Regular Expression HOWTO

Contents

1 Introduction

2 Simple Patterns

2.1 MatchingCharacters.
2.2 RepeatingThings

3 Using Regular Expressions

3.1 Compiling Regular Expressions
3.2 TheBackslashPlague.
3.3 Performing Matches.
3.4 Module-Level Functions.
3.5 CompilationFlags

4 More Pattern Power

4.1 More Metacharacters
42 Grouping

4.3 Non-capturing and Named Groups

4.4 Lookahead Assertions.

5 Modifying Strings

5.1 Splitting Strings.
5.2 SearchandReplace.

6 Common Problems

6.1 UseStringMethods
6.2 match() versussearch().
6.3 Greedy versus Non-Greedy.
6.4 NotUsingreVERBOSE.

7 Feedback

Release 2.6.4

Guido van Rossum
Fred L. Drake, Jr., editor

October 30, 2009

Python Software Foundation
Email: docs@python.org

.......................... Vii
.......................... Vii

Author A.M. Kuchling <amk@amk.ca
Release0.05

mailto:amk@amk.ca

Abstract

This document is an introductory tutorial to using regular expressions in Python witie tieodule. It
provides a gentler introduction than the corresponding section in the Library Reference.

1 Introduction

There module was added in Python 1.5, and provides Perl-style regular expression patterns. Earlier versions of
Python came with theegex module, which provided Emacs-style patterns. Tégex module was removed
completely in Python 2.5.

Regular expressions (called REs, or regexes, or regex patterns) are essentially a tiny, highly specialized program-
ming language embedded inside Python and made available through timedule. Using this little language,

you specify the rules for the set of possible strings that you want to match; this set might contain English sen-
tences, or e-mail addresses, or TeX commands, or anything you like. You can then ask questions such as “Does
this string match the pattern?”, or “Is there a match for the pattern anywhere in this string?”. You can also use REs
to modify a string or to split it apart in various ways.

Regular expression patterns are compiled into a series of bytecodes which are then executed by a matching engine
written in C. For advanced use, it may be necessary to pay careful attention to how the engine will execute a given
RE, and write the RE in a certain way in order to produce bytecode that runs faster. Optimization isn’t covered in
this document, because it requires that you have a good understanding of the matching engine’s internals.

The regular expression language is relatively small and restricted, so not all possible string processing tasks can
be done using regular expressions. There are also tasksahae done with regular expressions, but the ex-
pressions turn out to be very complicated. In these cases, you may be better off writing Python code to do the
processing; while Python code will be slower than an elaborate regular expression, it will also probably be more
understandable.

2 Simple Patterns

We’'ll start by learning about the simplest possible regular expressions. Since regular expressions are used to
operate on strings, we’'ll begin with the most common task: matching characters.

For a detailed explanation of the computer science underlying regular expressions (deterministic and non-
deterministic finite automata), you can refer to almost any textbook on writing compilers.

2.1 Matching Characters

Most letters and characters will simply match themselves. For example, the regular exprestsionill match
the stringtest exactly. (You can enable a case-insensitive mode that would let this RE Tedthor TEST as
well; more about this later.)

There are exceptions to this rule; some characters are spestiatharactersand don’t match themselves. Instead,

they signal that some out-of-the-ordinary thing should be matched, or they affect other portions of the RE by
repeating them or changing their meaning. Much of this document is devoted to discussing various metacharacters
and what they do.

Here’s a complete list of the metacharacters; their meanings will be discussed in the rest of this HOWTO.
A2 {1V ()

The first metacharacters we’'ll look at greand] . They're used for specifying a character class, which is a set of
characters that you wish to match. Characters can be listed individually, or a range of characters can be indicated
by giving two characters and separating them By a. For example[abc] will match any of the characters

a, b, orc; this is the same ga-c] , which uses a range to express the same set of characters. If you wanted to
match only lowercase letters, your RE would[hez]

Metacharacters are not active inside classes. For exafagle$] will match any of the characteta’ , 'k’ ,
'm ,or'$;'$ isusually a metacharacter, but inside a character class it’s stripped of its special nature.

You can match the characters not listed within the classdmplementinghe set. This is indicated by including
a'™ as the first character of the class; outside a character class will simply match the character. For
example[*5] will match any character excej®

Perhaps the most important metacharacter is the back$lagts in Python string literals, the backslash can be
followed by various characters to signal various special sequences. It's also used to escape all the metacharacters
so you can still match them in patterns; for example, if you need to mdtcbrd , you can precede them with a
backslash to remove their special meanifig:or\\ .

Some of the special sequences beginning With represent predefined sets of characters that are often useful,
such as the set of digits, the set of letters, or the set of anything that isn’t whitespace. The following predefined
special sequences are available:

\d Matches any decimal digit; this is equivalent to the c[@s8]

\D Matches any non-digit character; this is equivalent to the ¢f&s9]

\s Matches any whitespace character; this is equivalent to the[cldg8r\flv]

\S Matches any non-whitespace character; this is equivalent to the[tlaga\r\flv]

\w Matches any alphanumeric character; this is equivalent to the[elas20-9]

\W Matches any non-alphanumeric character; this is equivalent to the[tdag8-70-9]

These sequences can be included inside a character class. For ef@snple, is a character class that will
match any whitespace character,,br or’.’

The final metacharacter in this section islit matches anything except a newline character, and there’s an alternate
mode ¢(e.DOTALL) where it will match even a newline'.” is often used where you want to match “any
character”.

2.2 Repeating Things

Being able to match varying sets of characters is the first thing regular expressions can do that isn't already
possible with the methods available on strings. However, if that was the only additional capability of regexes,
they wouldn’t be much of an advance. Another capability is that you can specify that portions of the RE must be
repeated a certain number of times.

The first metacharacter for repeating things that we’ll look &t is doesn’t match the literal characterinstead,
it specifies that the previous character can be matched zero or more times, instead of exactly once.

For exampleca*t will matchct (O a characters)cat (1 a), caaat (3 a characters), and so forth. The RE
engine has various internal limitations stemming from the size ofi€'stype that will prevent it from matching

over 2 billion a characters; you probably don't have enough memory to construct a string that large, so you
shouldn’t run into that limit.

Repetitions such as aregreedy when repeating a RE, the matching engine will try to repeat it as many times as
possible. If later portions of the pattern don’t match, the matching engine will then back up and try again with few
repetitions.

A step-by-step example will make this more obvious. Let’s consider the expregfsiot*b . This matches
the lettera’ , zero or more letters from the claggd] , and finally ends with &’ . Now imagine matching
this RE against the stringbcbd .

Step | Matched | Explanation

1 a Thea in the RE matches.

2 abcbd The engine matchdbcd]* |, going as far as it can, which is to the end of the string.

3 Failure The engine tries to matdh, but the current position is at the end of the string, so it fails.
4 abch Back up, so thafbcd]* matches one less character.

5 Failure Try b again, but the current position is at the last character, whichd's a

6 abc Back up again, so thd@ibcd]* is only matchindoc.

6 abcb Try b again. This time the character at the current positioh’is, so it succeeds.

The end of the RE has now been reached, and it has maatiold This demonstrates how the matching engine
goes as far as it can at first, and if no match is found it will then progressively back up and retry the rest of the
RE again and again. It will back up until it has tried zero matchefofed]* , and if that subsequently fails, the
engine will conclude that the string doesn’t match the RE at all.

Another repeating metacharactertiswhich matches one or more times. Pay careful attention to the difference
betweer* and+; * matcheszeroor more times, so whatever’s being repeated may not be present at all #while
requires at leagineoccurrence. To use a similar exampde;+t will matchcat (1a), caaat (3a's), but won't
matchct .

There are two more repeating qualifiers. The question mark charactaegtches either once or zero times; you
can think of it as marking something as being optional. For exarhpl@e-?brew matches eithehomebrew
or home-brew .

The most complicated repeated qualifiefns,n} , wherem andn are decimal integers. This qualifier means
there must be at leastrepetitions, and at most For examplea/{1,3}b will matcha/b , a//b , anda//lb
It won't matchab, which has no slashes, af///b , which has four.

You can omit eithem or n; in that case, a reasonable value is assumed for the missing value. Omitiing
interpreted as a lower limit of 0, while omittingresults in an upper bound of infinity — actually, the upper bound
is the 2-billion limit mentioned earlier, but that might as well be infinity.

Readers of a reductionist bent may notice that the three other qualifiers can all be expressed using this notation.
{0,} isthe same as$, {1,} is equivalenttor, and{0,1} isthe same a8. It's better to usé, +, or ? when
you can, simply because they’re shorter and easier to read.

3 Using Regular Expressions

Now that we've looked at some simple regular expressions, how do we actually use them in Pythore&? The
module provides an interface to the regular expression engine, allowing you to compile REs into objects and then
perform matches with them.

3.1 Compiling Regular Expressions

Regular expressions are compiled into pattern objects, which have methods for various operations such as search-
ing for pattern matches or performing string substitutions.

>>> jmport re

>>> p = re.compile('ab*’)

>>> print p

<_sre.SRE_Pattern object at 80b4150>

re.compile() also accepts an option#lags argument, used to enable various special features and syntax
variations. We’'ll go over the available settings later, but for now a single example will do:

>>> p = re.compile('ab*’, re . IGNORECASE)

The RE is passed t@.compile() as a string. REs are handled as strings because regular expressions aren’t
part of the core Python language, and no special syntax was created for expressing them. (There are applications
that don't need REs at all, so there’s no need to bloat the language specification by including them.) Instead, the
re module is simply a C extension module included with Python, just likesttoket orzlib modules.

Putting REs in strings keeps the Python language simpler, but has one disadvantage which is the topic of the next
section.

3.2 The Backslash Plague

As stated earlier, regular expressions use the backslash charéctgrt¢ indicate special forms or to allow
special characters to be used without invoking their special meaning. This conflicts with Python’s usage of the
same character for the same purpose in string literals.

Let's say you want to write a RE that matches the stkgegtion , which might be found in a LaTeX file. To

figure out what to write in the program code, start with the desired string to be matched. Next, you must escape any
backslashes and other metacharacters by preceding them with a backslash, resulting in thisesttimg

The resulting string that must be passeda@ompile() must bé\\section . However, to express this as a
Python string literal, both backslashes must be escagaih

Characters Stage
\section Text string to be matched
\\section Escaped backslash fog.compile()
"W\section" Escaped backslashes for a string literal
In short, to match a literal backslash, one has to wiite as the RE string, because the regular expression

must be\\ , and each backslash must be expressed asiside a regular Python string literal. In REs that
feature backslashes repeatedly, this leads to lots of repeated backslashes and makes the resulting strings difficult
to understand.

The solution is to use Python’s raw string notation for regular expressions; backslashes are not handled in any
special way in a string literal prefixed with , sor"\n" is a two-character string containirly and'n’ ,

while "\n" is a one-character string containing a newline. Regular expressions will often be written in Python
code using this raw string notation.

Regular String Raw string
"ab*" rab*"
"W\section" r"\\section"
"W+\s+\1" r"\w+\s+\1"

3.3 Performing Matches

Once you have an object representing a compiled regular expression, what do you do with it? Pattern objects have
several methods and attributes. Only the most significant ones will be covered here; con=ailidibes for a
complete listing.

Method/Attribute Purpose

match() Determine if the RE matches at the beginning of the string.

search() Scan through a string, looking for any location where this RE matches.
findall() Find all substrings where the RE matches, and returns them as a list.
finditer() Find all substrings where the RE matches, and returns themiteratior.

match() andsearch() returnNone if no match can be found. If they're successfulMatchObject
instance is returned, containing information about the match: where it starts and ends, the substring it matched,
and more.

You can learn about this by interactively experimenting withridnemodule. If you have Tkinter available, you
may also want to look atools/scripts/redemo.py , a demonstration program included with the Python
distribution. It allows you to enter REs and strings, and displays whether the RE matches oetlso.py

can be quite useful when trying to debug a complicated RE. Phil Schwéiizssis also an interactive tool for
developing and testing RE patterns.

This HOWTO uses the standard Python interpreter for its examples. First, run the Python interpreter, import the
re module, and compile a RE:

http://kodos.sourceforge.net/

Python 2.2.2 (#1, Feb 10 2003, 12:57:01)
>>> import re

>>> p = re.compile([a-z]+)

>>>p

<_sre.SRE_Pattern object at 80c3c28>

Now, you can try matching various strings against the[®E[+ . An empty string shouldn't match at all, since
+ means ‘one or more repetitionshatch() should returrNone in this case, which will cause the interpreter to
print no output. You can explicitly print the result ofatch() to make this clear.

>>> p. match("")
>>> print p. match("")
None

Now, let's try it on a string that it should match, such @mpo. In this case,match() will return a
MatchObject , so you should store the result in a variable for later use.

>>> m = p. match(' tempo’)
>>> print m
< sre.SRE_Match object at 80c4f68>

Now you can query thdlatchObject for information about the matching strindvatchObject instances
also have several methods and attributes; the most important ones are:

Method/Attribute Purpose

group() Return the string matched by the RE

start() Return the starting position of the match

end() Return the ending position of the match

span() Return a tuple containing the (start, end) positions of the match

Trying these methods will soon clarify their meaning:

>>> m group()

‘tempo’

>>> mstart(), m . end()
0, 5)

>>> m span()

(0, 5)

group() returns the substring that was matched by the $&tt() andend() return the starting and ending
index of the matchspan() returns both start and end indexes in a single tuple. Sincenttteh() method
only checks if the RE matches at the start of a stratgrt() will always be zero. However, theearch()
method of patterns scans through the string, so the match may not start at zero in that case.

>>> print p. match(' ::: message ')
None
>>> m = p.search(’':: message ') ; print m

<re.MatchObject instance at 80c9650>
>>> m group()

'message’

>>> m span()

4, 11)

In actual programs, the most common style is to storehichObject in a variable, and then check if it was
None. This usually looks like:

p = re.compile(...)
m = p. match(' string goes here ")
it m:

print ' Match found: ', m. group()
else :

print " No match’

Two pattern methods return all of the matches for a patfiardall() returns a list of matching strings:

>>> p = re.compile(’\d+")

>>> p. findall(' 12 drummers drumming, 11 pipers piping, 10 lords a-leaping ")
[12, '11’, '107
findall() has to create the entire list before it can be returned as the resufinditier() method returns

a sequence d¥latchObject instances as aterator. *

>>> jterator = p. finditer(" 12 drummers drumming, 11 ... 10 ... ")
>>> jterator
<callable-iterator object at 0x401833ac>
>>> for match in iterator:
print match . span()
©, 2)
(22, 24)
(29, 31)

3.4 Module-Level Functions

You don't have to create a pattern object and call its methodsiethmodule also provides top-level functions
calledmatch() , search() , findall() , sub() , and so forth. These functions take the same arguments as
the corresponding pattern method, with the RE string added as the first argument, and still retuivcgither
aMatchObject instance.

>>> print re . match(rr From\s+', ' Fromage amk’)

None

>>> re . match(r' From\s+', ' From amk Thu May 14 19:12:10 1998 ')
<re.MatchObject instance at 80c5978>

Under the hood, these functions simply create a pattern object for you and call the appropriate method on it. They
also store the compiled object in a cache, so future calls using the same RE are faster.

Should you use these module-level functions, or should you get the pattern and call its methods yourself? That
choice depends on how frequently the RE will be used, and on your personal coding style. If the RE is being used
at only one point in the code, then the module functions are probably more convenient. If a program contains a lot
of regular expressions, or re-uses the same ones in several locations, then it might be worthwhile to collect all the
definitions in one place, in a section of code that compiles all the REs ahead of time. To take an example from the
standard library, here’s an extract frommllib.py

ref = re.compile(...)

entityref = re.compile(...)
charref = re.compile(...)
starttagopen = re.compile(...)

| generally prefer to work with the compiled object, even for one-time uses, but few people will be as much of a
purist about this as | am.

3.5 Compilation Flags

Compilation flags let you modify some aspects of how regular expressions work. Flags are availablein the
module under two names, a long name suchGiORECASEand a short, one-letter form such las(If you're
familiar with Perl’s pattern modifiers, the one-letter forms use the same letters; the short frerdBRBOSE
isre.X , for example.) Multiple flags can be specified by bitwise OR-ing them; | re.M sets both thé
andMflags, for example.

Here’s a table of the available flags, followed by a more detailed explanation of each one.

L Introduced in Python 2.2.2.

Flag Meaning

DOTALL S Make. match any character, including newlines

IGNORECASH | Do case-insensitive matches

LOCALEL Do a locale-aware match

MULTILINE, M | Multi-line matching, affecting* and$

VERBOSEX Enable verbose REs, which can be organized more cleanly and understandably.

UNICODEU Makes several escapes like, \b ,\s and\d dependent on the Unicode character database.
I
IGNORECASE

Perform case-insensitive matching; character class and literal strings will match letters by ignoring case.
For example[A-Z] will match lowercase letters, too, aphamwill match Spam spam, or spAM. This
lowercasing doesn'’t take the current locale into account; it will if you also sdt@@ALEflag.

L

LOCALE
Make\w ,\W, \b , and\B , dependent on the current locale.
Locales are a feature of the C library intended to help in writing programs that take account of language
differences. For example, if you're processing French text, you'd want to be able to\w#itéo match
words, but\w only matches the character clg#sZa-z] ; it won't match’é’ or’¢’ . If your system
is configured properly and a French locale is selected, certain C functions will tell the prograéi that
should also be considered a letter. Settingt®&ALEflag when compiling a regular expression will cause
the resulting compiled object to use these C functiondviarthis is slower, but also enablés+ to match
French words as you'd expect.

M

MULTILINE
(™ and$ haven't been explained yet; they'll be introduced in sechtore Metacharacter$
Usually~ matches only at the beginning of the string, éhdnatches only at the end of the string and
immediately before the newline (if any) at the end of the string. When this flag is spectifiadiches at
the beginning of the string and at the beginning of each line within the string, immediately following each
newline. Similarly, thes metacharacter matches either at the end of the string and at the end of each line
(immediately preceding each newline).

S

DOTALL
Makes the.” special character match any character at all, including a newline; without this'flaguyill
match anythingexcepta newline.

U

UNICODE
Make\w ,\W,\b ,\B,\d ,\D,\s and\S dependent on the Unicode character properties database.

X

VERBOSE

This flag allows you to write regular expressions that are more readable by granting you more flexibility in
how you can format them. When this flag has been specified, whitespace within the RE string is ignored,
except when the whitespace is in a character class or preceded by an unescaped backslash; this lets you
organize and indent the RE more clearly. This flag also lets you put comments within a RE that will be
ignored by the engine; comments are marked By a that’s neither in a character class or preceded by an
unescaped backslash.

For example, here’s a RE that usesVERBOSE; see how much easier it is to read?

charref = re . compile(™
&[#] # Start of a numeric entity reference
(
0[0-7]+ # Octal form
| [0-9]+ # Decimal form

| x[0-9a-fA-F]+ # Hexadecimal form

)

; # Trailing semicolon
" re . VERBOSE)

Without the verbose setting, the RE would look like this:

charref = re.compile("&#(0[0-7]+ "
“|[0-9)+
" |x[0-9a-fA-F]+); ")

In the above example, Python’s automatic concatenation of string literals has been used to break up the RE
into smaller pieces, but it's still more difficult to understand than the version usingERBOSE.

4 More Pattern Power

So far we've only covered a part of the features of regular expressions. In this section, we’ll cover some new
metacharacters, and how to use groups to retrieve portions of the text that was matched.

4.1 More Metacharacters

There are some metacharacters that we haven’t covered yet. Most of them will be covered in this section.

Some of the remaining metacharacters to be discussexkaravidth assertionsThey don't cause the engine to
advance through the string; instead, they consume no characters at all, and simply succeed or fail. For example,
\b is an assertion that the current position is located at a word boundary; the position isn’'t changetbbythe

all. This means that zero-width assertions should never be repeated, because if they match once at a given location,
they can obviously be matched an infinite number of times.

| Alternation, or the “or” operator. If A and B are regular expressi@iB, will match any string that matches
either A or B. | has very low precedence in order to make it work reasonably when you're alternating
multi-character stringsCrow|Servo will match eitherCrow or Servo , notCro, a’'w’ oran’'S’ , and
ervo .

To match a literal|’ , use\| , or enclose it inside a character class, &g]in.

N Matches at the beginning of lines. Unless M<ILINE flag has been set, this will only match at the
beginning of the string. IMULTILINE mode, this also matches immediately after each newline within the
string.

For example, if you wish to match the wolFdom only at the beginning of a line, the RE to usé'igom .

>>> print re.search('"“From’, 'From Here to Eternity)
<re.MatchObject instance at 80c1520>

>>> print re.search('“From’, ' Reciting From Memory ')
None

$ Matches at the end of a line, which is defined as either the end of the string, or any location followed by a
newline character.

>>> print re.search('}$’', ’{block})
<re.MatchObject instance at 80adfa8>

>>> print re.search('}$', '{block})
None

>>> print re.search('}$’, '{block} \n’)

<re.MatchObject instance at 80adfa8>
To match a literal$’ , use\$ or enclose it inside a character class, agin .

\A Matches only at the start of the string. When noMWLTILINE mode)\A and” are effectively the same. In
MULTILINE mode, they're differenttA still matches only at the beginning of the string, bunhay match
at any location inside the string that follows a newline character.

\Z Matches only at the end of the string.

\b Word boundary. This is a zero-width assertion that matches only at the beginning or end of a word. A word
is defined as a sequence of alphanumeric characters, so the end of a word is indicated by whitespace or a
non-alphanumeric character.

The following example matchesgass only when it's a complete word; it won’t match when it's contained
inside another word.

>>> p = re.compile(' \bclass \b")

>>> print p.search('no class at all ")
<re.MatchObject instance at 80c8f28>

>>> print p. search(’the declassified algorithm ")
None

>>> print p. search('one subclass is)

None

There are two subtleties you should remember when using this special sequence. First, this is the worst
collision between Python’s string literals and regular expression sequences. In Python'’s string\literals,

is the backspace character, ASCII value 8. If you're not using raw strings, then Python will convéert the

to a backspace, and your RE won't match as you expect it to. The following example looks the same as our
previous RE, but omits the' in front of the RE string.

>>> p = re.compile('\bclass \b ")

>>> print p.search('no class at all ")
None

>>> print p.search("\b’ + ’'class * + "\b")
<re.MatchObject instance at 80c3ee0>

Second, inside a character class, where there’s no use for this assérti@presents the backspace char-
acter, for compatibility with Python’s string literals.

\B Another zero-width assertion, this is the opposit&lof only matching when the current position is not at a
word boundary.

4.2 Grouping

Frequently you need to obtain more information than just whether the RE matched or not. Regular expressions
are often used to dissect strings by writing a RE divided into several subgroups which match different components
of interest. For example, an RFC-822 header line is divided into a header name and a value, separdted by a

like this:

From: author@example.com

User-Agent: Thunderbird 1.5.0.9 (X11/20061227)
MIME-Version: 1.0

To: editor@example.com

This can be handled by writing a regular expression which matches an entire header line, and has one group which
matches the header name, and another group which matches the header’s value.

Groups are marked by tHg¢ ,’)’ metacharacters ' and’)’ have much the same meaning as they do

in mathematical expressions; they group together the expressions contained inside them, and you can repeat the
contents of a group with a repeating qualifier, such as, ?, or{m,n} . For example(ab)* will match zero

or more repetitions oéb.

>>> p = re.compile(' (ab)* ")
>>> print p. match(' ababababab ') . span()
(0, 10)

Groups indicated with" ,’)’ also capture the starting and ending index of the text that they match; this can be
retrieved by passing an argumengmup() , start() ,end() , andspan() . Groups are numbered starting
with 0. Group 0 is always present; it's the whole REMatchObject methods all have group 0 as their default
argument. Later we’'ll see how to express groups that don't capture the span of text that they match.

>>> p re . compile(' (a)b ")

>>> m = p. match(' ab’)

>>> m group()

‘ab’

>>> m group(0)

alb’

Subgroups are numbered from left to right, from 1 upward. Groups can be nested; to determine the number, just
count the opening parenthesis characters, going from left to right.

>>> p = re.compile(' (a(b)c)d)

>>> m = p. match(" abcd)

>>> m group(0)

‘abed’

>>> m group(1)

'abc’

>>> m group(2)

b

group() can be passed multiple group numbers at a time, in which case it will return a tuple containing the
corresponding values for those groups.

>>> m group(2,1, 2)

(b’, 'abc’, 'b’)

Thegroups() method returns a tuple containing the strings for all the subgroups, from 1 up to however many
there are.

>>> m groups()

(labcy, ,b’)

Backreferences in a pattern allow you to specify that the contents of an earlier capturing group must also be found
at the current location in the string. For example, will succeed if the exact contents of group 1 can be found

at the current position, and fails otherwise. Remember that Python’s string literals also use a backslash followed

by numbers to allow including arbitrary characters in a string, so be sure to use a raw string when incorporating
backreferences in a RE.

For example, the following RE detects doubled words in a string.

>>> p = re.compile(r (\b\w+)\s+\1")
>>> p. search(' Paris in the the spring ") . group()
‘the the’

Backreferences like this aren’t often useful for just searching through a string — there are few text formats which
repeat data in this way — but you'll soon find out that theyesy useful when performing string substitutions.

4.3 Non-capturing and Named Groups

Elaborate REs may use many groups, both to capture substrings of interest, and to group and structure the RE
itself. In complex REs, it becomes difficult to keep track of the group numbers. There are two features which help
with this problem. Both of them use a common syntax for regular expression extensions, so we'll look at that first.

Perl 5 added several additional features to standard regular expressions, and thedPytiuatule supports most

of them. It would have been difficult to choose new single-keystroke metacharacters or new special sequences
beginning with\ to represent the new features without making Perl’s regular expressions confusingly different
from standard REs. If you chogeas a new metacharacter, for example, old expressions would be assuming that
& was a regular character and wouldn't have escaped it by wiéingr [&] .

The solution chosen by the Perl developers was to(?2sg as the extension synta®. immediately after a
parenthesis was a syntax error because’tiwgould have nothing to repeat, so this didn't introduce any compat-
ibility problems. The characters immediately after théndicate what extension is being used,(8sfoo) is

one thing (a positive lookahead assertion) éhifbo) is something else (a non-capturing group containing the
subexpressiofoo).

Python adds an extension syntax to Perl's extension syntax. If the first character after the question Ryarlus a
know that it's an extension that’s specific to Python. Currently there are two such exterf8®xeame>...)

defines a named group, aif@P=name) is a backreference to a named group. If future versions of Perl 5
add similar features using a different syntax, teemodule will be changed to support the new syntax, while
preserving the Python-specific syntax for compatibility’s sake.

Now that we've looked at the general extension syntax, we can return to the features that simplify working with
groups in complex REs. Since groups are numbered from left to right and a complex expression may use many
groups, it can become difficult to keep track of the correct numbering. Modifying such a complex RE is annoying,
too: insert a new group near the beginning and you change the numbers of everything that follows it.

Sometimes you’ll want to use a group to collect a part of a regular expression, but aren't interested in retrieving
the group’s contents. You can make this fact explicit by using a non-capturing gfaup: , where you can
replace the.. with any other regular expression.

>>> m = re . match(" (Jabc))+ ", "abc")
>>> m groups()

(c)

>>> m = re . match(" (?:[abc])+ ", "abc")
>>> m groups()

0

Except for the fact that you can't retrieve the contents of what the group matched, a non-capturing group behaves
exactly the same as a capturing group; you can put anything inside it, repeat it with a repetition metacharacter
such as*, and nest it within other groups (capturing or non-capturin(@)...) is particularly useful when
modifying an existing pattern, since you can add new groups without changing how all the other groups are
numbered. It should be mentioned that there’s no performance difference in searching between capturing and
non-capturing groups; neither form is any faster than the other.

A more significant feature is named groups: instead of referring to them by numbers, groups can be referenced by
a name.

The syntax for a named group is one of the Python-specific extengi®Rsname>...) . nameis, obviously,

the name of the group. Named groups also behave exactly like capturing groups, and additionally associate a name
with a group. TheMatchObject methods that deal with capturing groups all accept either integers that refer to

the group by number or strings that contain the desired group’s name. Named groups are still given numbers, so
you can retrieve information about a group in two ways:

>>> p = re.compile(" (?P<word> \b\wH b) ")

>>> m = p.search(' ((((Lots of punctuation))) ")
>>> m group(' word’)

'Lots’

>>> m group(1)

'Lots’

Named groups are handy because they let you use easily-remembered names, instead of having to remember
numbers. Here’s an example RE from thaplib module:

InternalDate = re . compile(r INTERNALDATE"’

" (?P<day>[123][0-9])-(?P<mon>[A-Z][a-z][a-z])- ’

" (?P<year>[0-9][0-9][0-9][0-9]) '

" (?P<hour>[0-9][0-9]):(?P<min>[0-9][0-9]):(?P<sec>[0-9][0-9]) '
" (?P<zonen>[-+])(?P<zoneh>[0-9][0-9])(?P<zonem>[0-9][0-9]) ’
S

It's obviously much easier to retrieve.group('zonem’) , instead of having to remember to retrieve group 9.

-

-_ = = =

The syntax for backreferences in an expression su¢h.p% refers to the number of the group. There’s natu-
rally a variant that uses the group name instead of the number. This is another Python ex{@Rsiname) in-
dicates that the contents of the group caltetheshould again be matched at the current point. The regular expres-
sion for finding doubled wordg\b\w+)\s+\1 can also be written g&P<word>\b\w+)\s+(?P=word)

>>> p = re.compile(' (?P<word> \ b\ w+)\ s+(?P=word) ")
>>> p. search(' Paris in the the spring ") . group()

‘the the’

4.4 Lookahead Assertions

Another zero-width assertion is the lookahead assertion. Lookahead assertions are available in both positive and
negative form, and look like this:

(?=..) Positive lookahead assertion. This succeeds if the contained regular expression, represented here by
, successfully matches at the current location, and fails otherwise. But, once the contained expression
has been tried, the matching engine doesn’t advance at all; the rest of the pattern is tried right where the
assertion started.

(?!...) Negative lookahead assertion. This is the opposite of the positive assertion; it succeeds if the contained
expressiormdoesn’tmatch at the current position in the string.

To make this concrete, let's look at a case where a lookahead is useful. Consider a simple pattern to match a
filename and split it apart into a base name and an extension, separated bgra&xample, imews.rc , news
is the base name, amd is the filename’s extension.

The pattern to match this is quite simple:
HL1*$

Notice that the needs to be treated specially because it's a metacharacter; I've put it inside a character class.
Also notice the trailing$; this is added to ensure that all the rest of the string must be included in the extension.
This regular expression matchfe®.bar andautoexec.bat andsendmail.cf andprinters.conf

Now, consider complicating the problem a bit; what if you want to match filenames where the extension is not
bat ? Some incorrect attempts:

HLIb]*$ The first attempt above tries to excluoi@t by requiring that the first character of the extension
is not ab. This is wrong, because the pattern also doesn’t niakctvar

LI | [~al.l.. [M)$

The expression gets messier when you try to patch up the first solution by requiring one of the following cases
to match: the first character of the extension i¢n'the second character isrdt or the third character isntt.

This acceptdoo.bar and rejectaautoexec.bat , but it requires a three-letter extension and won't accept a
filename with a two-letter extension suchsesndmail.cf . We’ll complicate the pattern again in an effort to

fix it.

HMLI(7b].2.2).["a]?.?]..2[M])%

In the third attempt, the second and third letters are all made optional in order to allow matching extensions shorter
than three characters, suchsemdmail.cf

The pattern’s getting really complicated now, which makes it hard to read and understand. Worse, if the problem
changes and you want to exclude bbtt andexe as extensions, the pattern would get even more complicated
and confusing.

A negative lookahead cuts through all this confusion:

F](?'bat$).*$ The negative lookahead means: if the expresdain doesn’t match at this point, try
the rest of the pattern; hat$ does match, the whole pattern will fail. The trailigs required to ensure that
something likesample.batch , where the extension only starts witht , will be allowed.

Excluding another filename extension is now easy; simply add it as an alternative inside the assertion. The fol-
lowing pattern excludes filenames that end in eithestr or exe :

FL1(?'bat$|exe$).*$

5 Modifying Strings

Up to this point, we've simply performed searches against a static string. Regular expressions are also commonly
used to modify strings in various ways, using the following pattern methods:

Method/Attribute Purpose

split() Split the string into a list, splitting it wherever the RE matches

sub() Find all substrings where the RE matches, and replace them with a different string
subn() Does the same thing asib() , but returns the new string and the number of replacemgnts

5.1 Splitting Strings

Thesplit() method of a pattern splits a string apart wherever the RE matches, returning a list of the pieces. It's
similar to thesplit() method of strings but provides much more generality in the delimiters that you can split
by; split() only supports splitting by whitespace or by a fixed string. As you'd expect, there’s a module-level
re.split() function, too.

split (string, [maxsplit=0)
Split string by the matches of the regular expression. If capturing parentheses are used in the RE, then their
contents will also be returned as part of the resulting lismafsplitis nonzero, at moshaxsplitsplits are
performed.

You can limit the number of splits made, by passing a valuerfaxsplit Whenmaxsplitis nonzero, at most
maxsplitsplits will be made, and the remainder of the string is returned as the final element of the list. In the
following example, the delimiter is any sequence of non-alphanumeric characters.

>>> p = re.compile(r \W+)

>>> p.split(’ This is a test, short and sweet, of split(). ")
[This’, 'is’, 'a’, 'test’, 'short’, 'and’, 'sweet’, 'of’, 'split’, "]
>>> p.split(’ This is a test, short and sweet, of split(). ", 3)

[This’, 'is’, 'a’, 'test, short and sweet, of split().’]

Sometimes you're not only interested in what the text between delimiters is, but also need to know what the
delimiter was. If capturing parentheses are used in the RE, then their values are also returned as part of the list.
Compare the following calls:

>>> p = re.compile(r \W+)
>>> p2 = re.compile(r (\W+))

>>> p.split(' This... is a test. ")

[This’, is’, 'a’, 'test’, "]

>>> p2.split(' This... is a test.)

[This', ... ", is’, " 7, &', ", test’, 'V, 7]

The module-level functione.split() adds the RE to be used as the first argument, but is otherwise the same.
>>> re.split('[\W]+, ' Words, words, words. ")

[Words’, 'words’, 'words’, "]

>>> re.split(([\W]+)', ’Words, words, words. ")

[Words', ’, ’, 'words’, ’, ', 'words’, ", "]

>>> re.split(' [\W]+ , ' Words, words, words. 1)

[Words’, 'words, words.’]

5.2 Search and Replace

Another common task is to find all the matches for a pattern, and replace them with a different strisgb{jhe
method takes a replacement value, which can be either a string or a function, and the string to be processed.

sub (replacement, string, [count=0]
Returns the string obtained by replacing the leftmost non-overlapping occurrences of thestREgiby
the replacemeneplacementlf the pattern isn’t foundstring is returned unchanged.

The optional argumerttountis the maximum number of pattern occurrences to be replaceaitmust be
a non-negative integer. The default value of 0 means to replace all occurrences.

Here’s a simple example of using teeb() method. It replaces colour names with the woatbur

>>> p = re.compile(' (blue|white|red))

>>> p.sub(’'colour ', ’blue socks and red shoes ')

'colour socks and colour shoes’

>>> p.sub(’'colour ', ’blue socks and red shoes ", count =1)

‘colour socks and red shoes’

Thesubn() method does the same work, but returns a 2-tuple containing the new string value and the number
of replacements that were performed:

>>> p = re.compile(' (blue|white|red) ")

>>> p.subn(’'colour ', ’blue socks and red shoes ")
('colour socks and colour shoes’, 2)

>>> p.subn(’colour ', ’'no colours at all)

(no colours at all’, 0)
Empty matches are replaced only when they're not adjacent to a previous match.

>>> p = re.compile(' x*')
>>> p.sub(' -', "abxd’)
"-a-b-d-’

If replacements a string, any backslash escapes in it are processed. Thatis,converted to a single newline
character\r is converted to a carriage return, and so forth. Unknown escapes s\jcheas left alone. Backref-
erences, such a6 , are replaced with the substring matched by the corresponding group in the RE. This lets you
incorporate portions of the original text in the resulting replacement string.

This example matches the wosgction followed by a string enclosed ifi, }, and changesection to
subsection

>>> p = re.compile(’section{ (["}]*) } ", re . VERBOSE)
>>> p. sub(r' subsection{ \1}’,’ section{First} section{second})
'subsection{First} subsection{second}’

There’s also a syntax for referring to named groups as defined f¢frmame>...) syntax.\g<name> will

use the substring matched by the group namade, and\g<number> uses the corresponding group number.
\g<2> is therefore equivalent t? , but isn't ambiguous in a replacement string suchga2>0 . (\20 would

be interpreted as a reference to group 20, not a reference to group 2 followed by the literal ct@iragtate
following substitutions are all equivalent, but use all three variations of the replacement string.

>>> p = re.compile(' section{ (?P<name> ["}]*) } ", re . VERBOSE)
>>> p.sub(r' subsection{ \1}’,’ section{First} ")

'subsection{First}’

>>> p. sub(r' subsection{ \g<1>}’,’ section{First} ")

'subsection{First}’

>>> p.sub(r subsection{ \g<name>}',’ section{First} ")

'subsection{First}’

replacementan also be a function, which gives you even more contreegdfacements a function, the function
is called for every non-overlapping occurrenceaftern On each call, the function is passetMatchObject
argument for the match and can use this information to compute the desired replacement string and return it.

In the following example, the replacement function translates decimals into hexadecimal:

>>> def hexrepl (match):
"Return the hex string for a decimal number
value = int (match . group())
return hex(value)

>>> p = re.compile(r \d+")

>>> p. sub(hexrepl, " Call 65490 for printing, 49152 for user code. ")
'Call Oxffd2 for printing, Oxc000 for user code.’

When using the module-leved.sub() function, the pattern is passed as the first argument. The pattern may be
provided as an object or as a string; if you need to specify regular expression flags, you must either use a pattern

object as the first parameter, or use embedded modifiers in the pattern stringub(f(?i)b+", "X",
"bbbb BBBB") returns'x x’

6 Common Problems

Regular expressions are a powerful tool for some applications, but in some ways their behaviour isn't intuitive and
at times they don’t behave the way you may expect them to. This section will point out some of the most common
pitfalls.

6.1 Use String Methods

Sometimes using thee module is a mistake. If you're matching a fixed string, or a single character class, and
you're not using anye features such as tH&NORECASHlag, then the full power of regular expressions may

not be required. Strings have several methods for performing operations with fixed strings and they're usually
much faster, because the implementation is a single small C loop that's been optimized for the purpose, instead of
the large, more generalized regular expression engine.

One example might be replacing a single fixed string with another one; for example, you might reptdce

with deed. re.sub() seems like the function to use for this, but considerrig@ace() method. Note
thatreplace() will also replacewvord inside words, turningwordfish into sdeedfish , but the naive RE

word would have done that, too. (To avoid performing the substitution on parts of words, the pattern would have
to be\bword\b , in order to require thatvord have a word boundary on either side. This takes the job beyond
replace() ‘s abilities.)

Another common task is deleting every occurrence of a single character from a string or replacing it with another
single character. You might do this with something lilesub('\n’, ’ ', S) , but translate() is
capable of doing both tasks and will be faster than any regular expression operation can be.

In short, before turning to thee module, consider whether your problem can be solved with a faster and simpler
string method.

6.2 match() versus search()

Thematch() function only checks if the RE matches at the beginning of the string wsb#éech() will scan
forward through the string for a match. It's important to keep this distinction in mind. Remematah() will
only report a successful match which will start at O; if the match wouldn’t start at mextch() will notreport
it.

>>> print re . match(' super ', ' superstition ") . span()
0, 5)

>>> print re.match(' super ', ’insuperable ')

None

On the other handsearch() will scan forward through the string, reporting the first match it finds.

>>> print re . search('super ', ' superstition ") . span()

0, 5)

>>> print re . search(’super ’, ’insuperable). span()

2, 7)

Sometimes you'll be tempted to keep usiggmatch() , and just add* to the front of your RE. Resist this
temptation and uses.search() instead. The regular expression compiler does some analysis of REs in order

to speed up the process of looking for a match. One such analysis figures out what the first character of a match

must be; for example, a pattern starting withow must match starting with &’ . The analysis lets the engine
quickly scan through the string looking for the starting character, only trying the full matcgif ds found.

Adding .* defeats this optimization, requiring scanning to the end of the string and then backtracking to find a
match for the rest of the RE. Use.search() instead.

6.3 Greedy versus Non-Greedy

When repeating a regular expression, asin the resulting action is to consume as much of the pattern as
possible. This fact often bites you when you're trying to match a pair of balanced delimiters, such as the angle
brackets surrounding an HTML tag. The naive pattern for matching a single HTML tag doesn’t work because of
the greedy nature of .

>>> s = '’ <html><head><title>Title</title> '
>>> len (s)

32

>>> print re.match(' <.*> ', s) . span()

(0, 32)

>>> print re . match(' <.*>
<html><head><title>Title</title>

») . group()

The RE matches thg’ in <html> , and the* consumes the rest of the string. There’s still more left in the RE,
though, and the can’t match at the end of the string, so the regular expression engine has to backtrack character
by character until it finds a match for tire The final match extends from the€’ in <html> to the’>" in

</title> , which isn’t what you want.

In this case, the solution is to use the non-greedy qualifiers-?, ??, or{m,n}? , which match afittle text as
possible. In the above example, the is tried immediately after the firs&’ matches, and when it fails, the
engine advances a character at a time, retryin¢getheat every step. This produces just the right result:

, S) . group()

>>> print re . match(' <.*?>
<html>

(Note that parsing HTML or XML with regular expressions is painful. Quick-and-dirty patterns will handle
common cases, but HTML and XML have special cases that will break the obvious regular expression; by the time
you've written a regular expression that handles all of the possible cases, the patternsweily bemplicated.

Use an HTML or XML parser module for such tasks.)

6.4 Not Using re.VERBOSE

By now you've probably noticed that regular expressions are a very compact notation, but they're not terribly
readable. REs of moderate complexity can become lengthy collections of backslashes, parentheses, and metachar-
acters, making them difficult to read and understand.

For such REs, specifying the.VERBOSE flag when compiling the regular expression can be helpful, because
it allows you to format the regular expression more clearly.

There.VERBOSE flag has several effects. Whitespace in the regular expressiasitianside a character class

is ignored. This means that an expression suaihogs | cat is equivalent to the less readaluleg|cat , but

[a b] will still match the charactera’ ,’b’ , or a space. In addition, you can also put comments inside a RE;
comments extend from# character to the next newline. When used with triple-quoted strings, this enables REs
to be formatted more neatly:

||||||

pat = re.compile(r

\ s* # Skip leading whitespace

(?P<header>["]+) # Header name

\s* # Whitespace, and a colon

(?P<value>.*?) # The header 's value -- *? used to
lose the following trailing whitespace

\ s*$ # Trailing whitespace to end-of-line

", re . VERBOSE)

This is far more readable than:

pat = re.compile(r" \s*(?P<header>["]+) \ s*:(?P<value>.*?) \s*$ ")

7 Feedback

Regular expressions are a complicated topic. Did this document help you understand them? Were there parts
that were unclear, or Problems you encountered that weren’t covered here? If so, please send suggestions for
improvements to the author.

The most complete book on regular expressions is almost certainly Jeffrey Friedl's Mastering Regular Expres-
sions, published by O’Reilly. Unfortunately, it exclusively concentrates on Perl and Java’s flavours of regular
expressions, and doesn’t contain any Python material at all, so it won't be useful as a reference for program-
ming in Python. (The first edition covered Python’s now-remoreggbx module, which won't help you much.)
Consider checking it out from your library.

	Introduction
	Simple Patterns
	Matching Characters
	Repeating Things

	Using Regular Expressions
	Compiling Regular Expressions
	The Backslash Plague
	Performing Matches
	Module-Level Functions
	Compilation Flags

	More Pattern Power
	More Metacharacters
	Grouping
	Non-capturing and Named Groups
	Lookahead Assertions

	Modifying Strings
	Splitting Strings
	Search and Replace

	Common Problems
	Use String Methods
	match() versus search()
	Greedy versus Non-Greedy
	Not Using re.VERBOSE

	Feedback

