
Documenting Python
Release 2.6.5

Georg Brandl

March 19, 2010

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3

2 Style Guide 5

3 reStructuredText Primer 7
3.1 Paragraphs . 7
3.2 Inline markup . 7
3.3 Lists and Quotes . 8
3.4 Source Code . 8
3.5 Hyperlinks . 9
3.6 Sections . 9
3.7 Explicit Markup . 9
3.8 Directives . 10
3.9 Footnotes . 10
3.10 Comments . 10
3.11 Source encoding . 10
3.12 Gotchas . 10

4 Additional Markup Constructs 13
4.1 Meta-information markup . 13
4.2 Module-specific markup . 13
4.3 Information units . 14
4.4 Showing code examples . 16
4.5 Inline markup . 17
4.6 Cross-linking markup . 20
4.7 Paragraph-level markup . 20
4.8 Table-of-contents markup . 22
4.9 Index-generating markup . 22
4.10 Grammar production displays . 23
4.11 Substitutions . 23

5 Differences to the LaTeX markup 25
5.1 Inline markup . 25
5.2 Information units . 26
5.3 Structure . 27

A Glossary 29

B About these documents 35
B.1 Contributors to the Python Documentation . 35

i

C History and License 37
C.1 History of the software . 37
C.2 Terms and conditions for accessing or otherwise using Python . 38
C.3 Licenses and Acknowledgements for Incorporated Software . 40

D Copyright 49

Index 51

ii

Documenting Python, Release 2.6.5

The Python language has a substantial body of documentation, much of it contributed by various authors. The markup
used for the Python documentation is reStructuredText, developed by the docutils project, amended by custom direc-
tives and using a toolset named Sphinx to postprocess the HTML output.

This document describes the style guide for our documentation, the custom reStructuredText markup introduced to
support Python documentation and how it should be used, as well as the Sphinx build system.

If you’re interested in contributing to Python’s documentation, there’s no need to write reStructuredText if you’re not
so inclined; plain text contributions are more than welcome as well.

CONTENTS 1

http://docutils.sf.net/rst.html
http://docutils.sf.net/
http://sphinx.pocoo.org/

Documenting Python, Release 2.6.5

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Python’s documentation has long been considered to be good for a free programming language. There are a number of
reasons for this, the most important being the early commitment of Python’s creator, Guido van Rossum, to providing
documentation on the language and its libraries, and the continuing involvement of the user community in providing
assistance for creating and maintaining documentation.

The involvement of the community takes many forms, from authoring to bug reports to just plain complaining when
the documentation could be more complete or easier to use.

This document is aimed at authors and potential authors of documentation for Python. More specifically, it is for
people contributing to the standard documentation and developing additional documents using the same tools as the
standard documents. This guide will be less useful for authors using the Python documentation tools for topics other
than Python, and less useful still for authors not using the tools at all.

If your interest is in contributing to the Python documentation, but you don’t have the time or inclination to learn
reStructuredText and the markup structures documented here, there’s a welcoming place for you among the Python
contributors as well. Any time you feel that you can clarify existing documentation or provide documentation that’s
missing, the existing documentation team will gladly work with you to integrate your text, dealing with the markup
for you. Please don’t let the material in this document stand between the documentation and your desire to help out!

3

Documenting Python, Release 2.6.5

4 Chapter 1. Introduction

CHAPTER

TWO

STYLE GUIDE

The Python documentation should follow the Apple Publications Style Guide wherever possible. This particular style
guide was selected mostly because it seems reasonable and is easy to get online.

Topics which are not covered in the Apple’s style guide will be discussed in this document.

All reST files use an indentation of 3 spaces. The maximum line length is 80 characters for normal text, but tables,
deeply indented code samples and long links may extend beyond that.

Make generous use of blank lines where applicable; they help grouping things together.

A sentence-ending period may be followed by one or two spaces; while reST ignores the second space, it is customarily
put in by some users, for example to aid Emacs’ auto-fill mode.

Footnotes are generally discouraged, though they may be used when they are the best way to present specific informa-
tion. When a footnote reference is added at the end of the sentence, it should follow the sentence-ending punctuation.
The reST markup should appear something like this:

This sentence has a footnote reference. [#]_ This is the next sentence.

Footnotes should be gathered at the end of a file, or if the file is very long, at the end of a section. The docutils will
automatically create backlinks to the footnote reference.

Footnotes may appear in the middle of sentences where appropriate.

Many special names are used in the Python documentation, including the names of operating systems, programming
languages, standards bodies, and the like. Most of these entities are not assigned any special markup, but the preferred
spellings are given here to aid authors in maintaining the consistency of presentation in the Python documentation.

Other terms and words deserve special mention as well; these conventions should be used to ensure consistency
throughout the documentation:

CPU For “central processing unit.” Many style guides say this should be spelled out on the first use (and if you must
use it, do so!). For the Python documentation, this abbreviation should be avoided since there’s no reasonable
way to predict which occurrence will be the first seen by the reader. It is better to use the word “processor”
instead.

POSIX The name assigned to a particular group of standards. This is always uppercase.

Python The name of our favorite programming language is always capitalized.

Unicode The name of a character set and matching encoding. This is always written capitalized.

Unix The name of the operating system developed at AT&T Bell Labs in the early 1970s.

5

http://developer.apple.com/documentation/UserExperience/Conceptual/APStyleGuide/APSG_2008.pdf

Documenting Python, Release 2.6.5

6 Chapter 2. Style Guide

CHAPTER

THREE

RESTRUCTUREDTEXT PRIMER

This section is a brief introduction to reStructuredText (reST) concepts and syntax, intended to provide authors with
enough information to author documents productively. Since reST was designed to be a simple, unobtrusive markup
language, this will not take too long.

See Also:

The authoritative reStructuredText User Documentation.

3.1 Paragraphs

The paragraph is the most basic block in a reST document. Paragraphs are simply chunks of text separated by one
or more blank lines. As in Python, indentation is significant in reST, so all lines of the same paragraph must be
left-aligned to the same level of indentation.

3.2 Inline markup

The standard reST inline markup is quite simple: use

• one asterisk: *text* for emphasis (italics),

• two asterisks: **text** for strong emphasis (boldface), and

• backquotes: ‘‘text‘‘ for code samples.

If asterisks or backquotes appear in running text and could be confused with inline markup delimiters, they have to be
escaped with a backslash.

Be aware of some restrictions of this markup:

• it may not be nested,

• content may not start or end with whitespace: * text* is wrong,

• it must be separated from surrounding text by non-word characters. Use a backslash escaped space to work
around that: thisis\ *one*\ word.

These restrictions may be lifted in future versions of the docutils.

reST also allows for custom “interpreted text roles”’, which signify that the enclosed text should be interpreted in a
specific way. Sphinx uses this to provide semantic markup and cross-referencing of identifiers, as described in the
appropriate section. The general syntax is :rolename:‘content‘.

7

http://docutils.sourceforge.net/rst.html

Documenting Python, Release 2.6.5

3.3 Lists and Quotes

List markup is natural: just place an asterisk at the start of a paragraph and indent properly. The same goes for
numbered lists; they can also be autonumbered using a # sign:

* This is a bulleted list.

* It has two items, the second
item uses two lines.

1. This is a numbered list.
2. It has two items too.

#. This is a numbered list.
#. It has two items too.

Nested lists are possible, but be aware that they must be separated from the parent list items by blank lines:

* this is

* a list

* with a nested list

* and some subitems

* and here the parent list continues

Definition lists are created as follows:

term (up to a line of text)
Definition of the term, which must be indented

and can even consist of multiple paragraphs

next term
Description.

Paragraphs are quoted by just indenting them more than the surrounding paragraphs.

3.4 Source Code

Literal code blocks are introduced by ending a paragraph with the special marker ::. The literal block must be
indented:

This is a normal text paragraph. The next paragraph is a code sample::

It is not processed in any way, except
that the indentation is removed.

It can span multiple lines.

This is a normal text paragraph again.

The handling of the :: marker is smart:

• If it occurs as a paragraph of its own, that paragraph is completely left out of the document.

• If it is preceded by whitespace, the marker is removed.

8 Chapter 3. reStructuredText Primer

Documenting Python, Release 2.6.5

• If it is preceded by non-whitespace, the marker is replaced by a single colon.

That way, the second sentence in the above example’s first paragraph would be rendered as “The next paragraph is a
code sample:”.

3.5 Hyperlinks

3.5.1 External links

Use ‘Link text <http://target>‘_ for inline web links. If the link text should be the web address, you
don’t need special markup at all, the parser finds links and mail addresses in ordinary text.

3.5.2 Internal links

Internal linking is done via a special reST role, see the section on specific markup, Cross-linking markup.

3.6 Sections

Section headers are created by underlining (and optionally overlining) the section title with a punctuation character, at
least as long as the text:

=================
This is a heading
=================

Normally, there are no heading levels assigned to certain characters as the structure is determined from the succession
of headings. However, for the Python documentation, we use this convention:

• # with overline, for parts

• * with overline, for chapters

• =, for sections

• -, for subsections

• ^, for subsubsections

• ", for paragraphs

3.7 Explicit Markup

“Explicit markup” is used in reST for most constructs that need special handling, such as footnotes, specially-
highlighted paragraphs, comments, and generic directives.

An explicit markup block begins with a line starting with .. followed by whitespace and is terminated by the next
paragraph at the same level of indentation. (There needs to be a blank line between explicit markup and normal
paragraphs. This may all sound a bit complicated, but it is intuitive enough when you write it.)

3.5. Hyperlinks 9

Documenting Python, Release 2.6.5

3.8 Directives

A directive is a generic block of explicit markup. Besides roles, it is one of the extension mechanisms of reST, and
Sphinx makes heavy use of it.

Basically, a directive consists of a name, arguments, options and content. (Keep this terminology in mind, it is used in
the next chapter describing custom directives.) Looking at this example,

.. function:: foo(x)
foo(y, z)

:bar: no

Return a line of text input from the user.

function is the directive name. It is given two arguments here, the remainder of the first line and the second line,
as well as one option bar (as you can see, options are given in the lines immediately following the arguments and
indicated by the colons).

The directive content follows after a blank line and is indented relative to the directive start.

3.9 Footnotes

For footnotes, use [#]_ to mark the footnote location, and add the footnote body at the bottom of the document after
a “Footnotes” rubric heading, like so:

Lorem ipsum [#]_ dolor sit amet ... [#]_

.. rubric:: Footnotes

.. [#] Text of the first footnote.

.. [#] Text of the second footnote.

You can also explicitly number the footnotes for better context.

3.10 Comments

Every explicit markup block which isn’t a valid markup construct (like the footnotes above) is regarded as a comment.

3.11 Source encoding

Since the easiest way to include special characters like em dashes or copyright signs in reST is to directly write them
as Unicode characters, one has to specify an encoding:

All Python documentation source files must be in UTF-8 encoding, and the HTML documents written from them will
be in that encoding as well.

3.12 Gotchas

There are some problems one commonly runs into while authoring reST documents:

10 Chapter 3. reStructuredText Primer

Documenting Python, Release 2.6.5

• Separation of inline markup: As said above, inline markup spans must be separated from the surrounding text
by non-word characters, you have to use an escaped space to get around that.

3.12. Gotchas 11

Documenting Python, Release 2.6.5

12 Chapter 3. reStructuredText Primer

CHAPTER

FOUR

ADDITIONAL MARKUP CONSTRUCTS

Sphinx adds a lot of new directives and interpreted text roles to standard reST markup. This section contains the
reference material for these facilities. Documentation for “standard” reST constructs is not included here, though they
are used in the Python documentation.

Note: This is just an overview of Sphinx’ extended markup capabilities; full coverage can be found in its own
documentation.

4.1 Meta-information markup

sectionauthor
Identifies the author of the current section. The argument should include the author’s name such that it can be
used for presentation (though it isn’t) and email address. The domain name portion of the address should be
lower case. Example:

.. sectionauthor:: Guido van Rossum <guido@python.org>

Currently, this markup isn’t reflected in the output in any way, but it helps keep track of contributions.

4.2 Module-specific markup

The markup described in this section is used to provide information about a module being documented. Each module
should be documented in its own file. Normally this markup appears after the title heading of that file; a typical file
might start like this:

:mod:‘parrot‘ -- Dead parrot access
===================================

.. module:: parrot
:platform: Unix, Windows
:synopsis: Analyze and reanimate dead parrots.

.. moduleauthor:: Eric Cleese <eric@python.invalid>

.. moduleauthor:: John Idle <john@python.invalid>

As you can see, the module-specific markup consists of two directives, the module directive and the
moduleauthor directive.

module
This directive marks the beginning of the description of a module (or package submodule, in which case the
name should be fully qualified, including the package name).

13

http://sphinx.pocoo.org/contents.html
http://sphinx.pocoo.org/contents.html

Documenting Python, Release 2.6.5

The platform option, if present, is a comma-separated list of the platforms on which the module is available
(if it is available on all platforms, the option should be omitted). The keys are short identifiers; examples that
are in use include “IRIX”, “Mac”, “Windows”, and “Unix”. It is important to use a key which has already been
used when applicable.

The synopsis option should consist of one sentence describing the module’s purpose – it is currently only
used in the Global Module Index.

The deprecated option can be given (with no value) to mark a module as deprecated; it will be designated
as such in various locations then.

moduleauthor
The moduleauthor directive, which can appear multiple times, names the authors of the module code, just
like sectionauthor names the author(s) of a piece of documentation. It too does not result in any output
currently.

Note: It is important to make the section title of a module-describing file meaningful since that value will be inserted
in the table-of-contents trees in overview files.

4.3 Information units

There are a number of directives used to describe specific features provided by modules. Each directive requires one or
more signatures to provide basic information about what is being described, and the content should be the description.
The basic version makes entries in the general index; if no index entry is desired, you can give the directive option flag
:noindex:. The following example shows all of the features of this directive type:

.. function:: spam(eggs)
ham(eggs)

:noindex:

Spam or ham the foo.

The signatures of object methods or data attributes should always include the type name (.. method::
FileInput.input(...)), even if it is obvious from the context which type they belong to; this is to enable
consistent cross-references. If you describe methods belonging to an abstract protocol, such as “context managers”,
include a (pseudo-)type name too to make the index entries more informative.

The directives are:

cfunction
Describes a C function. The signature should be given as in C, e.g.:

.. cfunction:: PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)

This is also used to describe function-like preprocessor macros. The names of the arguments should be given so
they may be used in the description.

Note that you don’t have to backslash-escape asterisks in the signature, as it is not parsed by the reST inliner.

cmember
Describes a C struct member. Example signature:

.. cmember:: PyObject* PyTypeObject.tp_bases

The text of the description should include the range of values allowed, how the value should be interpreted, and
whether the value can be changed. References to structure members in text should use the member role.

14 Chapter 4. Additional Markup Constructs

Documenting Python, Release 2.6.5

cmacro
Describes a “simple” C macro. Simple macros are macros which are used for code expansion, but which do not
take arguments so cannot be described as functions. This is not to be used for simple constant definitions. Exam-
ples of its use in the Python documentation include PyObject_HEAD and Py_BEGIN_ALLOW_THREADS.

ctype
Describes a C type. The signature should just be the type name.

cvar
Describes a global C variable. The signature should include the type, such as:

.. cvar:: PyObject* PyClass_Type

data
Describes global data in a module, including both variables and values used as “defined constants.” Class and
object attributes are not documented using this environment.

exception
Describes an exception class. The signature can, but need not include parentheses with constructor arguments.

function
Describes a module-level function. The signature should include the parameters, enclosing optional parameters
in brackets. Default values can be given if it enhances clarity. For example:

.. function:: Timer.repeat([repeat=3[, number=1000000]])

Object methods are not documented using this directive. Bound object methods placed in the module namespace
as part of the public interface of the module are documented using this, as they are equivalent to normal functions
for most purposes.

The description should include information about the parameters required and how they are used (especially
whether mutable objects passed as parameters are modified), side effects, and possible exceptions. A small
example may be provided.

class
Describes a class. The signature can include parentheses with parameters which will be shown as the constructor
arguments.

attribute
Describes an object data attribute. The description should include information about the type of the data to be
expected and whether it may be changed directly.

method
Describes an object method. The parameters should not include the self parameter. The description should
include similar information to that described for function.

opcode
Describes a Python bytecode instruction.

cmdoption
Describes a command line option or switch. Option argument names should be enclosed in angle brackets.
Example:

.. cmdoption:: -m <module>

Run a module as a script.

envvar
Describes an environment variable that Python uses or defines.

4.3. Information units 15

Documenting Python, Release 2.6.5

There is also a generic version of these directives:

describe
This directive produces the same formatting as the specific ones explained above but does not create index entries
or cross-referencing targets. It is used, for example, to describe the directives in this document. Example:

.. describe:: opcode

Describes a Python bytecode instruction.

4.4 Showing code examples

Examples of Python source code or interactive sessions are represented using standard reST literal blocks. They are
started by a :: at the end of the preceding paragraph and delimited by indentation.

Representing an interactive session requires including the prompts and output along with the Python code. No special
markup is required for interactive sessions. After the last line of input or output presented, there should not be an
“unused” primary prompt; this is an example of what not to do:

>>> 1 + 1
2
>>>

Syntax highlighting is handled in a smart way:

• There is a “highlighting language” for each source file. Per default, this is ’python’ as the majority of files
will have to highlight Python snippets.

• Within Python highlighting mode, interactive sessions are recognized automatically and highlighted appropri-
ately.

• The highlighting language can be changed using the highlightlang directive, used as follows:

.. highlightlang:: c

This language is used until the next highlightlang directive is encountered.

• The values normally used for the highlighting language are:

– python (the default)

– c

– rest

– none (no highlighting)

• If highlighting with the current language fails, the block is not highlighted in any way.

Longer displays of verbatim text may be included by storing the example text in an external file containing only plain
text. The file may be included using the literalinclude directive. 1 For example, to include the Python source
file example.py, use:

.. literalinclude:: example.py

The file name is relative to the current file’s path. Documentation-specific include files should be placed in the
Doc/includes subdirectory.

1 There is a standard .. include directive, but it raises errors if the file is not found. This one only emits a warning.

16 Chapter 4. Additional Markup Constructs

Documenting Python, Release 2.6.5

4.5 Inline markup

As said before, Sphinx uses interpreted text roles to insert semantic markup in documents.

Names of local variables, such as function/method arguments, are an exception, they should be marked simply with
var.

For all other roles, you have to write :rolename:‘content‘.

There are some additional facilities that make cross-referencing roles more versatile:

• You may supply an explicit title and reference target, like in reST direct hyperlinks: :role:‘title
<target>‘ will refer to target, but the link text will be title.

• If you prefix the content with !, no reference/hyperlink will be created.

• For the Python object roles, if you prefix the content with ~, the link text will only be the last component of the
target. For example, :meth:‘~Queue.Queue.get‘ will refer to Queue.Queue.get but only display
get as the link text.

In HTML output, the link’s title attribute (that is e.g. shown as a tool-tip on mouse-hover) will always be the
full target name.

The following roles refer to objects in modules and are possibly hyperlinked if a matching identifier is found:

mod
The name of a module; a dotted name may be used. This should also be used for package names.

func
The name of a Python function; dotted names may be used. The role text should not include trailing parentheses
to enhance readability. The parentheses are stripped when searching for identifiers.

data
The name of a module-level variable or constant.

const
The name of a “defined” constant. This may be a C-language #define or a Python variable that is not intended
to be changed.

class
A class name; a dotted name may be used.

meth
The name of a method of an object. The role text should include the type name and the method name. A dotted
name may be used.

attr
The name of a data attribute of an object.

exc
The name of an exception. A dotted name may be used.

The name enclosed in this markup can include a module name and/or a class name. For example, :func:‘filter‘
could refer to a function named filter in the current module, or the built-in function of that name. In contrast,
:func:‘foo.filter‘ clearly refers to the filter function in the foo module.

Normally, names in these roles are searched first without any further qualification, then with the current module name
prepended, then with the current module and class name (if any) prepended. If you prefix the name with a dot, this
order is reversed. For example, in the documentation of the codecs module, :func:‘open‘ always refers to the
built-in function, while :func:‘.open‘ refers to codecs.open().

A similar heuristic is used to determine whether the name is an attribute of the currently documented class.

4.5. Inline markup 17

Documenting Python, Release 2.6.5

The following roles create cross-references to C-language constructs if they are defined in the API documentation:

cdata
The name of a C-language variable.

cfunc
The name of a C-language function. Should include trailing parentheses.

cmacro
The name of a “simple” C macro, as defined above.

ctype
The name of a C-language type.

The following role does possibly create a cross-reference, but does not refer to objects:

token
The name of a grammar token (used in the reference manual to create links between production displays).

The following role creates a cross-reference to the term in the glossary:

term
Reference to a term in the glossary. The glossary is created using the glossary directive containing a defi-
nition list with terms and definitions. It does not have to be in the same file as the term markup, in fact, by
default the Python docs have one global glossary in the glossary.rst file.

If you use a term that’s not explained in a glossary, you’ll get a warning during build.

The following roles don’t do anything special except formatting the text in a different style:

command
The name of an OS-level command, such as rm.

dfn
Mark the defining instance of a term in the text. (No index entries are generated.)

envvar
An environment variable. Index entries are generated.

file
The name of a file or directory. Within the contents, you can use curly braces to indicate a “variable” part, for
example:

... is installed in :file:‘/usr/lib/python2.{x}/site-packages‘ ...

In the built documentation, the x will be displayed differently to indicate that it is to be replaced by the Python
minor version.

guilabel
Labels presented as part of an interactive user interface should be marked using guilabel. This includes
labels from text-based interfaces such as those created using curses or other text-based libraries. Any label
used in the interface should be marked with this role, including button labels, window titles, field names, menu
and menu selection names, and even values in selection lists.

kbd
Mark a sequence of keystrokes. What form the key sequence takes may depend on platform- or application-
specific conventions. When there are no relevant conventions, the names of modifier keys should be spelled out,
to improve accessibility for new users and non-native speakers. For example, an xemacs key sequence may be
marked like :kbd:‘C-x C-f‘, but without reference to a specific application or platform, the same sequence
should be marked as :kbd:‘Control-x Control-f‘.

18 Chapter 4. Additional Markup Constructs

Documenting Python, Release 2.6.5

keyword
The name of a keyword in Python.

mailheader
The name of an RFC 822-style mail header. This markup does not imply that the header is being used in an
email message, but can be used to refer to any header of the same “style.” This is also used for headers defined
by the various MIME specifications. The header name should be entered in the same way it would normally
be found in practice, with the camel-casing conventions being preferred where there is more than one common
usage. For example: :mailheader:‘Content-Type‘.

makevar
The name of a make variable.

manpage
A reference to a Unix manual page including the section, e.g. :manpage:‘ls(1)‘.

menuselection
Menu selections should be marked using the menuselection role. This is used to mark a complete sequence
of menu selections, including selecting submenus and choosing a specific operation, or any subsequence of such
a sequence. The names of individual selections should be separated by -->.

For example, to mark the selection “Start > Programs”, use this markup:

:menuselection:‘Start --> Programs‘

When including a selection that includes some trailing indicator, such as the ellipsis some operating systems use
to indicate that the command opens a dialog, the indicator should be omitted from the selection name.

mimetype
The name of a MIME type, or a component of a MIME type (the major or minor portion, taken alone).

newsgroup
The name of a Usenet newsgroup.

option
A command-line option to an executable program. The leading hyphen(s) must be included.

program
The name of an executable program. This may differ from the file name for the executable for some platforms.
In particular, the .exe (or other) extension should be omitted for Windows programs.

regexp
A regular expression. Quotes should not be included.

samp
A piece of literal text, such as code. Within the contents, you can use curly braces to indicate a “variable” part,
as in :file:.

If you don’t need the “variable part” indication, use the standard ‘‘code‘‘ instead.

var
A Python or C variable or parameter name.

The following roles generate external links:

pep
A reference to a Python Enhancement Proposal. This generates appropriate index entries. The text “PEP num-
ber” is generated; in the HTML output, this text is a hyperlink to an online copy of the specified PEP.

rfc
A reference to an Internet Request for Comments. This generates appropriate index entries. The text “RFC
number” is generated; in the HTML output, this text is a hyperlink to an online copy of the specified RFC.

4.5. Inline markup 19

Documenting Python, Release 2.6.5

Note that there are no special roles for including hyperlinks as you can use the standard reST markup for that purpose.

4.6 Cross-linking markup

To support cross-referencing to arbitrary sections in the documentation, the standard reST labels are “abused” a bit:
Every label must precede a section title; and every label name must be unique throughout the entire documentation
source.

You can then reference to these sections using the :ref:‘label-name‘ role.

Example:

.. _my-reference-label:

Section to cross-reference

This is the text of the section.

It refers to the section itself, see :ref:‘my-reference-label‘.

The :ref: invocation is replaced with the section title.

4.7 Paragraph-level markup

These directives create short paragraphs and can be used inside information units as well as normal text:

note
An especially important bit of information about an API that a user should be aware of when using whatever bit
of API the note pertains to. The content of the directive should be written in complete sentences and include all
appropriate punctuation.

Example:

.. note::

This function is not suitable for sending spam e-mails.

warning
An important bit of information about an API that a user should be aware of when using whatever bit of API
the warning pertains to. The content of the directive should be written in complete sentences and include all
appropriate punctuation. In the interest of not scaring users away from pages filled with warnings, this directive
should only be chosen over note for information regarding the possibility of crashes, data loss, or security
implications.

versionadded
This directive documents the version of Python which added the described feature to the library or C API. When
this applies to an entire module, it should be placed at the top of the module section before any prose.

The first argument must be given and is the version in question; you can add a second argument consisting of a
brief explanation of the change.

Example:

20 Chapter 4. Additional Markup Constructs

Documenting Python, Release 2.6.5

.. versionadded:: 2.5
The *spam* parameter.

Note that there must be no blank line between the directive head and the explanation; this is to make these blocks
visually continuous in the markup.

versionchanged
Similar to versionadded, but describes when and what changed in the named feature in some way (new
parameters, changed side effects, etc.).

impl-detail
This directive is used to mark CPython-specific information. Use either with a block content or a single sentence
as an argument, i.e. either

.. impl-detail::

This describes some implementation detail.

More explanation.

or

.. impl-detail:: This shortly mentions an implementation detail.

“CPython implementation detail:” is automatically prepended to the content.

seealso
Many sections include a list of references to module documentation or external documents. These lists are
created using the seealso directive.

The seealso directive is typically placed in a section just before any sub-sections. For the HTML output, it is
shown boxed off from the main flow of the text.

The content of the seealso directive should be a reST definition list. Example:

.. seealso::

Module :mod:‘zipfile‘
Documentation of the :mod:‘zipfile‘ standard module.

‘GNU tar manual, Basic Tar Format <http://link>‘_
Documentation for tar archive files, including GNU tar extensions.

rubric
This directive creates a paragraph heading that is not used to create a table of contents node. It is currently used
for the “Footnotes” caption.

centered
This directive creates a centered boldfaced paragraph. Use it as follows:

.. centered::

Paragraph contents.

4.7. Paragraph-level markup 21

Documenting Python, Release 2.6.5

4.8 Table-of-contents markup

Since reST does not have facilities to interconnect several documents, or split documents into multiple output files,
Sphinx uses a custom directive to add relations between the single files the documentation is made of, as well as tables
of contents. The toctree directive is the central element.

toctree
This directive inserts a “TOC tree” at the current location, using the individual TOCs (including “sub-TOC
trees”) of the files given in the directive body. A numeric maxdepth option may be given to indicate the depth
of the tree; by default, all levels are included.

Consider this example (taken from the library reference index):

.. toctree::
:maxdepth: 2

intro.rst
strings.rst
datatypes.rst
numeric.rst
(many more files listed here)

This accomplishes two things:

•Tables of contents from all those files are inserted, with a maximum depth of two, that means one nested
heading. toctree directives in those files are also taken into account.

•Sphinx knows that the relative order of the files intro.rst, strings.rst and so forth, and it knows
that they are children of the shown file, the library index. From this information it generates “next chapter”,
“previous chapter” and “parent chapter” links.

In the end, all files included in the build process must occur in one toctree directive; Sphinx will emit a
warning if it finds a file that is not included, because that means that this file will not be reachable through
standard navigation.

The special file contents.rst at the root of the source directory is the “root” of the TOC tree hierarchy;
from it the “Contents” page is generated.

4.9 Index-generating markup

Sphinx automatically creates index entries from all information units (like functions, classes or attributes) like dis-
cussed before.

However, there is also an explicit directive available, to make the index more comprehensive and enable index entries
in documents where information is not mainly contained in information units, such as the language reference.

The directive is index and contains one or more index entries. Each entry consists of a type and a value, separated
by a colon.

For example:

.. index::
single: execution; context
module: __main__
module: sys
triple: module; search; path

22 Chapter 4. Additional Markup Constructs

Documenting Python, Release 2.6.5

This directive contains five entries, which will be converted to entries in the generated index which link to the exact
location of the index statement (or, in case of offline media, the corresponding page number).

The possible entry types are:

single Creates a single index entry. Can be made a subentry by separating the subentry text with a semicolon (this
notation is also used below to describe what entries are created).

pair pair: loop; statement is a shortcut that creates two index entries, namely loop; statement and
statement; loop.

triple Likewise, triple: module; search; path is a shortcut that creates three index entries, which are
module; search path, search; path, module and path; module search.

module, keyword, operator, object, exception, statement, builtin These all create two index entries. For example,
module: hashlib creates the entries module; hashlib and hashlib; module.

For index directives containing only “single” entries, there is a shorthand notation:

.. index:: BNF, grammar, syntax, notation

This creates four index entries.

4.10 Grammar production displays

Special markup is available for displaying the productions of a formal grammar. The markup is simple and does not
attempt to model all aspects of BNF (or any derived forms), but provides enough to allow context-free grammars to be
displayed in a way that causes uses of a symbol to be rendered as hyperlinks to the definition of the symbol. There is
this directive:

productionlist
This directive is used to enclose a group of productions. Each production is given on a single line and consists
of a name, separated by a colon from the following definition. If the definition spans multiple lines, each
continuation line must begin with a colon placed at the same column as in the first line.

Blank lines are not allowed within productionlist directive arguments.

The definition can contain token names which are marked as interpreted text (e.g. unaryneg ::= "-"
‘integer‘) – this generates cross-references to the productions of these tokens.

Note that no further reST parsing is done in the production, so that you don’t have to escape * or | characters.

The following is an example taken from the Python Reference Manual:

.. productionlist::
try_stmt: try1_stmt | try2_stmt
try1_stmt: "try" ":" ‘suite‘

: ("except" [‘expression‘ ["," ‘target‘]] ":" ‘suite‘)+
: ["else" ":" ‘suite‘]
: ["finally" ":" ‘suite‘]

try2_stmt: "try" ":" ‘suite‘
: "finally" ":" ‘suite‘

4.11 Substitutions

The documentation system provides three substitutions that are defined by default. They are set in the build configu-
ration file conf.py.

4.10. Grammar production displays 23

Documenting Python, Release 2.6.5

|release|
Replaced by the Python release the documentation refers to. This is the full version string including al-
pha/beta/release candidate tags, e.g. 2.5.2b3.

|version|
Replaced by the Python version the documentation refers to. This consists only of the major and minor version
parts, e.g. 2.5, even for version 2.5.1.

|today|
Replaced by either today’s date, or the date set in the build configuration file. Normally has the format April
14, 2007.

24 Chapter 4. Additional Markup Constructs

CHAPTER

FIVE

DIFFERENCES TO THE LATEX
MARKUP

Though the markup language is different, most of the concepts and markup types of the old LaTeX docs have been
kept – environments as reST directives, inline commands as reST roles and so forth.

However, there are some differences in the way these work, partly due to the differences in the markup languages,
partly due to improvements in Sphinx. This section lists these differences, in order to give those familiar with the old
format a quick overview of what they might run into.

5.1 Inline markup

These changes have been made to inline markup:

• Cross-reference roles

Most of the following semantic roles existed previously as inline commands, but didn’t do anything except
formatting the content as code. Now, they cross-reference to known targets (some names have also been
shortened): mod (previously refmodule or module)
func (previously function)
data (new)
const
class
meth (previously method)
attr (previously member)
exc (previously exception)
cdata
cfunc (previously cfunction)
cmacro (previously csimplemacro)
ctype

Also different is the handling of func and meth: while previously parentheses were added to the callable name
(like \func{str()}), they are now appended by the build system – appending them in the source will re-
sult in double parentheses. This also means that :func:‘str(object)‘ will not work as expected – use
‘‘str(object)‘‘ instead!

• Inline commands implemented as directives

These were inline commands in LaTeX, but are now directives in reST: deprecated
versionadded
versionchanged

25

Documenting Python, Release 2.6.5

These are used like so:

.. deprecated:: 2.5
Reason of deprecation.

Also, no period is appended to the text for versionadded and versionchanged. note
warning

These are used like so:

.. note::

Content of note.

• Otherwise changed commands

The samp command previously formatted code and added quotation marks around it. The samp role, however,
features a new highlighting system just like file does:

:samp:‘open({filename}, {mode})‘ results in ‘open(filename, mode)’

• Dropped commands

These were commands in LaTeX, but are not available as roles: bfcode
character (use ‘‘‘’c’‘‘’)
citetitle (use ‘Title <URL>‘_)
code (use ‘‘code‘‘)
email (just write the address in body text)
filenq
filevar (use the {...} highlighting feature of file)
programopt, longprogramopt (use option)
ulink (use ‘Title <URL>‘_)
url (just write the URL in body text)
var (use *var*)
infinity, plusminus (use the Unicode character)
shortversion, version (use the |version| and |release| substitutions)
emph, strong (use the reST markup)

• Backslash escaping

In reST, a backslash must be escaped in normal text, and in the content of roles. However, in code
literals and literal blocks, it must not be escaped. Example: :file:‘C:\\Temp\\my.tmp‘ vs.
‘‘open("C:\Temp\my.tmp")‘‘.

5.2 Information units

Information units (...desc environments) have been made reST directives. These changes to information units should
be noted:

• New names

“desc” has been removed from every name. Additionally, these directives have new names:
cfunction (previously cfuncdesc)
cmacro (previously csimplemacrodesc)
exception (previously excdesc)
function (previously funcdesc)
attribute (previously memberdesc)

26 Chapter 5. Differences to the LaTeX markup

Documenting Python, Release 2.6.5

The classdesc* and excclassdesc environments have been dropped, the class and exception directives support
classes documented with and without constructor arguments.

• Multiple objects

The equivalent of the ...line commands is:

.. function:: do_foo(bar)
do_bar(baz)

Description of the functions.

IOW, just give one signatures per line, at the same indentation level.

• Arguments

There is no optional command. Just give function signatures like they should appear in the output:

.. function:: open(filename[, mode[, buffering]])

Description.

Note: markup in the signature is not supported.

• Indexing

The ...descni environments have been dropped. To mark an information unit as unsuitable for index entry
generation, use the noindex option like so:

.. function:: foo_*
:noindex:

Description.

• New information units

There are new generic information units: One is called “describe” and can be used to document things that are
not covered by the other units:

.. describe:: a == b

The equals operator.

The others are:

.. cmdoption:: -O

Describes a command-line option.

.. envvar:: PYTHONINSPECT

Describes an environment variable.

5.3 Structure

The LaTeX docs were split in several toplevel manuals. Now, all files are part of the same documentation tree, as
indicated by the toctree directives in the sources (though individual output formats may choose to split them up into
parts again). Every toctree directive embeds other files as subdocuments of the current file (this structure is not
necessarily mirrored in the filesystem layout). The toplevel file is contents.rst.

However, most of the old directory structure has been kept, with the directories renamed as follows:

5.3. Structure 27

Documenting Python, Release 2.6.5

• api -> c-api

• dist -> distutils, with the single TeX file split up

• doc -> documenting

• ext -> extending

• inst -> installing

• lib -> library

• mac -> merged into library, with mac/using.tex moved to using/mac.rst

• ref -> reference

• tut -> tutorial, with the single TeX file split up

28 Chapter 5. Differences to the LaTeX markup

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within a
pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3 - Automated Python 2 to 3 code translation (in The Python Library Refer-
ence).

abstract base class Abstract Base Classes (abbreviated ABCs) complement duck-typing by providing a way to define
interfaces when other techniques like hasattr() would be clumsy. Python comes with many built-in ABCs
for data structures (in the collections module), numbers (in the numbers module), and streams (in the io
module). You can create your own ABC with the abc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A function
or method may have both positional arguments and keyword arguments in its definition. Positional and keyword
arguments may be variable-length: * accepts or passes (if in the function definition or call) several positional
arguments in a list, while ** does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if
an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to
run on a virtual machine that executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic class Any class which does not inherit from object. See new-style class. Classic classes will be removed
in Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3,
but in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same
type before they can be added or it will raise a TypeError. Coercion between two operands can be performed
with the coerce built-in function; thus, 3+4.5 is equivalent to calling operator.add(*coerce(3,

29

http://www.python.org/~guido/

Documenting Python, Release 2.6.5

4.5)) and results in operator.add(3.0, 4.5). Without coercion, all arguments of even compatible
types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just
3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often written i in mathematics or j in engineering. Python has built-in support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get
access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__()
and __exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language. The term “CPython” is used in
contexts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

See the documentation for function definition (in The Python Language Reference) for more about decorators.

descriptor Any new-style object which defines the methods __get__(), __set__(), or __delete__().
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but
if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep
understanding of Python because they are the basis for many features including functions, methods, properties,
class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see Implementing Descriptors (in The Python Language
Reference).

dictionary An associative array, where arbitrary keys are mapped to values. The use of dict closely resembles that
for list, but the keys can be any object with a __hash__() function, not just integers. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or attribute
signature rather than by explicit relationship to some type object (“If it looks like a duck and quacks like a duck,
it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its
flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance().
(Note, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is

30 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

Documenting Python, Release 2.6.5

characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as print or if. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

finder An object that tries to find the loader for a module. It must implement a method named find_module().
See PEP 302 for details.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also argument and method.

__future__ A pseudo module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the module in which
it is executed had enabled true division by executing:

from __future__ import division

the expression 11/4 would evaluate to 2.75. By importing the __future__ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to
the caller using a yield statement instead of a return statement. Generator functions often contain one or
more for or while loops which yield elements back to the caller. The function execution is stopped at the
yield keyword (returning the result) and is resumed there when the next element is requested by calling the
next() method of the returned iterator.

generator expression An expression that returns a generator. It looks like a normal expression followed by a for
expression defining a loop variable, range, and an optional if expression. The combined expression generates
values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

global interpreter lock The lock used by Python threads to assure that only one thread executes in the CPython
virtual machine at a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter
to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much finer
granularity), but so far none have been successful because performance suffered in the common single-processor
case.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an __eq__() or __cmp__()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

31

http://www.python.org/dev/peps/pep-0302

Documenting Python, Release 2.6.5

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal,
and their hash value is their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python. Good for beginners, it also serves as clear example code for those
wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently eval-
uates to 2 in contrast to the 2.75 returned by float division. Also called floor division. When dividing two
integers the outcome will always be another integer (having the floor function applied to it). However, if one of
the operands is another numeric type (such as a float), the result will be coerced (see coercion) to a common
type. For example, an integer divided by a float will result in a float value, possibly with a decimal fraction.
Integer division can be forced by using the // operator instead of the / operator. See also __future__.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable A container object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict and file and objects of any
classes you define with an __iter__() or __getitem__() method. Iterables can be used in a for loop
and in many other places where a sequence is needed (zip(), map(), ...). When an iterable object is passed
as an argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s next() method return successive
items in the stream. When no more data are available a StopIteration exception is raised instead. At this
point, the iterator object is exhausted and any further calls to its next() method just raise StopIteration
again. Iterators are required to have an __iter__() method that returns the iterator object itself so every
iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception
is code which attempts multiple iteration passes. A container object (such as a list) produces a fresh new
iterator each time you pass it to the iter() function or use it in a for loop. Attempting this with an iterator
will just return the same exhausted iterator object used in the previous iteration pass, making it appear like an
empty container.

More information can be found in Iterator Types (in The Python Library Reference).

keyword argument Arguments which are preceded with a variable_name= in the call. The variable name
designates the local name in the function to which the value is assigned. ** is used to accept or pass a dictionary
of keyword arguments. See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is lambda [arguments]: expression

32 Appendix A. Glossary

Documenting Python, Release 2.6.5

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of
strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all
elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details.

mapping A container object (such as dict) which supports arbitrary key lookups using the special method
__getitem__().

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in Customizing class creation (in The Python Language Reference).

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and nested
scope.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,
time.localtime() returns a tuple-like object where the year is accessible either with an index such as
t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple(). The latter approach automatically provides extra features such as a self-
documenting representation like Employee(name=’jones’, title=’programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support mod-
ularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed() or itertools.izip()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style class Any class which inherits from object. This includes all built-in types like list and dict.
Only new-style classes can use Python’s newer, versatile features like __slots__, descriptors, properties, and
__getattribute__().

More information can be found in New-style and classic classes (in The Python Language Reference).

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

33

http://www.python.org/dev/peps/pep-0302

Documenting Python, Release 2.6.5

positional argument The arguments assigned to local names inside a function or method, determined by the order
in which they were given in the call. * is used to either accept multiple positional arguments (when in the
definition), or pass several arguments as a list to a function. See argument.

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return
the reference count for a particular object.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a len() method that returns the length of the sequence. Some built-in sequence types are
list, str, tuple, and unicode. Note that dict also supports __getitem__() and __len__(), but
is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation,
[] with colons between numbers when several are given, such as in variable_name[1:3:5]. The
bracket (subscript) notation uses slice objects internally (or in older versions, __getslice__() and
__setslice__()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
Special method names (in The Python Language Reference).

statement A statement is part of a suite (a “block” of code). A statement is either an expression or a one of several
constructs with a keyword, such as if, while or print.

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

34 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

Development of the documentation and its toolchain takes place on the docs@python.org mailing list. We’re always
looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

See Reporting Bugs in Python for information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably not complete
– if you feel that you or anyone else should be on this list, please let us know (send email to docs@python.org), and
we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesús Cea Avión, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander Be-
lopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl, Keith
Briggs, Ian Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario, Mike Clark-
son, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter Deutsch, Robert
Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson, Carey Evans, Martijn
Faassen, Carl Feynman, Dan Finnie, Hernán Martínez Foffani, Stefan Franke, Jim Fulton, Peter Funk, Lele Gaifax,
Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan Giddy, Shelley Gooch, Nathaniel
Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond, Harald Hanche-Olsen, Manus Hand,
Gerhard Häring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas Heller, Bernhard Herzog, Magnus L. Hetland,
Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hoffleit, Steve Holden, Thomas Holenstein, Gerrit Holl,
Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson, Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen,
Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan
Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno
Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph Lefkowitz, Robert Lehmann, Marc-André Lemburg,
Ross Light, Ulf A. Lindgren, Everett Lipman, Mirko Liss, Martin von Löwis, Fredrik Lundh, Jeff MacDonald, John
Machin, Andrew MacIntyre, Vladimir Marangozov, Vincent Marchetti, Laura Matson, Daniel May, Rebecca Mc-
Creary, Doug Mennella, Paolo Milani, Skip Montanaro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata,
Ng Pheng Siong, Koray Oner, Tomas Oppelstrup, Denis S. Otkidach, Zooko O’Whielacronx, Shriphani Palakodety,
William Park, Joonas Paalasmaa, Harri Pasanen, Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin

35

http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

Documenting Python, Release 2.6.5

D. Pettit, Chris Phoenix, François Pinard, Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider,
Bernhard Reiter, Armin Rigo, Wes Rishel, Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse
II, Mark Russell, Nick Russo, Chris Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Scheme-
nauer, Barry Scott, Joakim Sernbrant, Justin Sheehy, Charlie Shepherd, Michael Simcich, Ionel Simionescu, Michael
Sloan, Gregory P. Smith, Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks,
Greg Stein, Peter Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio,
Martijn Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy
Welbourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe,
Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

36 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see http://www.python.org/psf/) was formed,
a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes

Continued on next page

37

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

Documenting Python, Release 2.6.5

Table C.1 – continued from previous page
2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
2.4.4 2.4.3 2006 PSF yes
2.5 2.4 2006 PSF yes
2.5.1 2.5 2007 PSF yes
2.5.2 2.5.1 2008 PSF yes
2.5.3 2.5.2 2008 PSF yes
2.6 2.5 2008 PSF yes
2.6.1 2.6 2008 PSF yes
2.6.2 2.6.1 2009 PSF yes
2.6.3 2.6.2 2009 PSF yes
2.6.4 2.6.3 2009 PSF yes
2.6.5 2.6.4 2010 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.5

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 2.6.5 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.5 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2010 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.5 alone or in any derivative version prepared by
Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.6.5 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.6.5.

4. PSF is making Python 2.6.5 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.6.5 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.5 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.5, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

38 Appendix C. History and License

Documenting Python, Release 2.6.5

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.6.5, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013.”

C.2. Terms and conditions for accessing or otherwise using Python 39

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

Documenting Python, Release 2.6.5

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

40 Appendix C. History and License

Documenting Python, Release 2.6.5

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

C.3. Licenses and Acknowledgements for Incorporated Software 41

http://www.math.keio.ac.jp/
http://www.wide.ad.jp/

Documenting Python, Release 2.6.5

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |

42 Appendix C. History and License

Documenting Python, Release 2.6.5

| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

C.3. Licenses and Acknowledgements for Incorporated Software 43

Documenting Python, Release 2.6.5

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

44 Appendix C. History and License

Documenting Python, Release 2.6.5

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

The profile and pstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the software
to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

C.3. Licenses and Acknowledgements for Incorporated Software 45

Documenting Python, Release 2.6.5

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.9 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.10 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in

46 Appendix C. History and License

Documenting Python, Release 2.6.5

all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.11 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.12 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

C.3. Licenses and Acknowledgements for Incorporated Software 47

Documenting Python, Release 2.6.5

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

48 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2010 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

49

Documenting Python, Release 2.6.5

50 Appendix D. Copyright

INDEX

Symbols
..., 29
__future__, 31
__slots__, 34
>>>, 29
2to3, 29

A
abstract base class, 29
argument, 29
attribute, 29

B
BDFL, 29
bytecode, 29

C
class, 29
classic class, 29
coercion, 29
complex number, 30
context manager, 30
CPython, 30

D
decorator, 30
descriptor, 30
dictionary, 30
docstring, 30
duck-typing, 30

E
EAFP, 30
expression, 31
extension module, 31

F
finder, 31
function, 31

G
garbage collection, 31
generator, 31
generator expression, 31
GIL, 31
global interpreter lock, 31

H
hashable, 31

I
IDLE, 32
immutable, 32
importer, 32
integer division, 32
interactive, 32
interpreted, 32
iterable, 32
iterator, 32

K
keyword argument, 32

L
lambda, 32
LBYL, 32
list, 33
list comprehension, 33
loader, 33

M
mapping, 33
metaclass, 33
method, 33
mutable, 33

N
named tuple, 33
namespace, 33
nested scope, 33
new-style class, 33

51

Documenting Python, Release 2.6.5

O
object, 33

P
positional argument, 33
Python 3000, 34
Python Enhancement Proposals

PEP 302, 31, 33
PEP 343, 30

Pythonic, 34

R
reference count, 34

S
sequence, 34
slice, 34
special method, 34
statement, 34

T
triple-quoted string, 34
type, 34

V
virtual machine, 34

Z
Zen of Python, 34

52 Index

	Introduction
	Style Guide
	reStructuredText Primer
	Paragraphs
	Inline markup
	Lists and Quotes
	Source Code
	Hyperlinks
	Sections
	Explicit Markup
	Directives
	Footnotes
	Comments
	Source encoding
	Gotchas

	Additional Markup Constructs
	Meta-information markup
	Module-specific markup
	Information units
	Showing code examples
	Inline markup
	Cross-linking markup
	Paragraph-level markup
	Table-of-contents markup
	Index-generating markup
	Grammar production displays
	Substitutions

	Differences to the LaTeX markup
	Inline markup
	Information units
	Structure

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

