Extending and Embedding Python
Release 2.6.4

Guido van Rossum

Fred L. Drake, Jr., editor

October 30, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

Extending Python with C or C++ 3
1.1 ASimple Example. e e e e e e 3
1.2 Intermezzo: Errorsand Exceptions. e 4
1.3 Backtothe Example e e e 6
1.4 The Module’s Method Table and Initialization Function. 6
1.5 Compilationand Linkage. e e e 7
1.6 Calling Python Functionsfrom C e 8
1.7 Extracting Parameters in Extension Functions., 10
1.8 Keyword Parameters for Extension Functions. 11
1.9 Building Arbitrary Values e e e e e 12
1.10 Reference Counts. e e e 12
1.11 Writing Extensions in C++ L e 16
1.12 Providing a C API foran ExtensionModule 16
Defining New Types 21
2.1 TheBaSICS. o e e 21
22 TypeMethods. e AT
Building C and C++ Extensions with distutils 57
3.1 Distributing your extensionmodules L e 58
Building C and C++ Extensions on Windows 59
4.1 ACookbook Approach e 59
4.2 Differences Between Unixand Windows e 61
4.3 UsingDLLsIinPractice. e e e e 62
Embedding Python in Another Application 63
5.1 VMeryHighLevel Embedding e 63
5.2 Beyond Very High Level Embedding: Anoverview 64
5.3 PureEmbedding e 64
5.4 Extending Embedded Python 66
55 Embedding Pythonin C++. e 67
5.6 Linking Requirements. e e e e e 67
Glossary 69
About these documents 75
B.1 Contributors to the Python Documentation. 75
History and License 77
C.1 Historyofthesoftware 77
C.2 Terms and conditions for accessing or otherwise using Python 78
C.3 Licenses and Acknowledgements for Incorporated Software 80

D Copyright

Index

89

91

Extending and Embedding Python, Release 2.6.4

Release?2.6
Date October 30, 2009

This document describes how to write modules in C or C++ to extend the Python interpreter with new modules.
Those modules can define new functions but also new object types and their methods. The document also describes
how to embed the Python interpreter in another application, for use as an extension language. Finally, it shows how
to compile and link extension modules so that they can be loaded dynamically (at run time) into the interpreter, if
the underlying operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the langu&be, see
Python Tutorial(in Python Tutoria). The Python Language Referen@e The Python Language Referehce
gives a more formal definition of the languagéhe Python Standard Librar{in The Python Library Referenge
documents the existing object types, functions and modules (both built-in and written in Python) that give the
language its wide application range.

For a detailed description of the whole Python/C API, see the sefayttten/C API Reference Manu@h The
Python/C AP).

CONTENTS 1

Extending and Embedding Python, Release 2.6.4

2 CONTENTS

CHAPTER

ONE

EXTENDING PYTHON WITH C OR C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. &dehsion modules
can do two things that can’t be done directly in Python: they can implement new built-in object types, and they
can call C library functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a
C source file by including the head&tython.h"

The compilation of an extension module depends on its intended use as well as on your system setup; details are
given in later chapters.

Do note that if your use case is calling C library functions or system calls, you should consider usityp#se

module rather than writing custom C code. Not only dogpes let you write Python code to interface with C
code, but it is more portable between implementations of Python than writing and compiling an extension module
which typically ties you to CPython.

1.1 A Simple Example

Let's create an extension module calkgghm (the favorite food of Monty Python fans...) and let’s say we want to
create a Python interface to the C library functaystem() . * This function takes a null-terminated character
string as argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> gtatus = spam.system("lIs -l ")

Begin by creating a filspammodule.c . (Historically, if a module is calle@gpam, the C file containing its
implementation is calledpammodule.c ; if the module name is very long, likepammify , the module name
can be jusspammify.c .)

The first line of our file can be:
#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright
notice if you like).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some sys-
tems, younustincludePython.h before any standard headers are included.

All user-visible symbols defined Bython.h have a prefix oPy or PY, except those defined in standard header
files. For convenience, and since they are used extensively by the Python intefpteon.h" includes a
few standard header filessstdio.h> |, <string.h> |, <errno.h> |, and<stdlib.h> . If the latter header
file does not exist on your system, it declares the functinaloc() ,free() andrealloc() directly.

The next thing we add to our module file is the C function that will be called when the Python expression
spam.system(string) is evaluated (we’'ll see shortly how it ends up being called):

1 An interface for this function already exists in the standard modsile— it was chosen as a simple and straightforward example.

Extending and Embedding Python, Release 2.6.4

static PyObject *
spam_system (PyObject *self, PyObject *args)

{
const char *command;
int sts;
if (! PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command);
return Py _Buildvalue("i", sts);
}

There is a straightforward translation from the argument list in Python (for example, the single exptisssion
-I") to the arguments passed to the C function. The C function always has two arguments, conventionally named
self andargs

Theself argument is only used when the C function implements a built-in method, not a function. In the example,
self will always be aNULL pointer, since we are defining a function, not a method. (This is done so that the
interpreter doesn't have to understand two different types of C functions.)

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple
corresponds to an argument in the call’s argument list. The arguments are Python objects — in order to do anything
with them in our C function we have to convert them to C values. The funé&ygxrg_ParseTuple() in the

Python API checks the argument types and converts them to C values. It uses a template string to determine the
required types of the arguments as well as the types of the C variables into which to store the converted values.
More about this later.

PyArg_ParseTuple() returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed.
In the latter case it also raises an appropriate exception so the calling function carNgtLrimmediately (as

we saw in the example).

1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set
an exception condition and return an error value (usualyJaL pointer). Exceptions are stored in a static global
variable inside the interpreter; if this variableN&JLL no exception has occurred. A second global variable stores

the “associated value” of the exception (the second argumergige). A third variable contains the stack
traceback in case the error originated in Python code. These three variables are the C equivalents of the Python
variablessys.exc_type ,sys.exc_value andsys.exc_traceback (see the section on modugs in

the Python Library Reference). It is important to know about them to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one ByErr_SetString() . Its arguments are an exception object and a C string. The
exception object is usually a predefined object BggExc_ZeroDivisionError . The C string indicates the
cause of the error and is converted to a Python string object and stored as the “associated value” of the exception.

Another useful function iPyErr_SetFromErrno() , which only takes an exception argument and con-
structs the associated value by inspection of the global variabigo . The most general function is
PyErr_SetObject() , which takes two object arguments, the exception and its associated value. You don't
need toPy INCREF() the objects passed to any of these functions.

You can test non-destructively whether an exception has been setPyitihr Occurred() . This re-
turns the current exception object, NJLL if no exception has occurred. You normally don’t need to call
PyErr_Occurred() to see whether an error occurred in a function call, since you should be able to tell from
the return value.

When a functiorf that calls another functiog detects that the latter fail§,should itself return an error value
(usuallyNULL or -1). It shouldnot call one of thePyErr_*() functions — one has already been calledgby
f's caller is then supposed to also return an error indicatiatstealler, agairwithoutcalling PyErr_*() , and

4 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.4

so on — the most detailed cause of the error was already reported by the function that first detected it. Once the
error reaches the Python interpreter's main loop, this aborts the currently executing Python code and tries to find
an exception handler specified by the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another
PyErr_*() function, and in such cases it is fine to do so. As a general rule, however, this is not necessary,
and can cause information about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by
calling PyErr_Clear() . The only time C code should caflyErr_Clear() is if it doesn’t want to pass

the error on to the interpreter but wants to handle it completely by itself (possibly by trying something else, or
pretending nothing went wrong).

Every failing malloc() call must be turned into an exception — the direct callernadlioc() (or
realloc()) must callPyErr_NoMemory() and return a failure indicator itself. All the object-creating
functions (for examplePyInt_FromLong()) already do this, so this note is only relevant to those who call
malloc() directly.

Also note that, with the important exception BfArg_ParseTuple() and friends, functions that return an
integer status usually return a positive value or zero for succesd afat failure, like Unix system calls.

Finally, be careful to clean up garbage (by makiygg XDECREF() or Py_DECREF() calls for objects you
have already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding
to all built-in Python exceptions, such &Exc_ZeroDivisionError , which you can use directly. Of
course, you should choose exceptions wisely — don't egExc_TypeError to mean that a file couldn’t

be opened (that should probably BgExc_IOError). If something’s wrong with the argument list, the
PyArg_ParseTuple() function usually raisePyExc_TypeError . If you have an argument whose value
must be in a particular range or must satisfy other conditiBggxc_ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object
variable at the beginning of your file:

static PyObject * SpamError;

and initialize it in your module’s initialization functionnitspam()) with an exception object (leaving out the
error checking for now):

PyMODINIT_FUNC
initspam (void)
{

PyObject *m;

m = Py_InitModule(" spam", SpamMethods);
if (m == NULD
return ;
SpamError = PyErr_NewException("spam.error ", NULL NULL);
Py_INCREF(SpamError);
PyModule_AddObject(m, “error ", SpamError);

}

Note that the Python name for the exception objespam.error . ThePyErr_NewException() function
may create a class with the base class b&rgeption (unless another class is passed in insteaNWEL),
described irBuilt-in Exceptiongin The Python Library Referenke

Note also that th&pamError variable retains a reference to the newly created exception class; this is intentionall
Since the exception could be removed from the module by external code, an owned reference to the class is needed
to ensure that it will not be discarded, causBygamError to become a dangling pointer. Should it become a
dangling pointer, C code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

1.2. Intermezzo: Errors and Exceptions 5

Extending and Embedding Python, Release 2.6.4

1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

"nan

if (! PyArg_ParseTuple(args, s", &command))

return NULL;

It returnsNULL (the error indicator for functions returning object pointers) if an error is detected in the argument
list, relying on the exception set lByArg_ParseTuple() . Otherwise the string value of the argument has
been copied to the local varialdemmand This is a pointer assignment and you are not supposed to modify the
string to which it points (so in Standard C, the variabdenmandshould properly be declared esnst char
*command).

The next statement is a call to the Unix functieystem() , passing it the string we just got from
PyArg_ParseTuple()

sts = system(command);

Ourspam.system() function must return the value efs as a Python object. This is done using the function
Py_BuildValue() , which is something like the inverse Bf/Arg_ParseTuple() : ittakes a format string

and an arbitrary number of C values, and returns a new Python object. More irffg_duildValue() is
given later.
return Py _Buildvalue("i", sts);

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function retuxmitg), the corresponding Python
function must returrNone. You need this idiom to do so (which is implemented by ye RETURN_NONE
macro):

Py INCREF(Py_None);
return Py_None;

Py_None is the C name for the special Python objdicne. It is a genuine Python object rather thaNeLL
pointer, which means “error” in most contexts, as we have seen.

1.4 The Module’'s Method Table and Initialization Function

| promised to show howepam_system() is called from Python programs. First, we need to list its name and
address in a “method table”:

static PyMethodDef SpamMethods][] = {

{"system ", spam_system, METH_VARARGS,
" Execute a shell command. "1,

{NULL, NULL 0, NULL [* Sentinel */
2
Note the third entryMIETH_VARARGSThis is a flag telling the interpreter the calling convention to be used for

the C function. It should normally always BéETH_ VARARG& METH_VARARGS | METH_KEYWORDS
value of0 means that an obsolete variantRyfArg_ParseTuple() is used.

When using onhyMETH_VARARG$he function should expect the Python-level parameters to be passed in as a
tuple acceptable for parsing ikyArg_ParseTuple() ; more information on this function is provided below.

TheMETH_KEYWORDS may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a thtgdbject * parameter which will be a dictionary of keywords.
UsePyArg_ParseTupleAndKeywords() to parse the arguments to such a function.

6 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.4

The method table must be passed to the interpreter in the module’s initialization function. The initialization
function must be namenhitname() , wherenameis the name of the module, and should be the only non-
static item defined in the module file:

PyMODINIT_FUNC
initspam (void)

(void) Py_InitModule("spam", SpamMethods);
}

Note that PyMODINIT_FUNC declares the function\asd return type, declares any special linkage declara-
tions required by the platform, and for C++ declares the functicexéern "C"

When the Python program imports modueam for the first time,initspam() is called. (See below for
comments about embedding Python.) It célis InitModule() , which creates a “module object” (which is
inserted in the dictionargys.modules under the key'spam"), and inserts built-in function objects into the
newly created module based upon the table (an arr®ybfethodDef structures) that was passed as its second
argument.Py_InitModule() returns a pointer to the module object that it creates (which is unused here). It
may abort with a fatal error for certain errors, or retdddLL if the module could not be initialized satisfactorily.

When embedding Python, tlieitspam() function is not called automatically unless there’s an entry in the
_Pylmport_Inittab table. The easiest way to handle this is to statically initialize your statically-linked
modules by directly callingnitspam() after the call tdPy_Initialize()
int
main (int argc, char *argv[)
{

[* Pass argv[0] to the Python interpreter */

Py_SetProgramName(argv[0]);

[* Initialize the Python interpreter. Required. */
Py _Initialize();

/* Add a static module */
initspam();

An example may be found in the filBemo/embed/demo.c in the Python source distribution.

Note: Removing entries frorsys.modules or importing compiled modules into multiple interpreters within

a process (or following dork() without an interveningexec()) can create problems for some extension
modules. Extension module authors should exercise caution when initializing internal data structures. Note also
that thereload() function can be used with extension modules, and will call the module initialization function
(initspam() in the example), but will not load the module again if it was loaded from a dynamically loadable
object file (so on Unix,.dll on Windows).

A more substantial example module is included in the Python source distributiodides/xxmodule.c

This file may be used as a template or simply read as an examplenddidator.py script included in the source
distribution or Windows install provides a simple graphical user interface for declaring the functions and objects
which a module should implement, and can generate a template which can be filled in. The script lives in the
Tools/modulator/ directory; see th@EADMHile there for more information.

1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python
system. If you use dynamic loading, the details may depend on the style of dynamic loading your system uses;
see the chapters about building extension modules (chBpi&ting C and C++ Extensions with distut)land
additional information that pertains only to building on Windows (chapteiiding C and C++ Extensions on
Window3 for more information about this.

If you can’'t use dynamic loading, or if you want to make your module a permanent part of the Python inter-
preter, you will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple

1.5. Compilation and Linkage 7

Extending and Embedding Python, Release 2.6.4

on Unix: just place your filedpammodule.c for example) in theModules/ directory of an unpacked source
distribution, add a line to the fil®lodules/Setup.local describing your file:

spam spammodule.o

and rebuild the interpreter by runnimgake in the toplevel directory. You can also ramake in the Modules/
subdirectory, but then you must first rebultbkefile there by runningmake Makefile'. (This is necessary
each time you change tt8etup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as
well, for instance:

spam spammodule.o - IX11

1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling
Python functions from C. This is especially the case for libraries that support so-called “callback” functions. If

a C interface makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the
Python programmer; the implementation will require calling the Python callback functions from a C callback.
Other uses are also imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python
function. (I won't dwell on how to call the Python parser with a particular string as input — if you're interested,
have a look at the implementation of the command line option iModules/main.c ~ from the Python source

code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object.
You should provide a function (or some other interface) to do this. When this function is called, save a pointer to
the Python function object (be carefuly_INCREF() it!) in a global variable — or wherever you see fit. For
example, the following function might be part of a module definition:

static PyObject *my callback = NULL

static PyObject *
my_set callback (PyObject *dummy, PyObject *args)
{

PyObject *result = NULL

PyObject *temp;

if (PyArg_ParseTuple(args, " O:set_callback ", &temp)) {

if (! PyCallable_Check(temp)) {
PyErr_SetString(PyExc_TypeError, " parameter must be callable ");
return NULL

}

Py_XINCREF(temp); [* Add a reference to new callback */

Py_XDECREF(my_callback); [* Dispose of previous callback */

my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */

Py_INCREF(Py_None);

result = Py None;

}

return result;

}

This function must be registered with the interpreter usingMierH_VARARGHAg; this is described in sec-
tion The Module’s Method Table and Initialization Functiohe PyArg_ParseTuple() function and its
arguments are documented in sectiotiracting Parameters in Extension Functions

The macroy XINCREF() andPy_XDECREF() increment/decrement the reference count of an object and
are safe in the presence NULL pointers (but note thaempwill not be NULL in this context). More info

8 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.4

on them in sectiorReference Counts Later, when it is time to call the function, you call the C function
PyObject_CallObject() . This function has two arguments, both pointers to arbitrary Python objects: the
Python function, and the argument list. The argument list must always be a tuple object, whose length is the
number of arguments. To call the Python function with no arguments, pass in NULL, or an empty tuple; to call it
with one argument, pass a singleton tughy. BuildValue() returns a tuple when its format string consists

of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

[* Time to call the callback */

arglist = Py _Buildvalue(" (i) ", arg);

result = PyObject_CallObject(my_callback, arglist);

Py DECREF(arglist);

PyObject_CallObject() returns a Python object pointer: this is the return value of the Python function.
PyObject_CallObject() is “reference-count-neutral” with respect to its arguments. In the example a new

tuple was created to serve as the argument list, whiely iDECREF()-ed immediately after the call.

The return value oPyObject_CallObject() is “new”: either it is a brand new object, or it is an existing
object whose reference count has been incremented. So, unless you want to save it in a global variable, you should
somehowPy_ DECREF() the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return valueN&siti . If it is, the Python function
terminated by raising an exception. If the C code that catig@bject_CallObject() is called from Python,

it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by
callingPyErr_Clear() . For example:

if (result == NULD
return NULL, /* Pass error back */
...use result...

Py DECREF(result);

Depending on the desired interface to the Python callback function, you may also have to provide an argument
list to PyObject_CallObject() . In some cases the argument list is also provided by the Python program,
through the same interface that specified the callback function. It can then be saved and used in the same manner
as the function object. In other cases, you may have to construct a new tuple to pass as the argument list. The
simplest way to do this is to caly_BuildValue() . For example, if you want to pass an integral event code,

you might use the following code:

PyObject *arglist;

arglist = Py _Buildvalue(" () ", eventcode);
result = PyObject CallObject(my_callback, arglist);
Py_DECREF(arglist);

if (result == NULD

return ~ NULL, /* Pass error back */
/* Here maybe use the result */
Py DECREF(result);

Note the placement dPy_DECREF(arglist) immediately after the call, before the error check! Also note
that strictly speaking this code is not comple®y. BuildValue() may run out of memory, and this should be
checked.

You may also call a function with keyword arguments by usty®bject_Call() , which supports arguments
and keyword arguments. As in the above example, wdPys@uildValue() to construct the dictionary.

PyObject *dict;

1.6. Calling Python Functions from C 9

Extending and Embedding Python, Release 2.6.4

dict = Py Buildvalue("{s:i} ", "name", val);
result = PyObject_Call(my_callback, NULL, dict);
Py_DECREF(dict);

if (result == NULD

return NULL, /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);

1.7 Extracting Parameters in Extension Functions

ThePyArg_ParseTuple() function is declared as follows:
int PyArg_ParseTuple(PyObject *arg, char *format, ..));

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The
format argument must be a format string, whose syntax is explain€ising arguments and building values

(in The Python/C ABIin the Python/C API Reference Manual. The remaining arguments must be addresses of
variables whose type is determined by the format string.

Note that whilePyArg_ParseTuple() checks that the Python arguments have the required types, it cannot
check the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will
probably crash or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the calleoaosvedreferences; do not decrement
their reference count!

Some example calls:

int ok;

int i, j;

long Kk, I;

const char *s;

int size;

ok = PyArg ParseTuple(args, ""); I* No arguments */
[* Python call: f() */

ok = PyArg_ParseTuple(args, "s", &s); [* A string */
[* Possible Python call: fCwhoops!) */

ok = PyArg ParseTuple(args, "lls ", &, &, &s); [* Two longs and a string */
[* Possible Python call: f(1, 2, 'three’) */

ok = PyArg_ParseTuple(args, “(i)s# ", &, &), &s, &size);

/* A pair of ints and a string, whose size is also returned */
[* Possible Python call: f((1, 2), 'three’) */

{
const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg ParseTuple(args, "slsi ", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
[* Possible Python calls:
f(spam’)
fCspam’, 'w’)
fCspam’, 'wb’, 100000) */
}
{

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, " ((in(in)(ii)

10 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.4

&left, &top, &right, &bottom, &h, &v);
I* A rectangle and a point */
[* Possible Python call:
f(((0, 0), (400, 300)), (10, 10)) */

}

{
Py complex c;
ok = PyArg_ParseTuple(args, " D:myfunction ", &c);
[* a complex, also providing a function name for errors */
[* Possible Python call: myfunction(1+2j) */

}

1.8 Keyword Parameters for Extension Functions

ThePyArg_ParseTupleAndKeywords() function is declared as follows:

int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject * kwdict,
char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of RgArg_ParseTuple() function. Thekwdict
parameter is the dictionary of keywords received as the third parameter from the Python runtimewlishe
parameter is &lULL-terminated list of strings which identify the parameters; the names are matched with the type
information fromformat from left to right. On succes®yArg_ParseTupleAndKeywords() returns true,
otherwise it returns false and raises an appropriate exception.

Note: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are
not present in th&wlist will causeTypeError to be raised. Here is an example module which uses keywords,
based on an example by Geoff Philbrigk{lbrick@hks.con

#include "Python.h"

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject * keywds)

int voltage;

char *state = "a stiff ";

char *action = "voom";

char *type = "Norwegian Blue ";

static char *kwlist[] = {"voltage ", "state ", "action ", "type ", NULL;
if (! PyArg_ParseTupleAndKeywords(args, keywds, "ilsss ", kwlist,

&voltage, &state, &action, &type))
return NULL;

printf(" -- This parrot wouldn't %s if you put %i Volts through it. \n",
action, voltage);
printf("-- Lovely plumage, the %s -- It's %s! \n", type, state);

Py_INCREF(Py_None);

return ~ Py_None;

}

static PyMethodDef keywdarg methods]] ={
[* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg_parrot() takes
* three.

1.8. Keyword Parameters for Extension Functions 11

mailto:philbrick@hks.com

Extending and Embedding Python, Release 2.6.4

*/
{"parrot ", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
“Print a lovely skit to standard output. "1,
{NULL, NULL 0, NULL [* sentinel */
2
void
initkeywdarg ~ (void)
{

/* Create the module and add the functions */
Py _InitModule(" keywdarg ", keywdarg_methods);
}

1.9 Building Arbitrary Values

This function is the counterpart ByArg_ParseTuple() . Itis declared as follows:
PyObject *Py Buildvalue(char *format, ...);

It recognizes a set of format units similar to the ones recognizdtyByg ParseTuple() , but the arguments
(which are input to the function, not output) must not be pointers, just values. It returns a new Python object,
suitable for returning from a C function called from Python.

One difference witiPyArg_ParseTuple() : while the latter requires its first argument to be a tuple (since
Python argument lists are always represented as tuples interfaiiyBuildvalue() does not always build a
tuple. It builds a tuple only if its format string contains two or more format units. If the format string is empty, it
returnsNone; if it contains exactly one format unit, it returns whatever object is described by that format unit. To
force it to return a tuple of size 0 or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

Py_BuildValue(") None
Py_BuildValue('i", 123) 123
Py_BuildValue('iii", 123, 456, 789) (123, 456, 789)
Py_BuildValue("s", "hello") 'hello’
Py_BuildValue('ss", "hello", "world") (hello’, 'world’)
Py _BuildValue("s#", "hello", 4) 'hell’
Py_BuildValue("()") 0
Py_BuildValue("(i)", 123) (123,)
Py_BuildValue("(ii)", 123, 456) (123, 456)
Py_BuildValue("(i,i)", 123, 456) (123, 456)
Py_BuildValue('[i,i]", 123, 456) [123, 456]

Py_BuildValue('{s:i,s:i}",

"abc", 123, "def", 456) {'abc’ 123, ’'def: 456}
Py_BuildValue("((ii)(ii)) (ii)",

1, 2, 3, 4, 5, 6) (@, 2), 3, 4)), (5, 6)

1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on
the heap. In C, this is done using the functiomsloc() andfree() . In C++, the operatonrsew anddelete
are used with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated wittmalloc() should eventually be returned to the pool of available memory
by exactly one call tdree() . Itis importantto calfree() at the right time. If a block’s address is forgotten

but free() is not called for it, the memory it occupies cannot be reused until the program terminates. This
is called amemory leak On the other hand, if a program caftee() for a block and then continues to use

the block, it creates a conflict with re-use of the block through anatialoc() call. This is calledusing

12 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.4

freed memorylt has the same bad consequences as referencing uninitialized data — core dumps, wrong results,
mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a
block of memory, do some calculation, and then free the block again. Now a change in the requirements for the
function may add a test to the calculation that detects an error condition and can return prematurely from the
function. It's easy to forget to free the allocated memory block when taking this premature exit, especially when it

is added later to the code. Such leaks, once introduced, often go undetected for a long time: the error exit is taken
only in a small fraction of all calls, and most modern machines have plenty of virtual memory, so the leak only
becomes apparent in a long-running process that uses the leaking function frequently. Therefore, it's important to
prevent leaks from happening by having a coding convention or strategy that minimizes this kind of errors.

Since Python makes heavy usemoélloc() andfree() |, it needs a strategy to avoid memory leaks as well

as the use of freed memory. The chosen method is cadfedence counting The principle is simple: every

object contains a counter, which is incremented when a reference to the object is stored somewhere, and which is
decremented when a reference to it is deleted. When the counter reaches zero, the last reference to the object has
been deleted and the object is freed.

An alternative strategy is callealitomatic garbage collection(Sometimes, reference counting is also referred

to as a garbage collection strategy, hence my use of “automatic” to distinguish the two.) The big advantage of
automatic garbage collection is that the user doesn’t need tor@af) explicitly. (Another claimed advantage

is an improvement in speed or memory usage — this is no hard fact however.) The disadvantage is that for C,
there is no truly portable automatic garbage collector, while reference counting can be implemented portably (as
long as the functionmalloc() andfree() are available — which the C Standard guarantees). Maybe some
day a sufficiently portable automatic garbage collector will be available for C. Until then, we’ll have to live with
reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to
detect reference cycles. This allows applications to not worry about creating direct or indirect circular references;
these are the weakness of garbage collection implemented using only reference counting. Reference cycles consist
of objects which contain (possibly indirect) references to themselves, so that each object in the cycle has a ref-
erence count which is non-zero. Typical reference counting implementations are not able to reclaim the memory
belonging to any objects in a reference cycle, or referenced from the objects in the cycle, even though there are no
further references to the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them so long as there are no finalizers im-
plemented in Python (del_ () methods). When there are such finalizers, the detector exposes the cycles
through thegc module (specifically, thgarbage variable in that module). Thgc module also exposes a way

to run the detector (theollect() function), as well as configuration interfaces and the ability to disable the
detector at runtime. The cycle detector is considered an optional component; though it is included by default, it
can be disabled at build time using theithout-cycle-gc option to theconfigure script on Unix platforms
(including Mac OS X) or by removing the definition @fITH_CYCLE_GGn thepyconfig.h header on other
platforms. If the cycle detector is disabled in this way, gieemodule will not be available.

1.10.1 Reference Counting in Python

There are two macroBy INCREF(x) andPy_DECREF(x), which handle the incrementing and decrementing
of the reference counPy_DECREF() also frees the object when the count reaches zero. For flexibility, it doesn't
call free() directly — rather, it makes a call through a function pointer in the objdégpe object For this
purpose (and others), every object also contains a pointer to its type object.

The big question now remains: when to Ude INCREF(x) andPy DECREF(x) ? Let's first introduce some

terms. Nobody “owns” an object; however, you camnn a referencéo an object. An object’s reference count

is now defined as the number of owned references to it. The owner of a reference is responsible for calling
Py_DECREF() when the reference is no longer needed. Ownership of a reference can be transferred. There are
three ways to dispose of an owned reference: pass it on, store it, ®yc@ECREF(). Forgetting to dispose of

an owned reference creates a memory leak.

Itis also possible tborrow? a reference to an object. The borrower of a reference should nGhycallECREF().

2 The metaphor of “borrowing” a reference is not completely correct: the owner still has a copy of the reference.

1.10. Reference Counts 13

Extending and Embedding Python, Release 2.6.4

The borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed
reference after the owner has disposed of it risks using freed memory and should be avoided corpletely.

The advantage of borrowing over owning a reference is that you don't need to take care of disposing of the

reference on all possible paths through the code — in other words, with a borrowed reference you don't run the

risk of leaking when a premature exit is taken. The disadvantage of borrowing over owning is that there are some
subtle situations where in seemingly correct code a borrowed reference can be used after the owner from which it
was borrowed has in fact disposed of it.

A borrowed reference can be changed into an owned reference by djlinlCREF() . This does not affect
the status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full
owner responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

1.10.2 Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification
whether ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions
whose function it is to create a new object, suchPgint_FromLong() and Py_BuildValue() , pass
ownership to the receiver. Even if the object is not actually new, you still receive ownership of a new reference to
that object. For instanc®yInt_FromLong() maintains a cache of popular values and can return a reference

to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for in-

stance PyObject_GetAttrString() . The picture is less clear, here, however, since a few com-
mon routines are exception®yTuple_Getltem() , PyList_Getltem() , PyDict_Getltem() , and
PyDict_GetltemString() all return references that you borrow from the tuple, list or dictionary.

The functionPylmport_AddModule() also returns a borrowed reference, even though it may actually create
the object it returns: this is possible because an owned reference to the object is ssyethodules

When you pass an object reference into another function, in general, the function borrows the reference from you
— if it needs to store it, it will us?y INCREF() to become an independent owner. There are exactly two
important exceptions to this ruld?yTuple_Setltem() and PyList_Setltem() . These functions take

over ownership of the item passed to them — even if they fail! (NoteRy&tict Setltem() and friends

don’t take over ownership — they are “normal.”)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns
a reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when
such a borrowed reference must be stored or passed on, it must be turned into an owned reference by calling
Py_INCREF() .

The object reference returned from a C function that is called from Python must be an owned reference — owner-
ship is transferred from the function to its caller.

1.10.3 Thin Ice
There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all
have to do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is uBIRgDECREF() on an unrelated object while borrowing
a reference to a list item. For instance:

void
bug (PyObject *list)
{

PyObject *item = PyList Getltem(list, 0);

3 Checking that the reference count is at leasbés not work— the reference count itself could be in freed memory and may thus be
reused for another object!

14 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.4

PyList_Setltem(list, 1, PyInt_FromLong(OL));
PyObject_Print(item, stdout, 0); /* BUG! */
}
This function first borrows a referencelist[0] , then replacebst[1] with the valueO, and finally prints

the borrowed reference. Looks harmless, right? But it's not!

Let's follow the control flow intoPyList_Setltem() . The list owns references to all its items, so when item

1 is replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class definagtbh () method. If this class instance

has a reference count of 1, disposing of it will call itsdel__ () method.

Since it is written in Python, the del () method can execute arbitrary Python code. Could it perhaps do
something to invalidate the referenceitem in bug() ? You bet! Assuming that the list passed ibtag() is
accessibletothe del_ () method, it could execute a statement to the effediebf list[0] , and assuming
this was the last reference to that object, it would free the memory associated with it, thereby invaiidating

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The
correct version of the function reads:

void

no_bug (PyObject *list)

PyObject *item = PyList_Getltem(list, 0);
Py_INCREF(item);

PyList_Setltem(list, 1, PyiInt_FromLong(OL));
PyObject_Print(item, stdout, 0);

Py_DECREF(item);
}

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable
amount of time in a C debugger to figure out why higlel_ () methods would falil...

The second case of problems with a borrowed reference is a variant involving threads. Normally, multi-
ple threads in the Python interpreter can't get in each other's way, because there is a global lock protect-
ing Python’s entire object space. However, it is possible to temporarily release this lock using the macro
Py _BEGIN_ALLOW_THREADSnd to re-acquire it using’y END_ALLOW_THREADShis is common
around blocking I/O calls, to let other threads use the processor while waiting for the I/O to complete. Obvi-
ously, the following function has the same problem as the previous one:

void
bug (PyObject *list)
{
PyObject *item = PyList Getltem(list, 0);
Py BEGIN_ALLOW_THREADS
...some blocking | /O call...
Py _END_ALLOW_THREADS
PyObject_Print(item, stdout, 0); /* BUG! */
}

1.10.4 NULL Pointers

In general, functions that take object references as arguments do not expect you to pa$gthgmointers, and

will dump core (or cause later core dumps) if you do so. Functions that return object references generally return
NULL only to indicate that an exception occurred. The reason for not testidgfbt. arguments is that functions

often pass the objects they receive on to other function — if each function were to tBkilfbr there would be

a lot of redundant tests and the code would run more slowly.

It is better to test foNULL only at the “source:” when a pointer that mayMELL is received, for example, from
malloc() or from a function that may raise an exception.

1.10. Reference Counts 15

Extending and Embedding Python, Release 2.6.4

The macrosPy INCREF() andPy DECREF() do not check foNULL pointers — however, their variants
Py XINCREF() andPy XDECREF() do.

The macros for checking for a particular object typytiype_Check()) don't check forNULL pointers —
again, there is much code that calls several of these in a row to test an object against various different expected
types, and this would generate redundant tests. There are no variantUiithchecking.

The C function calling mechanism guarantees that the argument list passed to C furaetisnsi(the examples)
is neveNULL — in fact it guarantees that it is always a tuple.

It is a severe error to ever leNUJLL pointer “escape” to the Python user.

1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python
interpreter) is compiled and linked by the C compiler, global or static objects with constructors cannot be used.
This is not a problem if the main program is linked by the C++ compiler. Functions that will be called by the
Python interpreter (in particular, module initialization functions) have to be declared etieagy "C" . Itis
unnecessary to enclose the Python header filexiarn "C" {...} — they use this form already if the
symbol__cplusplus is defined (all recent C++ compilers define this symbol).

1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code
in an extension module can be useful for other extension modules. For example, an extension module could
implement a type “collection” which works like lists without order. Just like the standard Python list type has a C
API which permits extension modules to create and manipulate lists, this new collection type should have a set of
C functions for direct manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring tstatic , of course), provide an
appropriate header file, and document the C API. And in fact this would work if all extension modules were
always linked statically with the Python interpreter. When modules are used as shared libraries, however, the
symbols defined in one module may not be visible to another module. The details of visibility depend on the
operating system; some systems use one global namespace for the Python interpreter and all extension modules
(Windows, for example), whereas others require an explicit list of imported symbols at module link time (AIX is

one example), or offer a choice of different strategies (most Unices). And even if symbols are globally visible, the
module whose functions one wishes to call might not have been loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in
extension modules should be declastatic , except for the module’s initialization function, in order to avoid
name clashes with other extension modules (as discussed in sElctidriodule’s Method Table and Initialization
Function). And it means that symbols thahouldbe accessible from other extension modules must be exported
in a different way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another
one: CObjects. A CObject is a Python data type which stores a poirdigr ¢). CObjects can only be created

and accessed via their C API, but they can be passed around like any other Python object. In particular, they can be
assigned to a name in an extension module’s namespace. Other extension modules can then import this module,
retrieve the value of this name, and then retrieve the pointer from the CObject.

There are many ways in which CObjects can be used to export the C API of an extension module. Each name
could get its own CObject, or all C API pointers could be stored in an array whose address is published in a

CObject. And the various tasks of storing and retrieving the pointers can be distributed in different ways between

the module providing the code and the client modules.

The following example demonstrates an approach that puts most of the burden on the writer of the exporting
module, which is appropriate for commonly used library modules. It stores all C API pointers (just one in the

4 These guarantees don't hold when you use the “old” style calling convention — this is still found in much existing code.

16 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.4

example!) in an array ofoid pointers which becomes the value of a CObject. The header file corresponding
to the module provides a macro that takes care of importing the module and retrieving its C API pointers; client
modules only have to call this macro before accessing the C API.

The exporting module is a modification of tlspam module from sectiom’ Simple Example The function
spam.system() does not call the C library functiossystem() directly, but a functiolPySpam_System() ,

which would of course do something more complicated in reality (such as adding “spam” to every command). This
functionPySpam_System() is also exported to other extension modules.

The functionPySpam_System() is a plain C function, declarestatic like everything else:
static int
PySpam_System(const char *command)

return system(command);

}

The functionspam_system() is modified in a trivial way:

static PyObject *
spam_system (PyObject *self, PyObject *args)

{
const char *command;
int sts;
if (! PyArg_ParseTuple(args, "s", &command))
return NULL
sts = PySpam_System(command);
return Py _Buildvalue("i", sts);
}

In the beginning of the module, right after the line
#include "Python.h"
two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The#define is used to tell the header file that it is being included in the exporting module, not a client module.
Finally, the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC
initspam (void)

{
PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;
m = Py_InitModule(" spam", SpamMethods);
if (m == NULD
return ;
[* Initialize the C API pointer array */
PySpam_API[PySpam_System NUM] = (void *)PySpam_System;
[* Create a CObject containing the API pointer array’s address */
C_api_object = PyCObject_FromVoidPtr((void *)PySpam_API, NULL);
if (c_api_object I'= NULD
PyModule_AddObject(m, " C_API", c_api_object);
}

1.12. Providing a C API for an Extension Module 17

Extending and Embedding Python, Release 2.6.4

Note thatPySpam_API is declaredstatic ; otherwise the pointer array would disappear whgtspam()
terminates!

The bulk of the work is in the header figgammodule.h , which looks like this:

#ifndef Py_SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef _ cplusplus

extern "C' {

#endif

/* Header file for spammodule */

[* C API functions */

#define PySpam_System _NUM 0

#define PySpam_System_ RETURN int

#define PySpam_System_PROTO (const char *command)
[* Total number of C API pointers */

#define PySpam_API_pointers 1

#ifdef SPAM_MODULE

[* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_PROTO;

#else
[* This section is used in modules that use spammodule’s APl */

static void ** PySpam_API;

#define PySpam_System \
(*(PySpam_System_RETURN (*)PySpam_System_PROTO) PySpam_API[PySpam_System_NUM])

/* Return -1 and set exception on error, 0 on success. */

static int
import_spam (void)
{

PyObject *c_api_object;
PyObject *module;

module = Pylmport_ImportModule(" spam");
if (module == NULL
return -1;
c_api_object = PyObject_GetAttrString(module, " _C_API");
if (c_api_object == NULD {
Py _DECREF(module);
return -1;
}

if (PyCObject_Check(c_api_object))
PySpam_API = (void **)PyCObject_AsVoidPtr(c_api_object);

Py DECREF(c_api_object);
Py_DECREF(module);
return 0;

18 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.4

#endif

#ifdef __ cplusplus

}
#endif

#endif /* !defined(Py_SPAMMODULE_H) *

All that a client module must do in order to have access to the funBg@pam_System() is to call the function
(or rather macroimport_spam() in its initialization function:

PyMODINIT_FUNC
initclient (void)
{

PyObject *m;

m = Py_InitModule("client ", ClientMethods);
if (m == NULL
return ;
if (import_spam() < 0)
return ;
[* additional initialization can happen here */

}

The main disadvantage of this approach is that thesfilmmodule.h is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that CObjects offer additional functionality, which is especially useful for memory
allocation and deallocation of the pointer stored in a CObject. The details are described in the Python/C API
Reference Manual in the secti@Objects(in The Python/C ABland in the implementation of CObjects (files
Include/cobject.h andObjects/cobject.c in the Python source code distribution).

1.12. Providing a C API for an Extension Module 19

Extending and Embedding Python, Release 2.6.4

20 Chapter 1. Extending Python with C or C++

CHAPTER

TWO

DEFINING NEW TYPES

As mentioned in the last chapter, Python allows the writer of an extension module to define new types that can be
manipulated from Python code, much like strings and lists in core Python.

This is not hard; the code for all extension types follows a pattern, but there are some details that you need to
understand before you can get started.

Note: The way new types are defined changed dramatically (and for the better) in Python 2.2. This document
documents how to define new types for Python 2.2 and later. If you need to support older versions of Python, you
will need to refer taolder versions of this documentation

2.1 The Basics

The Python runtime sees all Python objects as variables of Ry@bject* . A PyObject is not a very
magnificent object - it just contains the refcount and a pointer to the object’s “type object”. This is where the
action is; the type object determines which (C) functions get called when, for instance, an attribute gets looked up
on an object or it is multiplied by another object. These C functions are called “type methods” to distinguish them
from things like[].append (which we call “object methods”).

So, if you want to define a new object type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new
type:
#include <Python.h>

typedef struct {

PyObject HEAD

[* Type-specific fields go here. */
} noddy NoddyObiject;

static PyTypeObject noddy NoddyType = {

PyObject HEAD INIT(NULD

0, /*ob_size*/

" noddy.Noddy ", [*tp_name*/

sizeof (noddy_NoddyObiject), [*tp_basicsize*/
[*tp_itemsize*/
[*tp_dealloc*/
[*tp_print*/
[*tp_getattr*/
[*tp_setattr*/
[*tp_compare*/
[*tp_repr*/
[*tp_as_number*/
[*tp_as_sequence*/
[*tp_as_mapping*/

OO0 O0000000O0O

21

http://www.python.org/doc/versions/

Extending and Embedding Python, Release 2.6.4

0, [*tp_hash */
0, [*tp_call*/
0, [*tp_str*/
0, [*tp_getattro*/
0, [*tp_setattro*/
0, [*tp_as_buffer*/
Py TPFLAGS DEFAULT, I*tp_flags*/
"“Noddy objects ", /* tp_doc */

2

static PyMethodDef noddy_methods[] = {
{NULL /* Sentinel */

b

#ifndef PyMODINIT_FUNC
#define PyMODINIT_FUNC void
#endif

PyMODINIT_FUNC

initnoddy (void)

{

/* declarations for DLL import/export */

PyObject * m;

noddy NoddyType.tp_new = PyType_GenericNew;

if (PyType_Ready(&noddy NoddyType) < 0)
return ;

m = Py_InitModule3("noddy ", noddy_methods,

"Example module that creates an extension type. ");

Py_INCREF(&noddy_NoddyType);
PyModule_AddObject(m, “Noddy", (PyObject *) &noddy_NoddyType);

}

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the last chapter.
The first bit that will be new is:

typedef struct {
PyObject_ HEAD
} noddy_ NoddyObiject;

This is what a Noddy object will contain—in this case, nothing more than every Python object contains, namely a
refcount and a pointer to a type object. These are the fieldBybject HEAD macro brings in. The reason

for the macro is to standardize the layout and to enable special debugging fields in debug builds. Note that there is
no semicolon after theyObject HEAD macro; one is included in the macro definition. Be wary of adding one

by accident; it's easy to do from habit, and your compiler might not complain, but someone else’s probably will!
(On Windows, MSVC is known to call this an error and refuse to compile the code.)

For contrast, let's take a look at the corresponding definition for standard Python integers:

typedef struct {
PyObject_ HEAD
long ob_ival;
} PyintObject;

Moving on, we come to the crunch — the type object.

static PyTypeObject noddy NoddyType ={
PyObject HEAD_INIT(NULL)

01
"noddy.Noddy ",

sizeof (noddy_NoddyObiject),

[*ob_size*/
[*tp_name*/
[*tp_basicsize*/

22

Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

[*tp_itemsize*/
[*tp_dealloc*/
[*tp_print*/
[*tp_getattr*/
[*tp_setattr*/
[*tp_compare*/
[*tp_repr*/
[*tp_as_number*/
[*tp_as_sequence*/
[*tp_as_mapping*/
[*tp_hash */
[*tp_call*/
[*tp_str*/
[*tp_getattro*/
[*tp_setattro*/

0, [*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, I*tp_flags*/
"Noddy objects ", [* tp_doc */

elelejelojolololojololojloloNe)

b
Now if you go and look up the definition d?yTypeObject in object.h you’ll see that it has many more

fields that the definition above. The remaining fields will be filled with zeros by the C compiler, and it's common
practice to not specify them explicitly unless you need them.

This is so important that we're going to pick the top of it apart still further:
PyObject HEAD_INIT(NULL)

This line is a bit of a wart; what we'd like to write is:
PyObject HEAD INIT(&PyType Type)

as the type of atype object is “type”, but this isn't strictly conforming C and some compilers complain. Fortunately,
this member will be filled in for us biyType Ready()

0, [* ob_size */

The ob_size field of the header is not used; its presence in the type structure is a historical artifact that is
maintained for binary compatibility with extension modules compiled for older versions of Python. Always set
this field to zero.

"noddy.Noddy ", [* tp_name */

The name of our type. This will appear in the default textual representation of our objects and in some error
messages, for example:

>>> "" + noddy.new_noddy()
Traceback (most recent call last)
File "<stdin> ", line 1, in ?

TypeError: cannot add type "noddy.Noddy " to string

Note that the name is a dotted name that includes both the module name and the name of the type within the
module. The module in this caserieddy and the type ifNoddy, so we set the type nameoddy.Noddy .

sizeof (noddy_NoddyObiject), [* tp_basicsize */
This is so that Python knows how much memory to allocate when yotPgéalbject New()

Note: If you want your type to be subclassable from Python, and your type has thezaasicsize as its

base type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your
type firstin its__bases__ , or else it will not be able to call your type’s new__ () method without getting

an error. You can avoid this problem by ensuring that your type has a larger valige f@sicsize than its

base type does. Most of the time, this will be true anyway, because either your base typeohjédie , or else

you will be adding data members to your base type, and therefore increasing its size.

o, [* tp_itemsize */

2.1. The Basics 23

Extending and Embedding Python, Release 2.6.4

This has to do with variable length objects like lists and strings. Ignore this for now.
Skipping a number of type methods that we don'’t provide, we set the class flegs T®FLAGS_DEFAULT
Py _TPFLAGS_DEFAULT, I*tp_flags*/

All types should include this constant in their flags. It enables all of the members defined by the current version
of Python.

We provide a doc string for the type ip_doc .
"Noddy objects ", [* tp_doc */

Now we get into the type methods, the things that make your objects different from the others. We aren’t going
to implement any of these in this version of the module. We'll expand this example later to have more interesting
behavior.

For now, all we want to be able to do is to create Méaddy objects. To enable object creation, we have to
provide atp_new implementation. In this case, we can just use the default implementation provided by the
API function PyType_GenericNew() . We'd like to just assign this to thgp_new slot, but we can't, for
portability sake, On some platforms or compilers, we can't statically initialize a structure member with a function
defined in another C module, so, instead, we'll assigrtpheew slot in the module initialization function just
before callingPyType_Ready()

noddy_NoddyType.tp_new = PyType_GenericNew;
if (PyType_Ready(&noddy NoddyType) < 0)
return

All the other type methods aldULL, so we’ll go over them later — that'’s for a later section!
Everything else in the file should be familiar, except for some coditimoddy/()

if (PyType_Ready(&noddy NoddyType) < 0)
return ;

This initializes theNoddy type, filing in a number of members, including_type that we initially set taNULL.
PyModule_AddObject(m, "Noddy", (PyObject *) &noddy_NoddyType);
This adds the type to the module dictionary. This allows us to cidatlely instances by calling thdoddy class:

>>> import noddy
>>> mynoddy = noddy.Noddy()

That's it! All that remains is to build it; put the above code in a file calbeddy.c and

from distutils.core import setup, Extension
setup(name ="noddy", version ="1.0",
ext_modules =[Extension("noddy ", ["noddy.c "1)])

in a file calledsetup.py ;then typing
$ python setup.py build

at a shell should produce a fifeddy.so in a subdirectory; move to that directory and fire up Python — you
should be able tomport noddy and play around with Noddy objects.

That wasn'’t so hard, was it?

Of course, the current Noddy type is pretty uninteresting. It has no data and doesn’t do anything. It can’t even be
subclassed.

2.1.1 Adding data and methods to the Basic example

Let's expend the basic example to add some data and methods. Let's also make the type usable as a base class.
We'll create a new moduleoddy2 that adds these capabilities:

24 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_ HEAD
PyObject *first; [* first name */

PyObject *last; [* last name */
int number;
} Noddy;

static void
Noddy dealloc (Noddy * self)

{

Py_XDECREF(self - >first);

Py _XDECREF(self - >last);

self ->ob_type - >tp_free((PyObject *)self);
}

static PyObject *
Noddy_ new (PyTypeObject *type, PyObject *args, PyObject
{

Noddy * self;
self = (Noddy *)type - >tp_alloc(type, 0);
it (self = NULD {
self ->first = PyString_FromString("y
if (self - >first == NULL)
{

Py DECREF(self);
return NULL;

}
self ->last = PyString_FromString(",
if (self ->last == NULL

{

Py DECREF(self);
return NULL;

}
self ->number = 0O;
}
return (PyObject *)self;
}
static int

Noddy init (Noddy *self, PyObject *args, PyObject * kwds)

{
PyObject *first =NULL *last =NULL, *tmp;

static char *kwlist]] = {"first ", "last ", "number",
if (! PyArg_ParseTupleAndKeywords(args, kwds, p[ele]
&first, &last,
&self - >number))
return -1;
it (first) {

* kwds)

NULLY;

", kwlist,

2.1. The Basics

25

Extending and Embedding Python, Release 2.6.4

tmp = self - >first;
Py_INCREF(first);
self - >first = first;
Py_XDECREF(tmp);

}

if (last) {
tmp = self ->last;
Py_INCREF(last);
self ->last = last;
Py_XDECREF(tmp);

}

return 0;

static PyMemberDef Noddy _members[] = {
{"first ", T_OBJECT_EX, offsetof(Noddy, first),
"first name "},

{"last ", T_OBJECT_EX, offsetof(Noddy, last),
"last name "},

{"number", T_INT, offsetof(Noddy, number),
“noddy number "},

{NULL /* Sentinel */

¥

static PyObject *

Noddy name(Noddy * self)

{ B
static
PyObject

PyObject
*args,

*format = NULL
* result;

if (format == NULLD {
format = PyString_FromString(
if (format == NULL
return NULL
}

if (self - >first == NULD {
PyErr_SetString(PyExc_AttributeError,
return NULL

}

if (self ->last == NULL {
PyErr_SetString(PyExc_AttributeError,
return NULL

}

args = Py BuildValue(
if (args == NULD
return NULL

00, self

result = PyString_Format(format, args);
Py_DECREF(args);

return result;

"%s %S$);

- >first, self

“first ");

"last ");

- >last);

26

Chapter 2.

Defining New Types

Extending and Embedding Python, Release 2.6.4

static PyMethodDef Noddy methods][] ={
{" name", (PyCFunction)Noddy name, METH_NOARGS,
"Return the name, combining the first and last name

}l
{NULL /* Sentinel */

3

static PyTypeObject NoddyType
PyObject HEAD_INIT(NULL

0!

"noddy.Noddy ",

sizeof (Noddy),

0,
(destructor)Noddy_dealloc,
0!

=

[*ob_size*/
[*tp_name*/
[*tp_basicsize*/
[*tp_itemsize*/
[*tp_dealloc*/
[*tp_print*/

[*tp_getattr*/
[*tp_setattr*/
[*tp_compare*/
[*tp_repr*/
[*tp_as_number*/
[*tp_as_sequence?*/
[*tp_as_mapping*/
[*tp_hash */
[*tp_call*/
[*tp_str*/
[*tp_getattro*/
[*tp_setattro*/

, [*tp_as_buffer*/

Py TPFLAGS DEFAULT| Py TPFLAGS_BASETYPE, /*tp_flags*/
"Noddy objects ", /* tp_doc */

OCO000000000O00O00OO0O

0, [* tp_traverse */
0, [* tp_clear */
0, [* tp_richcompare */
0, [* tp_weaklistoffset */
0, [* tp_iter */
0, [* tp_iternext */
Noddy_ methods, /* tp_methods */
Noddy members, /* tp_members */
0, I* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)Noddy_init, [* tp_init */
0, /* tp_alloc */
Noddy_new, /* tp_new */

2

static PyMethodDef module_methods][] = {
{NULLZ /* Sentinel */

2

#ifndef PyMODINIT_FUNC
#define PyMODINIT_FUNC void
#endif

PyMODINIT_FUNC

/* declarations for DLL import/export */

2.1. The Basics

Extending and Embedding Python, Release 2.6.4

initnoddy2 (void)

{

PyObject * m;

if (PyType_Ready(&NoddyType) < 0)

return ;
m = Py_InitModule3("noddy2 ", module_methods,
"Example module that creates an extension type. "),
if (m == NULD
return ;

Py_INCREF(&NoddyType);

PyModule_AddObject(m, “Noddy", (PyObject *) &NoddyType);
}

This version of the module has a number of changes.

We've added an extra include:

#include "structmember.h"

This include provides declarations that we use to handle attributes, as described a bit later.

The name of thé&loddy object structure has been shortenedltaldy . The type object name has been shortened
to NoddyType .

The Noddy type now has three data attributdisst, last, andnumber The first andlast variables are Python
strings containing first and last names. Themberattribute is an integer.

The object structure is updated accordingly:

typedef struct {
PyObject HEAD
PyObject *first;
PyObject *last;
int number;

} Noddy;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a
minimum, we need a deallocation method:

static void
Noddy dealloc (Noddy * self)

{

Py _XDECREF(self - >first);

Py_XDECREF(self - >last);

self ->ob_type - >tp_free((PyObject *)self);
}

which is assigned to thip_dealloc member:
(destructor)Noddy_dealloc, [*tp_dealloc*/

This method decrements the reference counts of the two Python attributes. Rig XdBECREF() here because
thefirst andlast members could b8IULL. It then calls thedp_free member of the object’s type to free
the object’s memory. Note that the object’s type might nolbedyType , because the object may be an instance
of a subclass.

We want to make sure that the first and last names are initialized to empty strings, so we provide a new method:

static PyObject *
Noddy new (PyTypeObject *type, PyObject *args, PyObject * kwds)
{

Noddy * self;

28 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

self = (Noddy *)type - >tp_alloc(type, 0);
if (self = NULD {
self - >first = PyString_FromString(")
if (self - >first == NULL
{

Py DECREF(self);
return NULL;

}

self ->last = PyString_FromString(")
if (self ->last == NULL)
{
Py_DECREF(self),
return NULL

}

self ->number = O;

}

return (PyObject *)self;
}

and install it in thep_new member:
Noddy_new, [* tp_new */

The new member is responsible for creating (as opposed to initializing) objects of the type. It is exposed in
Python as the _new_ () method. See the paper titled “Unifying types and classes in Python” for a detailed
discussion of the_new__() method. One reason to implement a new method is to assure the initial values
of instance variables. In this case, we use the new method to make sure that the initial values of the members
first andlast are notNULL. If we didn't care whether the initial values welNJLL, we could have used
PyType_GenericNew() as our new method, as we did befoRyType_GenericNew() initializes all of

the instance variable membersNtJLL.

The new method is a static method that is passed the type being instantiated and any arguments passed when the
type was called, and that returns the new object created. New methods always accept positional and keyword
arguments, but they often ignore the arguments, leaving the argument handling to initializer methods. Note that

if the type supports subclassing, the type passed may not be the type being defined. The new method calls the
tp_alloc slot to allocate memory. We don't fill tie_alloc slot ourselves. RathéyType Ready() fills it

for us by inheriting it from our base class, whicloisject by default. Most types use the default allocation.

Note: If you are creating a co-operatitp_new (one that calls a base typefp_new or __new_ ()),

you mustnot try to determine what method to call using method resolution order at runtime. Always statically
determine what type you are going to call, and caltfitsnew directly, or viatype->tp_base->tp_new

If you do not do this, Python subclasses of your type that also inherit from other Python-defined classes may
not work correctly. (Specifically, you may not be able to create instances of such subclasses without getting a
TypeError)

We provide an initialization function:

static int

Noddy init (Noddy *self, PyObject *args, PyObject * kwds)

{ PyObject *first =NULL *last =NULL, *tmp;
static char * kwilist[] = {"first ", "last ", "number", NULL;
if (! PyArg_ParseTupleAndKeywords(args, kwds, "|00i ", kwilist,

&first, &last,
&self - >number))
return -1;

2.1. The Basics 29

Extending and Embedding Python, Release 2.6.4

if (first) {
tmp = self - >first;
Py_INCREF(first);
self - >first = first;
Py XDECREF(tmp);

}

if (last) {
tmp = self - >last;
Py INCREF(last);
self ->last = last;
Py _XDECREF(tmp);

}

return 0;

}
by filling thetp_init slot.
(initproc)Noddy _init, [* tp_init */

Thetp_init slotis exposed in Python as theinit__ () method. It is used to initialize an object after it's
created. Unlike the new method, we can’t guarantee that the initializer is called. The initializer isn’t called when
unpickling objects and it can be overridden. Our initializer accepts arguments to provide initial values for our
instance. Initializers always accept positional and keyword arguments.

Initializers can be called multiple times. Anyone can call thénit_ () method on our objects. For this
reason, we have to be extra careful when assigning the new values. We might be tempted, for example to assign
thefirst ~ member like this:

if (first) {
Py XDECREF(self - >first);
Py_INCREF(first);
self - >first = first;

}

But this would be risky. Our type doesn't restrict the type of tingt member, so it could be any kind of

object. It could have a destructor that causes code to be executed that tries to acfiests thenember. To be
paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing
their reference counts. When don’t we have to do this?

» when we absolutely know that the reference count is greater than 1
+ when we know that deallocation of the objéatill not cause any calls back into our type’s code

« when decrementing a reference counttp adealloc handler when garbage-collections is not supported
2

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way
is to define member definitions:

static PyMemberDef Noddy members[] = {
{"first ", T_OBJECT_EX, offsetof(Noddy, first), 0,
"first name "},
{"last ", T_OBJECT_EX, offsetof(Noddy, last), 0,
"last name "},
{" number", T_INT, offsetof(Noddy, number), 0,
"noddy number "},

1 This is true when we know that the object is a basic type, like a string or a float.

2 We relied on this in thep_dealloc handler in this example, because our type doesn’t support garbage collection. Even if a type
supports garbage collection, there are calls that can be made to “untrack” the object from garbage collection, however, these calls are advanced
and not covered here.

30 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

{NULLG /* Sentinel */
h
and put the definitions in thig_members slot:
Noddy _members, [* tp_members */

Each member definition has a member name, type, offset, access flags and documentation string. See the “Generic
Attribute Management” section below for details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned
to the Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned.
Further, the attributes can be deleted, setting the C point&Ekd.. Even though we can make sure the members

are initialized to norNULL values, the members can be seNdLL if the attributes are deleted.

We define a single methodame() , that outputs the objects name as the concatenation of the first and last names.

static PyObject *
Noddy name(Noddy * self)

{

static PyObject *format = NULL

PyObject *args, *result;

if (format == NULL {
format = PyString_FromString("%s %S);
if (format == NULL

return NULL;

}

if (self - >first == NULD {
PyErr_SetString(PyExc_AttributeError, “first ");
return NULL;

}

if (self ->last == NULLD {
PyErr_SetString(PyExc_AttributeError, "last ");
return NULL;

}

args = Py Buildvalue("O0O, self - >first, self - >last);

if (args == NULL
return NULL;

result = PyString_Format(format, args);

Py _DECREF(args);

return result;

}

The method is implemented as a C function that takded@dy (or Noddy subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as
well, but in this cased we don't take any and don’t need to accept a positional argument tuple or keyword argument
dictionary. This method is equivalent to the Python method:

def name(self)
return " %s %% % (self.first, self.last)

Note that we have to check for the possibility that itgt ~ andlast members ar@lULL. This is because they
can be deleted, in which case they are s@lth.L. It would be better to prevent deletion of these attributes and to
restrict the attribute values to be strings. We'll see how to do that in the next section.

Now that we've defined the method, we need to create an array of method definitions:

2.1. The Basics 31

Extending and Embedding Python, Release 2.6.4

static PyMethodDef Noddy methods][] ={
{" name", (PyCFunction)Noddy name, METH_NOARGS,
" Return the name, combining the first and last name
}1

{NULL /* Sentinel */

2

and assign them to thp_methods slot:

Noddy_methods, [* tp_methods */

Note that we used thlETH_NOARG&g to indicate that the method is passed no arguments.

Finally, we’'ll make our type usable as a base class. We've written our methods carefully so far so that they don't
make any assumptions about the type of the object being created or used, so all we need to do is to add the
Py_TPFLAGS_BASETYPH our class flag definition:

Py _TPFLAGS_DEFAULT| Py _TPFLAGS_BASETYPE, /*tp_flags*/
We renameénitnoddy() toinitnoddy?2() and update the module name passdeytolnitModule3()
Finally, we update ousetup.py file to build the new module:

from distutils.core import setup, Extension
setup(name ="noddy", version ="1.0",
ext_modules =[
Extension("noddy", ["noddy.c "]),
Extension(" noddy2 ", ["noddy2.c "]),

)

2.1.2 Providing finer control over data attributes

In this section, we’ll provide finer control over how tfisst andlast attributes are set in tHéoddy example.
In the previous version of our module, the instance variatilss andlast could be set to non-string values
or even deleted. We want to make sure that these attributes always contain strings.

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject HEAD
PyObject *first;
PyObject *last;
int number;

} Noddy;

static void
Noddy dealloc (Noddy * self)

{

Py XDECREF(self - >first);

Py_XDECREF(self - >last);

self ->ob_type - >tp_free((PyObject *)self);
}

static PyObject *
Noddy new (PyTypeObject *type, PyObject *args, PyObject * kwds)

{
Noddy * self;
self = (Noddy *)type ->tp_alloc(type, 0):
if (self !'= NULL {
self ->first = PyString_FromString(")

32 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

}

static
Nodd

{

}

static

3

static
Nodd

{

if (self - >first == NULL
{
Py DECREF(self);
return NULL;

}
self ->last = PyString_FromString(")
if (self ->last == NULLD

{

Py DECREF(self);
return NULL;

}

self - >number = O;

}

return (PyObject *)self;

int
y_init (Noddy *self, PyObject *args, PyObject * kwds)

PyObject *first =NULL *last =NULL, *tmp;
static char * kwlist]] = {"first ", "last ", "number", NULL};

if (! PyArg_ParseTupleAndKeywords(args, kwds, "1SSi ", kwlist,
&first, &last,
&self - >number))
return - 1;

it (first) {
tmp = self - >first;
Py_INCREF(first);
self - >first = first;
Py_DECREF(tmp);

}
if (last) {
tmp = self ->last;
Py_INCREF(last);
self ->last = last;
Py_DECREF(tmp);
}
return 0;
PyMemberDef Noddy members[] = {
{"number", T_INT, offsetof(Noddy, number), 0,

“noddy number "},
{NULLZ /* Sentinel */

PyObject *
y_getfirst (Noddy *self, void *closure)

Py INCREF(self - >first);

2.1. The Basics

33

Extending and Embedding Python, Release 2.6.4

return self - >first;

}

static int
Noddy_setfirst (Noddy *self, PyObject *value, void *closure)

{

if (value == NULD {
PyErr_SetString(PyExc_TypeError, " Cannot delete the first attribute ");
return - 1;

}

if (! PyString_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string ");
return -1;

}

Py_DECREF(self - >first);
Py INCREF(value);
self - >first = value;

return 0;

}

static PyObject *
Noddy getlast (Noddy *self, void *closure)

{
Py INCREF(self - >last);
return self - >last;

}

static int

Noddy setlast (Noddy *self, PyObject *value, void *closure)
{

if (value == NULD {
PyErr_SetString(PyExc_TypeError, " Cannot delete the last attribute ");
return -1,

}

if (! PyString_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"The last attribute value must be a string ");
return - 1;

}

Py_DECREF(self - >last);
Py _INCREF(value);
self ->last = value;

return 0;

}

static PyGetSetDef Noddy_ getseters]] = {
{"first ",
(getter)Noddy_getfirst, (setter)Noddy_setfirst,
"first name ",
NULL,
{"last ",

34 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

(getter)Noddy_getlast, (setter)Noddy_setlast,

"last name ",
NULL,
{NULLZ /* Sentinel */
h
static PyObject *
Noddy_name(Noddy * self)
{
static PyObject *format = NULL
PyObject *args, *result;
if (format == NULLD {
format = PyString_FromString("%s %$);
if (format == NULL
return NULL
}
args = Py_Buildvalue("0OO, self ->first, self - >last);
if (args == NULD
return NULL
result = PyString_Format(format, args);
Py DECREF(args);
return result;
}
static PyMethodDef Noddy_methods]] ={
{"name", (PyCFunction)Noddy_name, METH_NOARGS,
"Return the name, combining the first and last name
L
{NULLG /* Sentinel */
I3
static PyTypeObject NoddyType = {
PyObject HEAD_INIT(NULL
0, /*ob_size*/
"noddy.Noddy ", [*tp_name*/
sizeof (Noddy), [*tp_basicsize*/
0, [*tp_itemsize*/
(destructor)Noddy_dealloc, [*tp_dealloc*/
0, [*tp_print*/
0, [*tp_getattr*/
0, [*tp_setattr*/
0, [*tp_compare*/
0, [*tp_repr*/
0, [*tp_as_number*/
0, [*tp_as_sequence?*/
0, [*tp_as_mapping*/
0, [*tp_hash */
0, [*tp_call*/
0, [*tp_str*/
0, [*tp_getattro*/
0, [*tp_setattro*/
0, [*tp_as_buffer*/

Py_TPFLAGS_DEFAULT]|

"Noddy objects ,

Py TPFLAGS_BASETYPE, /*tp_flags*/

/* tp_doc */

2.1. The Basics

35

Extending and Embedding Python, Release 2.6.4

0, [* tp_traverse */
0, [* tp_clear */
0, [* tp_richcompare */
0, [* tp_weaklistoffset */
0, [* tp_iter */
0, [* tp_iternext */
Noddy_ methods, [* tp_methods */
Noddy_members, [* tp_members */
Noddy_getseters, [* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, [* tp_descr_get */
0, [* tp_descr_set */
0, [* tp_dictoffset */
(initproc)Noddy _init, [* tp_init */
0, /* tp_alloc */
Noddy_ new, I* tp_new */
2
static PyMethodDef module_methods][] = {
{NULL /* Sentinel */
2
#ifndef PyMODINIT_FUNC [* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif

PyMODINIT_FUNC
initnoddy3 (void)

{

PyObject * m;

if (PyType_Ready(&NoddyType) < 0)

return
m = Py_InitModule3("noddy3 ", module_methods,
"Example module that creates an extension type. ");
if (m == NULD
return

Py_INCREF(&NoddyType);

PyModule_AddObject(m, “Noddy", (PyObject *) &NoddyType);
}

To provide greater control, over tHigst andlast attributes, we’ll use custom getter and setter functions.
Here are the functions for getting and settingfing attribute:

Noddy_getfirst(Noddy *self, void *closure)

{
Py INCREF(self - >first);
return self - >first;

}
static int
Noddy_setfirst(Noddy *self, PyObject *value, void *closure)
{
if (value == NULD {
PyErr_SetString(PyExc_TypeError, " Cannot delete the first attribute ");
return - 1;

36 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

}

if (! PyString_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string ");
return - 1;

}

Py DECREF(self - >first);
Py INCREF(value);
self - >first = value;

return 0;

}

The getter function is passed\mddy object and a “closure”, which is void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This
could, for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set
based on data in the closure.)

The setter function is passed tNeddy object, the new value, and the closure. The new value mayllid., in
which case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if the attribute
value is not a string.

We create an array ¢fyGetSetDef structures:

static PyGetSetDef Noddy_getseters[] = {
{"first ",
(getter)Noddy_getfirst, (setter)Noddy_setfirst,
"first name ",
NULL},
{"last ",
(getter)Noddy_getlast, (setter)Noddy_setlast,
"last name ",
NULLJ,
{NULLG /* Sentinel */
I3
and register it in thép_getset slot:
Noddy_getseters, [* tp_getset */
to register our attribute getters and setters.

The last item in &PyGetSetDef structure is the closure mentioned above. In this case, we aren't using the
closure, so we just padsULL.

We also remove the member definitions for these attributes:

static PyMemberDef Noddy members[] = {
{"number", T_INT, offsetof(Noddy, number), 0,
“noddy number "},
{NULL /* Sentinel */

h

We also need to update the init handler to only allow stringéto be passed:
static int

Noddy init (Noddy *self, PyObject *args, PyObject * kwds)

{

PyObject *first =NULL *last =NULL, *tmp;

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts,
however, we accept instances of string subclasses. Even though deallocating normal strings won't call back into our objects, we can’t guarantee
that deallocating an instance of a string subclass won't call back into our objects.

2.1. The Basics 37

Extending and Embedding Python, Release 2.6.4

static char * kwlist]] = {"first ", "last ", "number", NULL};

if (! PyArg_ParseTupleAndKeywords(args, kwds, "|Ssi ", kwilist,
&first, &last,
&self - >number))
return -1;

it (first) {
tmp = self - >first;
Py_INCREF(first);
self - >first = first;
Py_DECREF(tmp);

}

if (last) {
tmp = self - >last;
Py_INCREF(last);
self ->last = last;
Py_DECREF(tmp);

}

return 0O,

}

With these changes, we can assure thatfits¢ andlast members are neveMULL so we can remove
checks foNULL values in almost all cases. This means that most oPtheXDECREF() calls can be converted

to Py _DECREF() calls. The only place we can't change these calls is in the deallocator, where there is the
possibility that the initialization of these members failed in the constructor.

We also rename the module initialization function and module name in the initialization function, as we did before,
and we add an extra definition to thetup.py file.

2.1.3 Supporting cyclic garbage collection

Python has a cyclic-garbage collector that can identify unneeded objects even when their reference counts are not
zero. This can happen when objects are involved in cycles. For example, consider:

>>> | = [l
>>> |.append(l)
>>> del |

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its
reference count doesn’t drop to zero. Fortunately, Python’s cyclic-garbage collector will eventually figure out that
the list is garbage and free it.

In the second version of tHéoddy example, we allowed any kind of object to be stored infiltet or last
attributes.* This means thaloddy objects can participate in cycles:

>>> import noddy2

>>> n = noddy2.Noddy()
>>> | = [n]

>>> n.first = |

This is pretty silly, but it gives us an excuse to add support for the cyclic-garbage collectoNodbg example.
To support cyclic garbage collection, types need to fill two slots and set a class flag that enables these slots:

#include <Python.h>
#include "structmember.h"

4 Even in the third version, we aren’t guaranteed to avoid cycles. Instances of string subclasses are allowed and string subclasses could
allow cycles even if normal strings don't.

38 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

typedef struct {
PyObject_ HEAD
PyObject *first;
PyObject *last;
int number;
} Noddy;
static int
Noddy_traverse (Noddy *self, visitproc visit,
{
int vret;
if (self ->first) {
vret = visit(self - >first, arg);
if (vret = 0)
return vret;
}
if (self ->last) {
vret = visit(self - >last, arg);
if (vret 1= 0)
return vret;
}
return 0;
}
static int
Noddy clear (Noddy *self)
{
PyObject *tmp;
tmp = self - >first;
self - >first = NULL
Py_XDECREF(tmp);
tmp = self ->last;
self ->last = NULL

Py_XDECREF(tmp);

void *arg)

return O;
}
static void
Noddy dealloc (Noddy * self)
{
Noddy_clear(self);
self ->ob_type - >tp_free((PyObject *)self);
}
static PyObject *
Noddy new (PyTypeObject *type, PyObject *args, PyObject * kwds)
{
Noddy * self;
self = (Noddy *)type - >tp_alloc(type, 0);
if (self = NULD {
self - >first = PyString_FromString(")

2.1. The Basics

39

Extending and Embedding Python, Release 2.6.4

if (self - >first == NULL
{
Py DECREF(self);
return NULL;
}

self ->last = PyString_FromString(")
if (self ->last == NULLD
{
Py_DECREF(self);
return NULL

}

self - >number = O;

}

return (PyObject *)self;
}

static int
Noddy init (Noddy *self, PyObject *args, PyObject * kwds)
{

PyObject *first =NULL *last =NULL, *tmp;

static char * kwlist]] = {"first ", "last ", "number", NULL};

if (! PyArg_ParseTupleAndKeywords(args, kwds, "|00I ", kwlist,

&first, &last,
&self - >number))
return -1;

it (first) {
tmp = self - >first;
Py_INCREF(first);
self - >first = first;
Py_XDECREF(tmp);

}

if (last) {
tmp = self ->last;
Py_INCREF(last);
self ->last = last;
Py_XDECREF(tmp);

}

return 0;

static PyMemberDef Noddy _members[] = {
{"first ", T_OBJECT_EX, offsetof(Noddy, first), 0,
"first name "},
{"last ", T_OBJECT_EX, offsetof(Noddy, last), 0,
"last name "},
{"number", T_INT, offsetof(Noddy, number), 0,
“noddy number "},
{NULLZ /* Sentinel */

40 Chapter 2.

Defining New Types

Extending and Embedding Python, Release 2.6.4

static PyObject *
Noddy_name(Noddy * self)
{
static PyObject *format = NULL
PyObject *args, *result;
if (format == NULLD {
format = PyString_FromString("%s %S$);
if (format == NULL
return NULL
}
if (self - >first == NULD {
PyErr_SetString(PyExc_AttributeError, “first ");
return NULL
}
if (self ->last == NULL {
PyErr_SetString(PyExc_AttributeError, "last ");
return NULL
}
args = Py Buildvalue("0OO, self ->first, self - >last);
if (args == NULD
return NULL
result = PyString_Format(format, args);
Py DECREF(args);
return result;
}
static PyMethodDef Noddy methods][] = {
{"name", (PyCFunction)Noddy_name, METH_NOARGS,
"Return the name, combining the first and last name
L
{NULLG /* Sentinel */
2
static PyTypeObject NoddyType = {
PyObject HEAD_INIT(NULL
o, /*ob_size*/
" noddy.Noddy ", [*tp_name*/
sizeof (Noddy), I*tp_basicsize*/
0, [*tp_itemsize*/
(destructor)Noddy_dealloc, [*tp_dealloc*/
0, [*tp_print*/
0, [*tp_getattr*/
0, [*tp_setattr*/
0, [*tp_compare*/
0, [*tp_repr*/
0, [*tp_as_number*/
0, [*tp_as_sequence?*/
0, [*tp_as_mapping*/
0, [*tp_hash */
0, [*tp_call*/
0, [*tp_str*/

2.1. The Basics

41

Extending and Embedding Python, Release 2.6.4

0, [*tp_getattro*/

0, [*tp_setattro*/

0, [*tp_as_buffer*/

Py TPFLAGS DEFAULT| Py TPFLAGS_BASETYPE Py TPFLAGS_HAVE_GC,/*ip_flags*/

"Noddy objects ", /* tp_doc */
(traverseproc)Noddy_traverse, [* tp_traverse */
(inquiry)Noddy_clear, I* tp_clear */

0, [* tp_richcompare */
0, [* tp_weaklistoffset */
0, [* tp_iter */

0, [* tp_iternext */
Noddy_methods, /* tp_methods */
Noddy_members, [* tp_members */

0, I* tp_getset */

0, [* tp_base */
0, /* tp_dict */
0, [* tp_descr_get */
0, [* tp_descr_set */
0, [* tp_dictoffset */
(initproc)Noddy _init, [* tp_init */
0, /* tp_alloc */
Noddy new, /* tp_new */

h

static PyMethodDef module_methods][] = {
{NULL /* Sentinel */

h

#ifndef PyMODINIT_FUNC [* declarations for DLL import/export */

#define PyMODINIT_FUNC void

#endif

PyMODINIT_FUNC
initnoddy4 (void)

{

PyObject * m;

if (PyType_Ready(&NoddyType) < 0)

return ;
m = Py_InitModule3("noddy4 ", module_methods,
"Example module that creates an extension type. ");
if (m == NULD
return

Py_INCREF(&NoddyType);

PyModule_AddObject(m, “Noddy", (PyObject *) &NoddyType);
}
The traversal method provides access to subobjects that could participate in cycles:
static int
Noddy traverse (Noddy *self, visitproc visit, void *arg)
{

int vret;

if (self ->first) {
vret = visit(self - >first, arg);
if (vret 1= 0)

42 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

return vret;

}
if (self ->last) {
vret = visit(self - >last, arg);
if (vret 1= 0)
return vret;
}
return O;

}

For each subobject that can participate in cycles, we need to callsitg function, which is passed to the
traversal method. Theisit() function takes as arguments the subobject and the extra arganygrassed to
the traversal method. It returns an integer value that must be returned if it is non-zero.

Python 2.4 and higher providePy _VISIT() macro that automates calling visit functions. With VISIT()
Noddy_traverse() can be simplified:

static int
Noddy traverse (Noddy *self, visitproc visit, void *arg)
{

Py VISIT(self - >first);
Py VISIT(self - >last);
return O;

}

Note: Note that thetp_traverse implementation must name its arguments exacitjit andarg in order to
usePy VISIT() . Thisis to encourage uniformity across these boring implementations.

We also need to provide a method for clearing any subobjects that can participate in cycles. We implement the
method and reimplement the deallocator to use it:

static int
Noddy _clear (Noddy *self)
{

PyObject *tmp;

tmp = self - >first;
self - >first = NULL
Py XDECREF(tmp);

tmp = self - >last;
self ->last = NULL
Py _XDECREF(tmp);

return 0;

}

static void
Noddy _dealloc (Noddy * self)

{
Noddy_clear(self);
self ->ob_type ->tp free((PyObject *)self);
}
Notice the use of a temporary variableNloddy clear() . We use the temporary variable so that we can set

each member tdlULL before decrementing its reference count. We do this because, as was discussed earlier, if
the reference count drops to zero, we might cause code to run that calls back into the object. In addition, because
we now support garbage collection, we also have to worry about code being run that triggers garbage collection.
If garbage collection is run, oup_traverse handler could get called. We can't take a chance of having
Noddy_traverse() called when a member’s reference count has dropped to zero and its value hasn’t been set
to NULL.

2.1. The Basics 43

Extending and Embedding Python, Release 2.6.4

Python 2.4 and higher provideRy CLEAR() that automates the careful decrementing of reference counts. With
Py _CLEAR(), theNoddy clear() function can be simplified:

static int
Noddy _clear (Noddy *self)
{

Py CLEAR(self - >first);
Py_CLEAR(self - >last);
return 0;

}
Finally, we add thé’y_TPFLAGS_HAVE_G@ag to the class flags:

Py TPFLAGS_DEFAULT| Py TPFLAGS BASETYPE| Py TPFLAGS_HAVE_GC,/*tp_flags*/

That's pretty much it. If we had written custotp_alloc ortp_free slots, we'd need to modify them for
cyclic-garbage collection. Most extensions will use the versions automatically provided.

2.1.4 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the
built in types, since an extension can easily useRfi€ypeObject it needs. It can be difficult to share these
PyTypeObject structures between extension modules.

In this example we will create 8hoddy type that inherits from the built-ilist type. The new type will be
completely compatible with regular lists, but will have an additianalement() method that increases an
internal counter.

>>> jmport shoddy

>>> s = shoddy.Shoddy(range(3))
>>> s.extend(s)

>>> print len(s)

6

>>> print s.increment()

1

>>> print s.increment()

2

#include <Python.h>

typedef struct {
PyListObject list;
int state;

} Shoddy;

static PyObject *
Shoddy_increment (Shoddy *self, PyObject *unused)

{
self - >state ++;
return Pylnt_FromLong(self - >state);
}
static PyMethodDef Shoddy methods]] ={
{"increment ", (PyCFunction)Shoddy_increment, METH_NOARGS,
PyDoc_STR(" increment state counter "%
{ NULL, NULL},
h
static int

44 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

Shoddy _init (Shoddy *self, PyObject

{
if (PyList_Type.tp_init((PyObject
return -1;
self ->state = O;
return 0O;
}

static PyTypeObject ShoddyType
PyObject HEAD_INIT(NULL
01
"shoddy.Shoddy ",
sizeof (Shoddy),

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
Py _TPFLAGS_DEFAULT]|
Py _TPFLAGS_BASETYPE,
0,
0,
0,
0,
0,
0,
0,
Shoddy_methods,
0,
0,
0,
0,
0,
0,
0,
(initproc)Shoddy _init,
0,
0,
I3
PyMODINIT_FUNC
initshoddy (void)
{

PyObject *m;

ShoddyType.tp_base

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*args, PyObject * kwds)

*)self, args, kwds) < 0)

=

ob_size */
tp_name */
tp_basicsize */
tp_itemsize */
tp_dealloc */
tp_print */
tp_getattr */
tp_setattr */
tp_compare */
tp_repr */
tp_as_number */
tp_as_sequence */
tp_as_mapping */
tp_hash */
tp_call */

tp_str */
tp_getattro */
tp_setattro */
tp_as_buffer */

tp_flags */
tp_doc */
tp_traverse */
tp_clear */
tp_richcompare */
tp_weaklistoffset */
tp_iter */
tp_iternext */
tp_methods */
tp_members */
tp_getset */
tp_base */
tp_dict */
tp_descr_get */
tp_descr_set */
tp_dictoffset */
tp_init */

tp_alloc */
tp_new */

= &PyList_Type;

2.1. The Basics

45

Extending and Embedding Python, Release 2.6.4

if (PyType_Ready(&ShoddyType) < 0)
return ;

m = Py_InitModule3("shoddy ", NULL " Shoddy module ");
if (m == NULD
return ;

Py INCREF(&ShoddyType);
PyModule_AddObject(m, " Shoddy ", (PyObject *) &ShoddyType);
}

As you can see, the source code closely resembldsdbdy examples in previous sections. We will break down
the main differences between them.

typedef struct {
PyListObject list;
int state;

} Shoddy;

The primary difference for derived type objects is that the base type’s object structure must be the first value. The
base type will already include thiyObject_ HEAD() at the beginning of its structure.

When a Python object is 8hoddy instance, it9?yObject*pointer can be safely cast to bd#yListObject*and
Shoddy*

static int
Shoddy _init (Shoddy *self, PyObject *args, PyObject * kwds)
{

if (PyList_Type.tp_init((PyObject *)self, args, kwds) < 0)

return - 1;

self ->state = 0;

return 0;
}
Inthe _init_ method for our type, we can see how to call through to thmit method of the base
type.

This pattern is important when writing a type with custoew anddealloc methods. Thaew method should
not actually create the memory for the object wifthalloc , that will be handled by the base class when calling
itstp_new .

When filling out thePyTypeObject() for the Shoddy type, you see a slot fap_base() . Due to cross
platform compiler issues, you can't fill that field directly with tRgList Type() ; it can be done later in the
module’sinit() function.

PyMODINIT_FUNC
initshoddy ~ (void)

{
PyObject *m;

ShoddyType.tp_base = &PyList_Type;
if (PyType_Ready(&ShoddyType) < 0)
return

m = Py_InitModule3("shoddy ", NULL " Shoddy module ");
if (m == NULD
return

Py INCREF(&ShoddyType);
PyModule AddObject(m, " Shoddy ", (PyObject *) &ShoddyType);
}

Before callingPyType_Ready() , the type structure must have the base slot filled in. When we are

46 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

deriving a new type, it is not necessary to fill out tipealloc slot with PyType_GenericNew() — the
allocate function from the base type will be inherited.

After that, callingPyType_Ready() and adding the type object to the module is the same as with the basic
Noddy examples.

2.2 Type Methods

This section aims to give a quick fly-by on the various type methods you can implement and what they do.
Here is the definition oPyTypeObject , with some fields only used in debug builds omitted:

typedef struct _typeobject {
PyObject VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; [* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

[* Flags to define presence of optional/expanded features */
long tp_flags;

char *tp_doc; /* Documentation string */

[* Assigned meaning in release 2.0 */
[* call function for all accessible objects */
traverseproc tp_traverse,

[* delete references to contained objects */
inquiry tp_clear;

[* Assigned meaning in release 2.1 */
[* rich comparisons */
richcmpfunc tp_richcompare;

2.2. Type Methods 47

Extending and Embedding Python, Release 2.6.4

/* weak reference enabler */
long tp_weaklistoffset;

[* Added in release 2.2 */
[* lterators */

getiterfunc tp_iter;
iternextfunc tp_iternext;

[* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *{p_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

long tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; [* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

} PyTypeObiject;

Now that’s alot of methods. Don’t worry too much though - if you have a type you want to define, the chances
are very good that you will only implement a handful of these.

As you probably expect by now, we're going to go over this and give more information about the various handlers.
We won't go in the order they are defined in the structure, because there is a lot of historical baggage that impacts
the ordering of the fields; be sure your type initialization keeps the fields in the right order! It's often easiest to
find an example that includes all the fields you need (even if they're initializé)l and then change the values to

suit your new type.

char *tp_name; /* For printing */

The name of the type - as mentioned in the last section, this will appear in various places, almost entirely for
diagnostic purposes. Try to choose something that will be helpful in such a situation!

int tp_basicsize, tp_itemsize; [* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has
some built-in support for variable length structures (think: strings, lists) which is whetp themsize field
comes in. This will be dealt with later.

char *tp_doc;

Here you can put a string (or its address) that you want returned when the Python script refglbgncesc
to retrieve the doc string.

Now we come to the basic type methods—the ones most extension types will implement.

2.2.1 Finalization and De-allocation

destructor tp_dealloc;

48 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

This function is called when the reference count of the instance of your type is reduced to zero and the Python
interpreter wants to reclaim it. If your type has memory to free or other clean-up to perform, put it here. The
object itself needs to be freed here as well. Here is an example of this function:

static void
newdatatype_dealloc (newdatatypeobject *obj)

free(obj - >obj_UnderlyingDatatypePtr);
obj - >ob_type - >tp_free(obj);
}

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is
important since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is
unwound due to an exception (rather than normal returns), nothing is done to protect the deallocators from seeing
that an exception has already been set. Any actions which a deallocator performs which may cause additional
Python code to be executed may detect that an exception has been set. This can lead to misleading errors from
the interpreter. The proper way to protect against this is to save a pending exception before performing the unsafe
action, and restoring it when done. This can be done usindPitiar Fetch() and PyErr_Restore()

functions:

static void
my_dealloc (PyObject * obj)

{
MyObject *self = (MyObject *) obj;
PyObject * cbresult;
if (self ->my_callback != NULL {
PyObject *err_type, *err_value, *err_traceback;
int have_error = PyErr_Occurred() ?21: 0
if (have_error)

PyErr_Fetch(&err_type, &err_value, &err_traceback);
cbresult = PyObiject_CallObject(self - >my_callback, NULD);
if (cbresult == NULL

PyErr_WriteUnraisable(self - >my_callback);
else

Py_DECREF(cbresult);
if (have_error)

PyErr_Restore(err_type, err_value, err_traceback);

Py _DECREF(self ->my_callback);
}
obj - >ob_type - >tp_free((PyObject *)self);
}

2.2.2 Object Presentation

In Python, there are three ways to generate a textual representation of an objespr¢he function (or equiva-

lent back-tick syntax), thetr() function, and therint statement. For most objects, thent statement is
equivalent to thestr() function, but it is possible to special-case printing tBIBE* if necessary; this should

only be done if efficiency is identified as a problem and profiling suggests that creating a temporary string object
to be written to a file is too expensive.

These handlers are all optional, and most types at most need to implemgntdtre andtp_repr handlers.

reprfunc tp_repr;
reprfunc tp_str;
printfunc tp_print;

2.2. Type Methods 49

Extending and Embedding Python, Release 2.6.4

Thetp_repr handler should return a string object containing a representation of the instance for which it is
called. Here is a simple example:

static PyObject *

newdatatype _repr (newdatatypeobject *obj)
{
return PyString_FromFormat(" Repr-ified_newdatatype{{size: \ %d}} ",
obj - >obj_UnderlyingDatatypePtr - >size);
}

Ifnotp_repr handleris specified, the interpreter will supply a representation that uses thetpypeisne and
a uniquely-identifying value for the object.

Thetp_str handleristostr() whatthetp_repr handler described above isrepr() ; thatis, it is called
when Python code calltr() on an instance of your object. Its implementation is very similar taghespr
function, but the resulting string is intended for human consumptiotp_Htr is not specified, thép_repr
handler is used instead.

Here is a simple example:

static PyObject *

newdatatype_str (newdatatypeobject * obj)
{
return PyString_FromFormat(" Stringified_newdatatype{{size: \ %d}} ",
obj - >obj_UnderlyingDatatypePtr - >size);
}

The print function will be called whenever Python needs to “print” an instance of the type. For example, if ‘node’
is an instance of type TreeNode, then the print function is called when Python code calls:

print node

There is a flags argument and one flag, PRINT_RAWand it suggests that you print without string quotes and
possibly without interpreting escape sequences.

The print function receives a file object as an argument. You will likely want to write to that file object.

Here is a sample print function:

static int
newdatatype_print (newdatatypeobject *obj, FILE *fp, int flags)
{
if (flags & Py PRINT_RAW) {
fprintf(fp, " <{newdatatype object--size: %d}>
obj - >obj_UnderlyingDatatypePtr - >size);
}
else {
fprintf(fp, "\" <{newdatatype object--size: %d}> "y
obj - >obj_UnderlyingDatatypePtr - >size);
}
return 0;

2.2.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how
the attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and
another to set attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the
new value passed to the handleNigILL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the func-
tions for one pair. The difference is that one pair takes the name of the attributb@s a, while the other accepts
aPyObject* . Each type can use whichever pair makes more sense for the implementation’s convenience.

50 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

getattrfunc tp_getattr; [* char * version */
setattrfunc tp_setattr;

o

getattrofunc tp_getattrofunc; [* PyObject * version */

setattrofunc tp_setattrofunc;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic
implementations which can be used to provide By®©bject* version of the attribute management functions.

The actual need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though
there are many examples which have not been updated to use some of the new generic mechanism that is available.

Generic Attribute Management

New in version 2.2. Most extension types only sgapleattributes. So, what makes the attributes simple? There
are only a couple of conditions that must be met:

1. The name of the attributes must be known wikgType_Ready() is called.

2. No special processing is needed to record that an attribute was looked up or set, nor do actions need to be
taken based on the value.

Note that this list does not place any restrictions on the values of the attributes, when the values are computed, or
how relevant data is stored.

WhenPyType_Ready() is called, it uses three tables referenced by the type object to clesteptos which

are placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance
object. Each of the tables is optional; if all three BigLL, instances of the type will only have attributes that are
inherited from their base type, and should leavettheyetattro andtp_setattro fields NULL as well,

allowing the base type to handle attributes.

The tables are declared as three fields of the type object:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is notNULL, it must refer to an array d?yMethodDef structures. Each entry in the table is
an instance of this structure:

typedef struct PyMethodDef {

char *ml_name; /* method name */
PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */

char *ml_doc; [* docstring */

} PyMethodDef;

One entry should be defined for each method provided by the type; no entries are needed for methods inherited
from a base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The
ml_name field of the sentinel must bdULL.

XXX Need to refer to some unified discussion of the structure fields, shared with the next section.

The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive
C types are supported, and access may be read-only or read-write. The structures in the table are defined as:

typedef struct PyMemberDef {
char *name;

int type;
int offset;
int flags;
char *doc;

} PyMemberDef;

2.2. Type Methods 51

Extending and Embedding Python, Release 2.6.4

For each entry in the table, @escriptorwill be constructed and added to the type which will be able to ex-
tract a value from the instance structure. Tipe field should contain one of the type codes defined in the
structmember.h header; the value will be used to determine how to convert Python values to and from C
values. Thdlags field is used to store flags which control how the attribute can be accessed.

XXX Need to move some of this to a shared section!

The following flag constants are definedsittuctmember.h ; they may be combined using bitwise-OR.

Constant Meaning
READONLY Never writable.
RO Shorthand foREADONLY

READ_RESTRICTED | Not readable in restricted mode.
WRITE_RESTRICTED| Not writable in restricted mode.
RESTRICTED Not readable or writable in restricted mode.

An interesting advantage of using tig members table to build descriptors that are used at runtime is that
any attribute defined this way can have an associated doc string simply by providing the text in the table. An
application can use the introspection API to retrieve the descriptor from the class object, and get the doc string
using its__doc___ attribute.

As with thetp_methods table, a sentinel entry withrmame value ofNULL is required.

Type-specific Attribute Management

For simplicity, only thechar* version will be demonstrated here; the type of the name parameter is the only
difference between thehar* andPyObject* flavors of the interface. This example effectively does the same
thing as the generic example above, but does not use the generic support added in Python 2.2. The value in
showing this is two-fold: it demonstrates how basic attribute management can be done in a way that is portable to
older versions of Python, and explains how the handler functions are called, so that if you do need to extend their
functionality, you'll understand what needs to be done.

Thetp_getattr handler is called when the object requires an attribute look-up. It is called in the same situa-

tions where the _getattr__ () method of a class would be called.
A likely way to handle this is (1) to implement a set of functions (suclm@sdatatype_getSize() and
newdatatype_setSize() in the example below), (2) provide a method table listing these functions, and (3)

provide a getattr function that returns the result of a lookup in that table. The method table uses the same structure
as thetp_methods field of the type object.

Here is an example:

static PyMethodDef newdatatype_ methods[] = {
{"getSize ", (PyCFunction)newdatatype getSize, METH_VARARGS,
"Return the current size. "1,
{"setSize ", (PyCFunction)newdatatype setSize, METH_VARARGS,
" Set the size. "1,
{NULL, NULL 0, NULL [* sentinel */
2
static PyObject *
newdatatype getattr (newdatatypeobject *obj, char *name)
{
return Py_FindMethod(newdatatype methods, (PyObject *)obj, name);
}
Thetp_setattr handler is called when the setattr__ () or __delattr__ () method of a class in-

stance would be called. When an attribute should be deleted, the third parameter WllLlhe Here is an
example that simply raises an exception; if this were really all you wantedp tisetattr handler should be
set toNULL.

static int
newdatatype_setattr (newdatatypeobject *obj, char *name, PyObject *v)

52 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

(void)PyErr_Format(PyExc_RuntimeError, " Read-only attribute: \ %s', name);
return -1;

2.2.4 Object Comparison

cmpfunc tp_compare;

Thetp_compare handler is called when comparisons are needed and the object does not implement the spe-
cific rich comparison method which matches the requested comparison. (It is always used if defined and the
PyObject_Compare() or PyObject Cmp() functions are used, or dmp() is used from Python.) It is
analogous to the_cmp__ () method. This function should returd if objlis less tharobj2, O if they are

equal, and. if objlis greater thaobj2. (It was previously allowed to return arbitrary negative or positive integers

for less than and greater than, respectively; as of Python 2.2, this is no longer allowed. In the future, other return
values may be assigned a different meaning.)

A tp_compare handler may raise an exception. In this case it should return a negative value. The caller has to
test for the exception usingyErr_Occurred()

Here is a sample implementation:

static int
newdatatype_compare (newdatatypeobject * objl, newdatatypeobject * 0bj2)
{
long result;
if (objl ->obj_UnderlyingDatatypePtr ->size <
obj2 - >obj_UnderlyingDatatypePtr - >size) {
result = -1;
else if (objl ->obj_UnderlyingDatatypePtr - >size >
obj2 - >obj_UnderlyingDatatypePtr - >size) {
result = 1;
}
else {
result = 0;
}

return result;

2.2.5 Abstract Protocol Support

Python supports a variety abstract'protocols;’ the specific interfaces provided to use these interfaces are docu-
mented inAbstract Objects Laye(in The Python/C ABI

A number of these abstract interfaces were defined early in the development of the Python implementation. In
particular, the number, mapping, and sequence protocols have been part of Python since the beginning. Other
protocols have been added over time. For protocols which depend on several handler routines from the type
implementation, the older protocols have been defined as optional blocks of handlers referenced by the type
object. For newer protocols there are additional slots in the main type object, with a flag bit being set to indicate
that the slots are present and should be checked by the interpreter. (The flag bit does not indicate that the slot
values are noNULL. The flag may be set to indicate the presence of a slot, but a slot may still be unfilled.)

PyNumberMethods tp_as_number;
PySequenceMethods tp_as_sequence;
PyMappingMethods tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place
the address of a structure that implements the C tygBlumberMethods , PySequenceMethods , or

2.2. Type Methods 53

Extending and Embedding Python, Release 2.6.4

PyMappingMethods , respectively. It is up to you to fill in this structure with appropriate values. You can
find examples of the use of each of these in@ligects directory of the Python source distribution.

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is
a moderately pointless example:

static long

newdatatype _hash (newdatatypeobject * obj)

{
long result;
result = obj - >obj_UnderlyingDatatypePtr - >size;
result = result * 3;

return result;

}

ternaryfunc tp_call;

This function is called when an instance of your data type is “called”, for exampbjif is an instance of your

data type and the Python script contaitgl(’hello’) , thetp_call handler is invoked.
This function takes three arguments:
1. arglis the instance of the data type which is the subject of the call. If the calljig’hello’) , then
arglisobjl .

2. arg2is a tuple containing the arguments to the call. You canRys&rg_ParseTuple() to extract the
arguments.

3. arg3is a dictionary of keyword arguments that were passed. If this isNdht and you support keyword
arguments, usByArg_ParseTupleAndKeywords() to extract the arguments. If you do not want to
support keyword arguments and this is M8biLL, raise arypeError with a message saying that keyword
arguments are not supported.

Here is a desultory example of the implementation of the call function.

/* Implement the call function.

* objl is the instance receiving the call.
* obj2 is a tuple containing the arguments to the call, in this
* case 3 strings.
*/
static PyObject *
newdatatype_call (newdatatypeobject *obj, PyObject *args, PyObject * other)
{
PyObject *result;
char *argl;
char *arg2;
char *arg3;
if (! PyArg_ParseTuple(args, "sss:call ", &argl, &arg2, &arg3)) {
return NULL
}
result = PyString_FromFormat(
"Returning -- value: [\%d] argl: [\%s] arg2: [\%s] arg3: [\%s]\n",
obj - >obj_UnderlyingDatatypePtr - >size,

argl, arg2, arg3);
printf("\ %s', PyString_AS_STRING(result));
return result;

}

XXX some fields need to be added here...

/* Added in release 2.2 */
/* lterators */

54 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.4

getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Any object which wishes to support iteration over
its contents (which may be generated during iteration) must implemenptiter handler. Objects which

are returned by & _iter handler must implement both thp_iter andtp_iternext handlers. Both
handlers take exactly one parameter, the instance for which they are being called, and return a new reference. In
the case of an error, they should set an exception and ristutr..

For an object which represents an iterable collectiontph&er handler must return an iterator object. The
iterator object is responsible for maintaining the state of the iteration. For collections which can support multiple
iterators which do not interfere with each other (as lists and tuples do), a new iterator should be created and
returned. Objects which can only be iterated over once (usually due to side effects of iteration) should implement
this handler by returning a new reference to themselves, and should also implentenitdraext handler.

File objects are an example of such an iterator.

Iterator objects should implement both handlers. Théter handler should return a new reference to the
iterator (this is the same as the iter handler for objects which can only be iterated over destructively). The
tp_iternext handler should return a new reference to the next object in the iteration if there is one. If the
iteration has reached the end, it may retNidLL without setting an exception or it may s&tfoplteration ;
avoiding the exception can yield slightly better performance. If an actual error occurs, it should set an exception
and returrNULL.

2.2.6 Weak Reference Support

One of the goals of Python's weak-reference implementation is to allow any type to participate in the weak
reference mechanism without incurring the overhead on those objects which do not benefit by weak referencing
(such as numbers).

For an object to be weakly referencable, the extension must incl@g©hject* field in the instance structure
for the use of the weak reference mechanism; it must be initializétdUioL by the object’s constructor. It must
also set thép_weaklistoffset field of the corresponding type object to the offset of the field. For example,
the instance type is defined with the following structure:

typedef struct {
PyObject_ HEAD

PyClassObject *in_class; [* The class object */
PyObject *in_dict; [* A dictionary */
PyObject *in_weakreflist; [* List of weak references */

} PylnstanceObiject;

The statically-declared type object for instances is defined this way:

PyTypeObject Pylnstance_Type = {
PyObject_ HEAD_INIT(&PyType_Type)
0,

"'module.instance "

[* Lots of stuff omitted for brevity... */

Py TPFLAGS_ DEFAULT, I* tp_flags */

0, [* tp_doc */

0, [* tp_traverse */

0, [* tp_clear */

0, [* tp_richcompare */
offsetof(PylnstanceObject, in_weakreflist), [* tp_weaklistoffset */

2
The type constructor is responsible for initializing the weak reference INttoL.:

static PyObject *
instance_new () {

2.2. Type Methods 55

Extending and Embedding Python, Release 2.6.4

[* Other initialization stuff omitted for brevity */
self ->in_weakreflist = NULL

return (PyObject *) self;
}

The only further addition is that the destructor needs to call the weak reference manager to clear any weak ref-
erences. This should be done before any other parts of the destruction have occurred, but is only required if the
weak reference list is noNULL:

static void
instance_dealloc (PylnstanceObject *inst)

/* Allocate temporaries if needed, but do not begin
destruction just yet.
*/

if (inst ->in_weakreflist I'= NULD
PyObiject_ClearWeakRefs((PyObject *) inst);

[* Proceed with object destruction normally. */

2.2.7 More Suggestions

Remember that you can omit most of these functions, in which case you pf@ddea value. There are type
definitions for each of the functions you must provide. They arebject.h in the Python include directory
that comes with the source distribution of Python.

In order to learn how to implement any specific method for your new data type, do the following: Download and
unpack the Python source distribution. Go kjects directory, then search the C source filestipr plus

the function you want (for exampléy_print or tp_compare). You will find examples of the function you
want to implement.

When you need to verify that an object is an instance of the type you are implementing, use the
PyObject_TypeCheck() function. A sample of its use might be something like the following:

if (! PyObject TypeCheck(some_object, &MyType)) {
PyErr_SetString(PyExc_TypeError, "arg #1 not a mything ");
return NULL

56 Chapter 2. Defining New Types

CHAPTER

THREE

BUILDING C AND C++ EXTENSIONS
WITH DISTUTILS

Starting in Python 1.4, Python provides, on Unix, a special make file for building make files for building
dynamically-linked extensions and custom interpreters. Starting with Python 2.0, this mechanism (known as
related to Makefile.pre.in, and Setup files) is no longer supported. Building custom interpreters was rarely used,
and extension modules can be built using distutils.

Building an extension module using distutils requires that distutils is installed on the build machine, which is
included in Python 2.x and available separately for Python 1.5. Since distutils also supports creation of binary
packages, users don’t necessarily need a compiler and distutils to install the extension.

A distutils package contains a driver scripetup.py . This is a plain Python file, which, in the most simple
case, could look like this:

from distutils.core import setup, Extension

modulel = Extension(’demo’,
sources = ['demo.c’])

setup (name = 'PackageName’,
version = '1.0’,
description = 'This is a demo package’,
ext_modules = [modulel])

With this setup.py , and a filedemo.c , running
python setup.py build

will compile demo.c , and produce an extension module nardedo in the build directory. Depending on
the system, the module file will end up in a subdirectboyld/lib.system , and may have a name like
demo.so ordemo.pyd .

In the setup.py , all execution is performed by calling tleetup function. This takes a variable number of
keyword arguments, of which the example above uses only a subset. Specifically, the example specifies meta-
information to build packages, and it specifies the contents of the package. Normally, a package will contain
of addition modules, like Python source modules, documentation, subpackages, etc. Please refer to the distutils
documentation iistributing Python Modulegin Distributing Python Modulésto learn more about the features

of distutils; this section explains building extension modules only.

It is common to pre-compute argumentssetup() , to better structure the driver script. In the example above,
theext_modules argument tosetup() is a list of extension modules, each of which is an instance of the
Extension . In the example, the instance defines an extension nataew which is build by compiling a
single source filegemo.c .

In many cases, building an extension is more complex, since additional preprocessor defines and libraries may be
needed. This is demonstrated in the example below.

from distutils.core import setup, Extension

57

Extending and Embedding Python, Release 2.6.4

modulel = Extension(’demo’,
define_macros = [(MAJOR_VERSION’, '1’),
(MINOR_VERSION’, '0)],
include_dirs = ['/usr/local/include’,
libraries = ['tcl837],
library_dirs = ['/usr/local/libT],
sources = ['demo.c’])

setup (name = 'PackageName’,
version = ’'1.0’,
description = 'This is a demo package’,
author = 'Martin v. Loewis’,
author_email = 'martin@v.loewis.de’,
url = ’http://docs.python.org/extending/building’,
long_description = ™

This is really just a demo package.

1L
’

ext_modules = [modulel])

In this examplesetup() s called with additional meta-information, which is recommended when distribution
packages have to be built. For the extension itself, it specifies preprocessor defines, include directories, library
directories, and libraries. Depending on the compiler, distutils passes this information in different ways to the
compiler. For example, on Unix, this may result in the compilation commands

gcc - DNDEBUG g - 03 -Wall - Wstrict - prototypes -fPIC - DMAJOR_VERSIONL - DMINOR_VERSIONO

gcc -shared build /temp.linux -i686 -2.2 /demo.o -L/usr/local /lib -lItcl83 -0 build / lib.linux

These lines are for demonstration purposes only; distutils users should trust that distutils gets the invocations right.

3.1 Distributing your extension modules

When an extension has been successfully build, there are three ways to use it.
End-users will typically want to install the module, they do so by running
python setup.py install

Module maintainers should produce source packages; to do so, they run
python setup.py sdist

In some cases, additional files need to be included in a source distribution; this is done thkdABHREST.in
file; see the distutils documentation for details.

If the source distribution has been build successfully, maintainers can also create binary distributions. Depending
on the platform, one of the following commands can be used to do so.

python setup.py bdist_wininst
python setup.py bdist_rpm
python setup.py bdist_dumb

58 Chapter 3. Building C and C++ Extensions with distutils

CHAPTER

FOUR

BUILDING C AND C++ EXTENSIONS
ON WINDOWS

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++,
and follows with more detailed background information on how it works. The explanatory material is useful
for both the Windows programmer learning to build Python extensions and the Unix programmer interested in
producing software which can be successfully built on both Unix and Windows.

Module authors are encouraged to use the distutils approach for building extension modules, instead of the one
described in this section. You will still need the C compiler that was used to build Python; typically Microsoft
Visual C++.

Note: This chapter mentions a number of filenames that include an encoded Python version number. These
filenames are represented with the version number showfiYai practice,’X’ will be the major version
number andY’ will be the minor version number of the Python release you're working with. For example, if
you are using Python 2.2.X)Y will actually be22.

4.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on Unix: use the
distutils package to control the build process, or do things manually. The distutils approach works well
for most extensions; documentation on usthstutils to build and package extension modules is available

in Distributing Python Moduleén Distributing Python Modulés This section describes the manual approach to
building Python extensions written in C or C++,

To build extensions using these instructions, you need to have a copy of the Python sources of the same version
as your installed Python. You will need Microsoft Visual C++ “Developer Studio”; project files are supplied

for VC++ version 7.1, but you can use older versions of VC++. Notice that you should use the same version
of VC++that was used to build Python itself. The example files described here are distributed with the Python
sources in th&Clexample_nt\ directory.

1. Copy the example files— The example_nt directory is a subdirectory of thBC directory, in or-
der to keep all the PC-specific files under the same directory in the source distribution. However, the
example_nt directory can’t actually be used from this location. You first need to copy or move it up one
level, so thaexample_nt is a sibling of the®CandInclude directories. Do all your work from within
this new location.

2. Open the project — From VC++, use thd-ile — Open Solutiordialog (notFile — Open). Navigate
to and select the filexample.sin , in thecopyof theexample_nt directory you made above. Click
Open.

3. Build the example DLL — In order to check that everything is set up right, try building:

4. Select a configuration. This step is optional. ChoBsdd — Configuration Manager— Active Solu-
tion Configurationand select eitheReleaseor Debug If you skip this step, VC++ will use the Debug
configuration by default.

59

Extending and Embedding Python, Release 2.6.4

5. Build the DLL. ChooseBuild — Build Solution This creates all intermediate and result files in a subdi-
rectory called eitheDebug or Release , depending on which configuration you selected in the preceding
step.

6. Testing the debug-mode DLL— Once the Debug build has succeeded, bring up a DOS box, and change
to theexample_nt\Debug directory. You should now be able to repeat the following ses<iong the
DOS prompt>>> is the Python prompt; note that build information and various debug output from Python
may not match this screen dump exactly):

C>..\..\PCbuild\python_d

Adding parser accelerators ...

Done.

Python 2.2 (#28, Dec 19 2001, 23:26:37) [MSC 32 hit (Intel)] on win32
Type "copyright", "credits" or "license" for more information.
>>> import example

[4897 refs]

>>> example.foo()

Hello, world

[4903 refs]

>>>

Congratulations! You've successfully built your first Python extension module.

7. Creating your own project — Choose a name and create a directory for it. Copy your C sources into it.
Note that the module source file name does not necessarily have to match the module name, but the name
of the initialization function should match the module name — you can only import a megala if
its initialization function is callednitspam() , and it should calPy_InitModule() with the string
"spam" as its first argument (use the minimetample.c in this directory as a guide). By convention,
it lives in a file calledspam.c or spammodule.c . The output file should be callesbam.pyd (in
Release mode) apam_d.pyd (in Debug mode). The extensiopyd was chosen to avoid confusion
with a system libraryspam.dll to which your module could be a Python interface. Changed in version
2.5: Previously, file names likepam.dil (in release mode) apam_d.dll (in debug mode) were also
recognized. Now your options are:

8. Copy example.sin and example.vcproj , rename them to spam.* , and edit them by hand, or
9. Create a brand new project; instructions are below.

In either case, copgxample_nt\example.def to spam\spam.def , and edit the nevgpam.def

so its second line contains the stririgitspam ‘. If you created a new project yourself, add the file
spam.def to the project now. (This is an annoying little file with only two lines. An alternative approach
is to forget about thedef file, and add the optiofexport:initspam somewhere to the Link settings,
by manually editing the setting in Project Properties dialog).

10. Creating a brand new project— Use theFile — New— Projectdialog to create a new Project Workspace.
SelectVisual C++ Projects/Win32/ Win32 Project, enter the namespam), and make sure the Location
is set to parent of thepam directory you have created (which should be a direct subdirectory of the Python
build tree, a sibling ofnclude andPC). Select Win32 as the platform (in my version, this is the only
choice). Make sure the Create new workspace radio button is selected. Click OK.

You should now create the figpam.def as instructed in the previous section. Add the source files to the
project, usingProject— Add Existing ItemSet the pattern th* and select botepam.c andspam.def
and click OK. (Inserting them one by one is fine too.)

Now open theProject — spam propertieglialog. You only need to change a few settings. Make #dire
Configurations is selected from th8ettings for: dropdown list. Select the C/C++ tab. Choose the General
category in the popup menu at the top. Type the following text in the entry box lahdRtitional Include
Directories:

.AInclude,.\PC
Then, choose the General category in the Linker tab, and enter
.\PCbuild

60 Chapter 4. Building C and C++ Extensions on Windows

Extending and Embedding Python, Release 2.6.4

in the text box labelleddditional library Directories .
Now you need to add some mode-specific settings:

SelectReleasen the Configuration dropdown list. Choose thieink tab, choose thénput category, and
appendpythonXY.lib to the list in theAdditional Dependenciesbox.

SelectDebugin the Configuration dropdown list, and apperuythonXY_d.lib to the list in theAddi-
tional Dependenciedox. Then click the C/C++ tab, sele€bde Generation and selecMulti-threaded
Debug DLL from theRuntime library dropdown list.

SelectReleaseagain from theConfiguration dropdown list. Seledvulti-threaded DLL from theRun-
time library dropdown list.

If your module creates a new type, you may have trouble with this line:
PyObject HEAD_INIT(&PyType_Type)

Change it to:

PyObject HEAD_INIT(NULL)

and add the following to the module initialization function:
MyObiject_Type.ob_type = &PyType_Type;

Refer to section 3 of theython FAQfor details on why you must do this.

4.2 Differences Between Unix and Windows

Unix and Windows use completely different paradigms for run-time loading of code. Before you try to build a
module that can be dynamically loaded, be aware of how your system works.

In Unix, a shared objectgo) file contains code to be used by the program, and also the names of functions and
data that it expects to find in the program. When the file is joined to the program, all references to those functions
and data in the file’s code are changed to point to the actual locations in the program where the functions and data
are placed in memory. This is basically a link operation.

In Windows, a dynamic-link library.dll) file has no dangling references. Instead, an access to functions or data
goes through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’s
memory; instead, the code already uses the DLL's lookup table, and the lookup table is modified at runtime to
point to the functions and data.

In Unix, there is only one type of library fileg) which contains code from several object files J. During the
link step to create a shared object fileq), the linker may find that it doesn’t know where an identifier is defined.
The linker will look for it in the object files in the libraries; if it finds it, it will include all the code from that object
file.

In Windows, there are two types of library, a static library and an import library (both cailted). A static

library is like a Unix.a file; it contains code to be included as necessary. An import library is basically used only
to reassure the linker that a certain identifier is legal, and will be present in the program when the DLL is loaded.
So the linker uses the information from the import library to build the lookup table for using identifiers that are
not included in the DLL. When an application or a DLL is linked, an import library may be generated, which will
need to be used for all future DLLs that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On
Unix, you wouldnot passA.a to the linker forB.so andC.so ; that would cause it to be included twice, so

that B and C would each have their own copy. In Windows, buildirdjl will also build A.lib . Youdo pass

A.lib tothe linker for B and CA.lib does not contain code; it just contains information which will be used at
runtime to access A's code.

In Windows, using an import library is sort of like usimgport spam ; it gives you access to spam’s names,
but does not create a separate copy. On Unix, linking with a library is mordrbke spam import * it
does create a separate copy.

4.2. Differences Between Unix and Windows 61

http://www.python.org/doc/faq

Extending and Embedding Python, Release 2.6.4

4.3 Using DLLs in Practice

Windows Python is built in Microsoft Visual C++; using other compilers may or may not work (though Borland
seems to). The rest of this section is MSVC++ specific.

When creating DLLs in Windows, you must pgsghonXY.lib to the linker. To build two DLLs, spam and
ni (which uses C functions found in spam), you could use these commands:

cl /LD /1/python /include spam.c .. /[libs / pythonXY.lib
cl /LD /1/python /include ni.c spam.lib .. / libs / pythonXY.lib

The first command created three filefmam.obj , spam.dll andspam.lib . Spam.dll does not contain
any Python functions (such &yArg_ParseTuple()), but it does know how to find the Python code thanks
to pythonXY.lib

The second command createidd|l (and.obj and.lib), which knows how to find the necessary functions
from spam, and also from the Python executable.

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able
to see your identifiers, you have to sageclspec(dllexport) , as invoid _declspec(dllexport)
initspam(void) or PyObject _declspec(dllexport) *NiGetSpamData(void)

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your
executable. To get rid of them, use the Project Settings dialog, Link tab, to sjppuiie default libraries Add
the correcmsvcrtxx.lib to the list of libraries.

62 Chapter 4. Building C and C++ Extensions on Windows

CHAPTER

FIVE

EMBEDDING PYTHON IN ANOTHER
APPLICATION

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by
attaching a library of C functions to it. It is also possible to do it the other way around: enrich your C/C++
application by embedding Python in it. Embedding provides your application with the ability to implement some
of the functionality of your application in Python rather than C or C++. This can be used for many purposes; one
example would be to allow users to tailor the application to their needs by writing some scripts in Python. You
can also use it yourself if some of the functionality can be written in Python more easily.

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the
main program of the application is still the Python interpreter, while if you embed Python, the main program may
have nothing to do with Python — instead, some parts of the application occasionally call the Python interpreter
to run some Python code.

So if you are embedding Python, you are providing your own main program. One of the things this main program
has to do is initialize the Python interpreter. At the very least, you have to call the fuRgtidnitialize()

There are optional calls to pass command line arguments to Python. Then later you can call the interpreter from
any part of the application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun_SimpleString() , Or you can pass a stdio file pointer and a file name (for identification in error mes-
sages only) t&’yRun_SimpleFile() . You can also call the lower-level operations described in the previous
chapters to construct and use Python objects.

A simple demo of embedding Python can be found in the diredamyo/embed/ of the source distribution.
See Also:

Python/C API Reference Manuafin The Python/C AP) The details of Python'’s C interface are given in this
manual. A great deal of necessary information can be found here.

5.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to
execute a Python script without needing to interact with the application directly. This can for example be used to
perform some operation on a file.

#include <Python.h>

int
main (int argc, char *argv[])
{
Py_Initialize();
PyRun_SimpleString("from time import time,ctime \n "

" print 'Today is’,ctime(time()) \n");

63

Extending and Embedding Python, Release 2.6.4

Py_Finalize();
return 0;

}

The above code first initializes the Python interpreter \Wigh Initialize() , followed by the execution of a
hard-coded Python script that print the date and time. Afterward®\thEinalize() call shuts the interpreter

down, followed by the end of the program. In a real program, you may want to get the Python script from another
source, perhaps a text-editor routine, a file, or a database. Getting the Python code from a file can better be done
by using thePyRun_SimpleFile() function, which saves you the trouble of allocating memory space and
loading the file contents.

5.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but
exchanging data values is quite cumbersome to say the least. If you want that, you should use lower level calls.
At the cost of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same activity, despite the different
intent. Most topics discussed in the previous chapters are still valid. To show this, consider what the extension
code from Python to C really does:

1. Convert data values from Python to C,
2. Perform a function call to a C routine using the converted values, and
3. Convert the data values from the call from C to Python.
When embedding Python, the interface code does:
1. Convert data values from C to Python,
2. Perform a function call to a Python interface routine using the converted values, and
3. Convert the data values from the call from Python to C.

As you can see, the data conversion steps are simply swapped to accommodate the different direction of the cross-
language transfer. The only difference is the routine that you call between both data conversions. When extending,
you call a C routine, when embedding, you call a Python routine.

This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of refer-
ences and dealing with errors is assumed to be understood. Since these aspects do not differ from extending the
interpreter, you can refer to earlier chapters for the required information.

5.3 Pure Embedding

The first program aims to execute a function in a Python script. Like in the section about the very high level
interface, the Python interpreter does not directly interact with the application (but that will change in the next
section).

The code to run a function defined in a Python script is:

#include <Python.h>

int

main (int argc, char *argv[])

{
PyObject *pName, *pModule, *pDict, *pFunc;
PyObject *pArgs, *pValue;
int i

if (argc < 3) {

64 Chapter 5. Embedding Python in Another Application

Extending and Embedding Python, Release 2.6.4

fprintf(stderr, "Usage: call pythonfile funcname [args] \n");
return 1;

}

Py_Initialize();

pName = PyString_FromString(argv| 1;

[* Error checking of pName left out */

pModule = Pylmport_Import(pName);
Py _DECREF(pName);

if (pModule != NULLD {
pFunc = PyObject_GetAttrString(pModule, argv[20);
[* pFunc is a new reference */

if (pFunc && PyCallable_Check(pFunc)) {

pArgs = PyTuple_New(argc - 3);

for (i = 0;i < argc - 3; ++i) {
pValue = Pyint_FromLong(atoi(argvi + 30));
if (!pValue) {

Py DECREF(pArgs);
Py_DECREF(pModule);
fprintf(stderr, " Cannot convert argument \n");
return 1;
}
[* pValue reference stolen here: */
PyTuple_Setltem(pArgs, i, pValue);
}
pValue = PyObject_CallObject(pFunc, pArgs);
Py DECREF(pArgs);
if (pValue !'= NULL {
printf(" Result of call: %ld \n ", Pylnt_AsLong(pValue));
Py DECREF(pValue);

}
else {
Py _DECREF(pFunc);
Py DECREF(pModule);
PyErr_Print();
fprintf(stderr, " Call failed \n");
return 1;
}
}
else {
if (PyErr_Occurred())
PyErr_Print();
fprintf(stderr, " Cannot find function \" %s" \n", argv[2]);
}

Py_XDECREF(pFunc);
Py_DECREF(pModule);
}
else {
PyErr_Print();
fprintf(stderr, " Failed to load \" %38" \n", argv[1]);
return 1;
}
Py_Finalize();
return 0;

5.3. Pure Embedding

65

Extending and Embedding Python, Release 2.6.4

This code loads a Python script usia@v[1] , and calls the function namedamgv[2] . Its integer arguments
are the other values of trergv array. If you compile and link this program (let’s call the finished executable
call), and use it to execute a Python script, such as:

def multiply(a,b)

print "Will compute ", a, "times ", b
c =20
for iin range(O, a) :
c=c¢c+b
return ¢

then the result should be:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

Although the program is quite large for its functionality, most of the code is for data conversion between Python
and C, and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();

pName = PyString_FromString(argv[10);
/* Error checking of pName left out */
pModule = Pylmport_Import(pName);

After initializing the interpreter, the script is loaded usidgimport_Import() . This routine needs a Python
string as its argument, which is constructed usingRpgtring_FromString() data conversion routine.
pFunc = PyObject_GetAttrString(pModule, argv[2D);

/* pFunc is a new reference */
if (pFunc && PyCallable_Check(pFunc)) {

}
Py_XDECREF(pFunc);

Once the script is loaded, the name we're looking for is retrieved WRBy@pject GetAttrString() f
the name exists, and the object returned is callable, you can safely assume that it is a function. The program then
proceeds by constructing a tuple of arguments as normal. The call to the Python function is then made with:

pValue = PyObject_CallObject(pFunc, pArgs);

Upon return of the functiorpValue is eitherNULL or it contains a reference to the return value of the function.
Be sure to release the reference after examining the value.

5.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python
API allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with
routines provided by the application. While it sounds complex, it is not so bad. Simply forget for a while that
the application starts the Python interpreter. Instead, consider the application to be a set of subroutines, and write
some glue code that gives Python access to those routines, just like you would write a normal Python extension.
For example:

static int numargs =0;

/* Return the number of arguments of the application command line */
static PyObject *
emb_numargs (PyObject *self, PyObject *args)
{
if (! PyArg_ParseTuple(args, ":numargs "))
return NULL

66 Chapter 5. Embedding Python in Another Application

Extending and Embedding Python, Release 2.6.4

return Py Buildvalue("i", numargs);
}
static PyMethodDef EmbMethods][] = {
{"numargs ", emb_numargs, METH_VARARGS,
"Return the number of arguments received by the process. "1,
{NULL, NULL 0, NULL
I3

Insert the above code just above thain() function. Also, insert the following two statements directly after
Py _Initialize()

numargs = argc;
Py_InitModule("emb', EmbMethods);

These two lines initialize theaumargs variable, and make themb.numargs() function accessible to the
embedded Python interpreter. With these extensions, the Python script can do things like

import emb
print " Number of arguments ", emb.numargs()

In a real application, the methods will expose an API of the application to Python.

5.5 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of
the C++ system used; in general you will need to write the main program in C++, and use the C++ compiler to
compile and link your program. There is no need to recompile Python itself using C++.

5.6 Linking Requirements

While the configure script shipped with the Python sources will correctly build Python to export the symbols
needed by dynamically linked extensions, this is not automatically inherited by applications which embed the
Python library statically, at least on Unix. This is an issue when the application is linked to the static runtime
library (libpython.a) and needs to load dynamic extensions (implementesiadiles).

The problem is that some entry points are defined by the Python runtime solely for extension modules to use. If
the embedding application does not use any of these entry points, some linkers will not include those entries in the
symbol table of the finished executable. Some additional options are needed to inform the linker not to remove
these symbols.

Determining the right options to use for any given platform can be quite difficult, but fortunately the Python
configuration already has those values. To retrieve them from an installed Python interpreter, start an interactive
interpreter and have a short session like this:

>>> import distutils.sysconfig
>>> distutils.sysconfig.get_config_var(LINKFORSHARED’)
"-Xlinker -export-dynamic’

The contents of the string presented will be the options that should be used. If the string is empty, there’s no need
to add any additional options. ThéNKFORSHAREefinition corresponds to the variable of the same name in
Python’s top-leveMakefile

5.5. Embedding Python in C++ 67

Extending and Embedding Python, Release 2.6.4

68 Chapter 5. Embedding Python in Another Application

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

The default Python prompt of the interactive shell when entering code for an indented code block or within
a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library #62to3 ; a standalone entry point is provided as
Tools/scripts/2to3 . See2to3 - Automated Python 2 to 3 code translat{gm The Python Library
Reference

abstract base classAbstract Base Classes (abbreviated ABCs) complemiedit-typingby providing a way to
define interfaces when other techniques Iliasattr() would be clumsy. Python comes with many
built-in ABCs for data structures (in thmllections module), numbers (in theumbers module), and
streams (in thé module). You can create your own ABC with tabc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A
function or method may have both positional arguments and keyword arguments in its definition. Positional
and keyword arguments may be variable-lengthaccepts or passes (if in the function definition or call)
several positional arguments in a list, whife does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example,
if an objecto has an attributa it would be referenced asa

BDFL Benevolent Dictator For Life, a.k.&uido van RossupPython’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
interpreter. The bytecode is also cachedoyc and.pyo files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said
to run on avirtual machinethat executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic classAny class which does not inherit froabject . Seenew-style classClassic classes will be removed
in Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For examjié(3.15) converts the floating point number to the inte-
ger 3, but in 3+4.5 , each argument is of a different type (one int, one float), and both must be con-
verted to the same type before they can be added or it will rai$gpgError . Coercion between
two operands can be performed with tbeerce built-in function; thus,3+4.5 is equivalent to call-
ing operator.add(*coerce(3, 4.5)) and results iroperator.add(3.0, 4.5) . Without
coercion, all arguments of even compatible types would have to be normalized to the same value by the
programmer, e.gfloat(3)+4.5 rather than jusB+4.5 .

69

http://www.python.org/~guido/

Extending and Embedding Python, Release 2.6.4

complex number An extension of the familiar real number system in which all numbers are expressed as a sum
of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square
root of -1), often writteni in mathematics oj in engineering. Python has built-in support for complex
numbers, which are written with this latter notation; the imaginary part is written vyitbudfix, e.g.,3+1j .
To get access to complex equivalents of tieth module, usemath . Use of complex numbers is a fairly
advanced mathematical feature. If you're not aware of a need for them, it's almost certain you can safely
ignore them.

context manager An object which controls the environment seen inwith statement by defining
_enter__ () and__exit_ () methods. SeBEP 343

CPython The canonical implementation of the Python programming language. The term “CPython” is used in
contexts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decoratorsadassmethod() andstaticmethod()

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
f = staticmethod(f)

@staticmethod
def f(...):

Seethe documentation for function definitigim The Python Language Referehéar more about decora-
tors.

descriptor Any new-styleobject which defines the methodsget () , set () ,or__delete ()
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, usinga.bto get, set or delete an attribute looks up the object naoiadhe class dictionary foa,
but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to
a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, Iseglementing Descriptorén The Python Language
Referencp

dictionary An associative array, where arbitrary keys are mapped to values. The dis¢ ofclosely resembles
that forlist , but the keys can be any object with ahash__ () function, not just integers. Called a
hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into tHec__ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation
of the object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or
attribute signature rather than by explicit relationship to some type object (“If it looks like a duck and
quacks like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed
code improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests tgieg)
or isinstance() . (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employbkasattr() tests olEAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of maényy andexcept statements. The technique contrasts with the
LBYLstyle common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an ac-
cumulation of expression elements like literals, names, attribute access, operators or function calls which
all return a value. In contrast to many other languages, not all language constructs are expressions. There

70 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

Extending and Embedding Python, Release 2.6.4

are alsostatemerg which cannot be used as expressions, sugbriat or if . Assignments are also
statements, not expressions.

extension module A module written in C or C++, using Python's C API to interact with the core and with user
code.

finder An object that tries to find thdoader for a module. It must implement a method named
find_module() . SeePEP 302for details.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. Seeaigomentandmethod

__future__ A pseudo module which programmers can use to enable new language features which are not compat-
ible with the current interpreter. For example, the expressiod currently evaluates t@. If the module
in which it is executed had enabléde divisionby executing:

from _ future__ import division

the expressiodl/4 would evaluate t@.75 . By importing the__future_ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the
default:

>>> import __ future__
>>> _ future__.division
_Feature((2, 2, 0, 'alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage col-
lection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to
the caller using gield statement instead ofraturn statement. Generator functions often contain one
or morefor orwhile loops whichyield elements back to the caller. The function execution is stopped
at theyield keyword (returning the result) and is resumed there when the next element is requested by
calling thenext() method of the returned iterator.

generator expressionAn expression that returns a generator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optibnaxpression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares O, 1, 4, ... 81
285

GIL Seeglobal interpreter lock

global interpreter lock The lock used by Python threads to assure that only one thread executeSrytthen
virtual machineat a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter to
be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much
finer granularity), but so far none have been successful because performance suffered in the common single-
processor case.

hashable An object is hashableif it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needsen () or__cmp_ ()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use
the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dic-
tionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare
unequal, and their hash value is thielif)

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python. Good for beginners, it also serves as clear example
code for those wanting to implement a moderately sophisticated, multi-platform GUI application.

71

http://www.python.org/dev/peps/pep-0302

Extending and Embedding Python, Release 2.6.4

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the exprekkidn currently
evaluates t@ in contrast to th&.75 returned by float division. Also calleitbor division When dividing
two integers the outcome will always be another integer (having the floor function applied to it). However,
if one of the operands is another numeric type (suchfemat), the result will be coerced (seeercior)
to a common type. For example, an integer divided by a float will result in a float value, possibly with a
decimal fraction. Integer division can be forced by using/theoperator instead of the operator. See also
future_.

importer An object that both finds and loads a module; bofmderandloaderobject.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the
interpreter prompt, immediately execute them and see their results. Just fheh with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas
or inspect modules and packages (remenhiedp(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See
alsointeractive

iterable A container object capable of returning its members one at a time. Examples of iterables include all
sequence types (suchlég | str , andtuple) and some non-sequence types liket andfile and
objects of any classes you define with ariter__ () or __getitem__() method. Iterables can be
used in &or loop and in many other places where a sequence is neeill (, map() , ...). When an
iterable object is passed as an argument to the built-in funitBof) , it returns an iterator for the object.
This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary
to calliter() or deal with iterator objects yourself. Tlier statement does that automatically for you,
creating a temporary unnamed variable to hold the iterator for the duration of the loop. Séeratso,
sequenceandgenerator

iterator An object representing a stream of data. Repeated calls to the itena¢atld method return suc-
cessive items in the stream. When no more data are availaBtepdteration exception is raised
instead. At this point, the iterator object is exhausted and any further callstext§ method just raise
Stoplteration again. Iterators are required to have arnter__ () method that returns the iterator
object itself so every iterator is also iterable and may be used in most places where other iterables are ac-
cepted. One notable exception is code which attempts multiple iteration passes. A container object (such
as alist) produces a fresh new iterator each time you pass it titéh@ function or use it in dor
loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found itberator Typeqin The Python Library Referenge

keyword argument Arguments which are preceded withvariable_name= in the call. The variable name
designates the local name in the function to which the value is assighed used to accept or pass a
dictionary of keyword arguments. Segyument

lambda An anonymous inline function consisting of a singbegressiorwhich is evaluated when the function is
called. The syntax to create a lambda functiolambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with theAFP approach and is characterized by the presence of iharsfatements.

list A built-in PythonsequenceDespite its name it is more akin to an array in other languages than to a linked
list since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a
list of strings containing even hex numbers (0x..) in the range from 0 to 255if Tlbause is optional. If
omitted, all elements ilange(256) are processed.

72 Appendix A. Glossary

Extending and Embedding Python, Release 2.6.4

loader An object that loads a module. It must define a method ndwetl module() . A loader is typically
returned by dinder. SeePEP 302for details.

mapping A container object (such adict) which supports arbitrary key lookups using the special method
__getitem__()

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

More information can be found iBustomizing class creatigiin The Python Language Referehce

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its fissgument(which is usually calledelf). Seefunctionand
nested scope

mutable Mutable objects can change their value but keep tdé€ir . See alsommutable

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for ex-
ample time.localtime() returns a tuple-like object where tlyearis accessible either with an index
such ag[0] or with a named attribute liketm_year).

A named tuple can be a built-in type such t®e.struct_time , or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple() . The latter approach automatically provides extra features such as a

self-documenting representation likenployee(name=’jones’, title="programmer’)

namespaceThe place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and built-in namespaces as well as nested nhamespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functidmsiltin__.open()
andos.open() are distinguished by their namespaces. Namespaces also aid readability and maintain-
ability by making it clear which module implements a function. For instance, writimglom.seed()
or itertools.izip() makes it clear that those functions are implemented byrédmelom and
itertools modules, respectively.

nested scopeThe ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style classAny class which inherits fronobject . This includes all built-in types likéist anddict
Only new-style classes can use Python’s newer, versatile features Bkats ~ , descriptors, properties,
and__ getattribute__ ()

More information can be found iNew-style and classic classg@s The Python Language Referehce

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of
anynew-style class

positional argument The arguments assigned to local names inside a function or method, determined by the
order in which they were given in the cali. is used to either accept multiple positional arguments (when
in the definition), or pass several arguments as a list to a functiorar§ement

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3
was something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common idiom
in Python is to loop over all elements of an iterable usirfgra statement. Many other languages don't
have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food))
print food[i]

73

http://www.python.org/dev/peps/pep-0302

Extending and Embedding Python, Release 2.6.4

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPythonimplementation. Theys module defines getrefcount() function that programmers can
call to return the reference count for a particular object.

__slots__ A declaration inside aew-style clasthat saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is
best reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequenceAn iterable which supports efficient element access using integer indices via thetitem__ ()
special method and defineden() method that returns the length of the sequence. Some built-in se-
quence types arést , str , tuple , andunicode . Note thatdict also supports getitem__ ()
and__len_ () , butis considered a mapping rather than a sequence because the lookups use arbitrary
immutablekeys rather than integers.

slice An object usually containing a portion of sequence A slice is created using the subscript notation,
[l with colons between numbers when several are given, such\amiable_name[1:3:5] . The
bracket (subscript) notation ussce objects internally (or in older versions, getslice_ () and
__setslice_ ()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as
addition. Such methods have names starting and ending with double underscores. Special methods are
documented irspecial method namém The Python Language Referehce

statement A statement is part of a suite (a “block” of code). A statement is eithexaressiomr a one of several
constructs with a keyword, such #és, while or print

triple-quoted string A string which is bound by three instances of either a quotation mark () or an apostrophe
(). While they don't provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they
can span multiple lines without the use of the continuation character, making them especially useful when
writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits class__ attribute or can be retrieved witlipe(obj)

virtual machine A computer defined entirely in software. Python'’s virtual machine executésytheodemitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typimgport this " at the interactive prompt.

74 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated fre@tructuredTexsources bysphinx a document processor specifically writ-
ten for the Python documentation.

Development of the documentation and its toolchain takes place odotte@ python.orgnailing list. We're
always looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

e Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

« theDocutilsproject for creating reStructuredText and the Docutils suite;
» Fredrik Lundh for hisAlternative Python Referengaroject from which Sphinx got many good ideas.

SeeReporting Bugs in Pythofor information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably
not complete — if you feel that you or anyone else should be on this list, please let us know (send email to
docs@python.ong and we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesus Cea Avion, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander
Belopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl,
Keith Briggs, lan Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario,
Mike Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter
Deutsch, Robert Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson,
Carey Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Hernan Martinez Foffani, Stefan Franke, Jim Ful-
ton, Peter Funk, Lele Gaifax, Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan
Giddy, Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond,
Harald Hanche-Olsen, Manus Hand, Gerhard Héring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas
Heller, Bernhard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hof-
fleit, Steve Holden, Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson,
Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas
de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel
Kozan, Andrew M. Kuchling, Dave Kuhiman, Erno Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph
Lefkowitz, Robert Lehmann, Marc-André Lemburg, Ross Light, UIf A. Lindgren, Everett Lipman, Mirko Liss,
Martin von Lowis, Fredrik Lundh, Jeff MacDonald, John Machin, Andrew Maclintyre, Vladimir Marangozov,
Vincent Marchetti, Laura Matson, Daniel May, Rebecca McCreary, Doug Mennella, Paolo Milani, Skip Monta-
naro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata, Ng Pheng Siong, Koray Oner, Tomas Oppelstrup,
Denis S. Otkidach, Zooko O’'Whielacronx, Shriphani Palakodety, William Park, Joonas Paalasmaa, Harri Pasanen,
Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin D. Pettit, Chris Phoenix, Francois Pinard,
Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider, Bernhard Reiter, Armin Rigo, Wes Rishel,
Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse II, Mark Russell, Nick Russo, Chris

75

http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

Extending and Embedding Python, Release 2.6.4

Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Schemenauer, Barry Scott, Joakim Sern-
brant, Justin Sheehy, Charlie Shepherd, Michael Simcich, lonel Simionescu, Michael Sloan, Gregory P. Smith,
Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks, Greg Stein, Peter
Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio, Martijn
Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy Wel-
bourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe,
Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

Itis only with the input and contributions of the Python community that Python has such wonderful documentation
— Thank You!

76 Appendix B. About these documents

APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.upin Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.con)/ In 2001, the Python Software Foundation (PSF,tgge//www.python.org/psj/was

formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (s&p://www.opensource.ordor the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0thru 1.2| n/a 1991-1995| CWI yes
1.3thru1.5.2| 1.2 1995-1999| CNRI yes
1.6 15.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.11 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 2.11 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
2.2.2 221 2002 PSF yes
2.2.3 222 2002-2003| PSF yes
2.3 222 2002-2003| PSF yes
2.3.1 2.3 2002-2003| PSF yes
2.3.2 231 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
234 2.3.3 2004 PSF yes
2.35 234 2005 PSF yes
2.4 2.3 2004 PSF yes
241 24 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
Continued on next page

77

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

Extending and Embedding Python, Release 2.6.4

Table C.1 — continued from previous page

2.4.4 2.4.3 2006 PSF yes
25 24 2006 PSF yes
251 2.5 2007 PSF yes
252 251 2008 PSF yes
253 252 2008 PSF yes
2.6 2.5 2008 PSF yes
26.1 2.6 2008 PSF yes

Note: GPL-compatible doesn’'t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.4

1.

This LICENSE AGREEMENT is between the Python Software Foundation (“PSF"), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.6.4 software in source or binary form
and its associated documentation.

. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.4 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2009 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.4 alone or in any derivative version prepared
by Licensee.

. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.6.4 or any part

thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.6.4.

. PSF is making Python 2.6.4 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-

TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-

CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.6.4 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.4 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.4, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or

joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

. By copying, installing or otherwise using Python 2.6.4, Licensee agrees to be bound by the terms and

conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 BEOPEN PYTHON OPEN SOURCE LICENSE
AGREEMENT VERSION 1

1.

This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

78

Appendix C. History and License

Extending and Embedding Python, Release 2.6.4

2. Subiject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available étttp://www.pythonlabs.com/logos.htmay be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’'s License Agreement and CNRI's notice of copyright, i.e., “Copyright © 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI's License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRISHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

C.2. Terms and conditions for accessing or otherwise using Python 79

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

Extending and Embedding Python, Release 2.6.4

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 Copyright © 1991 - 1995,
Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download frdttp://www.math.keio.ac.jp/matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

80 Appendix C. History and License

http://www.math.keio.ac.jp/

Extending and Embedding Python, Release 2.6.4

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://lwww.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

Thesocket module uses the functiongetaddrinfo() ,andgetnameinfo() , which are coded in separate
source files from the WIDE Projediitp://www.wide.ad.jp/

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS “AS IS” AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 81

http://www.wide.ad.jp/

Extending and Embedding Python, Release 2.6.4

C.3.3 Floating point exception control

The source for thépectl module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California. |
All rights reserved. [

Permission to use, copy, modify, and distribute this software for |
any purpose without fee is hereby granted, provided that this en- |
tire notice is included in all copies of any software which is or |
includes a copy or modification of this software and in all |
copies of the supporting documentation for such software. |

This work was produced at the University of California, Lawrence |
Livermore National Laboratory under contract no. W-7405-ENG-48 |
between the U.S. Department of Energy and The Regents of the |
University of California for the operation of UC LLNL. |

DISCLAIMER |

This software was prepared as an account of work sponsored by an |
agency of the United States Government. Neither the United States |
Government nor the University of California nor any of their em- |
ployees, makes any warranty, express or implied, or assumes any |
liability or responsibility for the accuracy, completeness, or |
usefulness of any information, apparatus, product, or process |
disclosed, or represents that its wuse would not infringe |
privately-owned rights. Reference herein to any specific commer- |
cial products, process, or service by trade name, trademark, |
manufacturer, or otherwise, does not necessarily constitute or |
imply its endorsement, recommendation, or favoring by the United |
States Government or the University of California. The views and |
opinions of authors expressed herein do not necessarily state or |
reflect those of the United States Government or the University |
of California, and shall not be used for advertising or product |

\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for thmd5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

82 Appendix C. History and License

Extending and Embedding Python, Release 2.6.4

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 Ipd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.
1999-11-04 Ipd Edited comments slightly for automatic TOC extraction.
1999-10-18 Ipd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
1999-05-03 Ipd Original version.

C.3.5 Asynchronous socket services

Theasynchat andasyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 83

Extending and Embedding Python, Release 2.6.4

C.3.6 Cookie management

TheCookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

Theprofile andpstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software

without specific, written prior permission. This permission is

explicitly restricted to the copying and modification of the software

to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

Thetrace module contains the following notice:

84 Appendix C. History and License

Extending and Embedding Python, Release 2.6.4

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko O’'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.9 UUencode and UUdecode functions

Theuu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3. Licenses and Acknowledgements for Incorporated Software 85

Extending and Embedding Python, Release 2.6.4

C.3.10 XML Remote Procedure Calls

Thexmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.11 test_epoll

Thetest_epoll contains the following notice:
Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

86 Appendix C. History and License

Extending and Embedding Python, Release 2.6.4

C.3.12 Select kqueue

Theselect and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS” AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 87

Extending and Embedding Python, Release 2.6.4

88 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2009 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

SeeHistory and Licensdor complete license and permissions information.

89

Extending and Embedding Python, Release 2.6.4

90 Appendix D. Copyright

Symbols

.., 069

_ future__ 71
__slots__ 74
>>> 69
2t03,69

A

abstract base clas39
argumentf9
attribute,69

B

BDFL, 69

built-in function
repr,49
str, 49

bytecodef9

C

class,69

classic class;9
coercion,69
complex number9
context manager;0
CPython,70

D

deallocation, object}8
decorator,/0
descriptor,70
dictionary,70
distutils.sysconfig
module,67
docstring,70
duck-typing,70

E

EAFP,70
expressiony0
extension module/1

F

finalization, of objects48
finder,71

INDEX

function, 71

G

garbage collection]1
generatory1

generator expressionL
GIL, 71

global interpreter lock7 1

H
hashable71

IDLE, 71
immutable,71
importer,72
integer division,72
interactive,’2
interpreted,/2
iterable,72
iterator,72

K
keyword argument;2

L

lambda,72

LBYL, 72

list, 72

list comprehension]2
loader,72

M

mapping,73

metaclass/3

method,73

module
distutils.sysconfigg7

mutable,73

N

named tuple73
namespace’3
nested scopé&;3
new-style class/3

91

Extending and Embedding Python, Release 2.6.4

O

object,73
deallocation48
finalization,48

P

Philbrick, Geoff,11
positional argument/3
PyArg_ParseTuple(),0

PyArg_ParseTupleAndKeywords()1

PyErr_Fetch()49
PyErr_Restore(49
PyObject_CallObject(®
Python 300073

Python Enhancement Proposals

PEP 30271, 73
PEP 34370
Pythonic,73

R

READ_RESTRICTEDS2
READONLY, 52
reference counf/4
repr

built-in function,49
RESTRICTED 52
RO,52

S

sequence/4
slice, 74
special method74
statement/4
str
built-in function,49

T

triple-quoted string74
type, 74

Vv

virtual machine/4

W
WRITE_RESTRICTED52

Z
Zen of Pythony/4

92

Index

	Extending Python with C or C++
	A Simple Example
	Intermezzo: Errors and Exceptions
	Back to the Example
	The Module's Method Table and Initialization Function
	Compilation and Linkage
	Calling Python Functions from C
	Extracting Parameters in Extension Functions
	Keyword Parameters for Extension Functions
	Building Arbitrary Values
	Reference Counts
	Writing Extensions in C++
	Providing a C API for an Extension Module

	Defining New Types
	The Basics
	Type Methods

	Building C and C++ Extensions with distutils
	Distributing your extension modules

	Building C and C++ Extensions on Windows
	A Cookbook Approach
	Differences Between Unix and Windows
	Using DLLs in Practice

	Embedding Python in Another Application
	Very High Level Embedding
	Beyond Very High Level Embedding: An overview
	Pure Embedding
	Extending Embedded Python
	Embedding Python in C++
	Linking Requirements

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

