the definition of
a class.

Note that the mangling rules are designed mostly to avoid accidents; it still is possible to access or modify a variable
that is considered private. This can even be useful in special circumstances, such as in the debugger.

Notice that code passed to exec, eval() or execfile() does not consider the classname of the invoking class to
be the current class; this is similar to the effect of the global statement, the effect of which is likewise restricted to
code that is byte-compiled together. The same restriction applies to getattr(), setattr() and delattr(), as
well as when referencing __dict__ directly.

9.7 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C “struct”, bundling together a few named
data items. An empty class definition will do nicely:

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = ’John Doe’
john.dept = ’computer lab’
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the
methods of that data type instead. For instance, if you have a function that formats some data from a file object, you
can define a class with methods read() and readline() that get the data from a string buffer instead, and pass it
as an argument.

Instance method objects have attributes, too: m.im_self is the instance object with the method m(), and
m.im_func is the function object corresponding to the method.

9.8 Exceptions Are Classes Too

User-defined exceptions are identified by classes as well. Using this mechanism it is possible to create extensible
hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

68 Chapter 9. Classes

Python Tutorial, Release 2.6.6

raise Class, instance

raise instance

In the first form, instance must be an instance of Class or of a class derived from it. The second form is a
shorthand for:

raise instance.__class__, instance

A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not
the other way around — an except clause listing a derived class is not compatible with a base class). For example, the
following code will print B, C, D in that order:

class B:
pass

class C(B):
pass

class D(C):
pass

for c in [B, C, D]:
try:

raise c()
except D:

print "D"
except C:

print "C"
except B:

print "B"

Note that if the except clauses were reversed (with except B first), it would have printed B, B, B — the first matching
except clause is triggered.

When an error message is printed for an unhandled exception, the exception’s class name is printed, then a colon and
a space, and finally the instance converted to a string using the built-in function str().

9.9 Iterators

By now you have probably noticed that most container objects can be looped over using a for statement:

for element in [1, 2, 3]:
print element

for element in (1, 2, 3):
print element

for key in {’one’:1, ’two’:2}:
print key

for char in "123":
print char

for line in open("myfile.txt"):
print line

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind the
scenes, the for statement calls iter() on the container object. The function returns an iterator object that defines
the method next() which accesses elements in the container one at a time. When there are no more elements,
next() raises a StopIteration exception which tells the for loop to terminate. This example shows how it all
works:

9.9. Iterators 69

Python Tutorial, Release 2.6.6

>>> s = ’abc’
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> it.next()
’a’
>>> it.next()
’b’
>>> it.next()
’c’
>>> it.next()

Traceback (most recent call last):
File "<stdin>", line 1, in ?

it.next()
StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define
an __iter__() method which returns an object with a next() method. If the class defines next(), then
__iter__() can just return self:

class Reverse:
"Iterator for looping over a sequence backwards"
def __init__(self, data):

self.data = data
self.index = len(data)

def __iter__(self):
return self

def next(self):
if self.index == 0:

raise StopIteration
self.index = self.index - 1
return self.data[self.index]

>>> rev = Reverse(’spam’)
>>> iter(rev)
<__main__.Reverse object at 0x00A1DB50>
>>> for char in rev:
... print char
...
m
a
p
s

9.10 Generators

Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use the
yield statement whenever they want to return data. Each time next() is called, the generator resumes where it
left-off (it remembers all the data values and which statement was last executed). An example shows that generators
can be trivially easy to create:

def reverse(data):
for index in range(len(data)-1, -1, -1):

70 Chapter 9. Classes

Python Tutorial, Release 2.6.6

yield data[index]

>>> for char in reverse(’golf’):
... print char
...
f
l
o
g

Anything that can be done with generators can also be done with class based iterators as described in the previous
section. What makes generators so compact is that the __iter__() and next()methods are created automatically.

Another key feature is that the local variables and execution state are automatically saved between calls. This made
the function easier to write and much more clear than an approach using instance variables like self.index and
self.data.

In addition to automatic method creation and saving program state, when generators terminate, they automatically
raise StopIteration. In combination, these features make it easy to create iterators with no more effort than
writing a regular function.

9.11 Generator Expressions

Some simple generators can be coded succinctly as expressions using a syntax similar to list comprehensions but with
parentheses instead of brackets. These expressions are designed for situations where the generator is used right away
by an enclosing function. Generator expressions are more compact but less versatile than full generator definitions and
tend to be more memory friendly than equivalent list comprehensions.

Examples:

>>> sum(i*i for i in range(10)) # sum of squares
285

>>> xvec = [10, 20, 30]
>>> yvec = [7, 5, 3]
>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = dict((x, sin(x*pi/180)) for x in range(0, 91))

>>> unique_words = set(word for line in page for word in line.split())

>>> valedictorian = max((student.gpa, student.name) for student in graduates)

>>> data = ’golf’
>>> list(data[i] for i in range(len(data)-1,-1,-1))
[’f’, ’l’, ’o’, ’g’]

9.11. Generator Expressions 71

Python Tutorial, Release 2.6.6

72 Chapter 9. Classes

CHAPTER

TEN

BRIEF TOUR OF THE STANDARD
LIBRARY

10.1 Operating System Interface

The os module provides dozens of functions for interacting with the operating system:

>>> import os
>>> os.system(’time 0:02’)
0
>>> os.getcwd() # Return the current working directory
’C:\\Python26’
>>> os.chdir(’/server/accesslogs’)

Be sure to use the import os style instead of from os import *. This will keep os.open() from shadowing
the built-in open() function which operates much differently. The built-in dir() and help() functions are useful
as interactive aids for working with large modules like os:

>>> import os
>>> dir(os)
<returns a list of all module functions>
>>> help(os)
<returns an extensive manual page created from the module’s docstrings>

For daily file and directory management tasks, the shutil module provides a higher level interface that is easier to
use:

>>> import shutil
>>> shutil.copyfile(’data.db’, ’archive.db’)
>>> shutil.move(’/build/executables’, ’installdir’)

10.2 File Wildcards

The glob module provides a function for making file lists from directory wildcard searches:

>>> import glob
>>> glob.glob(’*.py’)
[’primes.py’, ’random.py’, ’quote.py’]

73

Python Tutorial, Release 2.6.6

10.3 Command Line Arguments

Common utility scripts often need to process command line arguments. These arguments are stored in the sys
module’s argv attribute as a list. For instance the following output results from running python demo.py one
two three at the command line:

>>> import sys
>>> print sys.argv
[’demo.py’, ’one’, ’two’, ’three’]

The getopt module processes sys.argv using the conventions of the Unix getopt() function. More powerful and
flexible command line processing is provided by the optparse module.

10.4 Error Output Redirection and Program Termination

The sys module also has attributes for stdin, stdout, and stderr. The latter is useful for emitting warnings and error
messages to make them visible even when stdout has been redirected:

>>> sys.stderr.write(’Warning, log file not found starting a new one\n’)
Warning, log file not found starting a new one

The most direct way to terminate a script is to use sys.exit().

10.5 String Pattern Matching

The re module provides regular expression tools for advanced string processing. For complex matching and manipu-
lation, regular expressions offer succinct, optimized solutions:

>>> import re
>>> re.findall(r’\bf[a-z]*’, ’which foot or hand fell fastest’)
[’foot’, ’fell’, ’fastest’]
>>> re.sub(r’(\b[a-z]+) \1’, r’\1’, ’cat in the the hat’)
’cat in the hat’

When only simple capabilities are needed, string methods are preferred because they are easier to read and debug:

>>> ’tea for too’.replace(’too’, ’two’)
’tea for two’

10.6 Mathematics

The math module gives access to the underlying C library functions for floating point math:

>>> import math
>>> math.cos(math.pi / 4.0)
0.70710678118654757
>>> math.log(1024, 2)
10.0

The random module provides tools for making random selections:

74 Chapter 10. Brief Tour of the Standard Library

Python Tutorial, Release 2.6.6

>>> import random
>>> random.choice([’apple’, ’pear’, ’banana’])
’apple’
>>> random.sample(xrange(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
>>> random.random() # random float
0.17970987693706186
>>> random.randrange(6) # random integer chosen from range(6)
4

10.7 Internet Access

There are a number of modules for accessing the internet and processing internet protocols. Two of the simplest are
urllib2 for retrieving data from urls and smtplib for sending mail:

>>> import urllib2
>>> for line in urllib2.urlopen(’http://tycho.usno.navy.mil/cgi-bin/timer.pl’):
... if ’EST’ in line or ’EDT’ in line: # look for Eastern Time
... print line

Nov. 25, 09:43:32 PM EST

>>> import smtplib
>>> server = smtplib.SMTP(’localhost’)
>>> server.sendmail(’soothsayer@example.org’, ’jcaesar@example.org’,
... """To: jcaesar@example.org
... From: soothsayer@example.org
...
... Beware the Ides of March.
... """)
>>> server.quit()

(Note that the second example needs a mailserver running on localhost.)

10.8 Dates and Times

The datetime module supplies classes for manipulating dates and times in both simple and complex ways. While
date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for output
formatting and manipulation. The module also supports objects that are timezone aware.

>>> # dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today()
>>> now
datetime.date(2003, 12, 2)
>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
’12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.’

>>> # dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday

10.7. Internet Access 75

Python Tutorial, Release 2.6.6

>>> age.days
14368

10.9 Data Compression

Common data archiving and compression formats are directly supported by modules including: zlib, gzip, bz2,
zipfile and tarfile.

>>> import zlib
>>> s = ’witch which has which witches wrist watch’
>>> len(s)
41
>>> t = zlib.compress(s)
>>> len(t)
37
>>> zlib.decompress(t)
’witch which has which witches wrist watch’
>>> zlib.crc32(s)
226805979

10.10 Performance Measurement

Some Python users develop a deep interest in knowing the relative performance of different approaches to the same
problem. Python provides a measurement tool that answers those questions immediately.

For example, it may be tempting to use the tuple packing and unpacking feature instead of the traditional approach to
swapping arguments. The timeit module quickly demonstrates a modest performance advantage:

>>> from timeit import Timer
>>> Timer(’t=a; a=b; b=t’, ’a=1; b=2’).timeit()
0.57535828626024577
>>> Timer(’a,b = b,a’, ’a=1; b=2’).timeit()
0.54962537085770791

In contrast to timeit‘s fine level of granularity, the profile and pstats modules provide tools for identifying
time critical sections in larger blocks of code.

10.11 Quality Control

One approach for developing high quality software is to write tests for each function as it is developed and to run those
tests frequently during the development process.

The doctest module provides a tool for scanning a module and validating tests embedded in a program’s docstrings.
Test construction is as simple as cutting-and-pasting a typical call along with its results into the docstring. This
improves the documentation by providing the user with an example and it allows the doctest module to make sure the
code remains true to the documentation:

def average(values):
"""Computes the arithmetic mean of a list of numbers.

>>> print average([20, 30, 70])
40.0

76 Chapter 10. Brief Tour of the Standard Library

Python Tutorial, Release 2.6.6

"""
return sum(values, 0.0) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module, but it allows a more comprehensive set of tests
to be maintained in a separate file:

import unittest

class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):
self.assertEqual(average([20, 30, 70]), 40.0)
self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
self.assertRaises(ZeroDivisionError, average, [])
self.assertRaises(TypeError, average, 20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12 Batteries Included

Python has a “batteries included” philosophy. This is best seen through the sophisticated and robust capabilities of its
larger packages. For example:

• The xmlrpclib and SimpleXMLRPCServer modules make implementing remote procedure calls into an
almost trivial task. Despite the modules names, no direct knowledge or handling of XML is needed.

• The email package is a library for managing email messages, including MIME and other RFC 2822-based
message documents. Unlike smtplib and poplib which actually send and receive messages, the email
package has a complete toolset for building or decoding complex message structures (including attachments)
and for implementing internet encoding and header protocols.

• The xml.dom and xml.sax packages provide robust support for parsing this popular data interchange format.
Likewise, the csv module supports direct reads and writes in a common database format. Together, these
modules and packages greatly simplify data interchange between Python applications and other tools.

• Internationalization is supported by a number of modules including gettext, locale, and the codecs
package.

10.12. Batteries Included 77

Python Tutorial, Release 2.6.6

78 Chapter 10. Brief Tour of the Standard Library

CHAPTER

ELEVEN

BRIEF TOUR OF THE STANDARD
LIBRARY – PART II

This second tour covers more advanced modules that support professional programming needs. These modules rarely
occur in small scripts.

11.1 Output Formatting

The repr module provides a version of repr() customized for abbreviated displays of large or deeply nested
containers:

>>> import repr
>>> repr.repr(set(’supercalifragilisticexpialidocious’))
"set([’a’, ’c’, ’d’, ’e’, ’f’, ’g’, ...])"

The pprint module offers more sophisticated control over printing both built-in and user defined objects in a way
that is readable by the interpreter. When the result is longer than one line, the “pretty printer” adds line breaks and
indentation to more clearly reveal data structure:

>>> import pprint
>>> t = [[[[’black’, ’cyan’], ’white’, [’green’, ’red’]], [[’magenta’,
... ’yellow’], ’blue’]]]
...
>>> pprint.pprint(t, width=30)
[[[[’black’, ’cyan’],

’white’,
[’green’, ’red’]],

[[’magenta’, ’yellow’],
’blue’]]]

The textwrap module formats paragraphs of text to fit a given screen width:

>>> import textwrap
>>> doc = """The wrap() method is just like fill() except that it returns
... a list of strings instead of one big string with newlines to separate
... the wrapped lines."""
...
>>> print textwrap.fill(doc, width=40)
The wrap() method is just like fill()
except that it returns a list of strings

79

Python Tutorial, Release 2.6.6

instead of one big string with newlines
to separate the wrapped lines.

The locale module accesses a database of culture specific data formats. The grouping attribute of locale’s format
function provides a direct way of formatting numbers with group separators:

>>> import locale
>>> locale.setlocale(locale.LC_ALL, ’English_United States.1252’)
’English_United States.1252’
>>> conv = locale.localeconv() # get a mapping of conventions
>>> x = 1234567.8
>>> locale.format("%d", x, grouping=True)
’1,234,567’
>>> locale.format_string("%s%.*f", (conv[’currency_symbol’],
... conv[’frac_digits’], x), grouping=True)
’$1,234,567.80’

11.2 Templating

The string module includes a versatile Template class with a simplified syntax suitable for editing by end-users.
This allows users to customize their applications without having to alter the application.

The format uses placeholder names formed by $ with valid Python identifiers (alphanumeric characters and under-
scores). Surrounding the placeholder with braces allows it to be followed by more alphanumeric letters with no
intervening spaces. Writing $$ creates a single escaped $:

>>> from string import Template
>>> t = Template(’${village}folk send $$10 to $cause.’)
>>> t.substitute(village=’Nottingham’, cause=’the ditch fund’)
’Nottinghamfolk send $10 to the ditch fund.’

The substitute() method raises a KeyError when a placeholder is not supplied in a dictionary or a keyword
argument. For mail-merge style applications, user supplied data may be incomplete and the safe_substitute()
method may be more appropriate — it will leave placeholders unchanged if data is missing:

>>> t = Template(’Return the $item to $owner.’)
>>> d = dict(item=’unladen swallow’)
>>> t.substitute(d)
Traceback (most recent call last):

. . .
KeyError: ’owner’
>>> t.safe_substitute(d)
’Return the unladen swallow to $owner.’

Template subclasses can specify a custom delimiter. For example, a batch renaming utility for a photo browser may
elect to use percent signs for placeholders such as the current date, image sequence number, or file format:

>>> import time, os.path
>>> photofiles = [’img_1074.jpg’, ’img_1076.jpg’, ’img_1077.jpg’]
>>> class BatchRename(Template):
... delimiter = ’%’
>>> fmt = raw_input(’Enter rename style (%d-date %n-seqnum %f-format): ’)
Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f

>>> t = BatchRename(fmt)
>>> date = time.strftime(’%d%b%y’)

80 Chapter 11. Brief Tour of the Standard Library – Part II

Python Tutorial, Release 2.6.6

>>> for i, filename in enumerate(photofiles):
... base, ext = os.path.splitext(filename)
... newname = t.substitute(d=date, n=i, f=ext)
... print ’{0} --> {1}’.format(filename, newname)

img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

Another application for templating is separating program logic from the details of multiple output formats. This makes
it possible to substitute custom templates for XML files, plain text reports, and HTML web reports.

11.3 Working with Binary Data Record Layouts

The struct module provides pack() and unpack() functions for working with variable length binary record for-
mats. The following example shows how to loop through header information in a ZIP file without using the zipfile
module. Pack codes "H" and "I" represent two and four byte unsigned numbers respectively. The "<" indicates that
they are standard size and in little-endian byte order:

import struct

data = open(’myfile.zip’, ’rb’).read()
start = 0
for i in range(3): # show the first 3 file headers

start += 14
fields = struct.unpack(’<IIIHH’, data[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

start += 16
filename = data[start:start+filenamesize]
start += filenamesize
extra = data[start:start+extra_size]
print filename, hex(crc32), comp_size, uncomp_size

start += extra_size + comp_size # skip to the next header

11.4 Multi-threading

Threading is a technique for decoupling tasks which are not sequentially dependent. Threads can be used to improve
the responsiveness of applications that accept user input while other tasks run in the background. A related use case is
running I/O in parallel with computations in another thread.

The following code shows how the high level threading module can run tasks in background while the main
program continues to run:

import threading, zipfile

class AsyncZip(threading.Thread):
def __init__(self, infile, outfile):

threading.Thread.__init__(self)
self.infile = infile
self.outfile = outfile

def run(self):

11.3. Working with Binary Data Record Layouts 81

Python Tutorial, Release 2.6.6

f = zipfile.ZipFile(self.outfile, ’w’, zipfile.ZIP_DEFLATED)
f.write(self.infile)
f.close()
print ’Finished background zip of: ’, self.infile

background = AsyncZip(’mydata.txt’, ’myarchive.zip’)
background.start()
print ’The main program continues to run in foreground.’

background.join() # Wait for the background task to finish
print ’Main program waited until background was done.’

The principal challenge of multi-threaded applications is coordinating threads that share data or other resources. To
that end, the threading module provides a number of synchronization primitives including locks, events, condition
variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the
preferred approach to task coordination is to concentrate all access to a resource in a single thread and then use the
Queue module to feed that thread with requests from other threads. Applications using Queue.Queue objects for
inter-thread communication and coordination are easier to design, more readable, and more reliable.

11.5 Logging

The logging module offers a full featured and flexible logging system. At its simplest, log messages are sent to a
file or to sys.stderr:

import logging
logging.debug(’Debugging information’)
logging.info(’Informational message’)
logging.warning(’Warning:config file %s not found’, ’server.conf’)
logging.error(’Error occurred’)
logging.critical(’Critical error -- shutting down’)

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output is sent to standard error. Other
output options include routing messages through email, datagrams, sockets, or to an HTTP Server. New filters can
select different routing based on message priority: DEBUG, INFO, WARNING, ERROR, and CRITICAL.

The logging system can be configured directly from Python or can be loaded from a user editable configuration file for
customized logging without altering the application.

11.6 Weak References

Python does automatic memory management (reference counting for most objects and garbage collection to eliminate
cycles). The memory is freed shortly after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need to track objects only as long as they
are being used by something else. Unfortunately, just tracking them creates a reference that makes them permanent.
The weakref module provides tools for tracking objects without creating a reference. When the object is no longer

82 Chapter 11. Brief Tour of the Standard Library – Part II

Python Tutorial, Release 2.6.6

needed, it is automatically removed from a weakref table and a callback is triggered for weakref objects. Typical
applications include caching objects that are expensive to create:

>>> import weakref, gc
>>> class A:
... def __init__(self, value):
... self.value = value
... def __repr__(self):
... return str(self.value)
...
>>> a = A(10) # create a reference
>>> d = weakref.WeakValueDictionary()
>>> d[’primary’] = a # does not create a reference
>>> d[’primary’] # fetch the object if it is still alive
10
>>> del a # remove the one reference
>>> gc.collect() # run garbage collection right away
0
>>> d[’primary’] # entry was automatically removed
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
d[’primary’] # entry was automatically removed

File "C:/python26/lib/weakref.py", line 46, in __getitem__
o = self.data[key]()

KeyError: ’primary’

11.7 Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However, sometimes there is a need for alternative
implementations with different performance trade-offs.

The array module provides an array() object that is like a list that stores only homogeneous data and stores it
more compactly. The following example shows an array of numbers stored as two byte unsigned binary numbers
(typecode "H") rather than the usual 16 bytes per entry for regular lists of Python int objects:

>>> from array import array
>>> a = array(’H’, [4000, 10, 700, 22222])
>>> sum(a)
26932
>>> a[1:3]
array(’H’, [10, 700])

The collections module provides a deque() object that is like a list with faster appends and pops from the left
side but slower lookups in the middle. These objects are well suited for implementing queues and breadth first tree
searches:

>>> from collections import deque
>>> d = deque(["task1", "task2", "task3"])
>>> d.append("task4")
>>> print "Handling", d.popleft()
Handling task1

unsearched = deque([starting_node])
def breadth_first_search(unsearched):

node = unsearched.popleft()

11.7. Tools for Working with Lists 83

Python Tutorial, Release 2.6.6

for m in gen_moves(node):
if is_goal(m):

return m
unsearched.append(m)

In addition to alternative list implementations, the library also offers other tools such as the bisect module with
functions for manipulating sorted lists:

>>> import bisect
>>> scores = [(100, ’perl’), (200, ’tcl’), (400, ’lua’), (500, ’python’)]
>>> bisect.insort(scores, (300, ’ruby’))
>>> scores
[(100, ’perl’), (200, ’tcl’), (300, ’ruby’), (400, ’lua’), (500, ’python’)]

The heapq module provides functions for implementing heaps based on regular lists. The lowest valued entry is
always kept at position zero. This is useful for applications which repeatedly access the smallest element but do not
want to run a full list sort:

>>> from heapq import heapify, heappop, heappush
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> heapify(data) # rearrange the list into heap order
>>> heappush(data, -5) # add a new entry
>>> [heappop(data) for i in range(3)] # fetch the three smallest entries
[-5, 0, 1]

11.8 Decimal Floating Point Arithmetic

The decimal module offers a Decimal datatype for decimal floating point arithmetic. Compared to the built-in
float implementation of binary floating point, the class is especially helpful for

• financial applications and other uses which require exact decimal representation,

• control over precision,

• control over rounding to meet legal or regulatory requirements,

• tracking of significant decimal places, or

• applications where the user expects the results to match calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal floating point and binary
floating point. The difference becomes significant if the results are rounded to the nearest cent:

>>> from decimal import *
>>> Decimal(’0.70’) * Decimal(’1.05’)
Decimal(’0.7350’)
>>> .70 * 1.05
0.73499999999999999

The Decimal result keeps a trailing zero, automatically inferring four place significance from multiplicands with two
place significance. Decimal reproduces mathematics as done by hand and avoids issues that can arise when binary
floating point cannot exactly represent decimal quantities.

Exact representation enables the Decimal class to perform modulo calculations and equality tests that are unsuitable
for binary floating point:

>>> Decimal(’1.00’) % Decimal(’.10’)
Decimal(’0.00’)
>>> 1.00 % 0.10

84 Chapter 11. Brief Tour of the Standard Library – Part II

Python Tutorial, Release 2.6.6

0.09999999999999995

>>> sum([Decimal(’0.1’)]*10) == Decimal(’1.0’)
True
>>> sum([0.1]*10) == 1.0
False

The decimal module provides arithmetic with as much precision as needed:

>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal(’0.142857142857142857142857142857142857’)

11.8. Decimal Floating Point Arithmetic 85

Python Tutorial, Release 2.6.6

86 Chapter 11. Brief Tour of the Standard Library – Part II

CHAPTER

TWELVE

WHAT NOW?

Reading this tutorial has probably reinforced your interest in using Python — you should be eager to apply Python to
solving your real-world problems. Where should you go to learn more?

This tutorial is part of Python’s documentation set. Some other documents in the set are:

• The Python Standard Library (in The Python Library Reference):

You should browse through this manual, which gives complete (though terse) reference material about types,
functions, and the modules in the standard library. The standard Python distribution includes a lot of additional
code. There are modules to read Unix mailboxes, retrieve documents via HTTP, generate random numbers,
parse command-line options, write CGI programs, compress data, and many other tasks. Skimming through the
Library Reference will give you an idea of what’s available.

• Installing Python Modules (in Installing Python Modules) explains how to install external modules written by
other Python users.

• The Python Language Reference (in The Python Language Reference): A detailed explanation of Python’s
syntax and semantics. It’s heavy reading, but is useful as a complete guide to the language itself.

More Python resources:

• http://www.python.org: The major Python Web site. It contains code, documentation, and pointers to Python-
related pages around the Web. This Web site is mirrored in various places around the world, such as Europe,
Japan, and Australia; a mirror may be faster than the main site, depending on your geographical location.

• http://docs.python.org: Fast access to Python’s documentation.

• http://pypi.python.org: The Python Package Index, previously also nicknamed the Cheese Shop, is an index of
user-created Python modules that are available for download. Once you begin releasing code, you can register
it here so that others can find it.

• http://aspn.activestate.com/ASPN/Python/Cookbook/: The Python Cookbook is a sizable collection of code
examples, larger modules, and useful scripts. Particularly notable contributions are collected in a book also
titled Python Cookbook (O’Reilly & Associates, ISBN 0-596-00797-3.)

For Python-related questions and problem reports, you can post to the newsgroup comp.lang.python, or send
them to the mailing list at python-list@python.org. The newsgroup and mailing list are gatewayed, so messages
posted to one will automatically be forwarded to the other. There are around 120 postings a day (with peaks up to
several hundred), asking (and answering) questions, suggesting new features, and announcing new modules. Before
posting, be sure to check the list of Frequently Asked Questions (also called the FAQ), or look for it in the Misc/
directory of the Python source distribution. Mailing list archives are available at http://mail.python.org/pipermail/.
The FAQ answers many of the questions that come up again and again, and may already contain the solution for your
problem.

87

http://www.python.org
http://docs.python.org
http://pypi.python.org
http://aspn.activestate.com/ASPN/Python/Cookbook/
mailto:python-list@python.org
http://www.python.org/doc/faq/
http://mail.python.org/pipermail/

Python Tutorial, Release 2.6.6

88 Chapter 12. What Now?

CHAPTER

THIRTEEN

INTERACTIVE INPUT EDITING AND
HISTORY SUBSTITUTION

Some versions of the Python interpreter support editing of the current input line and history substitution, similar to
facilities found in the Korn shell and the GNU Bash shell. This is implemented using the GNU Readline library,
which supports Emacs-style and vi-style editing. This library has its own documentation which I won’t duplicate here;
however, the basics are easily explained. The interactive editing and history described here are optionally available in
the Unix and Cygwin versions of the interpreter.

This chapter does not document the editing facilities of Mark Hammond’s PythonWin package or the Tk-based envi-
ronment, IDLE, distributed with Python. The command line history recall which operates within DOS boxes on NT
and some other DOS and Windows flavors is yet another beast.

13.1 Line Editing

If supported, input line editing is active whenever the interpreter prints a primary or secondary prompt. The current
line can be edited using the conventional Emacs control characters. The most important of these are: C-A (Control-A)
moves the cursor to the beginning of the line, C-E to the end, C-B moves it one position to the left, C-F to the right.
Backspace erases the character to the left of the cursor, C-D the character to its right. C-K kills (erases) the rest of
the line to the right of the cursor, C-Y yanks back the last killed string. C-underscore undoes the last change you
made; it can be repeated for cumulative effect.

13.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved in a history buffer, and when a new
prompt is given you are positioned on a new line at the bottom of this buffer. C-P moves one line up (back) in the
history buffer, C-N moves one down. Any line in the history buffer can be edited; an asterisk appears in front of the
prompt to mark a line as modified. Pressing the Return key passes the current line to the interpreter. C-R starts an
incremental reverse search; C-S starts a forward search.

13.3 Key Bindings

The key bindings and some other parameters of the Readline library can be customized by placing commands in an
initialization file called ~/.inputrc. Key bindings have the form

key-name: function-name

89

http://tiswww.case.edu/php/chet/readline/rltop.html

Python Tutorial, Release 2.6.6

or

"string": function-name

and options can be set with

set option-name value

For example:

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:
Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for Tab in Python is to insert a Tab character instead of Readline’s default filename
completion function. If you insist, you can override this by putting

Tab: complete

in your ~/.inputrc. (Of course, this makes it harder to type indented continuation lines if you’re accustomed to
using Tab for that purpose.) Automatic completion of variable and module names is optionally available. To enable
it in the interpreter’s interactive mode, add the following to your startup file: 1

import rlcompleter, readline
readline.parse_and_bind(’tab: complete’)

This binds the Tab key to the completion function, so hitting the Tab key twice suggests completions; it looks at
Python statement names, the current local variables, and the available module names. For dotted expressions such as
string.a, it will evaluate the expression up to the final ’.’ and then suggest completions from the attributes of the
resulting object. Note that this may execute application-defined code if an object with a __getattr__() method is
part of the expression.

A more capable startup file might look like this example. Note that this deletes the names it creates once they are no
longer needed; this is done since the startup file is executed in the same namespace as the interactive commands, and
removing the names avoids creating side effects in the interactive environment. You may find it convenient to keep
some of the imported modules, such as os, which turn out to be needed in most sessions with the interpreter.

Add auto-completion and a stored history file of commands to your Python
interactive interpreter. Requires Python 2.0+, readline. Autocomplete is
bound to the Esc key by default (you can change it - see readline docs).
#
Store the file in ~/.pystartup, and set an environment variable to point
to it: "export PYTHONSTARTUP=/home/user/.pystartup" in bash.
#
Note that PYTHONSTARTUP does *not* expand "~", so you have to put in the
full path to your home directory.

import atexit
import os
import readline
import rlcompleter

1 Python will execute the contents of a file identified by the PYTHONSTARTUP environment variable when you start an interactive interpreter.

90 Chapter 13. Interactive Input Editing and History Substitution

Python Tutorial, Release 2.6.6

historyPath = os.path.expanduser("~/.pyhistory")

def save_history(historyPath=historyPath):
import readline
readline.write_history_file(historyPath)

if os.path.exists(historyPath):
readline.read_history_file(historyPath)

atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath

13.4 Alternatives to the Interactive Interpreter

This facility is an enormous step forward compared to earlier versions of the interpreter; however, some wishes are
left: It would be nice if the proper indentation were suggested on continuation lines (the parser knows if an indent
token is required next). The completion mechanism might use the interpreter’s symbol table. A command to check (or
even suggest) matching parentheses, quotes, etc., would also be useful.

One alternative enhanced interactive interpreter that has been around for quite some time is IPython, which features
tab completion, object exploration and advanced history management. It can also be thoroughly customized and
embedded into other applications. Another similar enhanced interactive environment is bpython.

13.4. Alternatives to the Interactive Interpreter 91

http://ipython.scipy.org/
http://www.bpython-interpreter.org/

Python Tutorial, Release 2.6.6

92 Chapter 13. Interactive Input Editing and History Substitution

CHAPTER

FOURTEEN

FLOATING POINT ARITHMETIC:
ISSUES AND LIMITATIONS

Floating-point numbers are represented in computer hardware as base 2 (binary) fractions. For example, the decimal
fraction

0.125

has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction

0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only real difference being that the first is
written in base 10 fractional notation, and the second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as binary fractions. A consequence is that, in
general, the decimal floating-point numbers you enter are only approximated by the binary floating-point numbers
actually stored in the machine.

The problem is easier to understand at first in base 10. Consider the fraction 1/3. You can approximate that as a base
10 fraction:

0.3

or, better,

0.33

or, better,

0.333

and so on. No matter how many digits you’re willing to write down, the result will never be exactly 1/3, but will be an
increasingly better approximation of 1/3.

In the same way, no matter how many base 2 digits you’re willing to use, the decimal value 0.1 cannot be represented
exactly as a base 2 fraction. In base 2, 1/10 is the infinitely repeating fraction

0.0001100110011001100110011001100110011001100110011...

Stop at any finite number of bits, and you get an approximation. This is why you see things like:

>>> 0.1
0.10000000000000001

On most machines today, that is what you’ll see if you enter 0.1 at a Python prompt. You may not, though, because
the number of bits used by the hardware to store floating-point values can vary across machines, and Python only
prints a decimal approximation to the true decimal value of the binary approximation stored by the machine. On most

93

Python Tutorial, Release 2.6.6

machines, if Python were to print the true decimal value of the binary approximation stored for 0.1, it would have to
display

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

instead! The Python prompt uses the built-in repr() function to obtain a string version of everything it displays. For
floats, repr(float) rounds the true decimal value to 17 significant digits, giving

0.10000000000000001

repr(float) produces 17 significant digits because it turns out that’s enough (on most machines) so that
eval(repr(x)) == x exactly for all finite floats x, but rounding to 16 digits is not enough to make that true.

Note that this is in the very nature of binary floating-point: this is not a bug in Python, and it is not a bug in your
code either. You’ll see the same kind of thing in all languages that support your hardware’s floating-point arithmetic
(although some languages may not display the difference by default, or in all output modes).

Python’s built-in str() function produces only 12 significant digits, and you may wish to use that instead. It’s
unusual for eval(str(x)) to reproduce x, but the output may be more pleasant to look at:

>>> print str(0.1)
0.1

It’s important to realize that this is, in a real sense, an illusion: the value in the machine is not exactly 1/10, you’re
simply rounding the display of the true machine value.

Other surprises follow from this one. For example, after seeing

>>> 0.1
0.10000000000000001

you may be tempted to use the round() function to chop it back to the single digit you expect. But that makes no
difference:

>>> round(0.1, 1)
0.10000000000000001

The problem is that the binary floating-point value stored for “0.1” was already the best possible binary approximation
to 1/10, so trying to round it again can’t make it better: it was already as good as it gets.

Another consequence is that since 0.1 is not exactly 1/10, summing ten values of 0.1 may not yield exactly 1.0, either:

>>> sum = 0.0
>>> for i in range(10):
... sum += 0.1
...
>>> sum
0.99999999999999989

Binary floating-point arithmetic holds many surprises like this. The problem with “0.1” is explained in precise detail
below, in the “Representation Error” section. See The Perils of Floating Point for a more complete account of other
common surprises.

As that says near the end, “there are no easy answers.” Still, don’t be unduly wary of floating-point! The errors in
Python float operations are inherited from the floating-point hardware, and on most machines are on the order of no
more than 1 part in 2**53 per operation. That’s more than adequate for most tasks, but you do need to keep in mind
that it’s not decimal arithmetic, and that every float operation can suffer a new rounding error.

While pathological cases do exist, for most casual use of floating-point arithmetic you’ll see the result you expect
in the end if you simply round the display of your final results to the number of decimal digits you expect. str()
usually suffices, and for finer control see the str.format() method’s format specifiers in Format String Syntax (in
The Python Library Reference).

94 Chapter 14. Floating Point Arithmetic: Issues and Limitations

http://www.lahey.com/float.htm

Python Tutorial, Release 2.6.6

14.1 Representation Error

This section explains the “0.1” example in detail, and shows how you can perform an exact analysis of cases like this
yourself. Basic familiarity with binary floating-point representation is assumed.

Representation error refers to the fact that some (most, actually) decimal fractions cannot be represented exactly as
binary (base 2) fractions. This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many others) often
won’t display the exact decimal number you expect:

>>> 0.1
0.10000000000000001

Why is that? 1/10 is not exactly representable as a binary fraction. Almost all machines today (November 2000) use
IEEE-754 floating point arithmetic, and almost all platforms map Python floats to IEEE-754 “double precision”. 754
doubles contain 53 bits of precision, so on input the computer strives to convert 0.1 to the closest fraction it can of the
form J/2**N where J is an integer containing exactly 53 bits. Rewriting

1 / 10 ~= J / (2**N)

as

J ~= 2**N / 10

and recalling that J has exactly 53 bits (is >= 2**52 but < 2**53), the best value for N is 56:

>>> 2**52
4503599627370496L
>>> 2**53
9007199254740992L
>>> 2**56/10
7205759403792793L

That is, 56 is the only value for N that leaves J with exactly 53 bits. The best possible value for J is then that quotient
rounded:

>>> q, r = divmod(2**56, 10)
>>> r
6L

Since the remainder is more than half of 10, the best approximation is obtained by rounding up:

>>> q+1
7205759403792794L

Therefore the best possible approximation to 1/10 in 754 double precision is that over 2**56, or

7205759403792794 / 72057594037927936

Note that since we rounded up, this is actually a little bit larger than 1/10; if we had not rounded up, the quotient would
have been a little bit smaller than 1/10. But in no case can it be exactly 1/10!

So the computer never “sees” 1/10: what it sees is the exact fraction given above, the best 754 double approximation
it can get:

>>> .1 * 2**56
7205759403792794.0

If we multiply that fraction by 10**30, we can see the (truncated) value of its 30 most significant decimal digits:

>>> 7205759403792794 * 10**30 / 2**56
100000000000000005551115123125L

14.1. Representation Error 95

Python Tutorial, Release 2.6.6

meaning that the exact number stored in the computer is approximately equal to the decimal value
0.100000000000000005551115123125. Rounding that to 17 significant digits gives the 0.10000000000000001 that
Python displays (well, will display on any 754-conforming platform that does best-possible input and output conver-
sions in its C library — yours may not!).

96 Chapter 14. Floating Point Arithmetic: Issues and Limitations

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within a
pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3 - Automated Python 2 to 3 code translation (in The Python Library Refer-
ence).

abstract base class Abstract Base Classes (abbreviated ABCs) complement duck-typing by providing a way to define
interfaces when other techniques like hasattr() would be clumsy. Python comes with many built-in ABCs
for data structures (in the collections module), numbers (in the numbers module), and streams (in the io
module). You can create your own ABC with the abc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A function
or method may have both positional arguments and keyword arguments in its definition. Positional and keyword
arguments may be variable-length: * accepts or passes (if in the function definition or call) several positional
arguments in a list, while ** does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if
an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to
run on a virtual machine that executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic class Any class which does not inherit from object. See new-style class. Classic classes will be removed
in Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3,
but in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same
type before they can be added or it will raise a TypeError. Coercion between two operands can be performed
with the coerce built-in function; thus, 3+4.5 is equivalent to calling operator.add(*coerce(3,

97

http://www.python.org/~guido/

Python Tutorial, Release 2.6.6

4.5)) and results in operator.add(3.0, 4.5). Without coercion, all arguments of even compatible
types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just
3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often written i in mathematics or j in engineering. Python has built-in support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get
access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__()
and __exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language. The term “CPython” is used in
contexts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

See the documentation for function definition (in The Python Language Reference) for more about decorators.

descriptor Any new-style object which defines the methods __get__(), __set__(), or __delete__().
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but
if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep
understanding of Python because they are the basis for many features including functions, methods, properties,
class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see Implementing Descriptors (in The Python Language
Reference).

dictionary An associative array, where arbitrary keys are mapped to values. The use of dict closely resembles that
for list, but the keys can be any object with a __hash__() function, not just integers. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or attribute
signature rather than by explicit relationship to some type object (“If it looks like a duck and quacks like a duck,
it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its
flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance().
(Note, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is

98 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

Python Tutorial, Release 2.6.6

characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as print or if. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

finder An object that tries to find the loader for a module. It must implement a method named find_module().
See PEP 302 for details.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also argument and method.

__future__ A pseudo module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the module in which
it is executed had enabled true division by executing:

from __future__ import division

the expression 11/4 would evaluate to 2.75. By importing the __future__ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to
the caller using a yield statement instead of a return statement. Generator functions often contain one or
more for or while loops which yield elements back to the caller. The function execution is stopped at the
yield keyword (returning the result) and is resumed there when the next element is requested by calling the
next() method of the returned iterator.

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for
expression defining a loop variable, range, and an optional if expression. The combined expression generates
values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

global interpreter lock The lock used by Python threads to assure that only one thread executes in the CPython
virtual machine at a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter
to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much finer
granularity), but so far none have been successful because performance suffered in the common single-processor
case.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an __eq__() or __cmp__()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

99

http://www.python.org/dev/peps/pep-0302

Python Tutorial, Release 2.6.6

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal,
and their hash value is their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python. Good for beginners, it also serves as clear example code for those
wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently eval-
uates to 2 in contrast to the 2.75 returned by float division. Also called floor division. When dividing two
integers the outcome will always be another integer (having the floor function applied to it). However, if one of
the operands is another numeric type (such as a float), the result will be coerced (see coercion) to a common
type. For example, an integer divided by a float will result in a float value, possibly with a decimal fraction.
Integer division can be forced by using the // operator instead of the / operator. See also __future__.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable A container object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict and file and objects of any
classes you define with an __iter__() or __getitem__() method. Iterables can be used in a for loop
and in many other places where a sequence is needed (zip(), map(), ...). When an iterable object is passed
as an argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s next() method return successive
items in the stream. When no more data are available a StopIteration exception is raised instead. At this
point, the iterator object is exhausted and any further calls to its next() method just raise StopIteration
again. Iterators are required to have an __iter__() method that returns the iterator object itself so every
iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception
is code which attempts multiple iteration passes. A container object (such as a list) produces a fresh new
iterator each time you pass it to the iter() function or use it in a for loop. Attempting this with an iterator
will just return the same exhausted iterator object used in the previous iteration pass, making it appear like an
empty container.

More information can be found in Iterator Types (in The Python Library Reference).

keyword argument Arguments which are preceded with a variable_name= in the call. The variable name
designates the local name in the function to which the value is assigned. ** is used to accept or pass a dictionary
of keyword arguments. See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is lambda [arguments]: expression

100 Appendix A. Glossary

Python Tutorial, Release 2.6.6

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of
strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all
elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details.

mapping A container object (such as dict) which supports arbitrary key lookups using the special method
__getitem__().

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in Customizing class creation (in The Python Language Reference).

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and nested
scope.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,
time.localtime() returns a tuple-like object where the year is accessible either with an index such as
t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple(). The latter approach automatically provides extra features such as a self-
documenting representation like Employee(name=’jones’, title=’programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support mod-
ularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed() or itertools.izip()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style class Any class which inherits from object. This includes all built-in types like list and dict.
Only new-style classes can use Python’s newer, versatile features like __slots__, descriptors, properties, and
__getattribute__().

More information can be found in New-style and classic classes (in The Python Language Reference).

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

101

http://www.python.org/dev/peps/pep-0302

Python Tutorial, Release 2.6.6

positional argument The arguments assigned to local names inside a function or method, determined by the order
in which they were given in the call. * is used to either accept multiple positional arguments (when in the
definition), or pass several arguments as a list to a function. See argument.

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return
the reference count for a particular object.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a len() method that returns the length of the sequence. Some built-in sequence types are
list, str, tuple, and unicode. Note that dict also supports __getitem__() and __len__(), but
is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation,
[] with colons between numbers when several are given, such as in variable_name[1:3:5]. The
bracket (subscript) notation uses slice objects internally (or in older versions, __getslice__() and
__setslice__()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
Special method names (in The Python Language Reference).

statement A statement is part of a suite (a “block” of code). A statement is either an expression or a one of several
constructs with a keyword, such as if, while or print.

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

102 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

Development of the documentation and its toolchain takes place on the docs@python.org mailing list. We’re always
looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

See Reporting Bugs for information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably not complete
– if you feel that you or anyone else should be on this list, please let us know (send email to docs@python.org), and
we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesús Cea Avión, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander Be-
lopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl, Keith
Briggs, Ian Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario, Mike Clark-
son, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter Deutsch, Robert
Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson, Carey Evans, Martijn
Faassen, Carl Feynman, Dan Finnie, Hernán Martínez Foffani, Stefan Franke, Jim Fulton, Peter Funk, Lele Gaifax,
Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan Giddy, Shelley Gooch, Nathaniel
Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond, Harald Hanche-Olsen, Manus Hand,
Gerhard Häring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas Heller, Bernhard Herzog, Magnus L. Hetland,
Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hoffleit, Steve Holden, Thomas Holenstein, Gerrit Holl,
Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson, Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen,
Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan
Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno
Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph Lefkowitz, Robert Lehmann, Marc-André Lemburg,
Ross Light, Ulf A. Lindgren, Everett Lipman, Mirko Liss, Martin von Löwis, Fredrik Lundh, Jeff MacDonald, John
Machin, Andrew MacIntyre, Vladimir Marangozov, Vincent Marchetti, Laura Matson, Daniel May, Rebecca Mc-
Creary, Doug Mennella, Paolo Milani, Skip Montanaro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata,
Ng Pheng Siong, Koray Oner, Tomas Oppelstrup, Denis S. Otkidach, Zooko O’Whielacronx, Shriphani Palakodety,
William Park, Joonas Paalasmaa, Harri Pasanen, Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin

103

http://docutils.sf.net/rst.html
http://sphinx.pocoo.org/
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

Python Tutorial, Release 2.6.6

D. Pettit, Chris Phoenix, François Pinard, Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider,
Bernhard Reiter, Armin Rigo, Wes Rishel, Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse
II, Mark Russell, Nick Russo, Chris Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Scheme-
nauer, Barry Scott, Joakim Sernbrant, Justin Sheehy, Charlie Shepherd, Michael Simcich, Ionel Simionescu, Michael
Sloan, Gregory P. Smith, Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks,
Greg Stein, Peter Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio,
Martijn Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy
Welbourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe,
Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

104 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see http://www.python.org/psf/) was formed,
a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes

Continued on next page

105

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

Python Tutorial, Release 2.6.6

Table C.1 – continued from previous page
2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
2.4.4 2.4.3 2006 PSF yes
2.5 2.4 2006 PSF yes
2.5.1 2.5 2007 PSF yes
2.5.2 2.5.1 2008 PSF yes
2.5.3 2.5.2 2008 PSF yes
2.6 2.5 2008 PSF yes
2.6.1 2.6 2008 PSF yes
2.6.2 2.6.1 2009 PSF yes
2.6.3 2.6.2 2009 PSF yes
2.6.4 2.6.3 2009 PSF yes
2.6.5 2.6.4 2010 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.6

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 2.6.6 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.6 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2010 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.6 alone or in any derivative version prepared by
Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.6.6 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.6.6.

4. PSF is making Python 2.6.6 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.6.6 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.6 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.6, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

106 Appendix C. History and License

Python Tutorial, Release 2.6.6

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.6.6, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013.”

C.2. Terms and conditions for accessing or otherwise using Python 107

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

Python Tutorial, Release 2.6.6

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

108 Appendix C. History and License

Python Tutorial, Release 2.6.6

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

C.3. Licenses and Acknowledgements for Incorporated Software 109

http://www.math.keio.ac.jp/
http://www.wide.ad.jp/

Python Tutorial, Release 2.6.6

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |

110 Appendix C. History and License

Python Tutorial, Release 2.6.6

| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

C.3. Licenses and Acknowledgements for Incorporated Software 111

Python Tutorial, Release 2.6.6

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

112 Appendix C. History and License

Python Tutorial, Release 2.6.6

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

The profile and pstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the software
to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

C.3. Licenses and Acknowledgements for Incorporated Software 113

Python Tutorial, Release 2.6.6

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.9 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.10 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in

114 Appendix C. History and License

Python Tutorial, Release 2.6.6

all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.11 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.12 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

C.3. Licenses and Acknowledgements for Incorporated Software 115

Python Tutorial, Release 2.6.6

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

116 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2010 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

117

Python Tutorial, Release 2.6.6

118 Appendix D. Copyright

INDEX

Symbols
*

statement, 25
**

statement, 26
..., 97
__all__, 45
__builtin__

module, 43
__future__, 99
__slots__, 102
>>>, 97
2to3, 97

A
abstract base class, 97
argument, 97
attribute, 97

B
BDFL, 97
built-in function

help, 73
open, 50
unicode, 15

bytecode, 97

C
class, 97
classic class, 97
coding

style, 27
coercion, 97
compileall

module, 42
complex number, 98
context manager, 98
CPython, 98

D
decorator, 98

descriptor, 98
dictionary, 98
docstring, 98
docstrings, 22, 26
documentation strings, 22, 26
duck-typing, 98

E
EAFP, 98
environment variable

PATH, 7, 41
PYTHONPATH, 41, 42
PYTHONSTARTUP, 7, 90

expression, 99
extension module, 99

F
file

object, 50
finder, 99
for

statement, 19
function, 99

G
garbage collection, 99
generator, 99
generator expression, 99
GIL, 99
global interpreter lock, 99

H
hashable, 99
help

built-in function, 73

I
IDLE, 100
immutable, 100
importer, 100
integer division, 100

119

Python Tutorial, Release 2.6.6

interactive, 100
interpreted, 100
iterable, 100
iterator, 100

K
keyword argument, 100

L
lambda, 100
LBYL, 100
list, 101
list comprehension, 101
loader, 101

M
mapping, 101
metaclass, 101
method, 101

object, 64
module

__builtin__, 43
compileall, 42
pickle, 52
readline, 90
rlcompleter, 90
search path, 41
string, 47
sys, 42

mutable, 101

N
named tuple, 101
namespace, 101
nested scope, 101
new-style class, 101

O
object, 101

file, 50
method, 64

open
built-in function, 50

P
PATH, 7, 41
path

module search, 41
pickle

module, 52
positional argument, 101
Python 3000, 102
Python Enhancement Proposals

PEP 302, 99, 101

PEP 343, 98
PEP 8, 27

Pythonic, 102
PYTHONPATH, 41, 42
PYTHONSTARTUP, 7, 90

R
readline

module, 90
reference count, 102
rlcompleter

module, 90

S
search

path, module, 41
sequence, 102
slice, 102
special method, 102
statement, 102

*, 25
**, 26
for, 19

string
module, 47

strings, documentation, 22, 26
style

coding, 27
sys

module, 42

T
triple-quoted string, 102
type, 102

U
unicode

built-in function, 15

V
virtual machine, 102

Z
Zen of Python, 102

120 Index

	Whetting Your Appetite
	Using the Python Interpreter
	Invoking the Interpreter
	The Interpreter and Its Environment

	An Informal Introduction to Python
	Using Python as a Calculator
	First Steps Towards Programming

	More Control Flow Tools
	if Statements
	for Statements
	The range() Function
	break and continue Statements, and else Clauses on Loops
	pass Statements
	Defining Functions
	More on Defining Functions
	Intermezzo: Coding Style

	Data Structures
	More on Lists
	The del statement
	Tuples and Sequences
	Sets
	Dictionaries
	Looping Techniques
	More on Conditions
	Comparing Sequences and Other Types

	Modules
	More on Modules
	Standard Modules
	The dir() Function
	Packages

	Input and Output
	Fancier Output Formatting
	Reading and Writing Files

	Errors and Exceptions
	Syntax Errors
	Exceptions
	Handling Exceptions
	Raising Exceptions
	User-defined Exceptions
	Defining Clean-up Actions
	Predefined Clean-up Actions

	Classes
	A Word About Names and Objects
	Python Scopes and Namespaces
	A First Look at Classes
	Random Remarks
	Inheritance
	Private Variables
	Odds and Ends
	Exceptions Are Classes Too
	Iterators
	Generators
	Generator Expressions

	Brief Tour of the Standard Library
	Operating System Interface
	File Wildcards
	Command Line Arguments
	Error Output Redirection and Program Termination
	String Pattern Matching
	Mathematics
	Internet Access
	Dates and Times
	Data Compression
	Performance Measurement
	Quality Control
	Batteries Included

	Brief Tour of the Standard Library – Part II
	Output Formatting
	Templating
	Working with Binary Data Record Layouts
	Multi-threading
	Logging
	Weak References
	Tools for Working with Lists
	Decimal Floating Point Arithmetic

	What Now?
	Interactive Input Editing and History Substitution
	Line Editing
	History Substitution
	Key Bindings
	Alternatives to the Interactive Interpreter

	Floating Point Arithmetic: Issues and Limitations
	Representation Error

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

