
The Python/C API
Release 2.6.4

Guido van Rossum
Fred L. Drake, Jr., editor

October 30, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
1.1 Include Files . 3
1.2 Objects, Types and Reference Counts. 4
1.3 Exceptions . 7
1.4 Embedding Python. 8
1.5 Debugging Builds . 9

2 The Very High Level Layer 11

3 Reference Counting 15

4 Exception Handling 17
4.1 Standard Exceptions. .21
4.2 Deprecation of String Exceptions. .22

5 Utilities 23
5.1 Operating System Utilities. .23
5.2 System Functions. .23
5.3 Process Control. .24
5.4 Importing Modules. .24
5.5 Data marshalling support. .27
5.6 Parsing arguments and building values. 28
5.7 String conversion and formatting. .34
5.8 Reflection. .35

6 Abstract Objects Layer 37
6.1 Object Protocol. .37
6.2 Number Protocol. .41
6.3 Sequence Protocol. .44
6.4 Mapping Protocol .46
6.5 Iterator Protocol .47
6.6 Old Buffer Protocol .48

7 Concrete Objects Layer 49
7.1 Fundamental Objects. .49
7.2 Numeric Objects. .50
7.3 Sequence Objects. .55
7.4 Mapping Objects. .76
7.5 Other Objects. .78

8 Initialization, Finalization, and Threads 91
8.1 Thread State and the Global Interpreter Lock. 94
8.2 Profiling and Tracing. .98
8.3 Advanced Debugger Support. .100

i

9 Memory Management 101
9.1 Overview .101
9.2 Memory Interface .102
9.3 Examples. .102

10 Object Implementation Support 105
10.1 Allocating Objects on the Heap. .105
10.2 Common Object Structures. .106
10.3 Type Objects. .109
10.4 Number Object Structures. .123
10.5 Mapping Object Structures. .124
10.6 Sequence Object Structures. .125
10.7 Buffer Object Structures. .125
10.8 Supporting Cyclic Garbage Collection. .126

A Glossary 129

B About these documents 135
B.1 Contributors to the Python Documentation. .135

C History and License 137
C.1 History of the software. .137
C.2 Terms and conditions for accessing or otherwise using Python.138
C.3 Licenses and Acknowledgements for Incorporated Software.140

D Copyright 149

Index 151

ii

The Python/C API, Release 2.6.4

Release2.6

Date October 30, 2009

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion toExtending and Embedding the Python Interpreter(in Extending and Embedding
Python), which describes the general principles of extension writing but does not document the API functions in
detail.

CONTENTS 1

The Python/C API, Release 2.6.4

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter
at a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the
Python/C API. There are two fundamentally different reasons for using the Python/C API. The first reason is to
write extension modulesfor specific purposes; these are C modules that extend the Python interpreter. This is
probably the most common use. The second reason is to use Python as a component in a larger application; this
technique is generally referred to asembeddingPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well.
There are several tools that automate the process to some extent. While people have embedded Python in other
applications since its early existence, the process of embedding Python is less straightforward than writing an
extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headers:<stdio.h> , <string.h> , <errno.h> ,
<limits.h> , and<stdlib.h> (if available).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some sys-
tems, youmustincludePython.h before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of
the prefixesPy or _Py. Names beginning with_Py are for internal use by the Python implementation and should
not be used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin withPy or _Py. This confuses the reader, and jeop-
ardizes the portability of the user code to future Python versions, which may define additional names beginning
with one of these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories
prefix/include/pythonversion/ and exec_prefix/include/pythonversion/ , wherepre-
fix and exec_prefixare defined by the corresponding parameters to Python’sconfigure script andversion is
sys.version[:3] . On Windows, the headers are installed inprefix/include , whereprefix is the instal-
lation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Donot
place the parent directories on the search path and then use#include <pythonX.Y/Python.h> ; this will
break on multi-platform builds since the platform independent headers underprefix include the platform specific
headers fromexec_prefix.

3

The Python/C API, Release 2.6.4

C++ users should note that though the API is defined entirely using C, the header files do properly declare the
entry points to beextern "C" , so there is no need to do anything special to use the API from C++.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of typePyObject* . This
type is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types
are treated the same way by the Python language in most situations (e.g., assignments, scope rules, and argument
passing), it is only fitting that they should be represented by a single C type. Almost all Python objects live on
the heap: you never declare an automatic or static variable of typePyObject , only pointer variables of type
PyObject* can be declared. The sole exception are the type objects; since these must never be deallocated, they
are typically staticPyTypeObject objects.

All Python objects (even Python integers) have atypeand areference count. An object’s type determines what
kind of object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained inThe
standard type hierarchy(in The Python Language Reference)). For each of the well-known types there is a macro
to check whether an object is of that type; for instance,PyList_Check(a) is true if (and only if) the object
pointed to bya is a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When an object’s reference
count becomes zero, the object is deallocated. If it contains references to other objects, their reference count
is decremented. Those other objects may be deallocated in turn, if this decrement makes their reference count
become zero, and so on. (There’s an obvious problem with objects that reference each other here; for now, the
solution is “don’t do that.”) Reference counts are always manipulated explicitly. The normal way is to use
the macroPy_INCREF() to increment an object’s reference count by one, andPy_DECREF() to decrement
it by one. ThePy_DECREF() macro is considerably more complex than the incref one, since it must check
whether the reference count becomes zero and then cause the object’s deallocator to be called. The deallocator is a
function pointer contained in the object’s type structure. The type-specific deallocator takes care of decrementing
the reference counts for other objects contained in the object if this is a compound object type, such as a list,
as well as performing any additional finalization that’s needed. There’s no chance that the reference count can
overflow; at least as many bits are used to hold the reference count as there are distinct memory locations in virtual
memory (assumingsizeof(Py_ssize_t) >= sizeof(void*)). Thus, the reference count increment is
a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an
object. In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes
down by one when the variable goes out of scope. However, these two cancel each other out, so at the end the
reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from being
deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to increment the reference count temporarily.
An important situation where this arises is in objects that are passed as arguments to C functions in an extension
module that are called from Python; the call mechanism guarantees to hold a reference to every argument for the
duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing
its reference count. Some other operation might conceivably remove the object from the list, decrementing its
reference count and possible deallocating it. The real danger is that innocent-looking operations may invoke
arbitrary Python code which could do this; there is a code path which allows control to flow back to the user from
aPy_DECREF() , so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins withPyObject_ ,
PyNumber_ , PySequence_ or PyMapping_). These operations always increment the reference count of
the object they return. This leaves the caller with the responsibility to callPy_DECREF() when they are done
with the result; this soon becomes second nature.

4 Chapter 1. Introduction

The Python/C API, Release 2.6.4

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms ofownership of ref-
erences. Ownership pertains to references, never to objects (objects are not owned: they are always shared).
“Owning a reference” means being responsible for calling Py_DECREF on it when the reference is no longer
needed. Ownership can also be transferred, meaning that the code that receives ownership of the reference then
becomes responsible for eventually decref’ing it by callingPy_DECREF() or Py_XDECREF() when it’s no
longer needed—or passing on this responsibility (usually to its caller). When a function passes ownership of a
reference on to its caller, the caller is said to receive anewreference. When no ownership is transferred, the caller
is said toborrow the reference. Nothing needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does not.Stealing a referencemeans that when you pass a reference to a
function, that function assumes that it now owns that reference, and you are not responsible for it any longer. Few
functions steal references; the two notable exceptions arePyList_SetItem() andPyTuple_SetItem() ,
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions
were designed to steal a reference because of a common idiom for populating a tuple or list with newly created
objects; for example, the code to create the tuple(1, 2, "three") could look like this (forgetting about error
handling for the moment; a better way to code this is shown below):

PyObject * t;

t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyInt_FromLong(1L));
PyTuple_SetItem(t, 1, PyInt_FromLong(2L));
PyTuple_SetItem(t, 2, PyString_FromString(" three "));

Here,PyInt_FromLong() returns a new reference which is immediately stolen byPyTuple_SetItem() .
When you want to keep using an object although the reference to it will be stolen, usePy_INCREF() to grab
another reference before calling the reference-stealing function.

Incidentally, PyTuple_SetItem() is the only way to set tuple items;PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written usingPyList_New() andPyList_SetItem() .

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function,Py_BuildValue() , that can create most common objects from C values, directed by aformat string.
For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject * tuple, * list;

tuple = Py_BuildValue(" (iis) " , 1, 2, " three ");
list = Py_BuildValue(" [iis] " , 1, 2, " three ");

It is much more common to usePyObject_SetItem() and friends with items whose references you are
only borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour
regarding reference counts is much saner, since you don’t have to increment a reference count so you can give
a reference away (“have it be stolen”). For example, this function sets all items of a list (actually, any mutable
sequence) to a given item:

int
set_all (PyObject * target, PyObject * item)
{

int i, n;

n = PyObject_Length(target);
if (n < 0)

return - 1;
for (i = 0; i < n; i ++) {

PyObject * index = PyInt_FromLong(i);

1.2. Objects, Types and Reference Counts 5

The Python/C API, Release 2.6.4

if (! index)
return - 1;

if (PyObject_SetItem(target, index, item) < 0)
return - 1;

Py_DECREF(index);
}
return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give
you ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly,
and the reference you get is the only reference to the object. Therefore, the generic functions that return object
references, likePyObject_GetItem() andPySequence_GetItem() , always return a new reference (the
caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function
you call only —the plumage(the type of the object passed as an argument to the function)doesn’t enter into it!
Thus, if you extract an item from a list usingPyList_GetItem() , you don’t own the reference — but if you
obtain the same item from the same list usingPySequence_GetItem() (which happens to take exactly the
same arguments), you do own a reference to the returned object. Here is an example of how you could write
a function that computes the sum of the items in a list of integers; once usingPyList_GetItem() , and once
usingPySequence_GetItem() .

long
sum_list (PyObject * list)
{

int i, n;
long total = 0;
PyObject * item;

n = PyList_Size(list);
if (n < 0)

return - 1; /* Not a list */
for (i = 0; i < n; i ++) {

item = PyList_GetItem(list, i); /* Can’t fail */
if (! PyInt_Check(item)) continue ; /* Skip non-integers */
total += PyInt_AsLong(item);

}
return total;

}

long
sum_sequence (PyObject * sequence)
{

int i, n;
long total = 0;
PyObject * item;
n = PySequence_Length(sequence);
if (n < 0)

return - 1; /* Has no length */
for (i = 0; i < n; i ++) {

item = PySequence_GetItem(sequence, i);
if (item == NULL)

return - 1; /* Not a sequence, or other failure */
if (PyInt_Check(item))

total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */

}
return total;

6 Chapter 1. Introduction

The Python/C API, Release 2.6.4

}

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int , long , double andchar* . A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type, and another is used to describe the value of a
complex number. These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled ex-
ceptions are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the
top-level interpreter, where they are reported to the user accompanied by a stack traceback. For C programmers,
however, error checking always has to be explicit. All functions in the Python/C API can raise exceptions, unless
an explicit claim is made otherwise in a function’s documentation. In general, when a function encounters an
error, it sets an exception, discards any object references that it owns, and returns an error indicator — usually
NULL or -1 . A few functions return a Boolean true/false result, with false indicating an error. Very few func-
tions return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors
with PyErr_Occurred() . Exception state is maintained in per-thread storage (this is equivalent to using
global storage in an unthreaded application). A thread can be in one of two states: an exception has occurred,
or not. The functionPyErr_Occurred() can be used to check for this: it returns a borrowed reference to
the exception type object when an exception has occurred, andNULL otherwise. There are a number of func-
tions to set the exception state:PyErr_SetString() is the most common (though not the most general)
function to set the exception state, andPyErr_Clear() clears the exception state. The full exception state
consists of three objects (all of which can beNULL): the exception type, the corresponding exception value, and
the traceback. These have the same meanings as the Python objectssys.exc_type , sys.exc_value , and
sys.exc_traceback ; however, they are not the same: the Python objects represent the last exception being
handled by a Pythontry ... except statement, while the C level exception state only exists while an exception is
being passed on between C functions until it reaches the Python bytecode interpreter’s main loop, which takes care
of transferring it tosys.exc_type and friends. Note that starting with Python 1.5, the preferred, thread-safe
way to access the exception state from Python code is to call the functionsys.exc_info() , which returns the
per-thread exception state for Python code. Also, the semantics of both ways to access the exception state have
changed so that a function which catches an exception will save and restore its thread’s exception state so as to
preserve the exception state of its caller. This prevents common bugs in exception handling code caused by an
innocent-looking function overwriting the exception being handled; it also reduces the often unwanted lifetime
extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the
called function raised an exception, and if so, pass the exception state on to its caller. It should discard any object
references that it owns, and return an error indicator, but it shouldnotset another exception — that would overwrite
the exception that was just raised, and lose important information about the exact cause of the error. A simple
example of detecting exceptions and passing them on is shown in thesum_sequence() example above. It so
happens that that example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent
Python code:

def incr_item(dict, key) :
try:

item = dict[key]
except KeyError:

item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item (PyObject * dict, PyObject * key)

1.3. Exceptions 7

The Python/C API, Release 2.6.4

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject * item = NULL, * const_one = NULL, * incremented_item = NULL;
int rv = - 1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {

/* Handle KeyError only: */
if (! PyErr_ExceptionMatches(PyExc_KeyError))

goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(0L);
if (item == NULL)

goto error;
}
const_one = PyInt_FromLong(1L);
if (const_one == NULL)

goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)

goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, 0 for success */
}

This example represents an endorsed use of thegoto statement in C! It illustrates the use of
PyErr_ExceptionMatches() and PyErr_Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that may beNULL (note the’X’ in the name;Py_DECREF()
would crash when confronted with aNULL reference). It is important that the variables used to hold owned refer-
ences are initialized toNULL for this to work; likewise, the proposed return value is initialized to-1 (failure) and
only set to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have
to worry about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality
of the interpreter can only be used after the interpreter has been initialized. The basic initialization function
is Py_Initialize() . This initializes the table of loaded modules, and creates the fundamental modules
__builtin__ , __main__ , sys , andexceptions . It also initializes the module search path (sys.path).
Py_Initialize() does not set the “script argument list” (sys.argv). If this variable is needed by Python
code that will be executed later, it must be set explicitly with a call toPySys_SetArgv(argc, argv) sub-

8 Chapter 1. Introduction

The Python/C API, Release 2.6.4

sequent to the call toPy_Initialize() .

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py_Initialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory namedlib/pythonX.Y relative to the parent direc-
tory where the executable namedpython is found on the shell command search path (the environment variable
PATH).

For instance, if the Python executable is found in/usr/local/bin/python , it will assume that the
libraries are in/usr/local/lib/pythonX.Y . (In fact, this particular path is also the “fallback” lo-
cation, used when no executable file namedpython is found alongPATH .) The user can override this
behavior by setting the environment variablePYTHONHOME , or insert additional directories in front of
the standard path by settingPYTHONPATH . The embedding application can steer the search by call-
ing Py_SetProgramName(file) beforecalling Py_Initialize() . Note thatPYTHONHOME still
overrides this andPYTHONPATH is still inserted in front of the standard path. An application that
requires total control has to provide its own implementation ofPy_GetPath() , Py_GetPrefix() ,
Py_GetExecPrefix() , and Py_GetProgramFullPath() (all defined in Modules/getpath.c).
Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make
another call toPy_Initialize()) or the application is simply done with its use of Python and wants to
free memory allocated by Python. This can be accomplished by callingPy_Finalize() . The function
Py_IsInitialized() returns true if Python is currently in the initialized state. More information about
these functions is given in a later chapter. Notice thatPy_Finalize() doesnot free all memory allocated by
the Python interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.5 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These
checks tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the fileMisc/SpecialBuilds.txt in the Python
source distribution. Builds are available that support tracing of reference counts, debugging the memory allocator,
or low-level profiling of the main interpreter loop. Only the most frequently-used builds will be described in the
remainder of this section.

Compiling the interpreter with thePy_DEBUGmacro defined produces what is generally meant by “a debug
build” of Python. Py_DEBUGis enabled in the Unix build by adding--with-pydebug to theconfigure
command. It is also implied by the presence of the not-Python-specific_DEBUGmacro. WhenPy_DEBUGis
enabled in the Unix build, compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:

• Extra checks are added to the object allocator.

• Extra checks are added to the parser and compiler.

• Downcasts from wide types to narrow types are checked for loss of information.

• A number of assertions are added to the dictionary and set implementations. In addition, the set object
acquires atest_c_api() method.

• Sanity checks of the input arguments are added to frame creation.

• The storage for long ints is initialized with a known invalid pattern to catch reference to uninitialized digits.

• Low-level tracing and extra exception checking are added to the runtime virtual machine.

• Extra checks are added to the memory arena implementation.

• Extra debugging is added to the thread module.

There may be additional checks not mentioned here.

1.5. Debugging Builds 9

The Python/C API, Release 2.6.4

Defining Py_TRACE_REFSenables reference tracing. When defined, a circular doubly linked list of active
objects is maintained by adding two extra fields to everyPyObject . Total allocations are tracked as well.
Upon exit, all existing references are printed. (In interactive mode this happens after every statement run by the
interpreter.) Implied byPy_DEBUG.

Please refer toMisc/SpecialBuilds.txt in the Python source distribution for more detailed information.

10 Chapter 1. Introduction

CHAPTER

TWO

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not
let you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input , Py_file_input , andPy_single_input . These are described following the functions
which accept them as parameters.

Note also that several of these functions takeFILE* parameters. One particular issue which needs to be handled
carefully is that theFILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken
thatFILE* parameters are only passed to these functions if it is certain that they were created by the same library
that the Python runtime is using.

int Py_Main (int argc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed Python.
The argc and argv parameters should be prepared exactly as those which are passed to a C program’s
main() function. It is important to note that the argument list may be modified (but the contents of
the strings pointed to by the argument list are not). The return value will be the integer passed to the
sys.exit() function, 1 if the interpreter exits due to an exception, or2 if the parameter list does not
represent a valid Python command line.

Note that if an otherwise unhandledSystemError is raised, this function will not return1, but exit the
process, as long asPy_InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface toPyRun_AnyFileExFlags() below, leavingcloseitset to0 andflagsset
to NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface toPyRun_AnyFileExFlags() below, leaving thecloseitargument set to
0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface toPyRun_AnyFileExFlags() below, leaving theflagsargument set to
NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix
pseudo-terminal), return the value ofPyRun_InteractiveLoop() , otherwise return the result of
PyRun_SimpleFile() . If filenameis NULL, this function uses"???" as the filename.

int PyRun_SimpleString (const char *command)
This is a simplified interface toPyRun_SimpleStringFlags() below, leaving thePyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code fromcommandin the__main__ module according to theflagsargument.
If __main__ does not already exist, it is created. Returns0 on success or-1 if an exception was raised.
If there was an error, there is no way to get the exception information. For the meaning offlags, see below.

11

The Python/C API, Release 2.6.4

Note that if an otherwise unhandledSystemError is raised, this function will not return-1 , but exit the
process, as long asPy_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface toPyRun_SimpleFileExFlags() below, leavingcloseit set to0 and
flagsset toNULL.

int PyRun_SimpleFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface toPyRun_SimpleFileExFlags() below, leavingcloseitset to0.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface toPyRun_SimpleFileExFlags() below, leavingflagsset toNULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags() , but the Python source code is read fromfp instead of an
in-memory string. filenameshould be the name of the file. Ifcloseit is true, the file is closed before
PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface toPyRun_InteractiveOneFlags() below, leavingflagsset toNULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to theflags
argument. Iffilenameis NULL, "???" is used instead. The user will be prompted usingsys.ps1 and
sys.ps2 . Returns0 when the input was executed successfully,-1 if there was an exception, or an error
code from theerrcode.h include file distributed as part of Python if there was a parse error. (Note that
errcode.h is not included byPython.h , so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface toPyRun_InteractiveLoopFlags() below, leavingflagsset toNULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. If
filenameis NULL, "???" is used instead. The user will be prompted usingsys.ps1 andsys.ps2 .
Returns0 at EOF.

struct _node* PyParser_SimpleParseString (const char *str, int start)
This is a simplified interface toPyParser_SimpleParseStringFlagsFilename() below, leav-
ing filenameset toNULL andflagsset to0.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags)
This is a simplified interface toPyParser_SimpleParseStringFlagsFilename() below, leav-
ing filenameset toNULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *file-
name, int start, int flags)

Parse Python source code fromstr using the start tokenstartaccording to theflagsargument. The result can
be used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be
evaluated many times.

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface toPyParser_SimpleParseFileFlags() below, leavingflagsset to0

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int
flags)

Similar toPyParser_SimpleParseStringFlagsFilename() , but the Python source code is read
from fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference.
This is a simplified interface toPyRun_StringFlags() below, leavingflagsset toNULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, Py-
CompilerFlags *flags)

Return value: New reference.
Execute Python source code fromstr in the context specified by the dictionariesglobalsandlocalswith the

12 Chapter 2. The Very High Level Layer

The Python/C API, Release 2.6.4

compiler flags specified byflags. The parameterstart specifies the start token that should be used to parse
the source code.

Returns the result of executing the code as a Python object, orNULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference.
This is a simplified interface toPyRun_FileExFlags() below, leavingcloseitset to0 andflagsset to
NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
int closeit)

Return value: New reference.
This is a simplified interface toPyRun_FileExFlags() below, leavingflagsset toNULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject
*locals, PyCompilerFlags *flags)

Return value: New reference.
This is a simplified interface toPyRun_FileExFlags() below, leavingcloseitset to0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject
*locals, int closeit, PyCompilerFlags *flags)

Return value: New reference.
Similar to PyRun_StringFlags() , but the Python source code is read fromfp instead of an in-
memory string. filenameshould be the name of the file. Ifcloseit is true, the file is closed before
PyRun_FileExFlags() returns.

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference.
This is a simplified interface toPy_CompileStringFlags() below, leavingflagsset toNULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompilerFlags
*flags)

Return value: New reference.
Parse and compile the Python source code instr, returning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and should bePy_eval_input ,
Py_file_input , or Py_single_input . The filename specified byfilenameis used to construct the
code object and may appear in tracebacks orSyntaxError exception messages. This returnsNULL if
the code cannot be parsed or compiled.

PyObject* PyEval_EvalCode (PyCodeObject *co, PyObject *globals, PyObject *locals)
Return value: New reference.
This is a simplified interface toPyEval_EvalCodeEx() , with just the code object, and the dictionaries
of global and local variables. The other arguments are set toNULL.

PyObject* PyEval_EvalCodeEx (PyCodeObject *co, PyObject *globals, PyObject *locals, PyObject
**args, int argcount, PyObject **kws, int kwcount, PyObject **defs,
int defcount, PyObject *closure)

Evaluate a precompiled code object, given a particular environment for its evaluation. This environment
consists of dictionaries of global and local variables, arrays of arguments, keywords and defaults, and a
closure tuple of cells.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Evaluate an execution frame. This is a simplified interface to PyEval_EvalFrameEx, for backward compat-
ibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code ob-
ject associated with the execution framef is executed, interpreting bytecode and executing calls as needed.
The additionalthrowflagparameter can mostly be ignored - if true, then it causes an exception to immedi-
ately be thrown; this is used for thethrow() methods of generator objects.

int PyEval_MergeCompilerFlags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

13

The Python/C API, Release 2.6.4

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with
Py_CompileString() .

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source;
for use withPy_CompileString() . This is the symbol to use when compiling arbitrarily long Python
source code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use withPy_CompileString() .
This is the symbol used for the interactive interpreter loop.

PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags , and in cases where code is being executed, it is passed asPyCompilerFlags *flags .
In this case,from __future__ import can modifyflags.

WheneverPyCompilerFlags *flags is NULL, cf_flags is treated as equal to0, and any modifi-
cation due tofrom __future__ import is discarded.

struct PyCompilerFlags {
int cf_flags;

}

int CO_FUTURE_DIVISION
This bit can be set inflagsto cause division operator/ to be interpreted as “true division” according toPEP
238.

14 Chapter 2. The Very High Level Layer

http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-0238

CHAPTER

THREE

REFERENCE COUNTING

The macros in this section are used for managing reference counts of Python objects.

void Py_INCREF(PyObject *o)
Increment the reference count for objecto. The object must not beNULL; if you aren’t sure that it isn’t
NULL, usePy_XINCREF() .

void Py_XINCREF(PyObject *o)
Increment the reference count for objecto. The object may beNULL, in which case the macro has no effect.

void Py_DECREF(PyObject *o)
Decrement the reference count for objecto. The object must not beNULL; if you aren’t sure that it isn’t
NULL, usePy_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function
(which must not beNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class
instance with a__del__() method is deallocated). While exceptions in such code are not propagated,
the executed code has free access to all Python global variables. This means that any object that is
reachable from a global variable should be in a consistent state beforePy_DECREF() is invoked. For
example, code to delete an object from a list should copy a reference to the deleted object in a temporary
variable, update the list data structure, and then callPy_DECREF() for the temporary variable.

void Py_XDECREF(PyObject *o)
Decrement the reference count for objecto. The object may beNULL, in which case the macro has no
effect; otherwise the effect is the same as forPy_DECREF() , and the same warning applies.

void Py_CLEAR(PyObject *o)
Decrement the reference count for objecto. The object may beNULL, in which case the macro has no effect;
otherwise the effect is the same as forPy_DECREF() , except that the argument is also set toNULL. The
warning forPy_DECREF() does not apply with respect to the object passed because the macro carefully
uses a temporary variable and sets the argument toNULL before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the value of a variable that might be traversed
during garbage collection. New in version 2.4.

The following functions are for runtime dynamic embedding of Python:Py_IncRef(PyObject *o) ,
Py_DecRef(PyObject *o) . They are simply exported function versions ofPy_XINCREF() and
Py_XDECREF(), respectively.

The following functions or macros are only for use within the interpreter core:_Py_Dealloc() ,
_Py_ForgetReference() , _Py_NewReference() , as well as the global variable_Py_RefTotal .

15

The Python/C API, Release 2.6.4

16 Chapter 3. Reference Counting

CHAPTER

FOUR

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to under-
stand some of the basics of Python exception handling. It works somewhat like the Unixerrno variable: there is
a global indicator (per thread) of the last error that occurred. Most functions don’t clear this on success, but will
set it to indicate the cause of the error on failure. Most functions also return an error indicator, usuallyNULL if
they are supposed to return a pointer, or-1 if they return an integer (exception: thePyArg_*() functions return
1 for success and0 for failure).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it shouldnot continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways. The error indicator consists of three Python objects
corresponding to the Python variablessys.exc_type , sys.exc_value andsys.exc_traceback . API
functions exist to interact with the error indicator in various ways. There is a separate error indicator for each
thread.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback tosys.stderr and clear the error indicator. Call this function only when the
error indicator is set. (Otherwise it will cause a fatal error!)

If set_sys_last_varsis nonzero, the variablessys.last_type , sys.last_value and
sys.last_traceback will be set to the type, value and traceback of the printed exception, re-
spectively.

void PyErr_Print ()
Alias for PyErr_PrintEx(1) .

PyObject* PyErr_Occurred ()
Return value: Borrowed reference.
Test whether the error indicator is set. If set, return the exceptiontype(the first argument to the last call to
one of thePyErr_Set*() functions or toPyErr_Restore()). If not set, returnNULL. You do not
own a reference to the return value, so you do not need toPy_DECREF() it.

Note: Do not compare the return value to a specific exception; usePyErr_ExceptionMatches()
instead, shown below. (The comparison could easily fail since the exception may be an instance instead of
a class, in the case of a class exception, or it may the a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent toPyErr_GivenExceptionMatches(PyErr_Occurred(), exc) . This should only
be called when an exception is actually set; a memory access violation will occur if no exception has been
raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if thegivenexception matches the exception inexc. If exc is a class object, this also returns
true whengivenis an instance of a subclass. Ifexcis a tuple, all exceptions in the tuple (and recursively in
subtuples) are searched for a match.

17

The Python/C API, Release 2.6.4

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned byPyErr_Fetch() below can be “unnormalized”,
meaning that*exc is a class object but*val is not an instance of the same class. This function can be
used to instantiate the class in that case. If the values are already normalized, nothing happens. The delayed
normalization is implemented to improve performance.

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,
set all three variables toNULL. If it is set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object may beNULL even when the type object is not.

Note: This function is normally only used by code that needs to handle exceptions or by code that needs
to save and restore the error indicator temporarily.

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the
objects areNULL, the error indicator is cleared. Do not pass aNULL type and non-NULL value or traceback.
The exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules
will cause subtle problems later.) This call takes away a reference to each object: you must own a reference
to each object before the call and after the call you no longer own these references. (If you don’t understand
this, don’t use this function. I warned you.)

Note: This function is normally only used by code that needs to save and restore the error indicator
temporarily; usePyErr_Fetch() to save the current exception state.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type;
it is normally one of the standard exceptions, e.g.PyExc_RuntimeError . You need not increment its
reference count. The second argument is an error message; it is converted to a string object.

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar toPyErr_SetString() but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyErr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL.
This function sets the error indicator and returnsNULL. exceptionshould be a Python exception (class,
not an instance). format should be a string, containing format codes, similar toprintf() . The
width.precision before a format code is parsed, but the width part is ignored.

18 Chapter 4. Exception Handling

The Python/C API, Release 2.6.4

Format
Charac-
ters

Type Comment

%% n/a The literal % character.
%c int A single character, represented as an C int.
%d int Exactly equivalent toprintf("%d") .
%u un-

signed
int

Exactly equivalent toprintf("%u") .

%ld long Exactly equivalent toprintf("%ld") .
%lu un-

signed
long

Exactly equivalent toprintf("%lu") .

%zd Py_ssize_tExactly equivalent toprintf("%zd") .
%zu size_t Exactly equivalent toprintf("%zu") .
%i int Exactly equivalent toprintf("%i") .
%x int Exactly equivalent toprintf("%x") .
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalent toprintf("%p") except

that it is guaranteed to start with the literal0x regardless of what the platform’s
printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result
string, and any extra arguments discarded.

void PyErr_SetNone (PyObject *type)
This is a shorthand forPyErr_SetObject(type, Py_None) .

int PyErr_BadArgument ()
This is a shorthand forPyErr_SetString(PyExc_TypeError, message) , wheremessageindi-
cates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL.
This is a shorthand forPyErr_SetNone(PyExc_MemoryError) ; it returnsNULL so an object allo-
cation function can writereturn PyErr_NoMemory(); when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *type)
Return value: Always NULL.
This is a convenience function to raise an exception when a C library function has returned an error

and set the C variableerrno . It constructs a tuple object whose first item is the integererrno value
and whose second item is the corresponding error message (gotten fromstrerror()), and then calls
PyErr_SetObject(type, object) . On Unix, when theerrno value isEINTR, indicating an in-
terrupted system call, this callsPyErr_CheckSignals() , and if that set the error indicator, leaves it set
to that. The function always returnsNULL, so a wrapper function around a system call can writereturn
PyErr_SetFromErrno(type); when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL.
Similar to PyErr_SetFromErrno() , with the additional behavior that iffilenameis not NULL, it is
passed to the constructor oftypeas a third parameter. In the case of exceptions such asIOError and
OSError , this is used to define thefilename attribute of the exception instance.

PyObject* PyErr_SetFromWindowsErr (int ierr)
Return value: Always NULL.
This is a convenience function to raiseWindowsError . If called with ierr of 0, the error code returned
by a call toGetLastError() is used instead. It calls the Win32 functionFormatMessage() to
retrieve the Windows description of error code given byierr or GetLastError() , then it constructs a
tuple object whose first item is theierr value and whose second item is the corresponding error message
(gotten fromFormatMessage()), and then callsPyErr_SetObject(PyExc_WindowsError,
object) . This function always returnsNULL. Availability: Windows.

19

The Python/C API, Release 2.6.4

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL.
Similar toPyErr_SetFromWindowsErr() , with an additional parameter specifying the exception type
to be raised. Availability: Windows. New in version 2.3.

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL.
Similar toPyErr_SetFromWindowsErr() , with the additional behavior that iffilenameis notNULL,
it is passed to the constructor ofWindowsError as a third parameter. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, char *file-
name)

Return value: Always NULL.
Similar toPyErr_SetFromWindowsErrWithFilename() , with an additional parameter specifying
the exception type to be raised. Availability: Windows. New in version 2.3.

void PyErr_BadInternalCall ()
This is a shorthand forPyErr_SetString(PyExc_SystemError, message) , wheremessagein-
dicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is
mostly for internal use.

int PyErr_WarnEx (PyObject *category, char *message, int stacklevel)
Issue a warning message. Thecategoryargument is a warning category (see below) orNULL; themessage
argument is a message string.stacklevelis a positive number giving a number of stack frames; the warning
will be issued from the currently executing line of code in that stack frame. Astacklevelof 1 is the function
callingPyErr_WarnEx() , 2 is the function above that, and so forth.

This function normally prints a warning message tosys.stderr; however, it is also possible that the user
has specified that warnings are to be turned into errors, and in that case this will raise an exception. It
is also possible that the function raises an exception because of a problem with the warning machinery
(the implementation imports thewarnings module to do the heavy lifting). The return value is0 if no
exception is raised, or-1 if an exception is raised. (It is not possible to determine whether a warning
message is actually printed, nor what the reason is for the exception; this is intentional.) If an exception is
raised, the caller should do its normal exception handling (for example,Py_DECREF() owned references
and return an error value).

Warning categories must be subclasses ofWarning ; the default warning category isRuntimeWarning .
The standard Python warning categories are available as global variables whose names arePyExc_
followed by the Python exception name. These have the typePyObject* ; they are all class ob-
jects. Their names arePyExc_Warning , PyExc_UserWarning , PyExc_UnicodeWarning ,
PyExc_DeprecationWarning , PyExc_SyntaxWarning , PyExc_RuntimeWarning , and
PyExc_FutureWarning . PyExc_Warning is a subclass ofPyExc_Exception ; the other warn-
ing categories are subclasses ofPyExc_Warning .

For information about warning control, see the documentation for thewarnings module and the-W option
in the command line documentation. There is no C API for warning control.

int PyErr_Warn (PyObject *category, char *message)
Issue a warning message. Thecategoryargument is a warning category (see below) orNULL; the mes-
sageargument is a message string. The warning will appear to be issued from the function calling
PyErr_Warn() , equivalent to callingPyErr_WarnEx() with astacklevelof 1.

Deprecated; usePyErr_WarnEx() instead.

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno,
const char *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrap-
per around the Python functionwarnings.warn_explicit() , see there for more information. The
moduleandregistryarguments may be set toNULL to get the default effect described there.

int PyErr_WarnPy3k (char *message, int stacklevel)
Issue aDeprecationWarning with the givenmessageandstacklevelif the Py_Py3kWarningFlag
flag is enabled. New in version 2.6.

20 Chapter 4. Exception Handling

The Python/C API, Release 2.6.4

int PyErr_CheckSignals ()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the

processes and if so, invokes the corresponding signal handler. If thesignal module is supported, this
can invoke a signal handler written in Python. In all cases, the default effect forSIGINT is to raise the
KeyboardInterrupt exception. If an exception is raised the error indicator is set and the function
returns-1 ; otherwise the function returns0. The error indicator may or may not be cleared if it was
previously set.

void PyErr_SetInterrupt ()
This function simulates the effect of aSIGINT signal arriving — the next time

PyErr_CheckSignals() is called, KeyboardInterrupt will be raised. It may be called
without holding the interpreter lock.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which a’\0’ byte will be written whenever a signal is
received. It returns the previous such file descriptor. The value-1 disables the feature; this is the initial
state. This is equivalent tosignal.set_wakeup_fd() in Python, but without any error checking.fd
should be a valid file descriptor. The function should only be called from the main thread.

PyObject* PyErr_NewException (char *name, PyObject *base, PyObject *dict)
Return value: New reference.
This utility function creates and returns a new exception object. Thenameargument must be the name of
the new exception, a C string of the formmodule.class . The baseanddict arguments are normally
NULL. This creates a class object derived fromException (accessible in C asPyExc_Exception).

The__module__ attribute of the new class is set to the first part (up to the last dot) of thenameargument,
and the class name is set to the last part (after the last dot). Thebaseargument can be used to specify
alternate base classes; it can either be only one class or a tuple of classes. Thedict argument can be used to
specify a dictionary of class variables and methods.

void PyErr_WriteUnraisable (PyObject *obj)
This utility function prints a warning message tosys.stderr when an exception has been set but it is
impossible for the interpreter to actually raise the exception. It is used, for example, when an exception
occurs in an__del__() method.

The function is called with a single argumentobj that identifies the context in which the unraisable exception
occurred. The repr ofobj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose names arePyExc_ followed by the Python
exception name. These have the typePyObject* ; they are all class objects. For completeness, here are all the
variables:

4.1. Standard Exceptions 21

The Python/C API, Release 2.6.4

C Name Python Name Notes
PyExc_BaseException BaseException (1), (4)
PyExc_Exception Exception (1)
PyExc_StandardError StandardError (1)
PyExc_ArithmeticError ArithmeticError (1)
PyExc_LookupError LookupError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_EOFError EOFError
PyExc_EnvironmentError EnvironmentError (1)
PyExc_FloatingPointError FloatingPointError
PyExc_IOError IOError
PyExc_ImportError ImportError
PyExc_IndexError IndexError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_MemoryError MemoryError
PyExc_NameError NameError
PyExc_NotImplementedError NotImplementedError
PyExc_OSError OSError
PyExc_OverflowError OverflowError
PyExc_ReferenceError ReferenceError (2)
PyExc_RuntimeError RuntimeError
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TypeError TypeError
PyExc_ValueError ValueError
PyExc_WindowsError WindowsError (3)
PyExc_ZeroDivisionError ZeroDivisionError

Notes:

1. This is a base class for other standard exceptions.

2. This is the same asweakref.ReferenceError .

3. Only defined on Windows; protect code that uses this by testing that the preprocessor macroMS_WINDOWS
is defined.

4. New in version 2.5.

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived fromBaseException .

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this will also
change in a future release.

22 Chapter 4. Exception Handling

CHAPTER

FIVE

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

5.1 Operating System Utilities

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O filefp with namefilenameis deemed interactive. This is the case
for files for whichisatty(fileno(fp)) is true. If the global flagPy_InteractiveFlag is true,
this function also returns true if thefilenamepointer isNULL or if the name is equal to one of the strings
’<stdin>’ or ’???’ .

long PyOS_GetLastModificationTime (char *filename)
Return the time of last modification of the filefilename. The result is encoded in the same way as the
timestamp returned by the standard C library functiontime() .

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the
Python interpreter will continue to be used. If a new executable is loaded into the new process, this function
does not need to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
whenUSE_STACKCHECKis defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECKwill be defined automatically; you should never change the definition in your own
code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signali. This is a thin wrapper around eithersigaction() or
signal() . Do not call those functions directly!PyOS_sighandler_t is a typedef alias forvoid
(*)(int) .

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t h)
Set the signal handler for signali to beh; return the old signal handler. This is a thin wrapper around either
sigaction() or signal() . Do not call those functions directly!PyOS_sighandler_t is a typedef
alias forvoid (*)(int) .

5.2 System Functions

These are utility functions that make functionality from thesys module accessible to C code. They all work with
the current interpreter thread’ssys module’s dict, which is contained in the internal thread state structure.

23

The Python/C API, Release 2.6.4

PyObject * PySys_GetObject (char *name)
Return value: Borrowed reference.
Return the objectnamefrom thesys module orNULL if it does not exist, without setting an exception.

FILE * PySys_GetFile (char *name, FILE *def)
Return theFILE* associated with the objectnamein thesys module, ordef if nameis not in the module
or is not associated with aFILE* .

int PySys_SetObject (char *name, PyObject *v)
Setnamein the sys module tov unlessv is NULL, in which casenameis deleted from the sys module.
Returns0 on success,-1 on error.

void PySys_ResetWarnOptions ()
Resetsys.warnoptions to an empty list.

void PySys_AddWarnOption (char *s)
Appends to sys.warnoptions .

void PySys_SetPath (char *path)
Setsys.path to a list object of paths found inpath which should be a list of paths separated with the
platform’s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described byformat to sys.stdout . No exceptions are raised, even if truncation
occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less – after 1000 bytes,
the output string is truncated. In particular, this means that no unrestricted “%s” formats should occur;
these should be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the
maximum size of other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can
print hundreds of digits for very large numbers.

If a problem occurs, orsys.stdout is unset, the formatted message is written to the real (C level)stdout.

void PySys_WriteStderr (const char *format, ...)
As above, but write tosys.stderr or stderr instead.

5.3 Process Control

void Py_FatalError (const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be
invoked when a condition is detected that would make it dangerous to continue using the Python interpreter;
e.g., when the object administration appears to be corrupted. On Unix, the standard C library function
abort() is called which will attempt to produce acore file.

void Py_Exit (int status)
Exit the current process. This callsPy_Finalize() and then calls the standard C library function

exit(status) .

int Py_AtExit (void (*func) ())
Register a cleanup function to be called byPy_Finalize() . The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successful,Py_AtExit() returns0; on failure, it returns-1 . The cleanup function registered last is
called first. Each cleanup function will be called at most once. Since Python’s internal finalization will have
completed before the cleanup function, no Python APIs should be called byfunc.

5.4 Importing Modules

PyObject* PyImport_ImportModule (const char *name)
Return value: New reference.

24 Chapter 5. Utilities

The Python/C API, Release 2.6.4

This is a simplified interface toPyImport_ImportModuleEx() below, leaving theglobalsandlocals
arguments set toNULL and level set to 0. When thenameargument contains a dot (when it specifies a
submodule of a package), thefromlistargument is set to the list[’*’] so that the return value is the named
module rather than the top-level package containing it as would otherwise be the case. (Unfortunately, this
has an additional side effect whennamein fact specifies a subpackage instead of a submodule: the sub-
modules specified in the package’s__all__ variable are loaded.) Return a new reference to the imported
module, orNULL with an exception set on failure. Before Python 2.4, the module may still be created in
the failure case — examinesys.modules to find out. Starting with Python 2.4, a failing import of a
module no longer leaves the module insys.modules . Changed in version 2.4: Failing imports remove
incomplete module objects.Changed in version 2.6: Always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock (const char *name)
This version ofPyImport_ImportModule() does not block. It’s intended to be used in C functions
that import other modules to execute a function. The import may block if another thread holds the import
lock. The functionPyImport_ImportModuleNoBlock() never blocks. It first tries to fetch the
module from sys.modules and falls back toPyImport_ImportModule() unless the lock is held, in
which case the function will raise anImportError . New in version 2.6.

PyObject* PyImport_ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)

Return value: New reference.
Import a module. This is best described by referring to the built-in Python function__import__() , as

the standard__import__() function calls this function directly.

The return value is a new reference to the imported module or top-level package, orNULL with an exception
set on failure (before Python 2.4, the module may still be created in this case). Like for__import__() ,
the return value when a submodule of a package was requested is normally the top-level package, unless
a non-emptyfromlist was given. Changed in version 2.4: Failing imports remove incomplete module ob-
jects.Changed in version 2.6: The function is an alias forPyImport_ImportModuleLevel() with -1
as level, meaning relative import.

PyObject* PyImport_ImportModuleLevel (char *name, PyObject *globals, PyObject *locals, PyOb-
ject *fromlist, int level)

Import a module. This is best described by referring to the built-in Python function__import__() , as
the standard__import__() function calls this function directly.

The return value is a new reference to the imported module or top-level package, orNULL with an exception
set on failure. Like for__import__() , the return value when a submodule of a package was requested
is normally the top-level package, unless a non-emptyfromlist was given. New in version 2.5.

PyObject* PyImport_Import (PyObject *name)
Return value: New reference.

This is a higher-level interface that calls the current “import hook function”. It invokes the
__import__() function from the__builtins__ of the current globals. This means that the import
is done using whatever import hooks are installed in the current environment, e.g. byrexec or ihooks .
Changed in version 2.6: Always uses absolute imports.

PyObject* PyImport_ReloadModule (PyObject *m)
Return value: New reference.
Reload a module. This is best described by referring to the built-in Python functionreload() , as the

standardreload() function calls this function directly. Return a new reference to the reloaded module,
or NULL with an exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModule (const char *name)
Return value: Borrowed reference.
Return the module object corresponding to a module name. Thenameargument may be of the form
package.module . First check the modules dictionary if there’s one there, and if not, create a new
one and insert it in the modules dictionary. ReturnNULL with an exception set on failure.

Note: This function does not load or import the module; if the module wasn’t already loaded, you will get
an empty module object. UsePyImport_ImportModule() or one of its variants to import a module.
Package structures implied by a dotted name fornameare not created if not already present.

5.4. Importing Modules 25

The Python/C API, Release 2.6.4

PyObject* PyImport_ExecCodeModule (char *name, PyObject *co)
Return value: New reference.

Given a module name (possibly of the formpackage.module) and a code object read from a
Python bytecode file or obtained from the built-in functioncompile() , load the module. Return
a new reference to the module object, orNULL with an exception set if an error occurred. Before
Python 2.4, the module could still be created in error cases. Starting with Python 2.4,name is re-
moved fromsys.modules in error cases, and even ifnamewas already insys.modules on entry
to PyImport_ExecCodeModule() . Leaving incompletely initialized modules insys.modules is
dangerous, as imports of such modules have no way to know that the module object is an unknown (and
probably damaged with respect to the module author’s intents) state.

This function will reload the module if it was already imported. SeePyImport_ReloadModule() for
the intended way to reload a module.

If namepoints to a dotted name of the formpackage.module , any package structures not already created
will still not be created. Changed in version 2.4:nameis removed fromsys.modules in error cases.

long PyImport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a..pyc and .pyo files). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* PyImport_GetModuleDict ()
Return value: Borrowed reference.
Return the dictionary used for the module administration (a.k.a.sys.modules). Note that this is a per-
interpreter variable.

PyObject* PyImport_GetImporter (PyObject *path)
Return an importer object for asys.path /pkg.__path__ item path, possibly by fetching it from the
sys.path_importer_cache dict. If it wasn’t yet cached, traversesys.path_hooks until a hook
is found that can handle the path item. ReturnNone if no hook could; this tells our caller it should fall
back to the built-in import mechanism. Cache the result insys.path_importer_cache . Return a
new reference to the importer object. New in version 2.6.

void _PyImport_Init ()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup ()
Empty the module table. For internal use only.

void _PyImport_Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension (char *, char *)
For internal use only.

PyObject* _PyImport_FixupExtension (char *, char *)
For internal use only.

int PyImport_ImportFrozenModule (char *name)
Load a frozen module namedname. Return1 for success,0 if the module is not found, and-1 with
an exception set if the initialization failed. To access the imported module on a successful load, use
PyImport_ImportModule() . (Note the misnomer — this function would reload the module if it
was already imported.)

_frozen
This is the structure type definition for frozen module descriptors, as generated by thefreezeutility (see
Tools/freeze/ in the Python source distribution). Its definition, found inInclude/import.h , is:

struct _frozen {
char * name;
unsigned char * code;
int size;

};

26 Chapter 5. Utilities

The Python/C API, Release 2.6.4

struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array ofstruct _frozen records, terminated by one whose
members are allNULL or zero. When a frozen module is imported, it is searched in this table. Third-party
code could play tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (char *name, void (*initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab() , returning-1 if the table could not be extended. The new module
can be imported by the namename, and uses the functioninitfuncas the initialization function called on the
first attempted import. This should be called beforePy_Initialize() .

_inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name
and initialization function for a module built into the interpreter. Programs which embed Python may use
an array of these structures in conjunction withPyImport_ExtendInittab() to provide additional
built-in modules. The structure is defined inInclude/import.h as:

struct _inittab {
char * name;
void (* initfunc)(void);

};

int PyImport_ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. Thenewtabarray must end with a sentinel entry
which containsNULL for thename field; failure to provide the sentinel value can result in a memory fault.
Returns0 on success or-1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called beforePy_Initialize() .

5.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as themarshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version 0 is the historical version, version 1 (new in Python
2.4) shares interned strings in the file, and upon unmarshalling. Version 2 (new in Python 2.5) uses a binary format
for floating point numbers.Py_MARSHAL_VERSIONindicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
Marshal along integer,value, to file. This will only write the least-significant 32 bits ofvalue; regardless
of the size of the nativelong type. Changed in version 2.4:versionindicates the file format.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
Marshal a Python object,value, to file. Changed in version 2.4:versionindicates the file format.

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version)
Return value: New reference.
Return a string object containing the marshalled representation ofvalue. Changed in version 2.4:version
indicates the file format.

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that’s relevant), but it’s not clear that negative values won’t be handled properly when there’s
no error. What’s the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal_ReadLongFromFile (FILE *file)
Return a Clong from the data stream in aFILE* opened for reading. Only a 32-bit value can be read in
using this function, regardless of the native size oflong .

5.5. Data marshalling support 27

The Python/C API, Release 2.6.4

int PyMarshal_ReadShortFromFile (FILE *file)
Return a Cshort from the data stream in aFILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size ofshort .

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference.
Return a Python object from the data stream in aFILE* opened for reading. On error, sets the appropriate
exception (EOFError or TypeError) and returnsNULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference.
Return a Python object from the data stream in aFILE* opened for reading. Unlike
PyMarshal_ReadObjectFromFile() , this function assumes that no further objects will be read from
the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from
data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won’t be reading anything else from the file. On error, sets the appropriate exception (EOFError
or TypeError) and returnsNULL.

PyObject* PyMarshal_ReadObjectFromString (char *string, Py_ssize_t len)
Return value: New reference.
Return a Python object from the data stream in a character buffer containinglen bytes pointed to bystring.
On error, sets the appropriate exception (EOFError or TypeError) and returnsNULL. Changed in ver-
sion 2.5: This function used anint type for len. This might require changes in your code for properly
supporting 64-bit systems.

5.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information
and examples are available inExtending and Embedding the Python Interpreter(in Extending and Embedding
Python).

The first three of these functions described, PyArg_ParseTuple() ,
PyArg_ParseTupleAndKeywords() , and PyArg_Parse() , all use format strings which are used
to tell the function about the expected arguments. The format strings use the same syntax for each of these
functions.

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually
a single character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not
a parenthesized sequence normally corresponds to a single address argument to these functions. In the following
description, the quoted form is the format unit; the entry in (round) parentheses is the Python object type that
matches the format unit; and the entry in [square] brackets is the type of the C variable(s) whose address should
be passed.

s (string or Unicode object) [const char *] Convert a Python string or Unicode object to a C pointer to a char-
acter string. You must not provide storage for the string itself; a pointer to an existing string is stored into
the character pointer variable whose address you pass. The C string is NUL-terminated. The Python string
must not contain embedded NUL bytes; if it does, aTypeError exception is raised. Unicode objects are
converted to C strings using the default encoding. If this conversion fails, aUnicodeError is raised.

s# (string, Unicode or any read buffer compatible object) [const char *, int (orPy_ssize_t , see below)]
This variant ons stores into two C variables, the first one a pointer to a character string, the second one
its length. In this case the Python string may contain embedded null bytes. Unicode objects pass back
a pointer to the default encoded string version of the object if such a conversion is possible. All other
read-buffer compatible objects pass back a reference to the raw internal data representation.

Starting with Python 2.5 the type of the length argument can be controlled by defining the macro
PY_SSIZE_T_CLEANbefore includingPython.h . If the macro is defined, length is aPy_ssize_t
rather than an int.

s* (string, Unicode, or any buffer compatible object) [Py_buffer *] Similar tos# , this code fills a Py_buffer
structure provided by the caller. The buffer gets locked, so that the caller can subsequently use

28 Chapter 5. Utilities

The Python/C API, Release 2.6.4

the buffer even inside aPy_BEGIN_ALLOW_THREADSblock; the caller is responsible for calling
PyBuffer_Release with the structure after it has processed the data. New in version 2.6.

z (string or None) [const char *] Like s , but the Python object may also beNone, in which case the C pointer
is set toNULL.

z# (string or None or any read buffer compatible object) [const char *, int] This is tos# asz is tos .

z* (string or None or any buffer compatible object) [Py_buffer*] This is tos* asz is to s . New in version
2.6.

u (Unicode object) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated
buffer of 16-bit Unicode (UTF-16) data. As withs , there is no need to provide storage for the Unicode
data buffer; a pointer to the existing Unicode data is stored into thePy_UNICODEpointer variable whose
address you pass.

u# (Unicode object) [Py_UNICODE *, int] This variant onu stores into two C variables, the first one a pointer
to a Unicode data buffer, the second one its length. Non-Unicode objects are handled by interpreting their
read-buffer pointer as pointer to aPy_UNICODEarray.

es (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
This variant ons is used for encoding Unicode and objects convertible to Unicode into a character buffer.
It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be aconst char* which
points to the name of an encoding as a NUL-terminated string, orNULL, in which case the default encoding
is used. An exception is raised if the named encoding is not known to Python. The second argument must
be achar** ; the value of the pointer it references will be set to a buffer with the contents of the argument
text. The text will be encoded in the encoding specified by the first argument.

PyArg_ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this
buffer and adjust*buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free() to free the allocated buffer after use.

et (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same ases except that 8-bit string objects are passed through without recoding them. Instead, the
implementation assumes that the string object uses the encoding passed in as parameter.

es# (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length]
This variant ons# is used for encoding Unicode and objects convertible to Unicode into a character buffer.
Unlike thees format, this variant allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and must be aconst char* which points
to the name of an encoding as a NUL-terminated string, orNULL, in which case the default encoding is
used. An exception is raised if the named encoding is not known to Python. The second argument must be
a char** ; the value of the pointer it references will be set to a buffer with the contents of the argument
text. The text will be encoded in the encoding specified by the first argument. The third argument must be
a pointer to an integer; the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points aNULL pointer, the function will allocate a buffer of the needed size, copy the encoded
data into this buffer and set*buffer to reference the newly allocated storage. The caller is responsible for
callingPyMem_Free() to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer),PyArg_ParseTuple() will use
this location as the buffer and interpret the initial value of*buffer_lengthas the buffer size. It will then copy
the encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, aValueError
will be set.

In both cases,*buffer_lengthis set to the length of the encoded data without the trailing NUL byte.

et# (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length]
Same ases# except that string objects are passed through without recoding them. Instead, the implemen-
tation assumes that the string object uses the encoding passed in as parameter.

5.6. Parsing arguments and building values 29

The Python/C API, Release 2.6.4

b (integer) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C
unsigned char .

B (integer) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char . New in version 2.3.

h (integer) [short int] Convert a Python integer to a Cshort int .

H (integer) [unsigned short int] Convert a Python integer to a Cunsigned short int , without overflow
checking. New in version 2.3.

i (integer) [int] Convert a Python integer to a plain Cint .

I (integer) [unsigned int] Convert a Python integer to a Cunsigned int , without overflow checking. New
in version 2.3.

l (integer) [long int] Convert a Python integer to a Clong int .

k (integer) [unsigned long] Convert a Python integer or long integer to a Cunsigned long without overflow
checking. New in version 2.3.

L (integer) [PY_LONG_LONG] Convert a Python integer to a Clong long . This format is only available
on platforms that supportlong long (or _int64 on Windows).

K (integer) [unsigned PY_LONG_LONG] Convert a Python integer or long integer to a Cunsigned long
long without overflow checking. This format is only available on platforms that supportunsigned
long long (or unsigned _int64 on Windows). New in version 2.3.

n (integer) [Py_ssize_t]Convert a Python integer or long integer to a CPy_ssize_t . New in version 2.5.

c (string of length 1) [char] Convert a Python character, represented as a string of length 1, to a Cchar .

f (float) [float] Convert a Python floating point number to a Cfloat .

d (float) [double] Convert a Python floating point number to a Cdouble .

D (complex) [Py_complex] Convert a Python complex number to a CPy_complex structure.

O(object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program
thus receives the actual object that was passed. The object’s reference count is not increased. The pointer
stored is notNULL.

O! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar toO, but takes
two C arguments: the first is the address of a Python type object, the second is the address of the C variable
(of typePyObject*) into which the object pointer is stored. If the Python object does not have the required
type,TypeError is raised.

O&(object) [converter, anything] Convert a Python object to a C variable through aconverterfunction. This
takes two arguments: the first is a function, the second is the address of a C variable (of arbitrary type),
converted tovoid * . Theconverterfunction in turn is called as follows:

status = converter(object, address);

whereobject is the Python object to be converted andaddressis thevoid* argument that was passed to
thePyArg_Parse*() function. The returnedstatusshould be1 for a successful conversion and0 if the
conversion has failed. When the conversion fails, theconverterfunction should raise an exception and leave
the content ofaddressunmodified.

S (string) [PyStringObject *] Like Obut requires that the Python object is a string object. RaisesTypeError
if the object is not a string object. The C variable may also be declared asPyObject* .

U (Unicode string) [PyUnicodeObject *] Like Obut requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared asPyObject* .

t# (read-only character buffer) [char *, int] Like s# , but accepts any object which implements the read-only
buffer interface. Thechar* variable is set to point to the first byte of the buffer, and theint is set to the
length of the buffer. Only single-segment buffer objects are accepted;TypeError is raised for all others.

30 Chapter 5. Utilities

The Python/C API, Release 2.6.4

w (read-write character buffer) [char *] Similar tos , but accepts any object which implements the read-write
buffer interface. The caller must determine the length of the buffer by other means, or usew# instead. Only
single-segment buffer objects are accepted;TypeError is raised for all others.

w# (read-write character buffer) [char *, Py_ssize_t] Like s# , but accepts any object which implements the
read-write buffer interface. Thechar * variable is set to point to the first byte of the buffer, and
the Py_ssize_t is set to the length of the buffer. Only single-segment buffer objects are accepted;
TypeError is raised for all others.

w* (read-write byte-oriented buffer) [Py_buffer *] This is towwhats* is tos . New in version 2.6.

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of format
units in items. The C arguments must correspond to the individual format units initems. Format units for
sequences may be nested.

Note: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual
parameters, not an arbitrary sequence. Code which previously causedTypeError to be raised here may
now proceed without an exception. This is not expected to be a problem for existing code.

It is possible to pass Python long integers where integers are requested; however no proper range checking is done
— the most significant bits are silently truncated when the receiving field is too small to receive the value (actually,
the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They
are:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value — when an optional argument is not
specified,PyArg_ParseTuple() does not touch the contents of the corresponding C variable(s).

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception thatPyArg_ParseTuple() raises).

; The list of format units ends here; the string after the semicolon is used as the error messageinsteadof the
default error message.: and; mutually exclude each other.

Note that any Python object references which are provided to the caller areborrowedreferences; do not decrement
their reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the
format string; these are used to store values from the input tuple. There are a few cases, as described in the list of
format units above, where these parameters are used as input values; they should match what is specified for the
corresponding format unit in that case.

For the conversion to succeed, thearg object must match the format and the format must be exhausted. On success,
the PyArg_Parse*() functions return true, otherwise they return false and raise an appropriate exception.
When thePyArg_Parse*() functions fail due to conversion failure in one of the format units, the variables at
the addresses corresponding to that and the following format units are left untouched.

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
Identical toPyArg_ParseTuple() , except that it accepts a va_list rather than a variable number of
arguments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-
words[], ...)

Parse the parameters of a function that takes both positional and keyword parameters into local variables.
Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-
words[], va_list vargs)

Identical toPyArg_ParseTupleAndKeywords() , except that it accepts a va_list rather than a variable
number of arguments.

5.6. Parsing arguments and building values 31

The Python/C API, Release 2.6.4

int PyArg_Parse (PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use
theMETH_OLDARGSparameter parsing method. This is not recommended for use in parameter parsing in
new code, and most code in the standard interpreter has been modified to no longer use this for that purpose.
It does remain a convenient way to decompose other tuples, however, and may continue to be used for that
purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
A simpler form of parameter retrieval which does not use a format string to specify the types of the argu-
ments. Functions which use this method to retrieve their parameters should be declared asMETH_VARARGS
in function or method tables. The tuple containing the actual parameters should be passed asargs; it must
actually be a tuple. The length of the tuple must be at leastmin and no more thanmax; min andmaxmay
be equal. Additional arguments must be passed to the function, each of which should be a pointer to a
PyObject* variable; these will be filled in with the values fromargs; they will contain borrowed refer-
ences. The variables which correspond to optional parameters not given byargswill not be filled in; these
should be initialized by the caller. This function returns true on success and false ifargs is not a tuple or
contains the wrong number of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the_weakref helper module for
weak references:

static PyObject *
weakref_ref (PyObject * self, PyObject * args)
{

PyObject * object;
PyObject * callback = NULL;
PyObject * result = NULL;

if (PyArg_UnpackTuple(args, " ref " , 1, 2, &object, &callback)) {
result = PyWeakref_NewRef(object, callback);

}
return result;

}

The call to PyArg_UnpackTuple() in this example is entirely equivalent to this call to
PyArg_ParseTuple() :

PyArg_ParseTuple(args, " O|O:ref " , &object, &callback)

New in version 2.2.Changed in version 2.5: This function used anint type formin andmax. This might
require changes in your code for properly supporting 64-bit systems.

PyObject* Py_BuildValue (const char *format, ...)
Return value: New reference.
Create a new value based on a format string similar to those accepted by thePyArg_Parse*() family of
functions and a sequence of values. Returns the value orNULL in the case of an error; an exception will be
raised ifNULL is returned.

Py_BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two
or more format units. If the format string is empty, it returnsNone; if it contains exactly one format unit,
it returns whatever object is described by that format unit. To force it to return a tuple of size 0 or one,
parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, as for thes ands# for-
mats, the required data is copied. Buffers provided by the caller are never referenced by the objects cre-
ated byPy_BuildValue() . In other words, if your code invokesmalloc() and passes the allocated
memory toPy_BuildValue() , your code is responsible for callingfree() for that memory once
Py_BuildValue() returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the
Python object type that the format unit will return; and the entry in [square] brackets is the type of the C

32 Chapter 5. Utilities

The Python/C API, Release 2.6.4

value(s) to be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such
ass#). This can be used to make long format strings a tad more readable.

s (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointer isNULL,
None is used.

s# (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointer is
NULL, the length is ignored andNone is returned.

z (string or None) [char *] Same ass .

z# (string or None) [char *, int] Same ass# .

u (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4)
data to a Python Unicode object. If the Unicode buffer pointer isNULL, None is returned.

u# (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2 or UCS-4) data buffer and its
length to a Python Unicode object. If the Unicode buffer pointer isNULL, the length is ignored
andNone is returned.

i (integer) [int] Convert a plain Cint to a Python integer object.

b (integer) [char] Convert a plain Cchar to a Python integer object.

h (integer) [short int] Convert a plain Cshort int to a Python integer object.

l (integer) [long int] Convert a Clong int to a Python integer object.

B (integer) [unsigned char] Convert a Cunsigned char to a Python integer object.

H (integer) [unsigned short int] Convert a Cunsigned short int to a Python integer object.

I (integer/long) [unsigned int] Convert a Cunsigned int to a Python integer object or a Python long
integer object, if it is larger thansys.maxint .

k (integer/long) [unsigned long] Convert a Cunsigned long to a Python integer object or a Python
long integer object, if it is larger thansys.maxint .

L (long) [PY_LONG_LONG] Convert a Clong long to a Python long integer object. Only available
on platforms that supportlong long .

K (long) [unsigned PY_LONG_LONG] Convert a Cunsigned long long to a Python long integer
object. Only available on platforms that supportunsigned long long .

n (int) [Py_ssize_t] Convert a CPy_ssize_t to a Python integer or long integer. New in version 2.5.

c (string of length 1) [char] Convert a Cint representing a character to a Python string of length 1.

d (float) [double] Convert a Cdouble to a Python floating point number.

f (float) [float] Same asd.

D (complex) [Py_complex *] Convert a CPy_complex structure to a Python complex number.

O(object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incre-
mented by one). If the object passed in is aNULL pointer, it is assumed that this was caused because
the call producing the argument found an error and set an exception. Therefore,Py_BuildValue()
will return NULL but won’t raise an exception. If no exception has been raised yet,SystemError
is set.

S (object) [PyObject *] Same asO.

N (object) [PyObject *] Same asO, except it doesn’t increment the reference count on the object. Useful
when the object is created by a call to an object constructor in the argument list.

O&(object) [converter, anything] Convertanythingto a Python object through aconverterfunction. The
function is called withanything (which should be compatible withvoid *) as its argument and
should return a “new” Python object, orNULL if an error occurred.

5.6. Parsing arguments and building values 33

The Python/C API, Release 2.6.4

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same num-
ber of items.

[items] (list) [matching-items] Convert a sequence of C values to a Python list with the same number
of items.

{items} (dictionary) [matching-items] Convert a sequence of C values to a Python dictionary. Each
pair of consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, theSystemError exception is set andNULL returned.

PyObject* Py_VaBuildValue (const char *format, va_list vargs)
Identical toPy_BuildValue() , except that it accepts a va_list rather than a variable number of argu-
ments.

5.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprintf (char *str, size_t size, const char *format, ...)
Output not more thansizebytes tostr according to the format stringformat and the extra arguments. See
the Unix man pagesnprintf(2) .

int PyOS_vsnprintf (char *str, size_t size, const char *format, va_list va)
Output not more thansizebytes tostr according to the format stringformatand the variable argument list
va. Unix man pagevsnprintf(2) .

PyOS_snprintf() and PyOS_vsnprintf() wrap the Standard C library functionssnprintf() and
vsnprintf() . Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure thatstr*[*size-1] is always’\0’ upon return. They never write more thansizebytes
(including the trailing’\0’ into str. Both functions require thatstr != NULL , size > 0 andformat !=
NULL.

If the platform doesn’t havevsnprintf() and the buffer size needed to avoid truncation exceedssizeby more
than 512 bytes, Python aborts with aPy_FatalError.

The return value (rv) for these functions should be interpreted as follows:

• When 0 <= rv < size , the output conversion was successful andrv characters were written tostr
(excluding the trailing’\0’ byte atstr*[*rv]).

• When rv >= size , the output conversion was truncated and a buffer withrv + 1 bytes would have
been needed to succeed.str*[*size-1] is ’\0’ in this case.

• When rv < 0 , “something bad happened.”str*[*size-1] is ’\0’ in this case too, but the rest ofstr is
undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS_ascii_strtod (const char *nptr, char **endptr)
Convert a string to adouble . This function behaves like the Standard C functionstrtod() does in the
C locale. It does this without changing the current locale, since that would not be thread-safe.

PyOS_ascii_strtod() should typically be used for reading configuration files or other non-user input
that should be locale independent. New in version 2.4. See the Unix man pagestrtod(2) for details.

char * PyOS_ascii_formatd (char *buffer, size_t buf_len, const char *format, double d)
Convert adouble to a string using the’.’ as the decimal separator.format is aprintf() -style format
string specifying the number format. Allowed conversion characters are’e’ , ’E’ , ’f’ , ’F’ , ’g’ and
’G’ .

The return value is a pointer tobuffer with the converted string or NULL if the conversion failed. New in
version 2.4.

34 Chapter 5. Utilities

The Python/C API, Release 2.6.4

double PyOS_ascii_atof (const char *nptr)
Convert a string to adouble in a locale-independent way. New in version 2.4. See the Unix man page
atof(2) for details.

char * PyOS_stricmp (char *s1, char *s2)
Case insensitive comparison of strings. The function works almost identically tostrcmp() except that it
ignores the case. New in version 2.6.

char * PyOS_strnicmp (char *s1, char *s2, Py_ssize_t size)
Case insensitive comparison of strings. The function works almost identically tostrncmp() except that
it ignores the case. New in version 2.6.

5.8 Reflection

PyObject* PyEval_GetBuiltins ()
Return value: Borrowed reference.
Return a dictionary of the builtins in the current execution frame, or the interpreter of the thread state if no
frame is currently executing.

PyObject* PyEval_GetLocals ()
Return value: Borrowed reference.
Return a dictionary of the local variables in the current execution frame, orNULL if no frame is currently
executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference.
Return a dictionary of the global variables in the current execution frame, orNULL if no frame is currently
executing.

PyFrameObject* PyEval_GetFrame ()
Return value: Borrowed reference.
Return the current thread state’s frame, which isNULL if no frame is currently executing.

int PyEval_GetRestricted ()
If there is a current frame and it is executing in restricted mode, return true, otherwise false.

const char* PyEval_GetFuncName (PyObject *func)
Return the name offunc if it is a function, class or instance object, else the name offuncs type.

const char* PyEval_GetFuncDesc (PyObject *func)
Return a description string, depending on the type offunc. Return values include “()” for func-
tions and methods, ” constructor”, ” instance”, and ” object”. Concatenated with the result of
PyEval_GetFuncName() , the result will be a description offunc.

5.8. Reflection 35

The Python/C API, Release 2.6.4

36 Chapter 5. Utilities

CHAPTER

SIX

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object
types (e.g. all numerical types, or all sequence types). When used on object types for which they do not apply,
they will raise a Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has
been created byPyList_New() , but whose items have not been set to some non-NULLvalue yet.

6.1 Object Protocol

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an objecto, on file fp. Returns-1 on error. The flags argument is used to enable certain printing
options. The only option currently supported isPy_PRINT_RAW; if given, thestr() of the object is
written instead of therepr() .

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns1 if o has the attributeattr_name, and0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name) . This function always succeeds.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Returns1 if o has the attributeattr_name, and0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name) . This function always succeeds.

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference.
Retrieve an attribute namedattr_namefrom objecto. Returns the attribute value on success, orNULL on
failure. This is the equivalent of the Python expressiono.attr_name .

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference.
Retrieve an attribute namedattr_namefrom objecto. Returns the attribute value on success, orNULL on
failure. This is the equivalent of the Python expressiono.attr_name .

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Generic attribute getter function that is meant to be put into a type object’stp_getattro slot. It looks
for a descriptor in the dictionary of classes in the object’s MRO as well as an attribute in the object’s
__dict__ (if present). As outlined inImplementing Descriptors(in The Python Language Reference),
data descriptors take preference over instance attributes, while non-data descriptors don’t. Otherwise, an
AttributeError is raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute namedattr_name, for objecto, to the valuev. Returns-1 on failure. This is
the equivalent of the Python statemento.attr_name = v .

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute namedattr_name, for objecto, to the valuev. Returns-1 on failure. This is
the equivalent of the Python statemento.attr_name = v .

37

The Python/C API, Release 2.6.4

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter function that is meant to be put into a type object’stp_setattro slot. It looks
for a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference over
setting the attribute in the instance dictionary. Otherwise, the attribute is set in the object’s__dict__ (if
present). Otherwise, anAttributeError is raised and-1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute namedattr_name, for objecto. Returns-1 on failure. This is the equivalent of the Python
statementdel o.attr_name .

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute namedattr_name, for objecto. Returns-1 on failure. This is the equivalent of the Python
statementdel o.attr_name .

PyObject* PyObject_RichCompare (PyObject *o1, PyObject *o2, int opid)
Return value: New reference.
Compare the values ofo1 ando2 using the operation specified byopid, which must be one ofPy_LT ,
Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to<, <=, ==, != , >, or >= respectively. This
is the equivalent of the Python expressiono1 op o2 , whereop is the operator corresponding toopid.
Returns the value of the comparison on success, orNULL on failure.

int PyObject_RichCompareBool (PyObject *o1, PyObject *o2, int opid)
Compare the values ofo1 ando2 using the operation specified byopid, which must be one ofPy_LT ,
Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to<, <=, ==, != , >, or >= respectively.
Returns-1 on error,0 if the result is false,1 otherwise. This is the equivalent of the Python expressiono1
op o2 , whereop is the operator corresponding toopid.

int PyObject_Cmp (PyObject *o1, PyObject *o2, int *result)
Compare the values ofo1 ando2 using a routine provided byo1, if one exists, otherwise with a routine

provided byo2. The result of the comparison is returned inresult. Returns-1 on failure. This is the
equivalent of the Python statementresult = cmp(o1, o2) .

int PyObject_Compare (PyObject *o1, PyObject *o2)
Compare the values ofo1 ando2 using a routine provided byo1, if one exists, otherwise with a routine

provided byo2. Returns the result of the comparison on success. On error, the value returned is undefined;
usePyErr_Occurred() to detect an error. This is equivalent to the Python expressioncmp(o1, o2) .

PyObject* PyObject_Repr (PyObject *o)
Return value: New reference.
Compute a string representation of objecto. Returns the string representation on success,NULL on failure.

This is the equivalent of the Python expressionrepr(o) . Called by therepr() built-in function and by
reverse quotes.

PyObject* PyObject_Str (PyObject *o)
Return value: New reference.
Compute a string representation of objecto. Returns the string representation on success,NULL on failure.

This is the equivalent of the Python expressionstr(o) . Called by thestr() built-in function and by the
print statement.

PyObject* PyObject_Bytes (PyObject *o)
Compute a bytes representation of objecto. In 2.x, this is just a alias forPyObject_Str() .

PyObject* PyObject_Unicode (PyObject *o)
Return value: New reference.
Compute a Unicode string representation of objecto. Returns the Unicode string representation on suc-

cess,NULL on failure. This is the equivalent of the Python expressionunicode(o) . Called by the
unicode() built-in function.

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Returns1 if inst is an instance of the classcls or a subclass ofcls, or 0 if not. On error, returns-1 and
sets an exception. Ifcls is a type object rather than a class object,PyObject_IsInstance() returns
1 if inst is of typecls. If cls is a tuple, the check will be done against every entry incls. The result will
be1 when at least one of the checks returns1, otherwise it will be0. If inst is not a class instance andcls
is neither a type object, nor a class object, nor a tuple,inst must have a__class__ attribute — the class

38 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.4

relationship of the value of that attribute withcls will be used to determine the result of this function. New
in version 2.1.Changed in version 2.2: Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of exten-
sions to the class system may want to be aware of. IfAandBare class objects,B is a subclass ofA if it inherits from
A either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the
class relationship of the two objects. When testing ifB is a subclass ofA, if A is B, PyObject_IsSubclass()
returns true. IfA andB are different objects,B‘s __bases__ attribute is searched in a depth-first fashion forA
— the presence of the__bases__ attribute is considered sufficient for this determination.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Returns1 if the classderivedis identical to or derived from the classcls, otherwise returns0. In case of
an error, returns-1 . If cls is a tuple, the check will be done against every entry incls. The result will be1
when at least one of the checks returns1, otherwise it will be0. If eitherderivedor cls is not an actual class
object (or tuple), this function uses the generic algorithm described above. New in version 2.1.Changed in
version 2.3: Older versions of Python did not support a tuple as the second argument.

int PyCallable_Check (PyObject *o)
Determine if the objecto is callable. Return1 if the object is callable and0 otherwise. This function always
succeeds.

PyObject* PyObject_Call (PyObject *callable_object, PyObject *args, PyObject *kw)
Return value: New reference.
Call a callable Python objectcallable_object, with arguments given by the tupleargs, and named arguments

given by the dictionarykw. If no named arguments are needed,kw may beNULL. argsmust not beNULL,
use an empty tuple if no arguments are needed. Returns the result of the call on success, orNULL on
failure. This is the equivalent of the Python expressionapply(callable_object, args, kw) or
callable_object(*args, **kw) . New in version 2.2.

PyObject* PyObject_CallObject (PyObject *callable_object, PyObject *args)
Return value: New reference.

Call a callable Python objectcallable_object, with arguments given by the tupleargs. If no argu-
ments are needed, thenargs may beNULL. Returns the result of the call on success, orNULL on
failure. This is the equivalent of the Python expressionapply(callable_object, args) or
callable_object(*args) .

PyObject* PyObject_CallFunction (PyObject *callable, char *format, ...)
Return value: New reference.

Call a callable Python objectcallable, with a variable number of C arguments. The C arguments are
described using aPy_BuildValue() style format string. The format may beNULL, indicating that no
arguments are provided. Returns the result of the call on success, orNULL on failure. This is the equivalent
of the Python expressionapply(callable, args) or callable(*args) . Note that if you only
passPyObject * args,PyObject_CallFunctionObjArgs() is a faster alternative.

PyObject* PyObject_CallMethod (PyObject *o, char *method, char *format, ...)
Return value: New reference.
Call the method namedmethodof objecto with a variable number of C arguments. The C arguments are
described by aPy_BuildValue() format string that should produce a tuple. The format may beNULL,
indicating that no arguments are provided. Returns the result of the call on success, orNULL on failure.
This is the equivalent of the Python expressiono.method(args) . Note that if you only passPyObject
* args,PyObject_CallMethodObjArgs() is a faster alternative.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL)
Return value: New reference.
Call a callable Python objectcallable, with a variable number ofPyObject* arguments. The arguments
are provided as a variable number of parameters followed byNULL. Returns the result of the call on success,
or NULL on failure. New in version 2.2.

PyObject* PyObject_CallMethodObjArgs (PyObject *o, PyObject *name, ..., NULL)
Return value: New reference.
Calls a method of the objecto, where the name of the method is given as a Python string object inname.
It is called with a variable number ofPyObject* arguments. The arguments are provided as a variable

6.1. Object Protocol 39

The Python/C API, Release 2.6.4

number of parameters followed byNULL. Returns the result of the call on success, orNULL on failure.
New in version 2.2.

long PyObject_Hash (PyObject *o)
Compute and return the hash value of an objecto. On failure, return-1 . This is the equivalent of the

Python expressionhash(o) .

long PyObject_HashNotImplemented (PyObject *o)
Set aTypeError indicating thattype(o) is not hashable and return-1 . This function receives special
treatment when stored in atp_hash slot, allowing a type to explicitly indicate to the interpreter that it is
not hashable. New in version 2.6.

int PyObject_IsTrue (PyObject *o)
Returns1 if the objecto is considered to be true, and0 otherwise. This is equivalent to the Python expression
not not o . On failure, return-1 .

int PyObject_Not (PyObject *o)
Returns0 if the objecto is considered to be true, and1 otherwise. This is equivalent to the Python expression
not o . On failure, return-1 .

PyObject* PyObject_Type (PyObject *o)
Return value: New reference.
Wheno is non-NULL, returns a type object corresponding to the object type of objecto. On failure, raises

SystemError and returnsNULL. This is equivalent to the Python expressiontype(o) . This function
increments the reference count of the return value. There’s really no reason to use this function instead of
the common expressiono->ob_type , which returns a pointer of typePyTypeObject* , except when
the incremented reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the objecto is of typetypeor a subtype oftype. Both parameters must be non-NULL. New in
version 2.2.

Py_ssize_t PyObject_Length (PyObject *o)
Py_ssize_t PyObject_Size (PyObject *o)

Return the length of objecto. If the objecto provides either the sequence and mapping protocols, the
sequence length is returned. On error,-1 is returned. This is the equivalent to the Python expression
len(o) . Changed in version 2.5: These functions returned anint type. This might require changes in
your code for properly supporting 64-bit systems.

PyObject* PyObject_GetItem (PyObject *o, PyObject *key)
Return value: New reference.
Return element ofo corresponding to the objectkeyor NULL on failure. This is the equivalent of the Python
expressiono[key] .

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the objectkey to the valuev. Returns-1 on failure. This is the equivalent of the Python statement
o[key] = v .

int PyObject_DelItem (PyObject *o, PyObject *key)
Delete the mapping forkeyfrom o. Returns-1 on failure. This is the equivalent of the Python statement
del o[key] .

int PyObject_AsFileDescriptor (PyObject *o)
Derives a file descriptor from a Python object. If the object is an integer or long integer, its value is returned.
If not, the object’sfileno() method is called if it exists; the method must return an integer or long integer,
which is returned as the file descriptor value. Returns-1 on failure.

PyObject* PyObject_Dir (PyObject *o)
Return value: New reference.
This is equivalent to the Python expressiondir(o) , returning a (possibly empty) list of strings appropriate
for the object argument, orNULL if there was an error. If the argument isNULL, this is like the Python
dir() , returning the names of the current locals; in this case, if no execution frame is active thenNULL is
returned butPyErr_Occurred() will return false.

40 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyObject_GetIter (PyObject *o)
Return value: New reference.
This is equivalent to the Python expressioniter(o) . It returns a new iterator for the object argument,
or the object itself if the object is already an iterator. RaisesTypeError and returnsNULL if the object
cannot be iterated.

6.2 Number Protocol

int PyNumber_Check (PyObject *o)
Returns1 if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of addingo1 ando2, or NULL on failure. This is the equivalent of the Python expression
o1 + o2 .

PyObject* PyNumber_Subtract (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of subtractingo2 from o1, or NULL on failure. This is the equivalent of the Python
expressiono1 - o2 .

PyObject* PyNumber_Multiply (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of multiplyingo1 and o2, or NULL on failure. This is the equivalent of the Python
expressiono1 * o2 .

PyObject* PyNumber_Divide (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of dividingo1by o2, or NULL on failure. This is the equivalent of the Python expression
o1 / o2 .

PyObject* PyNumber_FloorDivide (PyObject *o1, PyObject *o2)
Return value: New reference.
Return the floor ofo1 divided byo2, or NULL on failure. This is equivalent to the “classic” division of
integers. New in version 2.2.

PyObject* PyNumber_TrueDivide (PyObject *o1, PyObject *o2)
Return value: New reference.
Return a reasonable approximation for the mathematical value ofo1 divided byo2, or NULL on failure.
The return value is “approximate” because binary floating point numbers are approximate; it is not possible
to represent all real numbers in base two. This function can return a floating point value when passed two
integers. New in version 2.2.

PyObject* PyNumber_Remainder (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the remainder of dividingo1 by o2, or NULL on failure. This is the equivalent of the Python
expressiono1 % o2.

PyObject* PyNumber_Divmod (PyObject *o1, PyObject *o2)
Return value: New reference.

See the built-in functiondivmod() . ReturnsNULL on failure. This is the equivalent of the Python
expressiondivmod(o1, o2) .

PyObject* PyNumber_Power (PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference.
See the built-in functionpow() . ReturnsNULL on failure. This is the equivalent of the Python expression

pow(o1, o2, o3) , whereo3 is optional. Ifo3 is to be ignored, passPy_None in its place (passing
NULL for o3would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *o)
Return value: New reference.

6.2. Number Protocol 41

The Python/C API, Release 2.6.4

Returns the negation ofo on success, orNULL on failure. This is the equivalent of the Python expression
-o .

PyObject* PyNumber_Positive (PyObject *o)
Return value: New reference.
Returnso on success, orNULL on failure. This is the equivalent of the Python expression+o.

PyObject* PyNumber_Absolute (PyObject *o)
Return value: New reference.

Returns the absolute value ofo, or NULL on failure. This is the equivalent of the Python expression
abs(o) .

PyObject* PyNumber_Invert (PyObject *o)
Return value: New reference.
Returns the bitwise negation ofo on success, orNULL on failure. This is the equivalent of the Python
expression~o.

PyObject* PyNumber_Lshift (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of left shiftingo1 by o2 on success, orNULL on failure. This is the equivalent of the
Python expressiono1 << o2 .

PyObject* PyNumber_Rshift (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of right shiftingo1 by o2 on success, orNULL on failure. This is the equivalent of the
Python expressiono1 >> o2 .

PyObject* PyNumber_And (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise and” ofo1ando2on success andNULL on failure. This is the equivalent of the Python
expressiono1 & o2 .

PyObject* PyNumber_Xor (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise exclusive or” ofo1by o2on success, orNULL on failure. This is the equivalent of the
Python expressiono1 ^ o2 .

PyObject* PyNumber_Or (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise or” ofo1 ando2 on success, orNULL on failure. This is the equivalent of the Python
expressiono1 | o2 .

PyObject* PyNumber_InPlaceAdd (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of addingo1ando2, orNULL on failure. The operation is donein-placewheno1supports
it. This is the equivalent of the Python statemento1 += o2 .

PyObject* PyNumber_InPlaceSubtract (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of subtractingo2 from o1, or NULL on failure. The operation is donein-placewheno1
supports it. This is the equivalent of the Python statemento1 -= o2 .

PyObject* PyNumber_InPlaceMultiply (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of multiplyingo1 ando2, or NULL on failure. The operation is donein-placewheno1
supports it. This is the equivalent of the Python statemento1 *= o2 .

PyObject* PyNumber_InPlaceDivide (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of dividingo1by o2, orNULL on failure. The operation is donein-placewheno1supports
it. This is the equivalent of the Python statemento1 /= o2 .

PyObject* PyNumber_InPlaceFloorDivide (PyObject *o1, PyObject *o2)
Return value: New reference.

42 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.4

Returns the mathematical floor of dividingo1 by o2, or NULL on failure. The operation is donein-place
wheno1supports it. This is the equivalent of the Python statemento1 //= o2 . New in version 2.2.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *o1, PyObject *o2)
Return value: New reference.
Return a reasonable approximation for the mathematical value ofo1 divided byo2, or NULL on failure.
The return value is “approximate” because binary floating point numbers are approximate; it is not possible
to represent all real numbers in base two. This function can return a floating point value when passed two
integers. The operation is donein-placewheno1supports it. New in version 2.2.

PyObject* PyNumber_InPlaceRemainder (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the remainder of dividingo1 by o2, or NULL on failure. The operation is donein-placewheno1
supports it. This is the equivalent of the Python statemento1 %= o2.

PyObject* PyNumber_InPlacePower (PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference.

See the built-in functionpow() . ReturnsNULL on failure. The operation is donein-place when o1
supports it. This is the equivalent of the Python statemento1 **= o2 when o3 isPy_None , or an in-
place variant ofpow(o1, o2, o3) otherwise. Ifo3 is to be ignored, passPy_None in its place (passing
NULL for o3would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of left shiftingo1 by o2 on success, orNULL on failure. The operation is donein-place
wheno1supports it. This is the equivalent of the Python statemento1 <<= o2 .

PyObject* PyNumber_InPlaceRshift (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of right shiftingo1by o2on success, orNULL on failure. The operation is donein-place
wheno1supports it. This is the equivalent of the Python statemento1 >>= o2 .

PyObject* PyNumber_InPlaceAnd (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise and” ofo1 ando2 on success andNULL on failure. The operation is donein-place
wheno1supports it. This is the equivalent of the Python statemento1 &= o2 .

PyObject* PyNumber_InPlaceXor (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise exclusive or” ofo1 by o2 on success, orNULL on failure. The operation is done
in-placewheno1supports it. This is the equivalent of the Python statemento1 ^= o2 .

PyObject* PyNumber_InPlaceOr (PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise or” ofo1ando2on success, orNULL on failure. The operation is donein-placewhen
o1supports it. This is the equivalent of the Python statemento1 |= o2 .

int PyNumber_Coerce (PyObject **p1, PyObject **p2)
This function takes the addresses of two variables of typePyObject* . If the objects pointed to by*p1

and*p2 have the same type, increment their reference count and return0 (success). If the objects can be
converted to a common numeric type, replace*p1 and*p2 by their converted value (with ‘new’ reference
counts), and return0. If no conversion is possible, or if some other error occurs, return-1 (failure) and
don’t increment the reference counts. The callPyNumber_Coerce(&o1, &o2) is equivalent to the
Python statemento1, o2 = coerce(o1, o2) .

int PyNumber_CoerceEx (PyObject **p1, PyObject **p2)
This function is similar toPyNumber_Coerce() , except that it returns1 when the conversion is not
possible and when no error is raised. Reference counts are still not increased in this case.

PyObject* PyNumber_Int (PyObject *o)
Return value: New reference.
Returns theo converted to an integer object on success, orNULL on failure. If the argument is outside

the integer range a long object will be returned instead. This is the equivalent of the Python expression
int(o) .

6.2. Number Protocol 43

The Python/C API, Release 2.6.4

PyObject* PyNumber_Long (PyObject *o)
Return value: New reference.
Returns theo converted to a long integer object on success, orNULL on failure. This is the equivalent of

the Python expressionlong(o) .

PyObject* PyNumber_Float (PyObject *o)
Return value: New reference.

Returns theo converted to a float object on success, orNULL on failure. This is the equivalent of the
Python expressionfloat(o) .

PyObject* PyNumber_Index (PyObject *o)
Returns theo converted to a Python int or long on success orNULL with a TypeError exception raised
on failure. New in version 2.5.

PyObject* PyNumber_ToBase (PyObject *n, int base)
Returns the integern converted tobaseas a string with a base marker of’0b’ , ’0o’ , or ’0x’ if applicable.
Whenbaseis not 2, 8, 10, or 16, the format is’x#num’ where x is the base. Ifn is not an int object, it is
converted withPyNumber_Index() first. New in version 2.6.

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
Returnso converted to a Py_ssize_t value ifo can be interpreted as an integer. Ifo can be converted to a
Python int or long but the attempt to convert to a Py_ssize_t value would raise anOverflowError , then
theexcargument is the type of exception that will be raised (usuallyIndexError or OverflowError).
If exc is NULL, then the exception is cleared and the value is clipped toPY_SSIZE_T_MINfor a negative
integer orPY_SSIZE_T_MAXfor a positive integer. New in version 2.5.

int PyIndex_Check (PyObject *o)
Returns True ifo is an index integer (has the nb_index slot of the tp_as_number structure filled in). New in
version 2.5.

6.3 Sequence Protocol

int PySequence_Check (PyObject *o)
Return1 if the object provides sequence protocol, and0 otherwise. This function always succeeds.

Py_ssize_t PySequence_Size (PyObject *o)
Py_ssize_t PySequence_Length (PyObject *o)

Returns the number of objects in sequenceo on success, and-1 on failure. For objects that do not provide
sequence protocol, this is equivalent to the Python expressionlen(o) . Changed in version 2.5: These
functions returned anint type. This might require changes in your code for properly supporting 64-bit
systems.

PyObject* PySequence_Concat (PyObject *o1, PyObject *o2)
Return value: New reference.
Return the concatenation ofo1ando2on success, andNULL on failure. This is the equivalent of the Python
expressiono1 + o2 .

PyObject* PySequence_Repeat (PyObject *o, Py_ssize_t count)
Return value: New reference.
Return the result of repeating sequence objecto counttimes, orNULL on failure. This is the equivalent of
the Python expressiono * count . Changed in version 2.5: This function used anint type for count.
This might require changes in your code for properly supporting 64-bit systems.

PyObject* PySequence_InPlaceConcat (PyObject *o1, PyObject *o2)
Return value: New reference.
Return the concatenation ofo1 ando2 on success, andNULL on failure. The operation is donein-place
wheno1supports it. This is the equivalent of the Python expressiono1 += o2 .

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Return value: New reference.
Return the result of repeating sequence objecto counttimes, orNULL on failure. The operation is done

44 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.4

in-placewheno supports it. This is the equivalent of the Python expressiono *= count . Changed in
version 2.5: This function used anint type forcount. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PySequence_GetItem (PyObject *o, Py_ssize_t i)
Return value: New reference.
Return theith element ofo, or NULL on failure. This is the equivalent of the Python expressiono[i] .
Changed in version 2.5: This function used anint type for i. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PySequence_GetSlice (PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Return value: New reference.
Return the slice of sequence objecto betweeni1 andi2, or NULL on failure. This is the equivalent of the
Python expressiono[i1:i2] . Changed in version 2.5: This function used anint type for i1 andi2. This
might require changes in your code for properly supporting 64-bit systems.

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *v)
Assign objectv to theith element ofo. Returns-1 on failure. This is the equivalent of the Python statement
o[i] = v . This functiondoes notsteal a reference tov. Changed in version 2.5: This function used an
int type for i. This might require changes in your code for properly supporting 64-bit systems.

int PySequence_DelItem (PyObject *o, Py_ssize_t i)
Delete theith element of objecto. Returns-1 on failure. This is the equivalent of the Python statement
del o[i] . Changed in version 2.5: This function used anint type for i. This might require changes in
your code for properly supporting 64-bit systems.

int PySequence_SetSlice (PyObject *o, Py_ssize_t i1, Py_ssize_t i2, PyObject *v)
Assign the sequence objectv to the slice in sequence objecto from i1 to i2. This is the equivalent of the
Python statemento[i1:i2] = v . Changed in version 2.5: This function used anint type for i1 andi2.
This might require changes in your code for properly supporting 64-bit systems.

int PySequence_DelSlice (PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Delete the slice in sequence objecto from i1 to i2. Returns-1 on failure. This is the equivalent of the
Python statementdel o[i1:i2] . Changed in version 2.5: This function used anint type for i1 andi2.
This might require changes in your code for properly supporting 64-bit systems.

Py_ssize_t PySequence_Count (PyObject *o, PyObject *value)
Return the number of occurrences ofvaluein o, that is, return the number of keys for whicho[key] ==
value . On failure, return-1 . This is equivalent to the Python expressiono.count(value) . Changed
in version 2.5: This function returned anint type. This might require changes in your code for properly
supporting 64-bit systems.

int PySequence_Contains (PyObject *o, PyObject *value)
Determine ifo containsvalue. If an item ino is equal tovalue, return1, otherwise return0. On error, return
-1 . This is equivalent to the Python expressionvalue in o .

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
Return the first indexi for which o[i] == value . On error, return-1 . This is equivalent to the Python
expressiono.index(value) . Changed in version 2.5: This function returned anint type. This might
require changes in your code for properly supporting 64-bit systems.

PyObject* PySequence_List (PyObject *o)
Return value: New reference.
Return a list object with the same contents as the arbitrary sequenceo. The returned list is guaranteed to be
new.

PyObject* PySequence_Tuple (PyObject *o)
Return value: New reference.
Return a tuple object with the same contents as the arbitrary sequenceo or NULL on failure. Ifo is a tuple,

a new reference will be returned, otherwise a tuple will be constructed with the appropriate contents. This
is equivalent to the Python expressiontuple(o) .

PyObject* PySequence_Fast (PyObject *o, const char *m)
Return value: New reference.

6.3. Sequence Protocol 45

The Python/C API, Release 2.6.4

Returns the sequenceo as a tuple, unless it is already a tuple or list, in which caseo is returned. Use
PySequence_Fast_GET_ITEM() to access the members of the result. ReturnsNULL on failure. If the
object is not a sequence, raisesTypeError with m as the message text.

PyObject* PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t i)
Return value: Borrowed reference.
Return theith element ofo, assuming thato was returned byPySequence_Fast() , o is notNULL, and
that i is within bounds. Changed in version 2.5: This function used anint type for i. This might require
changes in your code for properly supporting 64-bit systems.

PyObject** PySequence_Fast_ITEMS (PyObject *o)
Return the underlying array of PyObject pointers. Assumes thato was returned byPySequence_Fast()
ando is notNULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change. New in version 2.4.

PyObject* PySequence_ITEM (PyObject *o, Py_ssize_t i)
Return value: New reference.
Return theith element ofo or NULL on failure. Macro form ofPySequence_GetItem() but without
checking thatPySequence_Check(o)() is true and without adjustment for negative indices. New in
version 2.3.Changed in version 2.5: This function used anint type for i. This might require changes in
your code for properly supporting 64-bit systems.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *o)
Returns the length ofo, assuming thato was returned byPySequence_Fast() and that
o is not NULL. The size can also be gotten by callingPySequence_Size() on o, but
PySequence_Fast_GET_SIZE() is faster because it can assumeo is a list or tuple.

6.4 Mapping Protocol

int PyMapping_Check (PyObject *o)
Return1 if the object provides mapping protocol, and0 otherwise. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *o)
Py_ssize_t PyMapping_Length (PyObject *o)

Returns the number of keys in objecto on success, and-1 on failure. For objects that do not provide
mapping protocol, this is equivalent to the Python expressionlen(o) . Changed in version 2.5: These
functions returned anint type. This might require changes in your code for properly supporting 64-bit
systems.

int PyMapping_DelItemString (PyObject *o, char *key)
Remove the mapping for objectkeyfrom the objecto. Return-1 on failure. This is equivalent to the Python
statementdel o[key] .

int PyMapping_DelItem (PyObject *o, PyObject *key)
Remove the mapping for objectkeyfrom the objecto. Return-1 on failure. This is equivalent to the Python
statementdel o[key] .

int PyMapping_HasKeyString (PyObject *o, char *key)
On success, return1 if the mapping object has the keykeyand0 otherwise. This is equivalent too[key] ,
returningTrue on success andFalse on an exception. This function always succeeds.

int PyMapping_HasKey (PyObject *o, PyObject *key)
Return1 if the mapping object has the keykeyand0 otherwise. This is equivalent too[key] , returning
True on success andFalse on an exception. This function always succeeds.

PyObject* PyMapping_Keys (PyObject *o)
Return value: New reference.
On success, return a list of the keys in objecto. On failure, returnNULL. This is equivalent to the Python
expressiono.keys() .

46 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyMapping_Values (PyObject *o)
Return value: New reference.
On success, return a list of the values in objecto. On failure, returnNULL. This is equivalent to the Python
expressiono.values() .

PyObject* PyMapping_Items (PyObject *o)
Return value: New reference.
On success, return a list of the items in objecto, where each item is a tuple containing a key-value pair. On
failure, returnNULL. This is equivalent to the Python expressiono.items() .

PyObject* PyMapping_GetItemString (PyObject *o, char *key)
Return value: New reference.
Return element ofo corresponding to the objectkeyor NULL on failure. This is the equivalent of the Python
expressiono[key] .

int PyMapping_SetItemString (PyObject *o, char *key, PyObject *v)
Map the objectkeyto the valuev in objecto. Returns-1 on failure. This is the equivalent of the Python
statemento[key] = v .

6.5 Iterator Protocol

New in version 2.2. There are only a couple of functions specifically for working with iterators.

int PyIter_Check (PyObject *o)
Return true if the objecto supports the iterator protocol.

PyObject* PyIter_Next (PyObject *o)
Return value: New reference.
Return the next value from the iterationo. If the object is an iterator, this retrieves the next value from the
iteration, and returnsNULL with no exception set if there are no remaining items. If the object is not an
iterator,TypeError is raised, or if there is an error in retrieving the item, returnsNULL and passes along
the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject * iterator = PyObject_GetIter(obj);
PyObject * item;

if (iterator == NULL) {
/* propagate error */

}

while (item = PyIter_Next(iterator)) {
/* do something with item */
...
/* release reference when done */
Py_DECREF(item);

}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
/* propagate error */

}
else {

/* continue doing useful work */
}

6.5. Iterator Protocol 47

The Python/C API, Release 2.6.4

6.6 Old Buffer Protocol

This section describes the legacy buffer protocol, which has been introduced in Python 1.6. It is still supported
but deprecated in the Python 2.x series. Python 3.0 introduces a new buffer protocol which fixes weaknesses and
shortcomings of the protocol, and has been backported to Python 2.6. SeeBuffer Objectsfor more information.

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location usable as character-based input. Theobj argument must
support the single-segment character buffer interface. On success, returns0, setsbuffer to the memory
location andbuffer_lento the buffer length. Returns-1 and sets aTypeError on error. New in version
1.6.Changed in version 2.5: This function used anint * type forbuffer_len. This might require changes
in your code for properly supporting 64-bit systems.

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location containing arbitrary data. Theobj argument must support
the single-segment readable buffer interface. On success, returns0, setsbuffer to the memory location and
buffer_lento the buffer length. Returns-1 and sets aTypeError on error. New in version 1.6.Changed
in version 2.5: This function used anint * type forbuffer_len. This might require changes in your code
for properly supporting 64-bit systems.

int PyObject_CheckReadBuffer (PyObject *o)
Returns1 if o supports the single-segment readable buffer interface. Otherwise returns0. New in version
2.2.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a writeable memory location. Theobj argument must support the single-segment,
character buffer interface. On success, returns0, setsbuffer to the memory location andbuffer_lento the
buffer length. Returns-1 and sets aTypeError on error. New in version 1.6.Changed in version 2.5:
This function used anint * type for buffer_len. This might require changes in your code for properly
supporting 64-bit systems.

48 Chapter 6. Abstract Objects Layer

CHAPTER

SEVEN

CONCRETE OBJECTS LAYER

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type
is not a good idea; if you receive an object from a Python program and you are not sure that it has the right type,
you must perform a type check first; for example, to check that an object is a dictionary, usePyDict_Check() .
The chapter is structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are
passed in, many of them do not check forNULL being passed instead of a valid object. AllowingNULL to be
passed in can cause memory access violations and immediate termination of the interpreter.

7.1 Fundamental Objects

This section describes Python type objects and the singleton objectNone.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType_Type
This is the type object for type objects; it is the same object astype andtypes.TypeType in the Python
layer.

int PyType_Check (PyObject *o)
Return true if the objecto is a type object, including instances of types derived from the standard type object.
Return false in all other cases.

int PyType_CheckExact (PyObject *o)
Return true if the objecto is a type object, but not a subtype of the standard type object. Return false in all
other cases. New in version 2.2.

unsigned int PyType_ClearCache ()
Clear the internal lookup cache. Return the current version tag. New in version 2.6.

void PyType_Modified (PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after
any manual modification of the attributes or base classes of the type. New in version 2.6.

int PyType_HasFeature (PyObject *o, int feature)
Return true if the type objecto sets the featurefeature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py_TPFLAGS_HAVE_GC. New in version 2.0.

49

The Python/C API, Release 2.6.4

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Return true ifa is a subtype ofb. New in version 2.2.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference.
New in version 2.2.Changed in version 2.5: This function used anint type fornitems. This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference.
New in version 2.2.

int PyType_Ready (PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Return0 on success, or return-1 and sets
an exception on error. New in version 2.2.

7.1.2 The None Object

Note that thePyTypeObject for None is not directly exposed in the Python/C API. SinceNone is a singleton,
testing for object identity (using== in C) is sufficient. There is noPyNone_Check() function for the same
reason.

PyObject* Py_None
The PythonNone object, denoting lack of value. This object has no methods. It needs to be treated just like
any other object with respect to reference counts.

Py_RETURN_NONE
Properly handle returningPy_None from within a C function. New in version 2.4.

7.2 Numeric Objects

7.2.1 Plain Integer Objects

PyIntObject
This subtype ofPyObject represents a Python integer object.

PyTypeObject PyInt_Type
This instance ofPyTypeObject represents the Python plain integer type. This is the same object asint
andtypes.IntType .

int PyInt_Check (PyObject *o)
Return true ifo is of typePyInt_Type or a subtype ofPyInt_Type . Changed in version 2.2: Allowed
subtypes to be accepted.

int PyInt_CheckExact (PyObject *o)
Return true ifo is of typePyInt_Type , but not a subtype ofPyInt_Type . New in version 2.2.

PyObject* PyInt_FromString (char *str, char **pend, int base)
Return value: New reference.
Return a newPyIntObject or PyLongObject based on the string value instr, which is interpreted
according to the radix inbase. If pendis non-NULL, *pend will point to the first character instr which
follows the representation of the number. Ifbaseis 0, the radix will be determined based on the leading
characters ofstr: if str starts with’0x’ or ’0X’ , radix 16 will be used; ifstr starts with’0’ , radix 8 will
be used; otherwise radix 10 will be used. Ifbaseis not0, it must be between2 and36 , inclusive. Leading
spaces are ignored. If there are no digits,ValueError will be raised. If the string represents a number too
large to be contained within the machine’slong int type and overflow warnings are being suppressed, a
PyLongObject will be returned. If overflow warnings are not being suppressed,NULL will be returned
in this case.

50 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyInt_FromLong (long ival)
Return value: New reference.
Create a new integer object with a value ofival.

The current implementation keeps an array of integer objects for all integers between-5 and256 , when
you create an int in that range you actually just get back a reference to the existing object. So it should be
possible to change the value of1. I suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyInt_FromSsize_t (Py_ssize_t ival)
Return value: New reference.
Create a new integer object with a value ofival. If the value is larger thanLONG_MAXor smaller than
LONG_MIN, a long integer object is returned. New in version 2.5.

PyObject* PyInt_FromSize_t (size_t ival)
Create a new integer object with a value ofival. If the value exceedsLONG_MAX, a long integer object is
returned. New in version 2.5.

long PyInt_AsLong (PyObject *io)
Will first attempt to cast the object to aPyIntObject , if it is not already one, and then return its value.
If there is an error,-1 is returned, and the caller should checkPyErr_Occurred() to find out whether
there was an error, or whether the value just happened to be -1.

long PyInt_AS_LONG (PyObject *io)
Return the value of the objectio. No error checking is performed.

unsigned long PyInt_AsUnsignedLongMask (PyObject *io)
Will first attempt to cast the object to aPyIntObject or PyLongObject , if it is not already one, and
then return its value as unsigned long. This function does not check for overflow. New in version 2.3.

unsigned PY_LONG_LONG PyInt_AsUnsignedLongLongMask (PyObject *io)
Will first attempt to cast the object to aPyIntObject or PyLongObject , if it is not already one, and
then return its value as unsigned long long, without checking for overflow. New in version 2.3.

Py_ssize_t PyInt_AsSsize_t (PyObject *io)
Will first attempt to cast the object to aPyIntObject or PyLongObject , if it is not already one, and
then return its value asPy_ssize_t . New in version 2.5.

long PyInt_GetMax ()
Return the system’s idea of the largest integer it can handle (LONG_MAX, as defined in the system header
files).

int PyInt_ClearFreeList ()
Clear the integer free list. Return the number of items that could not be freed. New in version 2.6.

7.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans,Py_False and
Py_True . As such, the normal creation and deletion functions don’t apply to booleans. The following macros
are available, however.

int PyBool_Check (PyObject *o)
Return true ifo is of typePyBool_Type . New in version 2.3.

PyObject* Py_False
The PythonFalse object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

PyObject* Py_True
The PythonTrue object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

Py_RETURN_FALSE
ReturnPy_False from a function, properly incrementing its reference count. New in version 2.4.

7.2. Numeric Objects 51

The Python/C API, Release 2.6.4

Py_RETURN_TRUE
ReturnPy_True from a function, properly incrementing its reference count. New in version 2.4.

PyObject* PyBool_FromLong (long v)
Return value: New reference.
Return a new reference toPy_True or Py_False depending on the truth value ofv. New in version 2.3.

7.2.3 Long Integer Objects

PyLongObject
This subtype ofPyObject represents a Python long integer object.

PyTypeObject PyLong_Type
This instance ofPyTypeObject represents the Python long integer type. This is the same object aslong
andtypes.LongType .

int PyLong_Check (PyObject *p)
Return true if its argument is aPyLongObject or a subtype ofPyLongObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyLong_CheckExact (PyObject *p)
Return true if its argument is aPyLongObject , but not a subtype ofPyLongObject . New in version
2.2.

PyObject* PyLong_FromLong (long v)
Return value: New reference.
Return a newPyLongObject object fromv, or NULL on failure.

PyObject* PyLong_FromUnsignedLong (unsigned long v)
Return value: New reference.
Return a newPyLongObject object from a Cunsigned long , or NULL on failure.

PyObject* PyLong_FromSsize_t (Py_ssize_t v)
Return a newPyLongObject object from a CPy_ssize_t , or NULL on failure. New in version 2.6.

PyObject* PyLong_FromSize_t (size_t v)
Return a newPyLongObject object from a Csize_t , or NULL on failure. New in version 2.6.

PyObject* PyLong_FromLongLong (PY_LONG_LONG v)
Return value: New reference.
Return a newPyLongObject object from a Clong long , or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned PY_LONG_LONG v)
Return value: New reference.
Return a newPyLongObject object from a Cunsigned long long , or NULL on failure.

PyObject* PyLong_FromDouble (double v)
Return value: New reference.
Return a newPyLongObject object from the integer part ofv, or NULL on failure.

PyObject* PyLong_FromString (char *str, char **pend, int base)
Return value: New reference.
Return a newPyLongObject based on the string value instr, which is interpreted according to the radix
in base. If pendis non-NULL, *pend will point to the first character instr which follows the representation
of the number. Ifbaseis 0, the radix will be determined based on the leading characters ofstr: if str starts
with ’0x’ or ’0X’ , radix 16 will be used; ifstr starts with’0’ , radix 8 will be used; otherwise radix 10
will be used. Ifbaseis not0, it must be between2 and36 , inclusive. Leading spaces are ignored. If there
are no digits,ValueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference.
Convert a sequence of Unicode digits to a Python long integer value. The first parameter,u, points to the
first character of the Unicode string,lengthgives the number of characters, andbaseis the radix for the
conversion. The radix must be in the range [2, 36]; if it is out of range,ValueError will be raised. New

52 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

in version 1.6.Changed in version 2.5: This function used anint for length. This might require changes in
your code for properly supporting 64-bit systems.

PyObject* PyLong_FromVoidPtr (void *p)
Return value: New reference.
Create a Python integer or long integer from the pointerp. The pointer value can be retrieved from the
resulting value usingPyLong_AsVoidPtr() . New in version 1.5.2.Changed in version 2.5: If the integer
is larger than LONG_MAX, a positive long integer is returned.

long PyLong_AsLong (PyObject *pylong)
Return a Clong representation of the contents ofpylong. If pylong is greater thanLONG_MAX, an

OverflowError is raised and-1 will be returned.

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)
Return a C Py_ssize_t representation of the contents ofpylong. If pylong is greater than

PY_SSIZE_T_MAX, anOverflowError is raised and-1 will be returned. New in version 2.6.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
Return a Cunsigned long representation of the contents ofpylong. If pylong is greater than

ULONG_MAX, anOverflowError is raised.

PY_LONG_LONGPyLong_AsLongLong (PyObject *pylong)
Return a Clong long from a Python long integer. Ifpylongcannot be represented as along long , an
OverflowError will be raised. New in version 2.2.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLong (PyObject *pylong)
Return a Cunsigned long long from a Python long integer. Ifpylongcannot be represented as an
unsigned long long , anOverflowError will be raised if the value is positive, or aTypeError
will be raised if the value is negative. New in version 2.2.

unsigned long PyLong_AsUnsignedLongMask (PyObject *io)
Return a Cunsigned long from a Python long integer, without checking for overflow. New in version
2.3.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLongMask (PyObject *io)
Return a Cunsigned long long from a Python long integer, without checking for overflow. New in
version 2.3.

double PyLong_AsDouble (PyObject *pylong)
Return a Cdouble representation of the contents ofpylong. If pylongcannot be approximately represented
as adouble , anOverflowError exception is raised and-1.0 will be returned.

void* PyLong_AsVoidPtr (PyObject *pylong)
Convert a Python integer or long integerpylong to a C void pointer. If pylong cannot be converted,
an OverflowError will be raised. This is only assured to produce a usablevoid pointer for values
created withPyLong_FromVoidPtr() . New in version 1.5.2.Changed in version 2.5: For values outside
0..LONG_MAX, both signed and unsigned integers are accepted.

7.2.4 Floating Point Objects

PyFloatObject
This subtype ofPyObject represents a Python floating point object.

PyTypeObject PyFloat_Type
This instance ofPyTypeObject represents the Python floating point type. This is the same object as
float andtypes.FloatType .

int PyFloat_Check (PyObject *p)
Return true if its argument is aPyFloatObject or a subtype ofPyFloatObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyFloat_CheckExact (PyObject *p)
Return true if its argument is aPyFloatObject , but not a subtype ofPyFloatObject . New in version
2.2.

7.2. Numeric Objects 53

The Python/C API, Release 2.6.4

PyObject* PyFloat_FromString (PyObject *str, char **pend)
Return value: New reference.
Create aPyFloatObject object based on the string value instr, or NULL on failure. Thependargument
is ignored. It remains only for backward compatibility.

PyObject* PyFloat_FromDouble (double v)
Return value: New reference.
Create aPyFloatObject object fromv, or NULL on failure.

double PyFloat_AsDouble (PyObject *pyfloat)
Return a Cdouble representation of the contents ofpyfloat. If pyfloatis not a Python floating point object
but has a__float__() method, this method will first be called to convertpyfloatinto a float.

double PyFloat_AS_DOUBLE (PyObject *pyfloat)
Return a Cdouble representation of the contents ofpyfloat, but without error checking.

PyObject* PyFloat_GetInfo (void)
Return a structseq instance which contains information about the precision, minimum and maximum values
of a float. It’s a thin wrapper around the header filefloat.h . New in version 2.6.

double PyFloat_GetMax ()
Return the maximum representable finite floatDBL_MAXas Cdouble . New in version 2.6.

double PyFloat_GetMin ()
Return the minimum normalized positive floatDBL_MIN as Cdouble . New in version 2.6.

int PyFloat_ClearFreeList ()
Clear the float free list. Return the number of items that could not be freed. New in version 2.6.

7.2.5 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex
number value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do soby valuerather
than dereferencing them through pointers. This is consistent throughout the API.

Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;

} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)
Return the sum of two complex numbers, using the CPy_complex representation.

Py_complex _Py_c_diff (Py_complex left, Py_complex right)
Return the difference between two complex numbers, using the CPy_complex representation.

Py_complex _Py_c_neg (Py_complex complex)
Return the negation of the complex numbercomplex, using the CPy_complex representation.

Py_complex _Py_c_prod (Py_complex left, Py_complex right)
Return the product of two complex numbers, using the CPy_complex representation.

54 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)
Return the quotient of two complex numbers, using the CPy_complex representation.

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
Return the exponentiation ofnumby exp, using the CPy_complex representation.

Complex Numbers as Python Objects

PyComplexObject
This subtype ofPyObject represents a Python complex number object.

PyTypeObject PyComplex_Type
This instance ofPyTypeObject represents the Python complex number type. It is the same object as
complex andtypes.ComplexType .

int PyComplex_Check (PyObject *p)
Return true if its argument is aPyComplexObject or a subtype ofPyComplexObject . Changed in
version 2.2: Allowed subtypes to be accepted.

int PyComplex_CheckExact (PyObject *p)
Return true if its argument is aPyComplexObject , but not a subtype ofPyComplexObject . New in
version 2.2.

PyObject* PyComplex_FromCComplex (Py_complex v)
Return value: New reference.
Create a new Python complex number object from a CPy_complex value.

PyObject* PyComplex_FromDoubles (double real, double imag)
Return value: New reference.
Return a newPyComplexObject object fromreal andimag.

double PyComplex_RealAsDouble (PyObject *op)
Return the real part ofopas a Cdouble .

double PyComplex_ImagAsDouble (PyObject *op)
Return the imaginary part ofopas a Cdouble .

Py_complex PyComplex_AsCComplex (PyObject *op)
Return thePy_complex value of the complex numberop. Changed in version 2.6: Ifop is not a Python
complex number object but has a__complex__() method, this method will first be called to convertop
to a Python complex number object.

7.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

7.3.1 Byte Array Objects

New in version 2.6.

PyByteArrayObject
This subtype ofPyObject represents a Python bytearray object.

PyTypeObject PyByteArray_Type
This instance ofPyTypeObject represents the Python bytearray type; it is the same object as
bytearray in the Python layer.

7.3. Sequence Objects 55

The Python/C API, Release 2.6.4

Type check macros

int PyByteArray_Check (PyObject *o)
Return true if the objecto is a bytearray object or an instance of a subtype of the bytearray type.

int PyByteArray_CheckExact (PyObject *o)
Return true if the objecto is a bytearray object, but not an instance of a subtype of the bytearray type.

Direct API functions

PyObject* PyByteArray_FromObject (PyObject *o)
Return a new bytearray object from any object,o, that implements the buffer protocol.

PyObject* PyByteArray_FromStringAndSize (const char *string, Py_ssize_t len)
Create a new bytearray object fromstringand its length,len. On failure,NULL is returned.

PyObject* PyByteArray_Concat (PyObject *a, PyObject *b)
Concat bytearraysa andb and return a new bytearray with the result.

Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Return the size ofbytearrayafter checking for aNULL pointer.

char* PyByteArray_AsString (PyObject *bytearray)
Return the contents ofbytearrayas a char array after checking for aNULL pointer.

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
Resize the internal buffer ofbytearrayto len.

Macros

These macros trade safety for speed and they don’t check pointers.

char* PyByteArray_AS_STRING (PyObject *bytearray)
Macro version ofPyByteArray_AsString() .

Py_ssize_t PyByteArray_GET_SIZE (PyObject *bytearray)
Macro version ofPyByteArray_Size() .

7.3.2 String/Bytes Objects

These functions raiseTypeError when expecting a string parameter and are called with a non-string parameter.

Note: These functions have been renamed to PyBytes_* in Python 3.x. Unless otherwise noted, the PyBytes
functions available in 3.x are aliased to their PyString_* equivalents to help porting.

PyStringObject
This subtype ofPyObject represents a Python string object.

PyTypeObject PyString_Type
This instance ofPyTypeObject represents the Python string type; it is the same object asstr and
types.StringType in the Python layer. .

int PyString_Check (PyObject *o)
Return true if the objecto is a string object or an instance of a subtype of the string type. Changed in version
2.2: Allowed subtypes to be accepted.

int PyString_CheckExact (PyObject *o)
Return true if the objecto is a string object, but not an instance of a subtype of the string type. New in
version 2.2.

56 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyString_FromString (const char *v)
Return value: New reference.
Return a new string object with a copy of the stringv as value on success, andNULL on failure. The
parameterv must not beNULL; it will not be checked.

PyObject* PyString_FromStringAndSize (const char *v, Py_ssize_t len)
Return value: New reference.
Return a new string object with a copy of the stringv as value and lengthlen on success, andNULL on
failure. If v is NULL, the contents of the string are uninitialized. Changed in version 2.5: This function used
an int type for len. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyString_FromFormat (const char *format, ...)
Return value: New reference.
Take a Cprintf() -style format string and a variable number of arguments, calculate the size of the
resulting Python string and return a string with the values formatted into it. The variable arguments must
be C types and must correspond exactly to the format characters in theformatstring. The following format
characters are allowed:

Format
Charac-
ters

Type Comment

%% n/a The literal % character.
%c int A single character, represented as an C int.
%d int Exactly equivalent toprintf("%d") .
%u un-

signed
int

Exactly equivalent toprintf("%u") .

%ld long Exactly equivalent toprintf("%ld") .
%lu un-

signed
long

Exactly equivalent toprintf("%lu") .

%zd Py_ssize_tExactly equivalent toprintf("%zd") .
%zu size_t Exactly equivalent toprintf("%zu") .
%i int Exactly equivalent toprintf("%i") .
%x int Exactly equivalent toprintf("%x") .
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalent toprintf("%p") except

that it is guaranteed to start with the literal0x regardless of what the platform’s
printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result
string, and any extra arguments discarded.

PyObject* PyString_FromFormatV (const char *format, va_list vargs)
Return value: New reference.
Identical toPyString_FromFormat() except that it takes exactly two arguments.

Py_ssize_t PyString_Size (PyObject *string)
Return the length of the string in string objectstring. Changed in version 2.5: This function returned an
int type. This might require changes in your code for properly supporting 64-bit systems.

Py_ssize_t PyString_GET_SIZE (PyObject *string)
Macro form of PyString_Size() but without error checking. Changed in version 2.5: This macro
returned anint type. This might require changes in your code for properly supporting 64-bit systems.

char* PyString_AsString (PyObject *string)
Return a NUL-terminated representation of the contents ofstring. The pointer refers to the internal buffer
of string, not a copy. The data must not be modified in any way, unless the string was just created using
PyString_FromStringAndSize(NULL, size) . It must not be deallocated. Ifstring is a Unicode
object, this function computes the default encoding ofstring and operates on that. Ifstring is not a string
object at all,PyString_AsString() returnsNULL and raisesTypeError .

7.3. Sequence Objects 57

The Python/C API, Release 2.6.4

char* PyString_AS_STRING (PyObject *string)
Macro form ofPyString_AsString() but without error checking. Only string objects are supported;
no Unicode objects should be passed.

int PyString_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)
Return a NUL-terminated representation of the contents of the objectobj through the output variablesbuffer
andlength.

The function accepts both string and Unicode objects as input. For Unicode objects it returns the default
encoded version of the object. Iflengthis NULL, the resulting buffer may not contain NUL characters; if it
does, the function returns-1 and aTypeError is raised.

The buffer refers to an internal string buffer ofobj, not a copy. The data must not be modified in any way,
unless the string was just created usingPyString_FromStringAndSize(NULL, size) . It must
not be deallocated. Ifstring is a Unicode object, this function computes the default encoding ofstring and
operates on that. Ifstring is not a string object at all,PyString_AsStringAndSize() returns-1 and
raisesTypeError . Changed in version 2.5: This function used anint * type for length. This might
require changes in your code for properly supporting 64-bit systems.

void PyString_Concat (PyObject **string, PyObject *newpart)
Create a new string object in*string containing the contents ofnewpartappended tostring; the caller will
own the new reference. The reference to the old value ofstring will be stolen. If the new string cannot be
created, the old reference tostring will still be discarded and the value of*string will be set toNULL; the
appropriate exception will be set.

void PyString_ConcatAndDel (PyObject **string, PyObject *newpart)
Create a new string object in*string containing the contents ofnewpartappended tostring. This version
decrements the reference count ofnewpart.

int _PyString_Resize (PyObject **string, Py_ssize_t newsize)
A way to resize a string object even though it is “immutable”. Only use this to build up a brand new string
object; don’t use this if the string may already be known in other parts of the code. It is an error to call this
function if the refcount on the input string object is not one. Pass the address of an existing string object
as an lvalue (it may be written into), and the new size desired. On success,*string holds the resized string
object and0 is returned; the address in*string may differ from its input value. If the reallocation fails, the
original string object at*string is deallocated,*string is set toNULL, a memory exception is set, and-1 is
returned. Changed in version 2.5: This function used anint type fornewsize. This might require changes
in your code for properly supporting 64-bit systems.

PyObject* PyString_Format (PyObject *format, PyObject *args)
Return value: New reference.
Return a new string object fromformat andargs. Analogous toformat % args . Theargs argument
must be a tuple.

void PyString_InternInPlace (PyObject **string)
Intern the argument*string in place. The argument must be the address of a pointer variable pointing to
a Python string object. If there is an existing interned string that is the same as*string, it sets*string to
it (decrementing the reference count of the old string object and incrementing the reference count of the
interned string object), otherwise it leaves*string alone and interns it (incrementing its reference count).
(Clarification: even though there is a lot of talk about reference counts, think of this function as reference-
count-neutral; you own the object after the call if and only if you owned it before the call.)

Note: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString_InternFromString (const char *v)
Return value: New reference.
A combination ofPyString_FromString() andPyString_InternInPlace() , returning either
a new string object that has been interned, or a new (“owned”) reference to an earlier interned string object
with the same value.

Note: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference.

58 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

Create an object by decodingsizebytes of the encoded buffers using the codec registered forencoding.
encodinganderrors have the same meaning as the parameters of the same name in theunicode() built-
in function. The codec to be used is looked up using the Python codec registry. ReturnNULL if an exception
was raised by the codec.

Note: This function is not available in 3.x and does not have a PyBytes alias. Changed in version 2.5:
This function used anint type forsize. This might require changes in your code for properly supporting
64-bit systems.

PyObject* PyString_AsDecodedObject (PyObject *str, const char *encoding, const char *errors)
Return value: New reference.
Decode a string object by passing it to the codec registered forencodingand return the result as Python
object. encodingand errors have the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. ReturnNULL if an
exception was raised by the codec.

Note: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString_Encode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference.
Encode thechar buffer of the given size by passing it to the codec registered forencodingand return a
Python object.encodinganderrorshave the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. ReturnNULL if an
exception was raised by the codec.

Note: This function is not available in 3.x and does not have a PyBytes alias. Changed in version 2.5:
This function used anint type forsize. This might require changes in your code for properly supporting
64-bit systems.

PyObject* PyString_AsEncodedObject (PyObject *str, const char *encoding, const char *errors)
Return value: New reference.
Encode a string object using the codec registered forencodingand return the result as Python object.encod-
ing anderrorshave the same meaning as the parameters of the same name in the stringencode() method.
The codec to be used is looked up using the Python codec registry. ReturnNULL if an exception was raised
by the codec.

Note: This function is not available in 3.x and does not have a PyBytes alias.

7.3.3 Unicode Objects and Codecs

Unicode Objects

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UNICODE
This type represents the storage type which is used by Python internally as basis for holding Unicode or-
dinals. Python’s default builds use a 16-bit type forPy_UNICODEand store Unicode values internally as
UCS2. It is also possible to build a UCS4 version of Python (most recent Linux distributions come with
UCS4 builds of Python). These builds then use a 32-bit type forPy_UNICODEand store Unicode data
internally as UCS4. On platforms wherewchar_t is available and compatible with the chosen Python
Unicode build variant,Py_UNICODEis a typedef alias forwchar_t to enhance native platform compat-
ibility. On all other platforms,Py_UNICODEis a typedef alias for eitherunsigned short (UCS2) or
unsigned long (UCS4).

Note that UCS2 and UCS4 Python builds are not binary compatible. Please keep this in mind when writing
extensions or interfaces.

PyUnicodeObject
This subtype ofPyObject represents a Python Unicode object.

PyTypeObject PyUnicode_Type
This instance ofPyTypeObject represents the Python Unicode type. It is exposed to Python code as
unicode andtypes.UnicodeType .

7.3. Sequence Objects 59

The Python/C API, Release 2.6.4

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject *o)
Return true if the objecto is a Unicode object or an instance of a Unicode subtype. Changed in version 2.2:
Allowed subtypes to be accepted.

int PyUnicode_CheckExact (PyObject *o)
Return true if the objecto is a Unicode object, but not an instance of a subtype. New in version 2.2.

Py_ssize_t PyUnicode_GET_SIZE (PyObject *o)
Return the size of the object.o has to be aPyUnicodeObject (not checked). Changed in version 2.5:
This function returned anint type. This might require changes in your code for properly supporting 64-bit
systems.

Py_ssize_t PyUnicode_GET_DATA_SIZE (PyObject *o)
Return the size of the object’s internal buffer in bytes.o has to be aPyUnicodeObject (not checked).
Changed in version 2.5: This function returned anint type. This might require changes in your code for
properly supporting 64-bit systems.

Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *o)
Return a pointer to the internalPy_UNICODEbuffer of the object.o has to be aPyUnicodeObject (not
checked).

const char* PyUnicode_AS_DATA (PyObject *o)
Return a pointer to the internal buffer of the object.o has to be aPyUnicodeObject (not checked).

int PyUnicode_ClearFreeList ()
Clear the free list. Return the total number of freed items. New in version 2.6.

Unicode provides many different character properties. The most often needed ones are available through these
macros which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE(Py_UNICODE ch)
Return 1 or 0 depending on whetherch is a whitespace character.

int Py_UNICODE_ISLOWER(Py_UNICODE ch)
Return 1 or 0 depending on whetherch is a lowercase character.

int Py_UNICODE_ISUPPER(Py_UNICODE ch)
Return 1 or 0 depending on whetherch is an uppercase character.

int Py_UNICODE_ISTITLE (Py_UNICODE ch)
Return 1 or 0 depending on whetherch is a titlecase character.

int Py_UNICODE_ISLINEBREAK(Py_UNICODE ch)
Return 1 or 0 depending on whetherch is a linebreak character.

int Py_UNICODE_ISDECIMAL(Py_UNICODE ch)
Return 1 or 0 depending on whetherch is a decimal character.

int Py_UNICODE_ISDIGIT (Py_UNICODE ch)
Return 1 or 0 depending on whetherch is a digit character.

int Py_UNICODE_ISNUMERIC(Py_UNICODE ch)
Return 1 or 0 depending on whetherch is a numeric character.

int Py_UNICODE_ISALPHA(Py_UNICODE ch)
Return 1 or 0 depending on whetherch is an alphabetic character.

int Py_UNICODE_ISALNUM(Py_UNICODE ch)
Return 1 or 0 depending on whetherch is an alphanumeric character.

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE_TOLOWER(Py_UNICODE ch)
Return the characterchconverted to lower case.

60 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

Py_UNICODE Py_UNICODE_TOUPPER(Py_UNICODE ch)
Return the characterchconverted to upper case.

Py_UNICODE Py_UNICODE_TOTITLE(Py_UNICODE ch)
Return the characterchconverted to title case.

int Py_UNICODE_TODECIMAL(Py_UNICODE ch)
Return the characterchconverted to a decimal positive integer. Return-1 if this is not possible. This macro
does not raise exceptions.

int Py_UNICODE_TODIGIT(Py_UNICODE ch)
Return the characterchconverted to a single digit integer. Return-1 if this is not possible. This macro does
not raise exceptions.

double Py_UNICODE_TONUMERIC(Py_UNICODE ch)
Return the characterch converted to a double. Return-1.0 if this is not possible. This macro does not
raise exceptions.

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize_t size)
Return value: New reference.
Create a Unicode Object from the Py_UNICODE bufferu of the given size.u may beNULL which causes
the contents to be undefined. It is the user’s responsibility to fill in the needed data. The buffer is copied into
the new object. If the buffer is notNULL, the return value might be a shared object. Therefore, modification
of the resulting Unicode object is only allowed whenu is NULL. Changed in version 2.5: This function used
an int type forsize. This might require changes in your code for properly supporting 64-bit systems.

Py_UNICODE* PyUnicode_AsUnicode (PyObject *unicode)
Return a read-only pointer to the Unicode object’s internalPy_UNICODEbuffer,NULL if unicodeis not a
Unicode object.

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)
Return the length of the Unicode object. Changed in version 2.5: This function returned anint type. This
might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *er-
rors)

Return value: New reference.
Coerce an encoded objectobj to an Unicode object and return a reference with incremented refcount.

String and other char buffer compatible objects are decoded according to the given encoding and using the
error handling defined by errors. Both can beNULL to have the interface use the default values (see the next
section for details).

All other objects, including Unicode objects, cause aTypeError to be set.

The API returnsNULL if there was an error. The caller is responsible for decref’ing the returned objects.

PyObject* PyUnicode_FromObject (PyObject *obj)
Return value: New reference.
Shortcut for PyUnicode_FromEncodedObject(obj, NULL, "strict") which is used
throughout the interpreter whenever coercion to Unicode is needed.

If the platform supportswchar_t and provides a header file wchar.h, Python can interface directly to this type
using the following functions. Support is optimized if Python’s ownPy_UNICODEtype is identical to the system’s
wchar_t .

PyObject* PyUnicode_FromWideChar (const wchar_t *w, Py_ssize_t size)
Return value: New reference.
Create a Unicode object from thewchar_t bufferw of the given size. ReturnNULL on failure. Changed in
version 2.5: This function used anint type forsize. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PyUnicode_AsWideChar (PyUnicodeObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into thewchar_t bufferw. At mostsizewchar_t characters are copied

7.3. Sequence Objects 61

The Python/C API, Release 2.6.4

(excluding a possibly trailing 0-termination character). Return the number ofwchar_t characters copied
or -1 in case of an error. Note that the resultingwchar_t string may or may not be 0-terminated. It is the
responsibility of the caller to make sure that thewchar_t string is 0-terminated in case this is required by
the application. Changed in version 2.5: This function returned anint type and used anint type forsize.
This might require changes in your code for properly supporting 64-bit systems.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable
via the following functions.

Many of the following APIs take two arguments encoding and errors. These parameters encoding and errors have
the same semantics as the ones of the built-inunicode() Unicode object constructor.

Setting encoding toNULL causes the default encoding to be used which is ASCII. The file system calls should
usePy_FileSystemDefaultEncoding as the encoding for file names. This variable should be treated as
read-only: On some systems, it will be a pointer to a static string, on others, it will change at run-time (such as
when the application invokes setlocale).

Error handling is set by errors which may also be set toNULL meaning to use the default handling defined for the
codec. Default error handling for all built-in codecs is “strict” (ValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for sim-
plicity.

These are the generic codec APIs:

PyObject* PyUnicode_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference.
Create a Unicode object by decodingsizebytes of the encoded strings. encodinganderrors have the same
meaning as the parameters of the same name in theunicode() built-in function. The codec to be used is
looked up using the Python codec registry. ReturnNULL if an exception was raised by the codec. Changed
in version 2.5: This function used anint type forsize. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_Encode (const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const
char *errors)

Return value: New reference.
Encode thePy_UNICODEbuffer of the given size and return a Python string object.encodinganderrors
have the same meaning as the parameters of the same name in the Unicodeencode() method. The codec
to be used is looked up using the Python codec registry. ReturnNULL if an exception was raised by the
codec. Changed in version 2.5: This function used anint type forsize. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *er-
rors)

Return value: New reference.
Encode a Unicode object and return the result as Python string object.encodinganderrors have the same
meaning as the parameters of the same name in the Unicodeencode() method. The codec to be used is
looked up using the Python codec registry. ReturnNULL if an exception was raised by the codec.

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Create a Unicode object by decodingsizebytes of the UTF-8 encoded strings. ReturnNULL if an exception
was raised by the codec. Changed in version 2.5: This function used anint type forsize. This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference.
If consumedis NULL, behave likePyUnicode_DecodeUTF8() . If consumedis not NULL, trailing
incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be decoded and

62 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

the number of bytes that have been decoded will be stored inconsumed. New in version 2.4.Changed in
version 2.5: This function used anint type forsize. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Encode thePy_UNICODEbuffer of the given size using UTF-8 and return a Python string object. Return
NULL if an exception was raised by the codec. Changed in version 2.5: This function used anint type for
size. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsUTF8String (PyObject *unicode)
Return value: New reference.
Encode a Unicode object using UTF-8 and return the result as Python string object. Error handling is
“strict”. ReturnNULL if an exception was raised by the codec.

These are the UTF-32 codec APIs:

PyObject* PyUnicode_DecodeUTF32 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Decodelengthbytes from a UTF-32 encoded buffer string and return the corresponding Unicode object.
errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorderis non-NULL, the decoder starts decoding using the given byte order:

* byteorder == - 1: little endian
* byteorder == 0: native order
* byteorder == 1: big endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If*byteorder
is -1 or 1, any byte order mark is copied to the output.

After completion,*byteorderis set to the current byte order at the end of input data.

In a narrow build codepoints outside the BMP will be decoded as surrogate pairs.

If byteorderis NULL, the codec starts in native order mode.

ReturnNULL if an exception was raised by the codec. New in version 2.6.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

If consumedis NULL, behave likePyUnicode_DecodeUTF32() . If consumedis not NULL,
PyUnicode_DecodeUTF32Stateful() will not treat trailing incomplete UTF-32 byte sequences
(such as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the
number of bytes that have been decoded will be stored inconsumed. New in version 2.6.

PyObject* PyUnicode_EncodeUTF32 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int
byteorder)

Return a Python bytes object holding the UTF-32 encoded value of the Unicode data ins. Output is written
according to the following byte order:

byteorder == - 1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other
two modes, no BOM mark is prepended.

If Py_UNICODE_WIDEis not defined, surrogate pairs will be output as a single codepoint.

ReturnNULL if an exception was raised by the codec. New in version 2.6.

PyObject* PyUnicode_AsUTF32String (PyObject *unicode)
Return a Python string using the UTF-32 encoding in native byte order. The string always starts with a BOM
mark. Error handling is “strict”. ReturnNULL if an exception was raised by the codec. New in version 2.6.

7.3. Sequence Objects 63

The Python/C API, Release 2.6.4

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference.
Decodelengthbytes from a UTF-16 encoded buffer string and return the corresponding Unicode object.
errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorderis non-NULL, the decoder starts decoding using the given byte order:

* byteorder == - 1: little endian
* byteorder == 0: native order
* byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If*byteorder is
-1 or 1, any byte order mark is copied to the output (where it will result in either a\ufeff or a \ufffe
character).

After completion,*byteorderis set to the current byte order at the end of input data.

If byteorderis NULL, the codec starts in native order mode.

ReturnNULL if an exception was raised by the codec. Changed in version 2.5: This function used anint
type forsize. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_DecodeUTF16Stateful (const char *s, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Return value: New reference.
If consumedis NULL, behave likePyUnicode_DecodeUTF16() . If consumedis not NULL,
PyUnicode_DecodeUTF16Stateful() will not treat trailing incomplete UTF-16 byte sequences
(such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded
and the number of bytes that have been decoded will be stored inconsumed. New in version 2.4.Changed in
version 2.5: This function used anint type forsizeand anint * type forconsumed. This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeUTF16 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int
byteorder)

Return value: New reference.
Return a Python string object holding the UTF-16 encoded value of the Unicode data ins. Output is written
according to the following byte order:

byteorder == - 1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other
two modes, no BOM mark is prepended.

If Py_UNICODE_WIDEis defined, a singlePy_UNICODEvalue may get represented as a surrogate pair.
If it is not defined, eachPy_UNICODEvalues is interpreted as an UCS-2 character.

ReturnNULL if an exception was raised by the codec. Changed in version 2.5: This function used anint
type forsize. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsUTF16String (PyObject *unicode)
Return value: New reference.
Return a Python string using the UTF-16 encoding in native byte order. The string always starts with a
BOM mark. Error handling is “strict”. ReturnNULL if an exception was raised by the codec.

These are the “Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Create a Unicode object by decodingsizebytes of the Unicode-Escape encoded strings. ReturnNULL if an

64 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

exception was raised by the codec. Changed in version 2.5: This function used anint type forsize. This
might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference.
Encode thePy_UNICODEbuffer of the given size using Unicode-Escape and return a Python string object.
ReturnNULL if an exception was raised by the codec. Changed in version 2.5: This function used anint
type forsize. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Return value: New reference.
Encode a Unicode object using Unicode-Escape and return the result as Python string object. Error handling
is “strict”. ReturnNULL if an exception was raised by the codec.

These are the “Raw Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize_t size, const char *er-
rors)

Return value: New reference.
Create a Unicode object by decodingsizebytes of the Raw-Unicode-Escape encoded strings. ReturnNULL
if an exception was raised by the codec. Changed in version 2.5: This function used anint type forsize.
This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size, const
char *errors)

Return value: New reference.
Encode thePy_UNICODEbuffer of the given size using Raw-Unicode-Escape and return a Python string
object. ReturnNULL if an exception was raised by the codec. Changed in version 2.5: This function used
an int type forsize. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Return value: New reference.
Encode a Unicode object using Raw-Unicode-Escape and return the result as Python string object. Error
handling is “strict”. ReturnNULL if an exception was raised by the codec.

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are
accepted by the codecs during encoding.

PyObject* PyUnicode_DecodeLatin1 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Create a Unicode object by decodingsizebytes of the Latin-1 encoded strings. ReturnNULL if an exception
was raised by the codec. Changed in version 2.5: This function used anint type forsize. This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeLatin1 (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Encode thePy_UNICODEbuffer of the given size using Latin-1 and return a Python string object. Return
NULL if an exception was raised by the codec. Changed in version 2.5: This function used anint type for
size. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsLatin1String (PyObject *unicode)
Return value: New reference.
Encode a Unicode object using Latin-1 and return the result as Python string object. Error handling is
“strict”. ReturnNULL if an exception was raised by the codec.

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCII (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Create a Unicode object by decodingsizebytes of the ASCII encoded strings. ReturnNULL if an exception
was raised by the codec. Changed in version 2.5: This function used anint type for size. This might
require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeASCII (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference.

7.3. Sequence Objects 65

The Python/C API, Release 2.6.4

Encode thePy_UNICODEbuffer of the given size using ASCII and return a Python string object. Return
NULL if an exception was raised by the codec. Changed in version 2.5: This function used anint type for
size. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsASCIIString (PyObject *unicode)
Return value: New reference.
Encode a Unicode object using ASCII and return the result as Python string object. Error handling is “strict”.
ReturnNULL if an exception was raised by the codec.

These are the mapping codec APIs:

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done
to obtain most of the standard codecs included in theencodings package). The codec uses mapping to encode
and decode characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are then
interpreted as Unicode ordinals) or None (meaning “undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are then
interpreted as Latin-1 ordinals) or None (meaning “undefined mapping” and causing an error).

The mapping objects provided must only support the __getitem__ mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be
interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings
which map characters to different code points.

PyObject* PyUnicode_DecodeCharmap (const char *s, Py_ssize_t size, PyObject *mapping, const char
*errors)

Return value: New reference.
Create a Unicode object by decodingsizebytes of the encoded strings using the givenmappingobject.
ReturnNULL if an exception was raised by the codec. Ifmappingis NULL latin-1 decoding will be done.
Else it can be a dictionary mapping byte or a unicode string, which is treated as a lookup table. Byte values
greater that the length of the string and U+FFFE “characters” are treated as “undefined mapping”. Changed
in version 2.4: Allowed unicode string as mapping argument.Changed in version 2.5: This function used an
int type forsize. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,
const char *errors)

Return value: New reference.
Encode thePy_UNICODEbuffer of the given size using the givenmappingobject and return a Python
string object. ReturnNULL if an exception was raised by the codec. Changed in version 2.5: This function
used anint type forsize. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value: New reference.
Encode a Unicode object using the givenmappingobject and return the result as Python string object. Error
handling is “strict”. ReturnNULL if an exception was raised by the codec.

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *table,
const char *errors)

Return value: New reference.
Translate aPy_UNICODEbuffer of the given length by applying a character mappingtableto it and return
the resulting Unicode object. ReturnNULL when an exception was raised by the codec.

Themappingtable must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide the__getitem__() interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause aLookupError) are left untouched and are copied as-is.
Changed in version 2.5: This function used anint type forsize. This might require changes in your code
for properly supporting 64-bit systems.

66 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS
converters to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The
target encoding is defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Create a Unicode object by decodingsizebytes of the MBCS encoded strings. ReturnNULL if an exception
was raised by the codec. Changed in version 2.5: This function used anint type forsize. This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_DecodeMBCSStateful (const char *s, int size, const char *errors, int *con-
sumed)

If consumedis NULL, behave likePyUnicode_DecodeMBCS() . If consumedis not NULL,
PyUnicode_DecodeMBCSStateful() will not decode trailing lead byte and the number of bytes
that have been decoded will be stored inconsumed. New in version 2.5.

PyObject* PyUnicode_EncodeMBCS (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Encode thePy_UNICODEbuffer of the given size using MBCS and return a Python string object. Return
NULL if an exception was raised by the codec. Changed in version 2.5: This function used anint type for
size. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsMBCSString (PyObject *unicode)
Return value: New reference.
Encode a Unicode object using MBCS and return the result as Python string object. Error handling is
“strict”. ReturnNULL if an exception was raised by the codec.

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in
the descriptions) and return Unicode objects or integers as appropriate.

They all returnNULL or -1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right)
Return value: New reference.
Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
Return value: New reference.
Split a string giving a list of Unicode strings. If sep isNULL, splitting will be done at all whitespace
substrings. Otherwise, splits occur at the given separator. At mostmaxsplitsplits will be done. If negative,
no limit is set. Separators are not included in the resulting list. Changed in version 2.5: This function used
an int type formaxsplit. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_Splitlines (PyObject *s, int keepend)
Return value: New reference.
Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is considered to be one line
break. Ifkeependis 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)
Return value: New reference.
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide the__getitem__() interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause aLookupError) are left untouched and are copied as-is.

errorshas the usual meaning for codecs. It may beNULL which indicates to use the default error handling.

7.3. Sequence Objects 67

The Python/C API, Release 2.6.4

PyObject* PyUnicode_Join (PyObject *separator, PyObject *seq)
Return value: New reference.
Join a sequence of strings using the given separator and return the resulting Unicode string.

int PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direc-
tion)

Return value: New reference.
Return 1 ifsubstrmatchesstr*[*start :end] at the given tail end (direction== -1 means to do a prefix match,
direction == 1 a suffix match), 0 otherwise. Return-1 if an error occurred. Changed in version 2.5:
This function used anint type for start andend. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int di-
rection)

Return the first position ofsubstrin str*[*start :end] using the givendirection(direction== 1 means to do a
forward search,direction== -1 a backward search). The return value is the index of the first match; a value
of -1 indicates that no match was found, and-2 indicates that an error occurred and an exception has been
set. Changed in version 2.5: This function used anint type forstart andend. This might require changes
in your code for properly supporting 64-bit systems.

Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences ofsubstrin str[start:end] . Return-1 if an error
occurred. Changed in version 2.5: This function returned anint type and used anint type forstart and
end. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t max-
count)

Return value: New reference.
Replace at mostmaxcountoccurrences ofsubstrin str with replstr and return the resulting Unicode object.
maxcount== -1 means replace all occurrences. Changed in version 2.5: This function used anint type for
maxcount. This might require changes in your code for properly supporting 64-bit systems.

int PyUnicode_Compare (PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

int PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Rich compare two unicode strings and return one of the following:

•NULL in case an exception was raised

•Py_True or Py_False for successful comparisons

•Py_NotImplemented in case the type combination is unknown

Note thatPy_EQandPy_NE comparisons can cause aUnicodeWarning in case the conversion of the
arguments to Unicode fails with aUnicodeDecodeError .

Possible values foroparePy_GT, Py_GE, Py_EQ, Py_NE, Py_LT , andPy_LE.

PyObject* PyUnicode_Format (PyObject *format, PyObject *args)
Return value: New reference.
Return a new string object fromformat andargs; this is analogous toformat % args . Theargsargu-
ment must be a tuple.

int PyUnicode_Contains (PyObject *container, PyObject *element)
Check whetherelementis contained incontainerand return true or false accordingly.

elementhas to coerce to a one element Unicode string.-1 is returned if there was an error.

7.3.4 Buffer Objects

Python objects implemented in C can export a group of functions called the “buffer interface.” These functions
can be used by an object to expose its data in a raw, byte-oriented format. Clients of the object can use the buffer
interface to access the object data directly, without needing to copy it first.

68 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

Two examples of objects that support the buffer interface are strings and arrays. The string object exposes the
character contents in the buffer interface’s byte-oriented form. An array can also expose its contents, but it should
be noted that array elements may be multi-byte values.

An example user of the buffer interface is the file object’swrite() method. Any object that can export a
series of bytes through the buffer interface can be written to a file. There are a number of format codes to
PyArg_ParseTuple() that operate against an object’s buffer interface, returning data from the target object.

Starting from version 1.6, Python has been providing Python-level buffer objects and a C-level buffer API so that
any built-in or used-defined type can expose its characteristics. Both, however, have been deprecated because of
various shortcomings, and have been officially removed in Python 3.0 in favour of a new C-level buffer API and a
new Python-level object namedmemoryview .

The new buffer API has been backported to Python 2.6, and thememoryview object has been backported to
Python 2.7. It is strongly advised to use them rather than the old APIs, unless you are blocked from doing so for
compatibility reasons.

The new-style Py_buffer struct

Py_buffer

void buf
A pointer to the start of the memory for the object.

Py_ssize_t len
The total length of the memory in bytes.

int readonly
An indicator of whether the buffer is read only.

const char format
A NULL terminated string instruct module style syntax giving the contents of the elements avail-
able through the buffer. If this isNULL, "B" (unsigned bytes) is assumed.

int ndim
The number of dimensions the memory represents as a multi-dimensional array. If it is 0,strides
andsuboffsets must beNULL.

Py_ssize_t shape
An array ofPy_ssize_t s the length ofndim giving the shape of the memory as a multi-dimensional
array. Note that((*shape)[0] * ... * (*shape)[ndims-1])*itemsize should be
equal tolen .

Py_ssize_t strides
An array ofPy_ssize_t s the length ofndim giving the number of bytes to skip to get to a new
element in each dimension.

Py_ssize_t suboffsets
An array ofPy_ssize_t s the length ofndim . If these suboffset numbers are greater than or equal
to 0, then the value stored along the indicated dimension is a pointer and the suboffset value dictates
how many bytes to add to the pointer after de-referencing. A suboffset value that it negative indicates
that no de-referencing should occur (striding in a contiguous memory block).

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimesional
index when there are both non-NULL strides and suboffsets:

void * get_item_pointer (int ndim, void * buf, Py_ssize_t * strides,
Py_ssize_t * suboffsets, Py_ssize_t * indices) {
char * pointer = (char *)buf;
int i;
for (i = 0; i < ndim; i ++) {

pointer += strides[i] * indices[i];

7.3. Sequence Objects 69

The Python/C API, Release 2.6.4

if (suboffsets[i] >=0) {
pointer = * ((char * *)pointer) + suboffsets[i];

}
}
return (void *)pointer;

}

Py_ssize_t itemsize
This is a storage for the itemsize (in bytes) of each element of the shared memory. It is technically
un-necessary as it can be obtained usingPyBuffer_SizeFromFormat() , however an exporter
may know this information without parsing the format string and it is necessary to know the itemsize
for proper interpretation of striding. Therefore, storing it is more convenient and faster.

void internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by
the exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must
be freed when the buffer is released. The consumer should never alter this value.

Buffer related functions

int PyObject_CheckBuffer (PyObject *obj)
Return 1 ifobj supports the buffer interface otherwise 0.

int PyObject_GetBuffer (PyObject *obj, Py_buffer *view, int flags)
Exportobj into aPy_buffer , view. These arguments must never beNULL. Theflagsargument is a bit
field indicating what kind of buffer the caller is prepared to deal with and therefore what kind of buffer the
exporter is allowed to return. The buffer interface allows for complicated memory sharing possibilities, but
some caller may not be able to handle all the complexity but may want to see if the exporter will let them
take a simpler view to its memory.

Some exporters may not be able to share memory in every possible way and may need to raise errors to
signal to some consumers that something is just not possible. These errors should be aBufferError
unless there is another error that is actually causing the problem. The exporter can use flags information to
simplify how much of thePy_buffer structure is filled in with non-default values and/or raise an error if
the object can’t support a simpler view of its memory.

0 is returned on success and -1 on error.

The following table gives possible values to theflagsarguments.

70 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

Flag Description
PyBUF_SIMPLE This is the default flag state. The returned buffer may or may not have

writable memory. The format of the data will be assumed to be
unsigned bytes. This is a “stand-alone” flag constant. It never needs to
be ‘|’d to the others. The exporter will raise an error if it cannot
provide such a contiguous buffer of bytes.

PyBUF_WRITABLE The returned buffer must be writable. If it is not writable, then raise an
error.

PyBUF_STRIDES This impliesPyBUF_ND. The returned buffer must provide strides
information (i.e. the strides cannot be NULL). This would be used
when the consumer can handle strided, discontiguous arrays. Handling
strides automatically assumes you can handle shape. The exporter can
raise an error if a strided representation of the data is not possible (i.e.
without the suboffsets).

PyBUF_ND The returned buffer must provide shape information. The memory will
be assumed C-style contiguous (last dimension varies the fastest). The
exporter may raise an error if it cannot provide this kind of contiguous
buffer. If this is not given then shape will beNULL.

PyBUF_C_CONTIGUOUS
PyBUF_F_CONTIGUOUS
PyBUF_ANY_CONTIGUOUS

These flags indicate that the contiguity returned buffer must be
respectively, C-contiguous (last dimension varies the fastest), Fortran
contiguous (first dimension varies the fastest) or either one. All of
these flags implyPyBUF_STRIDESand guarantee that the strides
buffer info structure will be filled in correctly.

PyBUF_INDIRECT This flag indicates the returned buffer must have suboffsets
information (which can be NULL if no suboffsets are needed). This
can be used when the consumer can handle indirect array referencing
implied by these suboffsets. This impliesPyBUF_STRIDES.

PyBUF_FORMAT The returned buffer must have true format information if this flag is
provided. This would be used when the consumer is going to be
checking for what ‘kind’ of data is actually stored. An exporter should
always be able to provide this information if requested. If format is not
explicitly requested then the format must be returned asNULL (which
means’B’ , or unsigned bytes)

PyBUF_STRIDED This is equivalent to(PyBUF_STRIDES | PyBUF_WRITABLE) .
PyBUF_STRIDED_RO This is equivalent to(PyBUF_STRIDES) .
PyBUF_RECORDS This is equivalent to(PyBUF_STRIDES | PyBUF_FORMAT |

PyBUF_WRITABLE).
PyBUF_RECORDS_RO This is equivalent to(PyBUF_STRIDES | PyBUF_FORMAT).
PyBUF_FULL This is equivalent to(PyBUF_INDIRECT | PyBUF_FORMAT |

PyBUF_WRITABLE).
PyBUF_FULL_RO This is equivalent to(PyBUF_INDIRECT | PyBUF_FORMAT) .
PyBUF_CONTIG This is equivalent to(PyBUF_ND | PyBUF_WRITABLE).
PyBUF_CONTIG_RO This is equivalent to(PyBUF_ND) .

void PyBuffer_Release (Py_buffer *view)
Release the bufferview. This should be called when the buffer is no longer being used as it may free memory
from it.

Py_ssize_t PyBuffer_SizeFromFormat (const char *)
Return the implied~Py_buffer.itemsize from the struct-stype~Py_buffer.format .

int PyObject_CopyToObject (PyObject *obj, void *buf, Py_ssize_t len, char fortran)
Copy len bytes of data pointed to by the contiguous chunk of memory pointed to bybuf into the buffer
exported by obj. The buffer must of course be writable. Return 0 on success and return -1 and raise an error
on failure. If the object does not have a writable buffer, then an error is raised. Iffortran is ’F’ , then if
the object is multi-dimensional, then the data will be copied into the array in Fortran-style (first dimension
varies the fastest). Iffortran is ’C’ , then the data will be copied into the array in C-style (last dimension
varies the fastest). Iffortran is ’A’ , then it does not matter and the copy will be made in whatever way is
more efficient.

7.3. Sequence Objects 71

The Python/C API, Release 2.6.4

int PyBuffer_IsContiguous (Py_buffer *view, char fortran)
Return 1 if the memory defined by theview is C-style (fortran is ’C’) or Fortran-style (fortran is ’F’)
contiguous or either one (fortran is ’A’). Return 0 otherwise.

void PyBuffer_FillContiguousStrides (int ndim, Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t
itemsize, char fortran)

Fill the stridesarray with byte-strides of a contiguous (C-style iffortran is ’C’ or Fortran-style iffortran
is ’F’ array of the given shape with the given number of bytes per element.

int PyBuffer_FillInfo (Py_buffer *view, void *buf, Py_ssize_t len, int readonly, int infoflags)
Fill in a buffer-info structure,view, correctly for an exporter that can only share a contiguous chunk of
memory of “unsigned bytes” of the given length. Return 0 on success and -1 (with raising an error) on error.

Old-style buffer objects

More information on the buffer interface is provided in the sectionBuffer Object Structures, under the description
for PyBufferProcs .

A “buffer object” is defined in thebufferobject.h header (included byPython.h). These objects look
very similar to string objects at the Python programming level: they support slicing, indexing, concatenation, and
some other standard string operations. However, their data can come from one of two sources: from a block of
memory, or from another object which exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python program-
mer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory,
it is possible to expose any data to the Python programmer quite easily. The memory could be a large, constant
array in a C extension, it could be a raw block of memory for manipulation before passing to an operating system
library, or it could be used to pass around structured data in its native, in-memory format.

PyBufferObject
This subtype ofPyObject represents a buffer object.

PyTypeObject PyBuffer_Type
The instance ofPyTypeObject which represents the Python buffer type; it is the same object asbuffer
andtypes.BufferType in the Python layer. .

int Py_END_OF_BUFFER
This constant may be passed as thesize parameter to PyBuffer_FromObject() or
PyBuffer_FromReadWriteObject() . It indicates that the newPyBufferObject should
refer tobaseobject from the specifiedoffsetto the end of its exported buffer. Using this enables the caller
to avoid querying thebaseobject for its length.

int PyBuffer_Check (PyObject *p)
Return true if the argument has typePyBuffer_Type .

PyObject* PyBuffer_FromObject (PyObject *base, Py_ssize_t offset, Py_ssize_t size)
Return value: New reference.
Return a new read-only buffer object. This raisesTypeError if basedoesn’t support the read-only buffer
protocol or doesn’t provide exactly one buffer segment, or it raisesValueError if offsetis less than zero.
The buffer will hold a reference to thebaseobject, and the buffer’s contents will refer to thebaseobject’s
buffer interface, starting as positionoffsetand extending forsizebytes. Ifsizeis Py_END_OF_BUFFER,
then the new buffer’s contents extend to the length of thebaseobject’s exported buffer data. Changed in
version 2.5: This function used anint type foroffsetandsize. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyBuffer_FromReadWriteObject (PyObject *base, Py_ssize_t offset, Py_ssize_t size)
Return value: New reference.
Return a new writable buffer object. Parameters and exceptions are similar to those for
PyBuffer_FromObject() . If the baseobject does not export the writeable buffer protocol, then
TypeError is raised. Changed in version 2.5: This function used anint type foroffsetandsize. This
might require changes in your code for properly supporting 64-bit systems.

72 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyBuffer_FromMemory (void *ptr, Py_ssize_t size)
Return value: New reference.
Return a new read-only buffer object that reads from a specified location in memory, with a specified size.
The caller is responsible for ensuring that the memory buffer, passed in asptr, is not deallocated while the re-
turned buffer object exists. RaisesValueError if sizeis less than zero. Note thatPy_END_OF_BUFFER
maynotbe passed for thesizeparameter;ValueError will be raised in that case. Changed in version 2.5:
This function used anint type forsize. This might require changes in your code for properly supporting
64-bit systems.

PyObject* PyBuffer_FromReadWriteMemory (void *ptr, Py_ssize_t size)
Return value: New reference.
Similar toPyBuffer_FromMemory() , but the returned buffer is writable. Changed in version 2.5: This
function used anint type forsize. This might require changes in your code for properly supporting 64-bit
systems.

PyObject* PyBuffer_New (Py_ssize_t size)
Return value: New reference.
Return a new writable buffer object that maintains its own memory buffer ofsizebytes. ValueError
is returned if size is not zero or positive. Note that the memory buffer (as returned by
PyObject_AsWriteBuffer()) is not specifically aligned. Changed in version 2.5: This function
used anint type forsize. This might require changes in your code for properly supporting 64-bit systems.

7.3.5 Tuple Objects

PyTupleObject
This subtype ofPyObject represents a Python tuple object.

PyTypeObject PyTuple_Type
This instance ofPyTypeObject represents the Python tuple type; it is the same object astuple and
types.TupleType in the Python layer..

int PyTuple_Check (PyObject *p)
Return true ifp is a tuple object or an instance of a subtype of the tuple type. Changed in version 2.2:
Allowed subtypes to be accepted.

int PyTuple_CheckExact (PyObject *p)
Return true ifp is a tuple object, but not an instance of a subtype of the tuple type. New in version 2.2.

PyObject* PyTuple_New (Py_ssize_t len)
Return value: New reference.
Return a new tuple object of sizelen, or NULL on failure. Changed in version 2.5: This function used an
int type for len. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyTuple_Pack (Py_ssize_t n, ...)
Return value: New reference.
Return a new tuple object of sizen, or NULL on failure. The tuple values are initialized to the
subsequentn C arguments pointing to Python objects.PyTuple_Pack(2, a, b) is equivalent to
Py_BuildValue("(OO)", a, b) . New in version 2.4.Changed in version 2.5: This function used an
int type forn. This might require changes in your code for properly supporting 64-bit systems.

Py_ssize_t PyTuple_Size (PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple. Changed in version 2.5: This function
returned anint type. This might require changes in your code for properly supporting 64-bit systems.

Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuplep, which must be non-NULL and point to a tuple; no error checking is performed.
Changed in version 2.5: This function returned anint type. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference.
Return the object at positionposin the tuple pointed to byp. If posis out of bounds, returnNULL and sets

7.3. Sequence Objects 73

The Python/C API, Release 2.6.4

an IndexError exception. Changed in version 2.5: This function used anint type forpos. This might
require changes in your code for properly supporting 64-bit systems.

PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference.
Like PyTuple_GetItem() , but does no checking of its arguments. Changed in version 2.5: This func-
tion used anint type for pos. This might require changes in your code for properly supporting 64-bit
systems.

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference.
Take a slice of the tuple pointed to byp from low to high and return it as a new tuple. Changed in version
2.5: This function used anint type forlow andhigh. This might require changes in your code for properly
supporting 64-bit systems.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *o)
Insert a reference to objecto at positionposof the tuple pointed to byp. Return0 on success.

Note: This function “steals” a reference too. Changed in version 2.5: This function used anint type for
pos. This might require changes in your code for properly supporting 64-bit systems.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *o)
Like PyTuple_SetItem() , but does no error checking, and shouldonly be used to fill in brand new
tuples.

Note: This function “steals” a reference too. Changed in version 2.5: This function used anint type for
pos. This might require changes in your code for properly supporting 64-bit systems.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)
Can be used to resize a tuple.newsizewill be the new length of the tuple. Because tuples aresupposedto
be immutable, this should only be used if there is only one reference to the object. Donot use this if the
tuple may already be known to some other part of the code. The tuple will always grow or shrink at the
end. Think of this as destroying the old tuple and creating a new one, only more efficiently. Returns0 on
success. Client code should never assume that the resulting value of*p will be the same as before calling
this function. If the object referenced by*p is replaced, the original*p is destroyed. On failure, returns-1
and sets*p to NULL, and raisesMemoryError or SystemError . Changed in version 2.2: Removed
unused third parameter,last_is_sticky.Changed in version 2.5: This function used anint type fornewsize.
This might require changes in your code for properly supporting 64-bit systems.

int PyTuple_ClearFreeList ()
Clear the free list. Return the total number of freed items. New in version 2.6.

7.3.6 List Objects

PyListObject
This subtype ofPyObject represents a Python list object.

PyTypeObject PyList_Type
This instance ofPyTypeObject represents the Python list type. This is the same object aslist and
types.ListType in the Python layer.

int PyList_Check (PyObject *p)
Return true ifp is a list object or an instance of a subtype of the list type. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyList_CheckExact (PyObject *p)
Return true ifp is a list object, but not an instance of a subtype of the list type. New in version 2.2.

PyObject* PyList_New (Py_ssize_t len)
Return value: New reference.
Return a new list of lengthlenon success, orNULL on failure.

Note: If lengthis greater than zero, the returned list object’s items are set toNULL. Thus you cannot use
abstract API functions such asPySequence_SetItem() or expose the object to Python code before

74 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

setting all items to a real object withPyList_SetItem() . Changed in version 2.5: This function used
an int for size. This might require changes in your code for properly supporting 64-bit systems.

Py_ssize_t PyList_Size (PyObject *list)
Return the length of the list object inlist; this is equivalent tolen(list) on a list object. Changed in

version 2.5: This function returned anint . This might require changes in your code for properly supporting
64-bit systems.

Py_ssize_t PyList_GET_SIZE (PyObject *list)
Macro form ofPyList_Size() without error checking. Changed in version 2.5: This macro returned an
int . This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyList_GetItem (PyObject *list, Py_ssize_t index)
Return value: Borrowed reference.
Return the object at positionposin the list pointed to byp. The position must be positive, indexing from the
end of the list is not supported. Ifposis out of bounds, returnNULL and set anIndexError exception.
Changed in version 2.5: This function used anint for index. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyList_GET_ITEM (PyObject *list, Py_ssize_t i)
Return value: Borrowed reference.
Macro form ofPyList_GetItem() without error checking. Changed in version 2.5: This macro used
an int for i. This might require changes in your code for properly supporting 64-bit systems.

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)
Set the item at indexindexin list to item. Return0 on success or-1 on failure.

Note: This function “steals” a reference toitemand discards a reference to an item already in the list at
the affected position. Changed in version 2.5: This function used anint for index. This might require
changes in your code for properly supporting 64-bit systems.

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *o)
Macro form ofPyList_SetItem() without error checking. This is normally only used to fill in new
lists where there is no previous content.

Note: This macro “steals” a reference toitem, and, unlikePyList_SetItem() , doesnot discard a
reference to any item that it being replaced; any reference inlist at positioni will be leaked. Changed in
version 2.5: This macro used anint for i. This might require changes in your code for properly supporting
64-bit systems.

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
Insert the itemiteminto list list in front of indexindex. Return0 if successful; return-1 and set an exception
if unsuccessful. Analogous tolist.insert(index, item) . Changed in version 2.5: This function
used anint for index. This might require changes in your code for properly supporting 64-bit systems.

int PyList_Append (PyObject *list, PyObject *item)
Append the objectitem at the end of listlist. Return0 if successful; return-1 and set an exception if
unsuccessful. Analogous tolist.append(item) .

PyObject* PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference.
Return a list of the objects inlist containing the objectsbetween lowand high. ReturnNULL and set
an exception if unsuccessful. Analogous tolist[low:high] . Negative indices, as when slicing from
Python, are not supported. Changed in version 2.5: This function used anint for low andhigh. This might
require changes in your code for properly supporting 64-bit systems.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice oflist betweenlow andhigh to the contents ofitemlist. Analogous tolist[low:high] =
itemlist . Theitemlistmay beNULL, indicating the assignment of an empty list (slice deletion). Return
0 on success,-1 on failure. Negative indices, as when slicing from Python, are not supported. Changed
in version 2.5: This function used anint for low andhigh. This might require changes in your code for
properly supporting 64-bit systems.

int PyList_Sort (PyObject *list)
Sort the items oflist in place. Return0 on success,-1 on failure. This is equivalent tolist.sort() .

7.3. Sequence Objects 75

The Python/C API, Release 2.6.4

int PyList_Reverse (PyObject *list)
Reverse the items oflist in place. Return0 on success,-1 on failure. This is the equivalent of
list.reverse() .

PyObject* PyList_AsTuple (PyObject *list)
Return value: New reference.
Return a new tuple object containing the contents oflist; equivalent totuple(list) .

7.4 Mapping Objects

7.4.1 Dictionary Objects

PyDictObject
This subtype ofPyObject represents a Python dictionary object.

PyTypeObject PyDict_Type
This instance ofPyTypeObject represents the Python dictionary type. This is exposed to Python pro-

grams asdict andtypes.DictType .

int PyDict_Check (PyObject *p)
Return true ifp is a dict object or an instance of a subtype of the dict type. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyDict_CheckExact (PyObject *p)
Return true ifp is a dict object, but not an instance of a subtype of the dict type. New in version 2.4.

PyObject* PyDict_New ()
Return value: New reference.
Return a new empty dictionary, orNULL on failure.

PyObject* PyDictProxy_New (PyObject *dict)
Return value: New reference.
Return a proxy object for a mapping which enforces read-only behavior. This is normally used to create a
proxy to prevent modification of the dictionary for non-dynamic class types. New in version 2.2.

void PyDict_Clear (PyObject *p)
Empty an existing dictionary of all key-value pairs.

int PyDict_Contains (PyObject *p, PyObject *key)
Determine if dictionaryp containskey. If an item inp is matcheskey, return1, otherwise return0. On error,
return-1 . This is equivalent to the Python expressionkey in p . New in version 2.4.

PyObject* PyDict_Copy (PyObject *p)
Return value: New reference.
Return a new dictionary that contains the same key-value pairs asp. New in version 1.6.

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
Insertvalueinto the dictionaryp with a key ofkey. keymust behashable; if it isn’t, TypeError will be
raised. Return0 on success or-1 on failure.

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
Insertvalueinto the dictionaryp usingkeyas a key.keyshould be achar* . The key object is created using
PyString_FromString(key) . Return0 on success or-1 on failure.

int PyDict_DelItem (PyObject *p, PyObject *key)
Remove the entry in dictionaryp with key key. keymust be hashable; if it isn’t,TypeError is raised.
Return0 on success or-1 on failure.

int PyDict_DelItemString (PyObject *p, char *key)
Remove the entry in dictionaryp which has a key specified by the stringkey. Return0 on success or-1 on
failure.

76 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyDict_GetItem (PyObject *p, PyObject *key)
Return value: Borrowed reference.
Return the object from dictionaryp which has a keykey. ReturnNULL if the key key is not present, but
withoutsetting an exception.

PyObject* PyDict_GetItemString (PyObject *p, const char *key)
Return value: Borrowed reference.
This is the same asPyDict_GetItem() , butkeyis specified as achar* , rather than aPyObject* .

PyObject* PyDict_Items (PyObject *p)
Return value: New reference.
Return aPyListObject containing all the items from the dictionary, as in the dictionary method
dict.items() .

PyObject* PyDict_Keys (PyObject *p)
Return value: New reference.
Return aPyListObject containing all the keys from the dictionary, as in the dictionary method
dict.keys() .

PyObject* PyDict_Values (PyObject *p)
Return value: New reference.
Return aPyListObject containing all the values from the dictionaryp, as in the dictionary method
dict.values() .

Py_ssize_t PyDict_Size (PyObject *p)
Return the number of items in the dictionary. This is equivalent tolen(p) on a dictionary. Changed

in version 2.5: This function returned anint type. This might require changes in your code for properly
supporting 64-bit systems.

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionaryp. ThePy_ssize_t referred to bypposmust be initialized
to 0 prior to the first call to this function to start the iteration; the function returns true for each pair in the
dictionary, and false once all pairs have been reported. The parameterspkeyandpvalueshould either point
to PyObject* variables that will be filled in with each key and value, respectively, or may beNULL.
Any references returned through them are borrowed.pposshould not be altered during iteration. Its value
represents offsets within the internal dictionary structure, and since the structure is sparse, the offsets are
not consecutive.

For example:

PyObject * key, * value;
Py_ssize_t pos = 0;

while (PyDict_Next(self - >dict, &pos, &key, &value)) {
/* do something interesting with the values... */
...

}

The dictionaryp should not be mutated during iteration. It is safe (since Python 2.1) to modify the values of
the keys as you iterate over the dictionary, but only so long as the set of keys does not change. For example:

PyObject * key, * value;
Py_ssize_t pos = 0;

while (PyDict_Next(self - >dict, &pos, &key, &value)) {
int i = PyInt_AS_LONG(value) + 1;
PyObject * o = PyInt_FromLong(i);
if (o == NULL)

return - 1;
if (PyDict_SetItem(self - >dict, key, o) < 0) {

Py_DECREF(o);
return - 1;

7.4. Mapping Objects 77

The Python/C API, Release 2.6.4

}
Py_DECREF(o);

}

Changed in version 2.5: This function used anint * type forppos. This might require changes in your
code for properly supporting 64-bit systems.

int PyDict_Merge (PyObject *a, PyObject *b, int override)
Iterate over mapping objectb adding key-value pairs to dictionarya. b may be a dictionary, or any object
supportingPyMapping_Keys() andPyObject_GetItem() . If override is true, existing pairs ina
will be replaced if a matching key is found inb, otherwise pairs will only be added if there is not a matching
key ina. Return0 on success or-1 if an exception was raised. New in version 2.2.

int PyDict_Update (PyObject *a, PyObject *b)
This is the same asPyDict_Merge(a, b, 1) in C, ora.update(b) in Python. Return0 on success
or -1 if an exception was raised. New in version 2.2.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)
Update or merge into dictionarya, from the key-value pairs inseq2. seq2must be an iterable object produc-
ing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last wins ifoverride
is true, else the first wins. Return0 on success or-1 if an exception was raised. Equivalent Python (except
for the return value):

def PyDict_MergeFromSeq2(a, seq2, override) :
for key, value in seq2:

if override or key not in a:
a[key] = value

New in version 2.2.

7.5 Other Objects

7.5.1 Class and Instance Objects

Note that the class objects described here represent old-style classes, which will go away in Python 3. When
creating new types for extension modules, you will want to work with type objects (sectionType Objects).

PyClassObject
The C structure of the objects used to describe built-in classes.

PyObject* PyClass_Type
This is the type object for class objects; it is the same object astypes.ClassType in the Python layer.

int PyClass_Check (PyObject *o)
Return true if the objecto is a class object, including instances of types derived from the standard class
object. Return false in all other cases.

int PyClass_IsSubclass (PyObject *klass, PyObject *base)
Return true ifklassis a subclass ofbase. Return false in all other cases.

There are very few functions specific to instance objects.

PyTypeObject PyInstance_Type
Type object for class instances.

int PyInstance_Check (PyObject *obj)
Return true ifobj is an instance.

PyObject* PyInstance_New (PyObject *class, PyObject *arg, PyObject *kw)
Return value: New reference.
Create a new instance of a specific class. The parametersarg andkware used as the positional and keyword
parameters to the object’s constructor.

78 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyInstance_NewRaw (PyObject *class, PyObject *dict)
Return value: New reference.
Create a new instance of a specific class without calling its constructor.classis the class of new object. The
dict parameter will be used as the object’s__dict__ ; if NULL, a new dictionary will be created for the
instance.

7.5.2 Function Objects

There are a few functions specific to Python functions.

PyFunctionObject
The C structure used for functions.

PyTypeObject PyFunction_Type
This is an instance ofPyTypeObject and represents the Python function type. It is exposed to Python
programmers astypes.FunctionType .

int PyFunction_Check (PyObject *o)
Return true ifo is a function object (has typePyFunction_Type). The parameter must not beNULL.

PyObject* PyFunction_New (PyObject *code, PyObject *globals)
Return value: New reference.
Return a new function object associated with the code objectcode. globalsmust be a dictionary with the
global variables accessible to the function.

The function’s docstring, name and__module__are retrieved from the code object, the argument defaults
and closure are set toNULL.

PyObject* PyFunction_GetCode (PyObject *op)
Return value: Borrowed reference.
Return the code object associated with the function objectop.

PyObject* PyFunction_GetGlobals (PyObject *op)
Return value: Borrowed reference.
Return the globals dictionary associated with the function objectop.

PyObject* PyFunction_GetModule (PyObject *op)
Return value: Borrowed reference.
Return the__module__attribute of the function objectop. This is normally a string containing the module
name, but can be set to any other object by Python code.

PyObject* PyFunction_GetDefaults (PyObject *op)
Return value: Borrowed reference.
Return the argument default values of the function objectop. This can be a tuple of arguments orNULL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
Set the argument default values for the function objectop. defaultsmust bePy_Noneor a tuple.

RaisesSystemError and returns-1 on failure.

PyObject* PyFunction_GetClosure (PyObject *op)
Return value: Borrowed reference.
Return the closure associated with the function objectop. This can beNULL or a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function objectop. closuremust bePy_Noneor a tuple of cell objects.

RaisesSystemError and returns-1 on failure.

7.5.3 Method Objects

There are some useful functions that are useful for working with method objects.

7.5. Other Objects 79

The Python/C API, Release 2.6.4

PyTypeObject PyMethod_Type
This instance ofPyTypeObject represents the Python method type. This is exposed to Python programs
astypes.MethodType .

int PyMethod_Check (PyObject *o)
Return true ifo is a method object (has typePyMethod_Type). The parameter must not beNULL.

PyObject* PyMethod_New (PyObject *func, PyObject *self, PyObject *class)
Return value: New reference.
Return a new method object, withfuncbeing any callable object; this is the function that will be called when
the method is called. If this method should be bound to an instance,self should be the instance andclass
should be the class ofself, otherwiseself should beNULL andclassshould be the class which provides the
unbound method..

PyObject* PyMethod_Class (PyObject *meth)
Return value: Borrowed reference.
Return the class object from which the methodmethwas created; if this was created from an instance, it
will be the class of the instance.

PyObject* PyMethod_GET_CLASS(PyObject *meth)
Return value: Borrowed reference.
Macro version ofPyMethod_Class() which avoids error checking.

PyObject* PyMethod_Function (PyObject *meth)
Return value: Borrowed reference.
Return the function object associated with the methodmeth.

PyObject* PyMethod_GET_FUNCTION(PyObject *meth)
Return value: Borrowed reference.
Macro version ofPyMethod_Function() which avoids error checking.

PyObject* PyMethod_Self (PyObject *meth)
Return value: Borrowed reference.
Return the instance associated with the methodmethif it is bound, otherwise returnNULL.

PyObject* PyMethod_GET_SELF(PyObject *meth)
Return value: Borrowed reference.
Macro version ofPyMethod_Self() which avoids error checking.

int PyMethod_ClearFreeList ()
Clear the free list. Return the total number of freed items. New in version 2.6.

7.5.4 File Objects

Python’s built-in file objects are implemented entirely on theFILE* support from the C standard library. This is
an implementation detail and may change in future releases of Python.

PyFileObject
This subtype ofPyObject represents a Python file object.

PyTypeObject PyFile_Type
This instance ofPyTypeObject represents the Python file type. This is exposed to Python programs as
file andtypes.FileType .

int PyFile_Check (PyObject *p)
Return true if its argument is aPyFileObject or a subtype ofPyFileObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyFile_CheckExact (PyObject *p)
Return true if its argument is aPyFileObject , but not a subtype ofPyFileObject . New in version
2.2.

PyObject* PyFile_FromString (char *filename, char *mode)
Return value: New reference.

80 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

On success, return a new file object that is opened on the file given byfilename, with a file mode given by
mode, wheremodehas the same semantics as the standard C routinefopen() . On failure, returnNULL.

PyObject* PyFile_FromFile (FILE *fp, char *name, char *mode, int (*close)(FILE*))
Return value: New reference.
Create a newPyFileObject from the already-open standard C file pointer,fp. The functionclosewill
be called when the file should be closed. ReturnNULL on failure.

FILE* PyFile_AsFile (PyObject *p)
Return the file object associated withp as aFILE* .

If the caller will ever use the returnedFILE* object while the GIL is released it must also call the
PyFile_IncUseCount() andPyFile_DecUseCount() functions described below as appropriate.

void PyFile_IncUseCount (PyFileObject *p)
Increments the PyFileObject’s internal use count to indicate that the underlyingFILE* is being used.
This prevents Python from calling f_close() on it from another thread. Callers of this must call
PyFile_DecUseCount() when they are finished with theFILE* . Otherwise the file object will never
be closed by Python.

The GIL must be held while calling this function.

The suggested use is to call this afterPyFile_AsFile() just before you release the GIL. New in version
2.6.

void PyFile_DecUseCount (PyFileObject *p)
Decrements the PyFileObject’s internal unlocked_count member to indicate that the caller is done with its
own use of theFILE* . This may only be called to undo a prior call toPyFile_IncUseCount() .

The GIL must be held while calling this function. New in version 2.6.

PyObject* PyFile_GetLine (PyObject *p, int n)
Return value: New reference.
Equivalent top.readline([n]) , this function reads one line from the objectp. p may be a file object

or any object with areadline() method. Ifn is 0, exactly one line is read, regardless of the length of
the line. Ifn is greater than0, no more thann bytes will be read from the file; a partial line can be returned.
In both cases, an empty string is returned if the end of the file is reached immediately. Ifn is less than
0, however, one line is read regardless of length, butEOFError is raised if the end of the file is reached
immediately.

PyObject* PyFile_Name (PyObject *p)
Return value: Borrowed reference.
Return the name of the file specified byp as a string object.

void PyFile_SetBufSize (PyFileObject *p, int n)
Available on systems withsetvbuf() only. This should only be called immediately after file object
creation.

int PyFile_SetEncoding (PyFileObject *p, const char *enc)
Set the file’s encoding for Unicode output toenc. Return 1 on success and 0 on failure. New in version 2.3.

int PyFile_SetEncodingAndErrors (PyFileObject *p, const char *enc, *errors)
Set the file’s encoding for Unicode output toenc, and its error mode toerr. Return 1 on success and 0 on
failure. New in version 2.6.

int PyFile_SoftSpace (PyObject *p, int newflag)
This function exists for internal use by the interpreter. Set thesoftspace attribute ofp to newflagand
return the previous value.p does not have to be a file object for this function to work properly; any object
is supported (thought its only interesting if thesoftspace attribute can be set). This function clears any
errors, and will return0 as the previous value if the attribute either does not exist or if there were errors in
retrieving it. There is no way to detect errors from this function, but doing so should not be needed.

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
Write objectobj to file objectp. The only supported flag forflagsis Py_PRINT_RAW; if given, thestr()
of the object is written instead of therepr() . Return0 on success or-1 on failure; the appropriate
exception will be set.

7.5. Other Objects 81

The Python/C API, Release 2.6.4

int PyFile_WriteString (const char *s, PyObject *p)
Write strings to file objectp. Return0 on success or-1 on failure; the appropriate exception will be set.

7.5.5 Module Objects

There are only a few functions special to module objects.

PyTypeObject PyModule_Type
This instance ofPyTypeObject represents the Python module type. This is exposed to Python programs
astypes.ModuleType .

int PyModule_Check (PyObject *p)
Return true ifp is a module object, or a subtype of a module object. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyModule_CheckExact (PyObject *p)
Return true ifp is a module object, but not a subtype ofPyModule_Type . New in version 2.2.

PyObject* PyModule_New (const char *name)
Return value: New reference.
Return a new module object with the__name__ attribute set toname. Only the module’s__doc__ and

__name__ attributes are filled in; the caller is responsible for providing a__file__ attribute.

PyObject* PyModule_GetDict (PyObject *module)
Return value: Borrowed reference.

Return the dictionary object that implementsmodule‘s namespace; this object is the same as the
__dict__ attribute of the module object. This function never fails. It is recommended extensions use other
PyModule_*() andPyObject_*() functions rather than directly manipulate a module’s__dict__ .

char* PyModule_GetName (PyObject *module)
Return module‘s __name__ value. If the module does not provide one, or if it is not a string,

SystemError is raised andNULL is returned.

char* PyModule_GetFilename (PyObject *module)
Return the name of the file from whichmodulewas loaded usingmodule‘s __file__ attribute. If this is
not defined, or if it is not a string, raiseSystemError and returnNULL.

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Add an object tomoduleasname. This is a convenience function which can be used from the module’s
initialization function. This steals a reference tovalue. Return-1 on error,0 on success. New in version
2.0.

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Add an integer constant tomoduleasname. This convenience function can be used from the module’s
initialization function. Return-1 on error,0 on success. New in version 2.0.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Add a string constant tomoduleasname. This convenience function can be used from the module’s ini-
tialization function. The stringvaluemust be null-terminated. Return-1 on error,0 on success. New in
version 2.0.

int PyModule_AddIntMacro (PyObject *module, macro)
Add an int constant tomodule. The name and the value are taken frommacro. For example
PyModule_AddConstant(module, AF_INET) adds the int constantAF_INET with the value of
AF_INET to module. Return-1 on error,0 on success. New in version 2.6.

int PyModule_AddStringMacro (PyObject *module, macro)

Add a string constant tomodule.

New in version 2.6.

82 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

7.5.6 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary
sequence supporting the__getitem__() method. The second works with a callable object and a sentinel value,
calling the callable for each item in the sequence, and ending the iteration when the sentinel value is returned.

PyTypeObject PySeqIter_Type
Type object for iterator objects returned byPySeqIter_New() and the one-argument form of the
iter() built-in function for built-in sequence types. New in version 2.2.

int PySeqIter_Check (op)
Return true if the type ofop is PySeqIter_Type . New in version 2.2.

PyObject* PySeqIter_New (PyObject *seq)
Return value: New reference.
Return an iterator that works with a general sequence object,seq. The iteration ends when the sequence
raisesIndexError for the subscripting operation. New in version 2.2.

PyTypeObject PyCallIter_Type
Type object for iterator objects returned byPyCallIter_New() and the two-argument form of the
iter() built-in function. New in version 2.2.

int PyCallIter_Check (op)
Return true if the type ofop is PyCallIter_Type . New in version 2.2.

PyObject* PyCallIter_New (PyObject *callable, PyObject *sentinel)
Return value: New reference.
Return a new iterator. The first parameter,callable, can be any Python callable object that can be called
with no parameters; each call to it should return the next item in the iteration. Whencallablereturns a value
equal tosentinel, the iteration will be terminated. New in version 2.2.

7.5.7 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty_Type
The type object for the built-in descriptor types. New in version 2.2.

PyObject* PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Return value: New reference.
New in version 2.3.

int PyDescr_IsData (PyObject *descr)
Return true if the descriptor objectsdescrdescribes a data attribute, or false if it describes a method.descr
must be a descriptor object; there is no error checking. New in version 2.2.

7.5. Other Objects 83

The Python/C API, Release 2.6.4

PyObject* PyWrapper_New (PyObject *, PyObject *)
Return value: New reference.
New in version 2.2.

7.5.8 Slice Objects

PyTypeObject PySlice_Type
The type object for slice objects. This is the same asslice andtypes.SliceType .

int PySlice_Check (PyObject *ob)
Return true ifob is a slice object;obmust not beNULL.

PyObject* PySlice_New (PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference.
Return a new slice object with the given values. Thestart, stop, andstepparameters are used as the values
of the slice object attributes of the same names. Any of the values may beNULL, in which case theNone
will be used for the corresponding attribute. ReturnNULL if the new object could not be allocated.

int PySlice_GetIndices (PySliceObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step)

Retrieve the start, stop and step indices from the slice objectslice, assuming a sequence of lengthlength.
Treats indices greater thanlengthas errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices was notNone and
failed to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function. If you want to use slice objects in versions of Python prior
to 2.3, you would probably do well to incorporate the source ofPySlice_GetIndicesEx() , suitably
renamed, in the source of your extension. Changed in version 2.5: This function used anint type for
lengthand anint * type forstart, stop, andstep. This might require changes in your code for properly
supporting 64-bit systems.

int PySlice_GetIndicesEx (PySliceObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)

Usable replacement forPySlice_GetIndices() . Retrieve the start, stop, and step indices from the
slice objectsliceassuming a sequence of lengthlength, and store the length of the slice inslicelength. Out
of bounds indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and -1 on error with exception set. New in version 2.3.Changed in version 2.5: This
function used anint type for lengthand anint * type forstart, stop, step, andslicelength. This might
require changes in your code for properly supporting 64-bit systems.

7.5.9 Weak Reference Objects

Python supportsweak referencesas first-class objects. There are two specific object types which directly imple-
ment weak references. The first is a simple reference object, and the second acts as a proxy for the original object
as much as it can.

int PyWeakref_Check (ob)
Return true ifob is either a reference or proxy object. New in version 2.2.

int PyWeakref_CheckRef (ob)
Return true ifob is a reference object. New in version 2.2.

int PyWeakref_CheckProxy (ob)
Return true ifob is a proxy object. New in version 2.2.

PyObject* PyWeakref_NewRef (PyObject *ob, PyObject *callback)
Return value: New reference.
Return a weak reference object for the objectob. This will always return a new reference, but is not
guaranteed to create a new object; an existing reference object may be returned. The second parameter,
callback, can be a callable object that receives notification whenob is garbage collected; it should accept a

84 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

single parameter, which will be the weak reference object itself.callbackmay also beNone or NULL. If
ob is not a weakly-referencable object, or ifcallbackis not callable,None, or NULL, this will returnNULL
and raiseTypeError . New in version 2.2.

PyObject* PyWeakref_NewProxy (PyObject *ob, PyObject *callback)
Return value: New reference.
Return a weak reference proxy object for the objectob. This will always return a new reference, but is
not guaranteed to create a new object; an existing proxy object may be returned. The second parameter,
callback, can be a callable object that receives notification whenob is garbage collected; it should accept a
single parameter, which will be the weak reference object itself.callbackmay also beNone or NULL. If
ob is not a weakly-referencable object, or ifcallbackis not callable,None, or NULL, this will returnNULL
and raiseTypeError . New in version 2.2.

PyObject* PyWeakref_GetObject (PyObject *ref)
Return value: Borrowed reference.
Return the referenced object from a weak reference,ref. If the referent is no longer live, returnsNone. New
in version 2.2.

PyObject* PyWeakref_GET_OBJECT(PyObject *ref)
Return value: Borrowed reference.
Similar toPyWeakref_GetObject() , but implemented as a macro that does no error checking. New
in version 2.2.

7.5.10 CObjects

Refer toProviding a C API for an Extension Module(in Extending and Embedding Python) for more information
on using these objects.

PyCObject
This subtype ofPyObject represents an opaque value, useful for C extension modules who need to pass
an opaque value (as avoid* pointer) through Python code to other C code. It is often used to make a C
function pointer defined in one module available to other modules, so the regular import mechanism can be
used to access C APIs defined in dynamically loaded modules.

int PyCObject_Check (PyObject *p)
Return true if its argument is aPyCObject .

PyObject* PyCObject_FromVoidPtr (void* cobj, void (*destr)(void *))
Return value: New reference.
Create aPyCObject from thevoid * cobj. The destr function will be called when the object is re-
claimed, unless it isNULL.

PyObject* PyCObject_FromVoidPtrAndDesc (void* cobj, void* desc, void (*destr)(void *, void *))
Return value: New reference.
Create aPyCObject from thevoid * cobj. The destr function will be called when the object is re-
claimed. Thedescargument can be used to pass extra callback data for the destructor function.

void* PyCObject_AsVoidPtr (PyObject* self)
Return the objectvoid * that thePyCObject self was created with.

void* PyCObject_GetDesc (PyObject* self)
Return the descriptionvoid * that thePyCObject self was created with.

int PyCObject_SetVoidPtr (PyObject* self, void* cobj)
Set the void pointer insideself to cobj. ThePyCObject must not have an associated destructor. Return
true on success, false on failure.

7.5.11 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object
is created to store the value; the local variables of each stack frame that references the value contains a reference

7.5. Other Objects 85

The Python/C API, Release 2.6.4

to the cells from outer scopes which also use that variable. When the value is accessed, the value contained in
the cell is used instead of the cell object itself. This de-referencing of the cell object requires support from the
generated byte-code; these are not automatically de-referenced when accessed. Cell objects are not likely to be
useful elsewhere.

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell_Type
The type object corresponding to cell objects.

int PyCell_Check (ob)
Return true ifob is a cell object;obmust not beNULL.

PyObject* PyCell_New (PyObject *ob)
Return value: New reference.
Create and return a new cell object containing the valueob. The parameter may beNULL.

PyObject* PyCell_Get (PyObject *cell)
Return value: New reference.
Return the contents of the cellcell.

PyObject* PyCell_GET (PyObject *cell)
Return value: Borrowed reference.
Return the contents of the cellcell, but without checking thatcell is non-NULL and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value)
Set the contents of the cell objectcell to value. This releases the reference to any current content of the cell.
valuemay beNULL. cell must be non-NULL; if it is not a cell object,-1 will be returned. On success,0
will be returned.

void PyCell_SET (PyObject *cell, PyObject *value)
Sets the value of the cell objectcell to value. No reference counts are adjusted, and no checks are made for
safety;cell must be non-NULL and must be a cell object.

7.5.12 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating
over a function that yields values, rather than explicitly callingPyGen_New() .

PyGenObject
The C structure used for generator objects.

PyTypeObject PyGen_Type
The type object corresponding to generator objects

int PyGen_Check (ob)
Return true ifob is a generator object;obmust not beNULL.

int PyGen_CheckExact (ob)
Return true ifob‘s type isPyGen_Typeis a generator object;obmust not beNULL.

PyObject* PyGen_New(PyFrameObject *frame)
Return value: New reference.
Create and return a new generator object based on theframeobject. A reference toframeis stolen by this
function. The parameter must not beNULL.

7.5.13 DateTime Objects

Various date and time objects are supplied by thedatetime module. Before using any of these functions, the
header filedatetime.h must be included in your source (note that this is not included byPython.h), and
the macroPyDateTime_IMPORT() must be invoked. The macro puts a pointer to a C structure into a static
variable,PyDateTimeAPI , that is used by the following macros.

86 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

Type-check macros:

int PyDate_Check (PyObject *ob)
Return true ifob is of typePyDateTime_DateType or a subtype ofPyDateTime_DateType . ob
must not beNULL. New in version 2.4.

int PyDate_CheckExact (PyObject *ob)
Return true ifob is of typePyDateTime_DateType . obmust not beNULL. New in version 2.4.

int PyDateTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of
PyDateTime_DateTimeType . obmust not beNULL. New in version 2.4.

int PyDateTime_CheckExact (PyObject *ob)
Return true ifob is of typePyDateTime_DateTimeType . obmust not beNULL. New in version 2.4.

int PyTime_Check (PyObject *ob)
Return true ifob is of typePyDateTime_TimeType or a subtype ofPyDateTime_TimeType . ob
must not beNULL. New in version 2.4.

int PyTime_CheckExact (PyObject *ob)
Return true ifob is of typePyDateTime_TimeType . obmust not beNULL. New in version 2.4.

int PyDelta_Check (PyObject *ob)
Return true ifob is of typePyDateTime_DeltaType or a subtype ofPyDateTime_DeltaType . ob
must not beNULL. New in version 2.4.

int PyDelta_CheckExact (PyObject *ob)
Return true ifob is of typePyDateTime_DeltaType . obmust not beNULL. New in version 2.4.

int PyTZInfo_Check (PyObject *ob)
Return true ifob is of typePyDateTime_TZInfoType or a subtype ofPyDateTime_TZInfoType .
obmust not beNULL. New in version 2.4.

int PyTZInfo_CheckExact (PyObject *ob)
Return true ifob is of typePyDateTime_TZInfoType . obmust not beNULL. New in version 2.4.

Macros to create objects:

PyObject* PyDate_FromDate (int year, int month, int day)
Return value: New reference.
Return adatetime.date object with the specified year, month and day. New in version 2.4.

PyObject* PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second,
int usecond)

Return value: New reference.
Return adatetime.datetime object with the specified year, month, day, hour, minute, second and
microsecond. New in version 2.4.

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecond)
Return value: New reference.
Return adatetime.time object with the specified hour, minute, second and microsecond. New in
version 2.4.

PyObject* PyDelta_FromDSU (int days, int seconds, int useconds)
Return value: New reference.
Return adatetime.timedelta object representing the given number of days, seconds and microsec-
onds. Normalization is performed so that the resulting number of microseconds and seconds lie in the ranges
documented fordatetime.timedelta objects. New in version 2.4.

Macros to extract fields from date objects. The argument must be an instance ofPyDateTime_Date , including
subclasses (such asPyDateTime_DateTime). The argument must not beNULL, and the type is not checked:

int PyDateTime_GET_YEAR(PyDateTime_Date *o)
Return the year, as a positive int. New in version 2.4.

7.5. Other Objects 87

The Python/C API, Release 2.6.4

int PyDateTime_GET_MONTH(PyDateTime_Date *o)
Return the month, as an int from 1 through 12. New in version 2.4.

int PyDateTime_GET_DAY(PyDateTime_Date *o)
Return the day, as an int from 1 through 31. New in version 2.4.

Macros to extract fields from datetime objects. The argument must be an instance ofPyDateTime_DateTime ,
including subclasses. The argument must not beNULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR(PyDateTime_DateTime *o)
Return the hour, as an int from 0 through 23. New in version 2.4.

int PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime *o)
Return the minute, as an int from 0 through 59. New in version 2.4.

int PyDateTime_DATE_GET_SECOND(PyDateTime_DateTime *o)
Return the second, as an int from 0 through 59. New in version 2.4.

int PyDateTime_DATE_GET_MICROSECOND(PyDateTime_DateTime *o)
Return the microsecond, as an int from 0 through 999999. New in version 2.4.

Macros to extract fields from time objects. The argument must be an instance ofPyDateTime_Time , including
subclasses. The argument must not beNULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR(PyDateTime_Time *o)
Return the hour, as an int from 0 through 23. New in version 2.4.

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *o)
Return the minute, as an int from 0 through 59. New in version 2.4.

int PyDateTime_TIME_GET_SECOND(PyDateTime_Time *o)
Return the second, as an int from 0 through 59. New in version 2.4.

int PyDateTime_TIME_GET_MICROSECOND(PyDateTime_Time *o)
Return the microsecond, as an int from 0 through 999999. New in version 2.4.

Macros for the convenience of modules implementing the DB API:

PyObject* PyDateTime_FromTimestamp (PyObject *args)
Return value: New reference.
Create and return a newdatetime.datetime object given an argument tuple suitable for passing to
datetime.datetime.fromtimestamp() . New in version 2.4.

PyObject* PyDate_FromTimestamp (PyObject *args)
Return value: New reference.
Create and return a newdatetime.date object given an argument tuple suitable for passing to
datetime.date.fromtimestamp() . New in version 2.4.

7.5.14 Set Objects

New in version 2.5. This section details the public API forset and frozenset objects. Any
functionality not listed below is best accessed using the either the abstract object protocol (in-
cluding PyObject_CallMethod() , PyObject_RichCompareBool() , PyObject_Hash() ,
PyObject_Repr() , PyObject_IsTrue() , PyObject_Print() , and PyObject_GetIter()) or
the abstract number protocol (includingPyNumber_And() , PyNumber_Subtract() , PyNumber_Or() ,
PyNumber_Xor() , PyNumber_InPlaceAnd() , PyNumber_InPlaceSubtract() ,
PyNumber_InPlaceOr() , andPyNumber_InPlaceXor()).

PySetObject
This subtype ofPyObject is used to hold the internal data for bothset andfrozenset objects. It is
like a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a
separate, variable sized block of memory for medium and large sized sets (much like list storage). None of
the fields of this structure should be considered public and are subject to change. All access should be done
through the documented API rather than by manipulating the values in the structure.

88 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

PyTypeObject PySet_Type
This is an instance ofPyTypeObject representing the Pythonset type.

PyTypeObject PyFrozenSet_Type
This is an instance ofPyTypeObject representing the Pythonfrozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.

int PySet_Check (PyObject *p)
Return true ifp is aset object or an instance of a subtype. New in version 2.6.

int PyFrozenSet_Check (PyObject *p)
Return true ifp is afrozenset object or an instance of a subtype. New in version 2.6.

int PyAnySet_Check (PyObject *p)
Return true ifp is aset object, afrozenset object, or an instance of a subtype.

int PyAnySet_CheckExact (PyObject *p)
Return true ifp is aset object or afrozenset object but not an instance of a subtype.

int PyFrozenSet_CheckExact (PyObject *p)
Return true ifp is afrozenset object but not an instance of a subtype.

PyObject* PySet_New (PyObject *iterable)
Return value: New reference.
Return a newset containing objects returned by theiterable. The iterablemay beNULL to create a new
empty set. Return the new set on success orNULL on failure. RaiseTypeError if iterable is not actually
iterable. The constructor is also useful for copying a set (c=set(s)).

PyObject* PyFrozenSet_New (PyObject *iterable)
Return value: New reference.
Return a newfrozenset containing objects returned by theiterable. Theiterablemay beNULL to create
a new empty frozenset. Return the new set on success orNULL on failure. RaiseTypeError if iterable
is not actually iterable. Changed in version 2.6: Now guaranteed to return a brand-newfrozenset .
Formerly, frozensets of zero-length were a singleton. This got in the way of building-up new frozensets
with PySet_Add() .

The following functions and macros are available for instances ofset or frozenset or instances of their
subtypes.

Py_ssize_t PySet_Size (PyObject *anyset)
Return the length of aset or frozenset object. Equivalent tolen(anyset) . Raises a

PyExc_SystemError if anysetis not aset , frozenset , or an instance of a subtype. Changed in
version 2.5: This function returned anint . This might require changes in your code for properly support-
ing 64-bit systems.

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form ofPySet_Size() without error checking.

int PySet_Contains (PyObject *anyset, PyObject *key)
Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python__contains__()
method, this function does not automatically convert unhashable sets into temporary frozensets. Raise a
TypeError if the keyis unhashable. RaisePyExc_SystemError if anysetis not aset , frozenset ,
or an instance of a subtype.

int PySet_Add (PyObject *set, PyObject *key)
Add keyto aset instance. Does not apply tofrozenset instances. Return 0 on success or -1 on failure.
Raise aTypeError if the keyis unhashable. Raise aMemoryError if there is no room to grow. Raise a
SystemError if setis an not an instance ofset or its subtype. Changed in version 2.6: Now works with
instances offrozenset or its subtypes. LikePyTuple_SetItem() in that it can be used to fill-in the
values of brand new frozensets before they are exposed to other code.

The following functions are available for instances ofset or its subtypes but not for instances offrozenset or
its subtypes.

7.5. Other Objects 89

The Python/C API, Release 2.6.4

int PySet_Discard (PyObject *set, PyObject *key)
Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error is encountered.
Does not raiseKeyError for missing keys. Raise aTypeError if the key is unhashable. Unlike the
Pythondiscard() method, this function does not automatically convert unhashable sets into temporary
frozensets. RaisePyExc_SystemError if setis an not an instance ofset or its subtype.

PyObject* PySet_Pop (PyObject *set)
Return value: New reference.
Return a new reference to an arbitrary object in theset, and removes the object from theset. ReturnNULL
on failure. RaiseKeyError if the set is empty. Raise aSystemError if setis an not an instance ofset
or its subtype.

int PySet_Clear (PyObject *set)
Empty an existing set of all elements.

90 Chapter 7. Concrete Objects Layer

CHAPTER

EIGHT

INITIALIZATION, FINALIZATION, AND
THREADS

void Py_Initialize ()
Initialize the Python interpreter. In an application embedding Python, this should be called be-

fore using any other Python/C API functions; with the exception ofPy_SetProgramName() ,
PyEval_InitThreads() , PyEval_ReleaseLock() , and PyEval_AcquireLock() . This
initializes the table of loaded modules (sys.modules), and creates the fundamental modules
__builtin__ , __main__ andsys . It also initializes the module search path (sys.path). It does
not setsys.argv ; usePySys_SetArgv() for that. This is a no-op when called for a second time
(without callingPy_Finalize() first). There is no return value; it is a fatal error if the initialization
fails.

void Py_InitializeEx (int initsigs)
This function works likePy_Initialize() if initsigs is 1. If initsigs is 0, it skips initialization registra-
tion of signal handlers, which might be useful when Python is embedded. New in version 2.4.

int Py_IsInitialized ()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py_Finalize() is called, this returns false untilPy_Initialize() is called again.

void Py_Finalize ()
Undo all initializations made byPy_Initialize() and subsequent use of Python/C API functions, and
destroy all sub-interpreters (seePy_NewInterpreter() below) that were created and not yet destroyed
since the last call toPy_Initialize() . Ideally, this frees all memory allocated by the Python inter-
preter. This is a no-op when called for a second time (without callingPy_Initialize() again first).
There is no return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading
the DLL. During a hunt for memory leaks in an application a developer might want to free all memory
allocated by Python before exiting from the application.

Bugs and caveats:The destruction of modules and objects in modules is done in random order; this may
cause destructors (__del__() methods) to fail when they depend on other objects (even functions) or
modules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of
memory allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory
tied up in circular references between objects is not freed. Some memory allocated by extension modules
may not be freed. Some extensions may not work properly if their initialization routine is called more than
once; this can happen if an application callsPy_Initialize() andPy_Finalize() more than once.

PyThreadState* Py_NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python
code. In particular, the new interpreter has separate, independent versions of all imported modules, in-
cluding the fundamental modules__builtin__ , __main__ andsys . The table of loaded modules
(sys.modules) and the module search path (sys.path) are also separate. The new environment has

91

The Python/C API, Release 2.6.4

no sys.argv variable. It has new standard I/O stream file objectssys.stdin , sys.stdout and
sys.stderr (however these refer to the same underlyingFILE structures in the C library).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made
in the current thread state. Note that no actual thread is created; see the discussion of thread states below.
If creation of the new interpreter is unsuccessful,NULL is returned; no exception is set since the exception
state is stored in the current thread state and there may not be a current thread state. (Like all other Python/C
API functions, the global interpreter lock must be held before calling this function and is still held when
it returns; however, unlike most other Python/C API functions, there needn’t be a current thread state on
entry.) Extension modules are shared between (sub-)interpreters as follows: the first time a particular
extension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled
away. When the same extension is imported by another (sub-)interpreter, a new module is initialized and
filled with the contents of this copy; the extension’sinit function is not called. Note that this is different
from what happens when an extension is imported after the interpreter has been completely re-initialized by
callingPy_Finalize() andPy_Initialize() ; in that case, the extension’sinitmodule function
is called again. Bugs and caveats:Because sub-interpreters (and the main interpreter) are part of the
same process, the insulation between them isn’t perfect — for example, using low-level file operations like
os.close() they can (accidentally or maliciously) affect each other’s open files. Because of the way
extensions are shared between (sub-)interpreters, some extensions may not work properly; this is especially
likely when the extension makes use of (static) global variables, or when the extension manipulates its
module’s dictionary after its initialization. It is possible to insert objects created in one sub-interpreter into
a namespace of another sub-interpreter; this should be done with great care to avoid sharing user-defined
functions, methods, instances or classes between sub-interpreters, since import operations executed by such
objects may affect the wrong (sub-)interpreter’s dictionary of loaded modules. (XXX This is a hard-to-fix
bug that will be addressed in a future release.)

Also note that the use of this functionality is incompatible with extension modules such as PyObjC and
ctypes that use thePyGILState_*() APIs (and this is inherent in the way thePyGILState_*()
functions work). Simple things may work, but confusing behavior will always be near.

void Py_EndInterpreter (PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the
current thread state. See the discussion of thread states below. When the call returns, the current thread
state isNULL. All thread states associated with this interpreter are destroyed. (The global interpreter lock
must be held before calling this function and is still held when it returns.)Py_Finalize() will destroy
all sub-interpreters that haven’t been explicitly destroyed at that point.

void Py_SetProgramName (char *name)
This function should be called beforePy_Initialize() is called for the first time, if it is called at all.
It tells the interpreter the value of theargv[0] argument to themain() function of the program. This is
used byPy_GetPath() and some other functions below to find the Python run-time libraries relative to
the interpreter executable. The default value is’python’ . The argument should point to a zero-terminated
character string in static storage whose contents will not change for the duration of the program’s execution.
No code in the Python interpreter will change the contents of this storage.

char* Py_GetProgramName ()
Return the program name set withPy_SetProgramName() , or the default. The returned string points
into static storage; the caller should not modify its value.

char* Py_GetPrefix ()
Return theprefix for installed platform-independent files. This is derived through a number of complicated
rules from the program name set withPy_SetProgramName() and some environment variables; for
example, if the program name is’/usr/local/bin/python’ , the prefix is’/usr/local’ . The
returned string points into static storage; the caller should not modify its value. This corresponds to the
prefix variable in the top-levelMakefile and the--prefix argument to theconfigure script at build
time. The value is available to Python code assys.prefix . It is only useful on Unix. See also the next
function.

char* Py_GetExecPrefix ()
Return theexec-prefixfor installed platform-dependentfiles. This is derived through a number of
complicated rules from the program name set withPy_SetProgramName() and some environment
variables; for example, if the program name is’/usr/local/bin/python’ , the exec-prefix is

92 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.4

’/usr/local’ . The returned string points into static storage; the caller should not modify its value.
This corresponds to theexec_prefixvariable in the top-levelMakefile and the--exec-prefix argu-
ment to theconfigure script at build time. The value is available to Python code assys.exec_prefix .
It is only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables
and shared libraries) are installed in a different directory tree. In a typical installation, platform dependent
files may be installed in the/usr/local/plat subtree while platform independent may be installed in
/usr/local .

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines
running the Solaris 2.x operating system are considered the same platform, but Intel machines running
Solaris 2.x are another platform, and Intel machines running Linux are yet another platform. Different
major revisions of the same operating system generally also form different platforms. Non-Unix operating
systems are a different story; the installation strategies on those systems are so different that the prefix and
exec-prefix are meaningless, and set to the empty string. Note that compiled Python bytecode files are
platform independent (but not independent from the Python version by which they were compiled!).

System administrators will know how to configure themount or automount programs to share
/usr/local between platforms while having/usr/local/plat be a different filesystem for each
platform.

char* Py_GetProgramFullPath ()
Return the full program name of the Python executable; this is computed as a side-effect of deriving

the default module search path from the program name (set byPy_SetProgramName() above). The
returned string points into static storage; the caller should not modify its value. The value is available to
Python code assys.executable .

char* Py_GetPath ()
Return the default module search path; this is computed from the program name (set by

Py_SetProgramName() above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter character is
’:’ on Unix and Mac OS X,’;’ on Windows. The returned string points into static storage; the caller
should not modify its value. The value is available to Python code as the listsys.path , which may be
modified to change the future search path for loaded modules.

const char* Py_GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

" 1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2] "

The first word (up to the first space character) is the current Python version; the first three characters are
the major and minor version separated by a period. The returned string points into static storage; the caller
should not modify its value. The value is available to Python code assys.version .

const char* Py_GetBuildNumber ()
Return a string representing the Subversion revision that this Python executable was built from. This number
is a string because it may contain a trailing ‘M’ if Python was built from a mixed revision source tree. New
in version 2.5.

const char* Py_GetPlatform ()
Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of
the operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x,
which is also known as SunOS 5.x, the value is’sunos5’ . On Mac OS X, it is’darwin’ . On Windows,
it is ’win’ . The returned string points into static storage; the caller should not modify its value. The value
is available to Python code assys.platform .

const char* Py_GetCopyright ()
Return the official copyright string for the current Python version, for example

’Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam’ The re-
turned string points into static storage; the caller should not modify its value. The value is available to
Python code assys.copyright .

93

The Python/C API, Release 2.6.4

const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for exam-
ple:

" [GCC 2.7.2.2] "

The returned string points into static storage; the caller should not modify its value. The value is available
to Python code as part of the variablesys.version .

const char* Py_GetBuildInfo ()
Return information about the sequence number and build date and time of the current Python interpreter
instance, for example

" #67, Aug 1 1997, 22:34:28 "

The returned string points into static storage; the caller should not modify its value. The value is available
to Python code as part of the variablesys.version .

void PySys_SetArgv (int argc, char **argv)
Setsys.argv based onargc andargv. These parameters are similar to those passed to the program’s

main() function with the difference that the first entry should refer to the script file to be executed rather
than the executable hosting the Python interpreter. If there isn’t a script that will be run, the first entry in
argv can be an empty string. If this function fails to initializesys.argv , a fatal condition is signalled
usingPy_FatalError() .

This function also prepends the executed script’s path tosys.path . If no script is executed (in the case of
callingpython -c or just the interactive interpreter), the empty string is used instead.

void Py_SetPythonHome (char *home)
Set the default “home” directory, that is, the location of the standard Python libraries. The libraries are
searched inhome/lib/pythonversion andhome/lib/pythonversion . The argument should
point to a zero-terminated character string in static storage whose contents will not change for the duration
of the program’s execution. No code in the Python interpreter will change the contents of this storage.

char* Py_GetPythonHome ()
Return the default “home”, that is, the value set by a previous call toPy_SetPythonHome() , or the
value of thePYTHONHOME environment variable if it is set.

8.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs, there’s a global
lock, called theglobal interpreter lockor GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference
count could end up being incremented only once instead of twice. Therefore, the rule exists that only the thread
that has acquired the global interpreter lock may operate on Python objects or call Python/C API functions. In
order to support multi-threaded Python programs, the interpreter regularly releases and reacquires the lock — by
default, every 100 bytecode instructions (this can be changed withsys.setcheckinterval()). The lock is
also released and reacquired around potentially blocking I/O operations like reading or writing a file, so that other
threads can run while the thread that requests the I/O is waiting for the I/O operation to complete. The Python in-
terpreter needs to keep some bookkeeping information separate per thread — for this it uses a data structure called
PyThreadState . There’s one global variable, however: the pointer to the currentPyThreadState structure.
Before the addition ofthread-local storage(TLS) the current thread state had to be manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following simple
structure:

Save the thread state in a local variable.
Release the global interpreter lock.
...Do some blocking I / O operation...

94 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.4

Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
...Do some blocking I / O operation...
Py_END_ALLOW_THREADS

The Py_BEGIN_ALLOW_THREADSmacro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADSmacro closes the block. Another advantage of using these two macros is that when
Python is compiled without thread support, they are defined empty, thus saving the thread state and GIL manipu-
lations.

When thread support is enabled, the block above expands to the following code:

PyThreadState * _save;

_save = PyEval_SaveThread();
...Do some blocking I / O operation...
PyEval_RestoreThread(_save);

Using even lower level primitives, we can get roughly the same effect as follows:

PyThreadState * _save;

_save = PyThreadState_Swap(NULL);
PyEval_ReleaseLock();
...Do some blocking I / O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);

There are some subtle differences; in particular,PyEval_RestoreThread() saves and restores the value of
the global variableerrno , since the lock manipulation does not guarantee thaterrno is left alone. Also, when
thread support is disabled,PyEval_SaveThread() and PyEval_RestoreThread() don’t manipulate
the GIL; in this case,PyEval_ReleaseLock() andPyEval_AcquireLock() are not available. This is
done so that dynamically loaded extensions compiled with thread support enabled can be loaded by an interpreter
that was compiled with disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and
saving the thread state, the current thread state pointer must be retrieved before the lock is released (since another
thread could immediately acquire the lock and store its own thread state in the global variable). Conversely, when
acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.

It is important to note that when threads are created from C, they don’t have the global interpreter lock, nor is there
a thread state data structure for them. Such threads must bootstrap themselves into existence, by first creating a
thread state data structure, then acquiring the lock, and finally storing their thread state pointer, before they can
start using the Python/C API. When they are done, they should reset the thread state pointer, release the lock, and
finally free their thread state data structure.

Beginning with version 2.3, threads can now take advantage of thePyGILState_*() functions to do all of the
above automatically. The typical idiom for calling into Python from a C thread is now:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);

Note that thePyGILState_*() functions assume there is only one global interpreter (created auto-
matically by Py_Initialize()). Python still supports the creation of additional interpreters (using

8.1. Thread State and the Global Interpreter Lock 95

The Python/C API, Release 2.6.4

Py_NewInterpreter()), but mixing multiple interpreters and thePyGILState_*() API is unsupported.

Another important thing to note about threads is their behaviour in the face of the Cfork() call. On most
systems withfork() , after a process forks only the thread that issued the fork will exist. That also means
any locks held by other threads will never be released. Python solves this foros.fork() by acquiring the
locks it uses internally before the fork, and releasing them afterwards. In addition, it resets anyLock Objects(in
The Python Library Reference) in the child. When extending or embedding Python, there is no way to inform
Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such
asposix_atfork() would need to be used to accomplish the same thing. Additionally, when extending or
embedding Python, callingfork() directly rather than throughos.fork() (and returning to or calling into
Python) may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after the
fork. PyOS_AfterFork() tries to reset the necessary locks, but is not always able to.

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to
the same interpreter share their module administration and a few other internal items. There are no public
members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available mem-
ory, open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to
which interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState * interp , which points to this thread’s interpreter state.

void PyEval_InitThreads ()
Initialize and acquire the global interpreter lock. It should be called in the main thread before creat-

ing a second thread or engaging in any other thread operations such asPyEval_ReleaseLock() or
PyEval_ReleaseThread(tstate) . It is not needed before callingPyEval_SaveThread() or
PyEval_RestoreThread() . This is a no-op when called for a second time. It is safe to call this
function before callingPy_Initialize() . When only the main thread exists, no GIL operations are
needed. This is a common situation (most Python programs do not use threads), and the lock operations
slow the interpreter down a bit. Therefore, the lock is not created initially. This situation is equivalent
to having acquired the lock: when there is only a single thread, all object accesses are safe. Therefore,
when this function initializes the global interpreter lock, it also acquires it. Before the Pythonthread
module creates a new thread, knowing that either it has the lock or the lock hasn’t been created yet, it calls
PyEval_InitThreads() . When this call returns, it is guaranteed that the lock has been created and
that the calling thread has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter
lock.

This function is not available when thread support is disabled at compile time.

int PyEval_ThreadsInitialized ()
Returns a non-zero value ifPyEval_InitThreads() has been called. This function can be called
without holding the GIL, and therefore can be used to avoid calls to the locking API when running single-
threaded. This function is not available when thread support is disabled at compile time. New in version
2.4.

void PyEval_AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the
lock, a deadlock ensues. This function is not available when thread support is disabled at compile time.

void PyEval_ReleaseLock ()
Release the global interpreter lock. The lock must have been created earlier. This function is not available
when thread support is disabled at compile time.

void PyEval_AcquireThread (PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state totstate, which should not beNULL. The
lock must have been created earlier. If this thread already has the lock, deadlock ensues. This function is
not available when thread support is disabled at compile time.

96 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.4

void PyEval_ReleaseThread (PyThreadState *tstate)
Reset the current thread state toNULL and release the global interpreter lock. The lock must have been
created earlier and must be held by the current thread. Thetstateargument, which must not beNULL, is
only used to check that it represents the current thread state — if it isn’t, a fatal error is reported. This
function is not available when thread support is disabled at compile time.

PyThreadState* PyEval_SaveThread ()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread
state toNULL, returning the previous thread state (which is notNULL). If the lock has been created, the
current thread must have acquired it. (This function is available even when thread support is disabled at
compile time.)

void PyEval_RestoreThread (PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread
state totstate, which must not beNULL. If the lock has been created, the current thread must not have
acquired it, otherwise deadlock ensues. (This function is available even when thread support is disabled at
compile time.)

void PyEval_ReInitThreads ()
This function is called fromPyOS_AfterFork() to ensure that newly created child processes don’t hold
locks referring to threads which are not running in the child process.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOW_THREADS
This macro expands to{ PyThreadState *_save; _save = PyEval_SaveThread(); . Note
that it contains an opening brace; it must be matched with a followingPy_END_ALLOW_THREADSmacro.
See above for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py_END_ALLOW_THREADS
This macro expands toPyEval_RestoreThread(_save); } . Note that it contains a closing brace;
it must be matched with an earlierPy_BEGIN_ALLOW_THREADSmacro. See above for further discussion
of this macro. It is a no-op when thread support is disabled at compile time.

Py_BLOCK_THREADS
This macro expands to PyEval_RestoreThread(_save); : it is equivalent to
Py_END_ALLOW_THREADSwithout the closing brace. It is a no-op when thread support is disabled at
compile time.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread(); : it is equivalent to
Py_BEGIN_ALLOW_THREADSwithout the opening brace and variable declaration. It is a no-op
when thread support is disabled at compile time.

All of the following functions are only available when thread support is enabled at compile time, and must be
called only when the global interpreter lock has been created.

PyInterpreterState* PyInterpreterState_New ()
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is
necessary to serialize calls to this function.

void PyInterpreterState_Clear (PyInterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete (PyInterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must
have been reset with a previous call toPyInterpreterState_Clear() .

PyThreadState* PyThreadState_New (PyInterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need
not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

8.1. Thread State and the Global Interpreter Lock 97

The Python/C API, Release 2.6.4

void PyThreadState_Delete (PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been
reset with a previous call toPyThreadState_Clear() .

PyThreadState* PyThreadState_Get ()
Return the current thread state. The global interpreter lock must be held. When the current thread state is
NULL, this issues a fatal error (so that the caller needn’t check forNULL).

PyThreadState* PyThreadState_Swap (PyThreadState *tstate)
Swap the current thread state with the thread state given by the argumenttstate, which may beNULL. The
global interpreter lock must be held.

PyObject* PyThreadState_GetDict ()
Return value: Borrowed reference.
Return a dictionary in which extensions can store thread-specific state information. Each extension should
use a unique key to use to store state in the dictionary. It is okay to call this function when no current thread
state is available. If this function returnsNULL, no exception has been raised and the caller should assume
no current thread state is available. Changed in version 2.3: Previously this could only be called when a
current thread is active, andNULL meant that an exception was raised.

int PyThreadState_SetAsyncExc (long id, PyObject *exc)
Asynchronously raise an exception in a thread. Theid argument is the thread id of the target thread;exc
is the exception object to be raised. This function does not steal any references toexc. To prevent naive
misuse, you must write your own C extension to call this. Must be called with the GIL held. Returns the
number of thread states modified; this is normally one, but will be zero if the thread id isn’t found. Ifexc
is NULL, the pending exception (if any) for the thread is cleared. This raises no exceptions. New in version
2.3.

PyGILState_STATE PyGILState_Ensure ()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python,
or of the global interpreter lock. This may be called as many times as desired by a thread as long as
each call is matched with a call toPyGILState_Release() . In general, other thread-related APIs
may be used betweenPyGILState_Ensure() andPyGILState_Release() calls as long as the
thread state is restored to its previous state before the Release(). For example, normal usage of the
Py_BEGIN_ALLOW_THREADSandPy_END_ALLOW_THREADSmacros is acceptable.

The return value is an opaque “handle” to the thread state whenPyGILState_Ensure() was called,
and must be passed toPyGILState_Release() to ensure Python is left in the same state. Even though
recursive calls are allowed, these handlescannotbe shared - each unique call toPyGILState_Ensure()
must save the handle for its call toPyGILState_Release() .

When the function returns, the current thread will hold the GIL. Failure is a fatal error. New in version 2.3.

void PyGILState_Release (PyGILState_STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to
the correspondingPyGILState_Ensure() call (but generally this state will be unknown to the caller,
hence the use of the GILState API.)

Every call toPyGILState_Ensure() must be matched by a call toPyGILState_Release() on
the same thread. New in version 2.3.

8.2 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities.
These are used for profiling, debugging, and coverage analysis tools.

Starting with Python 2.2, the implementation of this facility was substantially revised, and an interface from C was
added. This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level
callable objects, making a direct C function call instead. The essential attributes of the facility have not changed;
the interface allows trace functions to be installed per-thread, and the basic events reported to the trace function
are the same as had been reported to the Python-level trace functions in previous versions.

98 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.4

(*Py_tracefunc)
The type of the trace function registered usingPyEval_SetProfile() andPyEval_SetTrace() .
The first parameter is the object passed to the registration function asobj, frame is the frame object to
which the event pertains,what is one of the constantsPyTrace_CALL , PyTrace_EXCEPTION ,
PyTrace_LINE , PyTrace_RETURN, PyTrace_C_CALL , PyTrace_C_EXCEPTION, or
PyTrace_C_RETURN, andarg depends on the value ofwhat:

Value of what Meaning of arg
PyTrace_CALL AlwaysNULL.
PyTrace_EXCEPTION Exception information as returned bysys.exc_info() .
PyTrace_LINE AlwaysNULL.
PyTrace_RETURN Value being returned to the caller.
PyTrace_C_CALL Name of function being called.
PyTrace_C_EXCEPTION AlwaysNULL.
PyTrace_C_RETURN AlwaysNULL.

int PyTrace_CALL
The value of thewhatparameter to aPy_tracefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of thewhat parameter to aPy_tracefunc function when an exception has been raised. The
callback function is called with this value forwhat when after any bytecode is processed after which the
exception becomes set within the frame being executed. The effect of this is that as exception propaga-
tion causes the Python stack to unwind, the callback is called upon return to each frame as the exception
propagates. Only trace functions receives these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as thewhatparameter to a trace function (but not a profiling function) when a line-number
event is being reported.

int PyTrace_RETURN
The value for thewhatparameter toPy_tracefunc functions when a call is returning without propagat-
ing an exception.

int PyTrace_C_CALL
The value for thewhatparameter toPy_tracefunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for thewhatparameter toPy_tracefunc functions when a C function has thrown an exception.

int PyTrace_C_RETURN
The value for thewhatparameter toPy_tracefunc functions when a C function has returned.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function tofunc. Theobj parameter is passed to the function as its first parameter, and may
be any Python object, orNULL. If the profile function needs to maintain state, using a different value for
obj for each thread provides a convenient and thread-safe place to store it. The profile function is called for
all monitored events except the line-number events.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function tofunc. This is similar toPyEval_SetProfile() , except the tracing function
does receive line-number events.

PyObject* PyEval_GetCallStats (PyObject *self)
Return a tuple of function call counts. There are constants defined for the positions within the tuple:

8.2. Profiling and Tracing 99

The Python/C API, Release 2.6.4

Name Value
PCALL_ALL 0
PCALL_FUNCTION 1
PCALL_FAST_FUNCTION 2
PCALL_FASTER_FUNCTION 3
PCALL_METHOD 4
PCALL_BOUND_METHOD 5
PCALL_CFUNCTION 6
PCALL_TYPE 7
PCALL_GENERATOR 8
PCALL_OTHER 9
PCALL_POP 10

PCALL_FAST_FUNCTIONmeans no argument tuple needs to be created.PCALL_FASTER_FUNCTION
means that the fast-path frame setup code is used.

If there is a method call where the call can be optimized by changing the argument tuple and calling the
function directly, it gets recorded twice.

This function is only present if Python is compiled withCALL_PROFILEdefined.

8.3 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PyInterpreterState* PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects. New in version 2.2.

PyInterpreterState* PyInterpreterState_Next (PyInterpreterState *interp)
Return the next interpreter state object afterinterp from the list of all such objects. New in version 2.2.

PyThreadState * PyInterpreterState_ThreadHead (PyInterpreterState *interp)
Return the a pointer to the firstPyThreadState object in the list of threads associated with the interpreter
interp. New in version 2.2.

PyThreadState* PyThreadState_Next (PyThreadState *tstate)
Return the next thread state object aftertstate from the list of all such objects belonging to the same
PyInterpreterState object. New in version 2.2.

100 Chapter 8. Initialization, Finalization, and Threads

CHAPTER

NINE

MEMORY MANAGEMENT

9.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The
management of this private heap is ensured internally by thePython memory manager. The Python memory
manager has different components which deal with various dynamic storage management aspects, like sharing,
segmentation, preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing
all Python-related data by interacting with the memory manager of the operating system. On top of the raw
memory allocator, several object-specific allocators operate on the same heap and implement distinct memory
management policies adapted to the peculiarities of every object type. For example, integer objects are managed
differently within the heap than strings, tuples or dictionaries because integers imply different storage requirements
and speed/space tradeoffs. The Python memory manager thus delegates some of the work to the object-specific
allocators, but ensures that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and
that the user has no control over it, even if she regularly manipulates object pointers to memory blocks inside
that heap. The allocation of heap space for Python objects and other internal buffers is performed on demand by
the Python memory manager through the Python/C API functions listed in this document. To avoid memory
corruption, extension writers should never try to operate on Python objects with the functions exported by the
C library: malloc() , calloc() , realloc() and free() . This will result in mixed calls between the C
allocator and the Python memory manager with fatal consequences, because they implement different algorithms
and operate on different heaps. However, one may safely allocate and release memory blocks with the C library
allocator for individual purposes, as shown in the following example:

PyObject * res;
char * buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

...Do some I / O operation involving buf...
res = PyString_FromString(buf);
free(buf); /* malloc’ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because
the latter is under control of the Python memory manager. For example, this is required when the interpreter is
extended with new object types written in C. Another reason for using the Python heap is the desire toinform the
Python memory manager about the memory needs of the extension module. Even when the requested memory
is used exclusively for internal, highly-specific purposes, delegating all memory requests to the Python memory
manager causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently,
under certain circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage
collection, memory compaction or other preventive procedures. Note that by using the C library allocator as shown

101

The Python/C API, Release 2.6.4

in the previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

9.2 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero
bytes, are available for allocating and releasing memory from the Python heap:

void* PyMem_Malloc (size_t n)
Allocatesn bytes and returns a pointer of typevoid* to the allocated memory, orNULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as ifPyMem_Malloc(1)() had
been called instead. The memory will not have been initialized in any way.

void* PyMem_Realloc (void *p, size_t n)
Resizes the memory block pointed to byp to n bytes. The contents will be unchanged to the minimum of
the old and the new sizes. Ifp is NULL, the call is equivalent toPyMem_Malloc(n)() ; else ifn is equal
to zero, the memory block is resized but is not freed, and the returned pointer is non-NULL. Unlessp is
NULL, it must have been returned by a previous call toPyMem_Malloc() or PyMem_Realloc() . If
the request fails,PyMem_Realloc() returnsNULL andp remains a valid pointer to the previous memory
area.

void PyMem_Free(void *p)
Frees the memory block pointed to byp, which must have been returned by a previous call to
PyMem_Malloc() or PyMem_Realloc() . Otherwise, or ifPyMem_Free(p)() has been called
before, undefined behavior occurs. Ifp is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note thatTYPErefers to any C type.

TYPE* PyMem_New(TYPE, size_t n)
Same asPyMem_Malloc() , but allocates(n * sizeof(TYPE)) bytes of memory. Returns a pointer
cast toTYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize (void *p, TYPE, size_t n)
Same asPyMem_Realloc() , but the memory block is resized to(n * sizeof(TYPE)) bytes. Re-
turns a pointer cast toTYPE*. On return,p will be a pointer to the new memory area, orNULL in the event
of failure. This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid
losing memory when handling errors.

void PyMem_Del(void *p)
Same asPyMem_Free() .

In addition, the following macro sets are provided for calling the Python memory allocator directly, without
involving the C API functions listed above. However, note that their use does not preserve binary compatibility
across Python versions and is therefore deprecated in extension modules.

PyMem_MALLOC(), PyMem_REALLOC(), PyMem_FREE().

PyMem_NEW(), PyMem_RESIZE() , PyMem_DEL().

9.3 Examples

Here is the example from sectionOverview, rewritten so that the I/O buffer is allocated from the Python heap by
using the first function set:

PyObject * res;
char * buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */

102 Chapter 9. Memory Management

The Python/C API, Release 2.6.4

res = PyString_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

PyObject * res;
char * buf = PyMem_New(char , BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set.
Indeed, it is required to use the same memory API family for a given memory block, so that the risk of mixing
different allocators is reduced to a minimum. The following code sequence contains two errors, one of which is
labeled asfatal because it mixes two different allocators operating on different heaps.

char * buf1 = PyMem_New(char , BUFSIZ);
char * buf2 = (char *) malloc(BUFSIZ);
char * buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(buf1); /* Fatal -- should be PyMem_Del() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released withPyObject_New() , PyObject_NewVar() andPyObject_Del() .

These will be explained in the next chapter on defining and implementing new object types in C.

9.3. Examples 103

The Python/C API, Release 2.6.4

104 Chapter 9. Memory Management

CHAPTER

TEN

OBJECT IMPLEMENTATION SUPPORT

This chapter describes the functions, types, and macros used when defining new object types.

10.1 Allocating Objects on the Heap

PyObject* _PyObject_New (PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)
Return value: New reference.
Changed in version 2.5: This function used anint type forsize. This might require changes in your code
for properly supporting 64-bit systems.

void _PyObject_Del (PyObject *op)

PyObject* PyObject_Init (PyObject *op, PyTypeObject *type)
Return value: Borrowed reference.
Initialize a newly-allocated objectop with its type and initial reference. Returns the initialized object. If
type indicates that the object participates in the cyclic garbage detector, it is added to the detector’s set of
observed objects. Other fields of the object are not affected.

PyVarObject* PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference.
This does everythingPyObject_Init() does, and also initializes the length information for a variable-
size object. Changed in version 2.5: This function used anint type forsize. This might require changes in
your code for properly supporting 64-bit systems.

TYPE* PyObject_New (TYPE, PyTypeObject *type)
Return value: New reference.
Allocate a new Python object using the C structure typeTYPEand the Python type objecttype. Fields not
defined by the Python object header are not initialized; the object’s reference count will be one. The size of
the memory allocation is determined from thetp_basicsize field of the type object.

TYPE* PyObject_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference.
Allocate a new Python object using the C structure typeTYPEand the Python type objecttype. Fields not
defined by the Python object header are not initialized. The allocated memory allows for theTYPEstructure
plussizefields of the size given by thetp_itemsize field of type. This is useful for implementing objects
like tuples, which are able to determine their size at construction time. Embedding the array of fields into
the same allocation decreases the number of allocations, improving the memory management efficiency.
Changed in version 2.5: This function used anint type forsize. This might require changes in your code
for properly supporting 64-bit systems.

void PyObject_Del (PyObject *op)
Releases memory allocated to an object usingPyObject_New() or PyObject_NewVar() . This is

105

The Python/C API, Release 2.6.4

normally called from thetp_dealloc handler specified in the object’s type. The fields of the object
should not be accessed after this call as the memory is no longer a valid Python object.

PyObject* Py_InitModule (char *name, PyMethodDef *methods)
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module object.
Changed in version 2.3: Older versions of Python did not supportNULL as the value for themethods
argument.

PyObject* Py_InitModule3 (char *name, PyMethodDef *methods, char *doc)
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module object. Ifdoc
is non-NULL, it will be used to define the docstring for the module. Changed in version 2.3: Older versions
of Python did not supportNULL as the value for themethodsargument.

PyObject* Py_InitModule4 (char *name, PyMethodDef *methods, char *doc, PyObject *self, int apiver)
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module object. Ifdoc
is non-NULL, it will be used to define the docstring for the module. Ifself is non-NULL, it will passed to
the functions of the module as their (otherwiseNULL) first parameter. (This was added as an experimental
feature, and there are no known uses in the current version of Python.) Forapiver, the only value which
should be passed is defined by the constantPYTHON_API_VERSION.

Note: Most uses of this function should probably be using thePy_InitModule3() instead; only use
this if you are sure you need it. Changed in version 2.3: Older versions of Python did not supportNULL as
the value for themethodsargument.

PyObject _Py_NoneStruct
Object which is visible in Python asNone. This should only be accessed using thePy_None macro, which
evaluates to a pointer to this object.

10.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in
memory. These are represented by thePyObject andPyVarObject types, which are defined, in turn, by the
expansions of some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to
treat a pointer to an object as an object. In a normal “release” build, it contains only the object’s reference
count and a pointer to the corresponding type object. It corresponds to the fields defined by the expansion
of thePyObject_HEAD macro.

PyVarObject
This is an extension ofPyObject that adds theob_size field. This is only used for objects that have
some notion oflength. This type does not often appear in the Python/C API. It corresponds to the fields
defined by the expansion of thePyObject_VAR_HEAD macro.

These macros are used in the definition ofPyObject andPyVarObject :

PyObject_HEAD
This is a macro which expands to the declarations of the fields of thePyObject type; it is used when
declaring new types which represent objects without a varying length. The specific fields it expands to de-
pend on the definition ofPy_TRACE_REFS. By default, that macro is not defined, andPyObject_HEAD
expands to:

Py_ssize_t ob_refcnt;
PyTypeObject * ob_type;

106 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

WhenPy_TRACE_REFSis defined, it expands to:

PyObject * _ob_next, * _ob_prev;
Py_ssize_t ob_refcnt;
PyTypeObject * ob_type;

PyObject_VAR_HEAD
This is a macro which expands to the declarations of the fields of thePyVarObject type; it is used when
declaring new types which represent objects with a length that varies from instance to instance. This macro
always expands to:

PyObject_HEAD
Py_ssize_t ob_size;

Note thatPyObject_HEAD is part of the expansion, and that its own expansion varies depending on the
definition ofPy_TRACE_REFS.

PyObject_HEAD_INIT
This is a macro which expands to initialization values for a newPyObject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT
This is a macro which expands to initialization values for a newPyVarObject type, including the
ob_size field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two
PyObject* parameters and return one such value. If the return value isNULL, an exception shall have
been set. If notNULL, the return value is interpreted as the return value of the function as exposed in Python.
The function must return a new reference.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field C Type Meaning
ml_name char * name of the method
ml_meth PyCFunction pointer to the C implementation
ml_flags int flag bits indicating how the call should be constructed
ml_doc char * points to the contents of the docstring

The ml_meth is a C function pointer. The functions may be of different types, but they always return
PyObject* . If the function is not of thePyCFunction , the compiler will require a cast in the method ta-
ble. Even thoughPyCFunction defines the first parameter asPyObject* , it is common that the method
implementation uses a the specific C type of theself object.

The ml_flags field is a bitfield which can include the following flags. The individual flags indicate ei-
ther a calling convention or a binding convention. Of the calling convention flags, onlyMETH_VARARGSand
METH_KEYWORDScan be combined (but note thatMETH_KEYWORDSalone is equivalent toMETH_VARARGS
| METH_KEYWORDS). Any of the calling convention flags can be combined with a binding flag.

METH_VARARGS
This is the typical calling convention, where the methods have the typePyCFunction . The function
expects twoPyObject* values. The first one is theself object for methods; for module functions, it has the
value given toPy_InitModule4() (or NULL if Py_InitModule() was used). The second parameter
(often calledargs) is a tuple object representing all arguments. This parameter is typically processed using
PyArg_ParseTuple() or PyArg_UnpackTuple() .

10.2. Common Object Structures 107

The Python/C API, Release 2.6.4

METH_KEYWORDS
Methods with these flags must be of typePyCFunctionWithKeywords . The function ex-
pects three parameters:self, args, and a dictionary of all the keyword arguments. The flag
is typically combined with METH_VARARGS, and the parameters are typically processed using
PyArg_ParseTupleAndKeywords() .

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGSflag. They need to be of typePyCFunction . When used with object methods, the first
parameter is typically namedself and will hold a reference to the object instance. In all cases the second
parameter will beNULL.

METH_O
Methods with a single object argument can be listed with theMETH_Oflag, instead of invoking
PyArg_ParseTuple() with a "O" argument. They have the typePyCFunction , with theself pa-
rameter, and aPyObject* parameter representing the single argument.

METH_OLDARGS
This calling convention is deprecated. The method must be of typePyCFunction . The second argument
is NULL if no arguments are given, a single object if exactly one argument is given, and a tuple of objects
if more than one argument is given. There is no way for a function using this convention to distinguish
between a call with multiple arguments and a call with a tuple as the only argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of
classes. These may not be used for functions defined for modules. At most one of these flags may be set for any
given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is
used to createclass methods, similar to what is created when using theclassmethod() built-in function.
New in version 2.3.

METH_STATIC
The method will be passedNULL as the first parameter rather than an instance of the type. This is used to
createstatic methods, similar to what is created when using thestaticmethod() built-in function. New
in version 2.3.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. WithoutMETH_COEXIST, the default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existence of asq_contains
slot, for example, would generate a wrapped method named__contains__() and preclude the loading
of a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded
in place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions
are optimized more than wrapper object calls. New in version 2.4.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

Field C Type Meaning
name char * name of the member
type int the type of the member in the C struct
offset Py_ssize_t the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable
doc char * points to the contents of the docstring

type can be one of manyT_ macros corresponding to various C types. When the member is accessed in
Python, it will be converted to the equivalent Python type.

108 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

Macro name C type
T_SHORT short
T_INT int
T_LONG long
T_FLOAT float
T_DOUBLE double
T_STRING char *
T_OBJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char
T_BYTE char
T_UBYTE unsigned char
T_UINT unsigned int
T_USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG unsigned long long
T_PYSSIZET Py_ssize_t

T_OBJECTand T_OBJECT_EXdiffer in that T_OBJECT returnsNone if the member isNULL and
T_OBJECT_EXraises anAttributeError .

flags can be 0 for write and read access orREADONLYfor read-only access. UsingT_STRING for
type impliesREADONLY. Only T_OBJECTandT_OBJECT_EXmembers can be deleted. (They are set
to NULL).

PyObject* Py_FindMethod (PyMethodDef table[], PyObject *ob, char *name)
Return value: New reference.
Return a bound method object for an extension type implemented in C. This can be use-
ful in the implementation of atp_getattro or tp_getattr handler that does not use the
PyObject_GenericGetAttr() function.

10.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type:
thePyTypeObject structure. Type objects can be handled using any of thePyObject_*() or PyType_*()
functions, but do not offer much that’s interesting to most Python applications. These objects are fundamental to
how objects behave, so they are very important to the interpreter itself and to any extension module that implements
new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type
object stores a large number of values, mostly C function pointers, each of which implements a small part of the
type’s functionality. The fields of the type object are examined in detail in this section. The fields will be described
in the order in which they occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc, intinto-
bjargproc, objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, cmp-
func, reprfunc, hashfunc

The structure definition forPyTypeObject can be found inInclude/object.h . For convenience of refer-
ence, this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
char * tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

10.3. Type Objects 109

The Python/C API, Release 2.6.4

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods * tp_as_number;
PySequenceMethods * tp_as_sequence;
PyMappingMethods * tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs * tp_as_buffer;

/* Flags to define presence of optional/expanded features */
long tp_flags;

char * tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

/* Added in release 2.2 */
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef * tp_methods;
struct PyMemberDef * tp_members;
struct PyGetSetDef * tp_getset;
struct _typeobject * tp_base;
PyObject * tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
long tp_dictoffset;
initproc tp_init;

110 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject * tp_bases;
PyObject * tp_mro; /* method resolution order */
PyObject * tp_cache;
PyObject * tp_subclasses;
PyObject * tp_weaklist;

} PyTypeObject;

The type object structure extends thePyVarObject structure. Theob_size field is used for dynamic types
(created bytype_new() , usually called from a class statement). Note thatPyType_Type (the metatype)
initializestp_itemsize , which means that its instances (i.e. type objects)musthave theob_size field.

PyObject* _ob_next
PyObject* _ob_prev

These fields are only present when the macroPy_TRACE_REFSis defined. Their initialization toNULL is
taken care of by thePyObject_HEAD_INIT macro. For statically allocated objects, these fields always
remainNULL. For dynamically allocated objects, these two fields are used to link the object into a doubly-
linked list of all live objects on the heap. This could be used for various debugging purposes; currently
the only use is to print the objects that are still alive at the end of a run when the environment variable
PYTHONDUMPREFS is set.

These fields are not inherited by subtypes.

Py_ssize_t ob_refcnt
This is the type object’s reference count, initialized to1 by thePyObject_HEAD_INIT macro. Note that
for statically allocated type objects, the type’s instances (objects whoseob_type points back to the type)
donot count as references. But for dynamically allocated type objects, the instancesdocount as references.

This field is not inherited by subtypes. Changed in version 2.5: This field used to be anint type. This
might require changes in your code for properly supporting 64-bit systems.

PyTypeObject* ob_type
This is the type’s type, in other words its metatype. It is initialized by the argument to the
PyObject_HEAD_INIT macro, and its value should normally be&PyType_Type . However, for dy-
namically loadable extension modules that must be usable on Windows (at least), the compiler complains
that this is not a valid initializer. Therefore, the convention is to passNULL to thePyObject_HEAD_INIT
macro and to initialize this field explicitly at the start of the module’s initialization function, before doing
anything else. This is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created.PyType_Ready() checks ifob_type
is NULL, and if so, initializes it: in Python 2.2, it is set to&PyType_Type ; in Python 2.2.1 and later it
is initialized to theob_type field of the base class.PyType_Ready() will not change this field if it is
non-zero.

In Python 2.2, this field is not inherited by subtypes. In 2.2.1, and in 2.3 and beyond, it is inherited by
subtypes.

Py_ssize_t ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type
objects, this field has a special internal meaning.

This field is not inherited by subtypes.

char* tp_name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is

10.3. Type Objects 111

The Python/C API, Release 2.6.4

part of the full module name. For example, a type namedT defined in moduleMin subpackageQin package
P should have thetp_name initializer "P.Q.M.T" .

For dynamically allocated type objects, this should just be the type name, and the module name explicitly
stored in the type dict as the value for key’__module__’ .

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot
is made accessible as the__module__ attribute, and everything after the last dot is made accessible as the
__name__ attribute.

If no dot is present, the entiretp_name field is made accessible as the__name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This
means your type will be impossible to pickle.

This field is not inherited by subtypes.

Py_ssize_t tp_basicsize
Py_ssize_t tp_itemsize

These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zerotp_itemsize field, types with
variable-length instances have a non-zerotp_itemsize field. For a type with fixed-length instances, all
instances have the same size, given intp_basicsize .

For a type with variable-length instances, the instances must have anob_size field, and the instance size
is tp_basicsize plus N timestp_itemsize , where N is the “length” of the object. The value of
N is typically stored in the instance’sob_size field. There are exceptions: for example, long ints use
a negativeob_size to indicate a negative number, and N isabs(ob_size) there. Also, the presence
of anob_size field in the instance layout doesn’t mean that the instance structure is variable-length (for
example, the structure for the list type has fixed-length instances, yet those instances have a meaningful
ob_size field).

The basic size includes the fields in the instance declared by the macroPyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and_ob_next fields if they are present. This means that the only correct way to get an ini-
tializer for thetp_basicsize is to use thesizeof operator on the struct used to declare the instance
layout. The basic size does not include the GC header size (this is new in Python 2.2; in 2.1 and 2.0, the GC
header size was included intp_basicsize).

These fields are inherited separately by subtypes. If the base type has a non-zerotp_itemsize , it is
generally not safe to settp_itemsize to a different non-zero value in a subtype (though this depends on
the implementation of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value oftp_basicsize . Example: suppose a type implements an array ofdouble . tp_itemsize
is sizeof(double) . It is the programmer’s responsibility thattp_basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirement fordouble).

destructor tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that
its instances will never be deallocated (as is the case for the singletonsNone andEllipsis).

The destructor function is called by thePy_DECREF() and Py_XDECREF() macros when the new
reference count is zero. At this point, the instance is still in existence, but there are no references
to it. The destructor function should free all references which the instance owns, free all memory
buffers owned by the instance (using the freeing function corresponding to the allocation function used
to allocate the buffer), and finally (as its last action) call the type’stp_free function. If the type
is not subtypable (doesn’t have thePy_TPFLAGS_BASETYPEflag bit set), it is permissible to call
the object deallocator directly instead of viatp_free . The object deallocator should be the one
used to allocate the instance; this is normallyPyObject_Del() if the instance was allocated using
PyObject_New() or PyObject_VarNew() , orPyObject_GC_Del() if the instance was allocated
usingPyObject_GC_New() or PyObject_GC_VarNew() .

This field is inherited by subtypes.

112 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

printfunc tp_print
An optional pointer to the instance print function.

The print function is only called when the instance is printed to areal file; when it is printed to a pseudo-
file (like a StringIO instance), the instance’stp_repr or tp_str function is called to convert it to a
string. These are also called when the type’stp_print field is NULL. A type should never implement
tp_print in a way that produces different output thantp_repr or tp_str would.

The print function is called with the same signature asPyObject_Print() : int
tp_print(PyObject *self, FILE *file, int flags) . The self argument is the in-
stance to be printed. Thefile argument is the stdio file to which it is to be printed. Theflagsargument is
composed of flag bits. The only flag bit currently defined isPy_PRINT_RAW. When thePy_PRINT_RAW
flag bit is set, the instance should be printed the same way astp_str would format it; when the
Py_PRINT_RAWflag bit is clear, the instance should be printed the same was astp_repr would format
it. It should return-1 and set an exception condition when an error occurred during the comparison.

It is possible that thetp_print field will be deprecated. In any case, it is recommended not to define
tp_print , but instead to rely ontp_repr andtp_str for printing.

This field is inherited by subtypes.

getattrfunc tp_getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_getattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is the same as forPyObject_GetAttrString() .

This field is inherited by subtypes together withtp_getattro : a subtype inherits bothtp_getattr
and tp_getattro from its base type when the subtype’stp_getattr and tp_getattro are both
NULL.

setattrfunc tp_setattr
An optional pointer to the set-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_setattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is the same as forPyObject_SetAttrString() .

This field is inherited by subtypes together withtp_setattro : a subtype inherits bothtp_setattr
and tp_setattro from its base type when the subtype’stp_setattr and tp_setattro are both
NULL.

cmpfunc tp_compare
An optional pointer to the three-way comparison function.

The signature is the same as forPyObject_Compare() . The function should return1 if self greater
thanother, 0 if self is equal toother, and-1 if self less thanother. It should return-1 and set an exception
condition when an error occurred during the comparison.

This field is inherited by subtypes together withtp_richcompare and tp_hash : a subtypes inher-
its all three oftp_compare , tp_richcompare , and tp_hash when the subtype’stp_compare ,
tp_richcompare , andtp_hash are allNULL.

reprfunc tp_repr
An optional pointer to a function that implements the built-in functionrepr() .

The signature is the same as forPyObject_Repr() ; it must return a string or a Unicode object. Ideally,
this function should return a string that, when passed toeval() , given a suitable environment, returns an
object with the same value. If this is not feasible, it should return a string starting with’<’ and ending with
’>’ from which both the type and the value of the object can be deduced.

When this field is not set, a string of the form<%s object at %p> is returned, where%s is replaced
by the type name, and%pby the object’s memory address.

This field is inherited by subtypes.

10.3. Type Objects 113

The Python/C API, Release 2.6.4

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documented inNumber Object Structures.

Thetp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documented inSequence Object Structures.

Thetp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented inMapping Object Structures.

Thetp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc tp_hash
An optional pointer to a function that implements the built-in functionhash() .

The signature is the same as forPyObject_Hash() ; it must return a C long. The value-1 should not
be returned as a normal return value; when an error occurs during the computation of the hash value, the
function should set an exception and return-1 .

This field can be set explicitly toPyObject_HashNotImplemented() to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of__hash__ = None at the Python
level, causingisinstance(o, collections.Hashable) to correctly returnFalse . Note that
the converse is also true - setting__hash__ = None on a class at the Python level will result in the
tp_hash slot being set toPyObject_HashNotImplemented() .

When this field is not set, two possibilities exist: if thetp_compare andtp_richcompare fields are
both NULL, a default hash value based on the object’s address is returned; otherwise, aTypeError is
raised.

This field is inherited by subtypes together withtp_richcompare and tp_compare : a subtypes in-
herits all three oftp_compare , tp_richcompare , andtp_hash , when the subtype’stp_compare ,
tp_richcompare andtp_hash are allNULL.

ternaryfunc tp_call
An optional pointer to a function that implements calling the object. This should beNULL if the object is
not callable. The signature is the same as forPyObject_Call() .

This field is inherited by subtypes.

reprfunc tp_str
An optional pointer to a function that implements the built-in operationstr() . (Note thatstr is a type
now, andstr() calls the constructor for that type. This constructor callsPyObject_Str() to do the
actual work, andPyObject_Str() will call this handler.)

The signature is the same as forPyObject_Str() ; it must return a string or a Unicode object. This
function should return a “friendly” string representation of the object, as this is the representation that will
be used by the print statement.

When this field is not set,PyObject_Repr() is called to return a string representation.

This field is inherited by subtypes.

getattrofunc tp_getattro
An optional pointer to the get-attribute function.

The signature is the same as forPyObject_GetAttr() . It is usually convenient to set this field to
PyObject_GenericGetAttr() , which implements the normal way of looking for object attributes.

This field is inherited by subtypes together withtp_getattr : a subtype inherits bothtp_getattr and
tp_getattro from its base type when the subtype’stp_getattr andtp_getattro are bothNULL.

114 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

setattrofunc tp_setattro
An optional pointer to the set-attribute function.

The signature is the same as forPyObject_SetAttr() . It is usually convenient to set this field to
PyObject_GenericSetAttr() , which implements the normal way of setting object attributes.

This field is inherited by subtypes together withtp_setattr : a subtype inherits bothtp_setattr and
tp_setattro from its base type when the subtype’stp_setattr andtp_setattro are bothNULL.

PyBufferProcs* tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer
interface. These fields are documented inBuffer Object Structures.

Thetp_as_buffer field is not inherited, but the contained fields are inherited individually.

long tp_flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number , tp_as_sequence , tp_as_mapping , andtp_as_buffer) that were historically
not always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and
must be considered to have a zero orNULL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has
a flag bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly
inherited if the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into
the subtype together with a pointer to the extension structure. ThePy_TPFLAGS_HAVE_GCflag bit is
inherited together with thetp_traverse and tp_clear fields, i.e. if thePy_TPFLAGS_HAVE_GC
flag bit is clear in the subtype and thetp_traverse and tp_clear fields in the subtype exist (as
indicated by thePy_TPFLAGS_HAVE_RICHCOMPAREflag bit) and haveNULL values.

The following bit masks are currently defined; these can be ORed together using the| operator to form the
value of thetp_flags field. The macroPyType_HasFeature() takes a type and a flags value,tp and
f, and checks whethertp->tp_flags & f is non-zero.

Py_TPFLAGS_HAVE_GETCHARBUFFER
If this bit is set, the PyBufferProcs struct referenced bytp_as_buffer has the
bf_getcharbuffer field.

Py_TPFLAGS_HAVE_SEQUENCE_IN
If this bit is set, thePySequenceMethods struct referenced bytp_as_sequence has the
sq_contains field.

Py_TPFLAGS_GC
This bit is obsolete. The bit it used to name is no longer in use. The symbol is now defined as zero.

Py_TPFLAGS_HAVE_INPLACEOPS
If this bit is set, thePySequenceMethods struct referenced bytp_as_sequence and
the PyNumberMethods structure referenced bytp_as_number contain the fields for
in-place operators. In particular, this means that thePyNumberMethods structure has
the fields nb_inplace_add , nb_inplace_subtract , nb_inplace_multiply ,
nb_inplace_divide , nb_inplace_remainder , nb_inplace_power ,
nb_inplace_lshift , nb_inplace_rshift , nb_inplace_and , nb_inplace_xor , and
nb_inplace_or ; and thePySequenceMethods struct has the fieldssq_inplace_concat
andsq_inplace_repeat .

Py_TPFLAGS_CHECKTYPES
If this bit is set, the binary and ternary operations in thePyNumberMethods structure refer-
enced bytp_as_number accept arguments of arbitrary object types, and do their own type con-
versions if needed. If this bit is clear, those operations require that all arguments have the cur-
rent type as their type, and the caller is supposed to perform a coercion operation first. This ap-
plies tonb_add , nb_subtract , nb_multiply , nb_divide , nb_remainder , nb_divmod ,
nb_power , nb_lshift , nb_rshift , nb_and , nb_xor , andnb_or .

10.3. Type Objects 115

The Python/C API, Release 2.6.4

Py_TPFLAGS_HAVE_RICHCOMPARE
If this bit is set, the type object has thetp_richcompare field, as well as thetp_traverse and
thetp_clear fields.

Py_TPFLAGS_HAVE_WEAKREFS
If this bit is set, thetp_weaklistoffset field is defined. Instances of a type are weakly refer-
enceable if the type’stp_weaklistoffset field has a value greater than zero.

Py_TPFLAGS_HAVE_ITER
If this bit is set, the type object has thetp_iter andtp_iternext fields.

Py_TPFLAGS_HAVE_CLASS
If this bit is set, the type object has several new fields defined starting in Python
2.2: tp_methods , tp_members , tp_getset , tp_base , tp_dict , tp_descr_get ,
tp_descr_set , tp_dictoffset , tp_init , tp_alloc , tp_new , tp_free , tp_is_gc ,
tp_bases , tp_mro , tp_cache , tp_subclasses , andtp_weaklist .

Py_TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, theob_type field
of its instances is considered a reference to the type, and the type object is INCREF’ed when a new
instance is created, and DECREF’ed when an instance is destroyed (this does not apply to instances
of subtypes; only the type referenced by the instance’s ob_type gets INCREF’ed or DECREF’ed).

Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a “final” class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized byPyType_Ready() .

Py_TPFLAGS_READYING
This bit is set whilePyType_Ready() is in the process of initializing the type object.

Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be
created usingPyObject_GC_New() and destroyed usingPyObject_GC_Del() . More infor-
mation in sectionSupporting Cyclic Garbage Collection. This bit also implies that the GC-related
fields tp_traverse andtp_clear are present in the type object; but those fields also exist when
Py_TPFLAGS_HAVE_GCis clear butPy_TPFLAGS_HAVE_RICHCOMPAREis set.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in
the type object and its extension structures. Currently, it includes the following
bits: Py_TPFLAGS_HAVE_GETCHARBUFFER, Py_TPFLAGS_HAVE_SEQUENCE_IN,
Py_TPFLAGS_HAVE_INPLACEOPS, Py_TPFLAGS_HAVE_RICHCOMPARE,
Py_TPFLAGS_HAVE_WEAKREFS, Py_TPFLAGS_HAVE_ITER, and
Py_TPFLAGS_HAVE_CLASS.

char* tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed
as the__doc__ attribute on the type and instances of the type.

This field isnot inherited by subtypes.

The following three fields only exist if thePy_TPFLAGS_HAVE_RICHCOMPAREflag bit is set.

traverseproc tp_traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GCflag bit is set. More information about Python’s garbage collection scheme
can be found in sectionSupporting Cyclic Garbage Collection.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical imple-
mentation of atp_traverse function simply callsPy_VISIT() on each of the instance’s members
that are Python objects. For example, this is functionlocal_traverse() from thethread extension
module:

116 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

static int
local_traverse (localobject * self, visitproc visit, void * arg)
{

Py_VISIT(self - >args);
Py_VISIT(self - >kw);
Py_VISIT(self - >dict);
return 0;

}

Note thatPy_VISIT() is called only on those members that can participate in reference cycles. Although
there is also aself->key member, it can only beNULL or a Python string and therefore cannot be part
of a reference cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may
want to visit it anyway just so thegc module’sget_referents() function will include it.

Note thatPy_VISIT() requires thevisit and arg parameters tolocal_traverse() to have these
specific names; don’t name them just anything.

This field is inherited by subtypes together withtp_clear and thePy_TPFLAGS_HAVE_GCflag bit:
the flag bit,tp_traverse , andtp_clear are all inherited from the base type if they are all zero in the
subtypeand the subtype has thePy_TPFLAGS_HAVE_RICHCOMPAREflag bit set.

inquiry tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GCflag bit is set.

Thetp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, alltp_clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supply atp_clear function. For example, the tuple type does not
implement atp_clear function, because it’s possible to prove that no reference cycle can be composed
entirely of tuples. Therefore thetp_clear functions of other types must be sufficient to break any cycle
containing a tuple. This isn’t immediately obvious, and there’s rarely a good reason to avoid implementing
tp_clear .

Implementations oftp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those members toNULL, as in the following example:

static int
local_clear (localobject * self)
{

Py_CLEAR(self - >key);
Py_CLEAR(self - >args);
Py_CLEAR(self - >kw);
Py_CLEAR(self - >dict);
return 0;

}

The Py_CLEAR() macro should be used, because clearing references is delicate: the reference to the
contained object must not be decremented until after the pointer to the contained object is set toNULL. This
is because decrementing the reference count may cause the contained object to become trash, triggering a
chain of reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref
callbacks, associated with the contained object). If it’s possible for such code to referenceself again, it’s
important that the pointer to the contained object beNULL at that time, so thatself knows the contained
object can no longer be used. ThePy_CLEAR() macro performs the operations in a safe order.

Because the goal oftp_clear functions is to break reference cycles, it’s not necessary to clear contained
objects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand,
it may be convenient to clear all contained Python objects, and write the type’stp_dealloc function to
invoketp_clear .

10.3. Type Objects 117

The Python/C API, Release 2.6.4

More information about Python’s garbage collection scheme can be found in sectionSupporting Cyclic
Garbage Collection.

This field is inherited by subtypes together withtp_traverse and thePy_TPFLAGS_HAVE_GCflag
bit: the flag bit,tp_traverse , andtp_clear are all inherited from the base type if they are all zero in
the subtypeand the subtype has thePy_TPFLAGS_HAVE_RICHCOMPAREflag bit set.

richcmpfunc tp_richcompare
An optional pointer to the rich comparison function, whose signature isPyObject
*tp_richcompare(PyObject *a, PyObject *b, int op) .

The function should return the result of the comparison (usuallyPy_True or Py_False). If the compari-
son is undefined, it must returnPy_NotImplemented , if another error occurred it must returnNULLand
set an exception condition.

Note: If you want to implement a type for which only a limited set of comparisons makes sense (e.g.==
and!= , but not< and friends), directly raiseTypeError in the rich comparison function.

This field is inherited by subtypes together withtp_compare and tp_hash : a subtype inherits
all three of tp_compare , tp_richcompare , and tp_hash , when the subtype’stp_compare ,
tp_richcompare , andtp_hash are allNULL.

The following constants are defined to be used as the third argument fortp_richcompare and for
PyObject_RichCompare() :

Constant Comparison
Py_LT <
Py_LE <=
Py_EQ ==
Py_NE !=
Py_GT >
Py_GE >=

The next field only exists if thePy_TPFLAGS_HAVE_WEAKREFSflag bit is set.

long tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used
by PyObject_ClearWeakRefs() and thePyWeakref_*() functions. The instance structure needs
to include a field of typePyObject* which is initialized toNULL.

Do not confuse this field withtp_weaklist ; that is the list head for weak references to the type object
itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this
means that the subtype uses a different weak reference list head than the base type. Since the list head is
always found viatp_weaklistoffset , this should not be a problem.

When a type defined by a class statement has no__slots__ declaration, and none of its base types are
weakly referenceable, the type is made weakly referenceable by adding a weak reference list head slot to
the instance layout and setting thetp_weaklistoffset of that slot’s offset.

When a type’s__slots__ declaration contains a slot named__weakref__ , that slot becomes
the weak reference list head for instances of the type, and the slot’s offset is stored in the type’s
tp_weaklistoffset .

When a type’s__slots__ declaration does not contain a slot named__weakref__ , the type inherits
its tp_weaklistoffset from its base type.

The next two fields only exist if thePy_TPFLAGS_HAVE_ITERflag bit is set.

getiterfunc tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that
the instances of this type are iterable (although sequences may be iterable without this function, and classic
instances always have this function, even if they don’t define an__iter__() method).

This function has the same signature asPyObject_GetIter() .

118 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

This field is inherited by subtypes.

iternextfunc tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it
must returnNULL; a StopIteration exception may or may not be set. When another error occurs, it
must returnNULL too. Its presence normally signals that the instances of this type are iterators (although
classic instances always have this function, even if they don’t define anext() method).

Iterator types should also define thetp_iter function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signature asPyIter_Next() .

This field is inherited by subtypes.

The next fields, up to and includingtp_weaklist , only exist if thePy_TPFLAGS_HAVE_CLASSflag bit is
set.

struct PyMethodDef* tp_methods
An optional pointer to a staticNULL-terminated array ofPyMethodDef structures, declaring regular meth-
ods of this type.

For each entry in the array, an entry is added to the type’s dictionary (seetp_dict below) containing a
method descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* tp_members
An optional pointer to a staticNULL-terminated array ofPyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (seetp_dict below) containing a
member descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* tp_getset
An optional pointer to a staticNULL-terminated array ofPyGetSetDef structures, declaring computed
attributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (seetp_dict below) containing a
getset descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

Docs for PyGetSetDef (XXX belong elsewhere):

typedef PyObject * (* getter)(PyObject * , void *);
typedef int (* setter)(PyObject * , PyObject * , void *);

typedef struct PyGetSetDef {
char * name; /* attribute name */
getter get; /* C function to get the attribute */
setter set; /* C function to set the attribute */
char * doc; /* optional doc string */
void * closure; /* optional additional data for getter and setter */

} PyGetSetDef;

PyTypeObject* tp_base
An optional pointer to a base type from which type properties are inherited. At this level, only single
inheritance is supported; multiple inheritance require dynamically creating a type object by calling the
metatype.

This field is not inherited by subtypes (obviously), but it defaults to&PyBaseObject_Type (which to
Python programmers is known as the typeobject).

10.3. Type Objects 119

The Python/C API, Release 2.6.4

PyObject* tp_dict
The type’s dictionary is stored here byPyType_Ready() .

This field should normally be initialized toNULL before PyType_Ready is called; it may also be initialized
to a dictionary containing initial attributes for the type. OncePyType_Ready() has initialized the type,
extra attributes for the type may be added to this dictionary only if they don’t correspond to overloaded
operations (like__add__()).

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

descrgetfunc tp_descr_get
An optional pointer to a “descriptor get” function.

The function signature is

PyObject * tp_descr_get(PyObject * self, PyObject * obj, PyObject * type);

XXX explain.

This field is inherited by subtypes.

descrsetfunc tp_descr_set
An optional pointer to a “descriptor set” function.

The function signature is

int tp_descr_set(PyObject * self, PyObject * obj, PyObject * value);

This field is inherited by subtypes.

XXX explain.

long tp_dictoffset
If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr() .

Do not confuse this field withtp_dict ; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure.
If the value is less than zero, it specifies the offset from theend of the instance structure. A negative
offset is more expensive to use, and should only be used when the instance structure contains a variable-
length part. This is used for example to add an instance variable dictionary to subtypes ofstr or tuple .
Note that thetp_basicsize field should account for the dictionary added to the end in that case, even
though the dictionary is not included in the basic object layout. On a system with a pointer size of 4 bytes,
tp_dictoffset should be set to-4 to indicate that the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negativetp_dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size) * tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof (void *) :

round up to sizeof (void *)

where tp_basicsize , tp_itemsize and tp_dictoffset are taken from the type object, and
ob_size is taken from the instance. The absolute value is taken because long ints use the sign ofob_size
to store the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr() .)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this
means that the subtype instances store the dictionary at a difference offset than the base type. Since the
dictionary is always found viatp_dictoffset , this should not be a problem.

120 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

When a type defined by a class statement has no__slots__ declaration, and none of its base types has
an instance variable dictionary, a dictionary slot is added to the instance layout and thetp_dictoffset
is set to that slot’s offset.

When a type defined by a class statement has a__slots__ declaration, the type inherits its
tp_dictoffset from its base type.

(Adding a slot named__dict__ to the__slots__ declaration does not have the expected effect, it just
causes confusion. Maybe this should be added as a feature just like__weakref__ though.)

initproc tp_init
An optional pointer to an instance initialization function.

This function corresponds to the__init__() method of classes. Like__init__() , it is possible to
create an instance without calling__init__() , and it is possible to reinitialize an instance by calling its
__init__() method again.

The function signature is

int tp_init(PyObject * self, PyObject * args, PyObject * kwds)

The self argument is the instance to be initialized; theargs andkwdsarguments represent positional and
keyword arguments of the call to__init__() .

The tp_init function, if notNULL, is called when an instance is created normally by calling its type,
after the type’stp_new function has returned an instance of the type. If thetp_new function returns an
instance of some other type that is not a subtype of the original type, notp_init function is called; if
tp_new returns an instance of a subtype of the original type, the subtype’stp_init is called. (VERSION
NOTE: described here is what is implemented in Python 2.2.1 and later. In Python 2.2, thetp_init of
the type of the object returned bytp_new was always called, if notNULL.)

This field is inherited by subtypes.

allocfunc tp_alloc
An optional pointer to an instance allocation function.

The function signature is

PyObject * tp_alloc(PyTypeObject * self, Py_ssize_t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return
a pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to
zeros, but withob_refcnt set to1 andob_type set to the type argument. If the type’stp_itemsize
is non-zero, the object’sob_size field should be initialized tonitemsand the length of the allocated
memory block should betp_basicsize + nitems*tp_itemsize , rounded up to a multiple of
sizeof(void*) ; otherwise,nitemsis not used and the length of the block should betp_basicsize .

Do not use this function to do any other instance initialization, not even to allocate additional memory; that
should be done bytp_new .

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class state-
ment); in the latter, this field is always set toPyType_GenericAlloc() , to force a standard heap
allocation strategy. That is also the recommended value for statically defined types.

newfunc tp_new
An optional pointer to an instance creation function.

If this function isNULL for a particular type, that type cannot be called to create new instances; presumably
there is some other way to create instances, like a factory function.

The function signature is

PyObject * tp_new(PyTypeObject * subtype, PyObject * args, PyObject * kwds)

10.3. Type Objects 121

The Python/C API, Release 2.6.4

The subtype argument is the type of the object being created; theargsandkwdsarguments represent posi-
tional and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose
tp_new function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should callsubtype->tp_alloc(subtype, nitems) to allocate space for
the object, and then do only as much further initialization as is absolutely necessary. Initialization that can
safely be ignored or repeated should be placed in thetp_init handler. A good rule of thumb is that for
immutable types, all initialization should take place intp_new , while for mutable types, most initialization
should be deferred totp_init .

This field is inherited by subtypes, except it is not inherited by static types whosetp_base is NULL or
&PyBaseObject_Type . The latter exception is a precaution so that old extension types don’t become
callable simply by being linked with Python 2.2.

destructor tp_free
An optional pointer to an instance deallocation function.

The signature of this function has changed slightly: in Python 2.2 and 2.2.1, its signature isdestructor :

void tp_free(PyObject *)

In Python 2.3 and beyond, its signature isfreefunc :

void tp_free(void *)

The only initializer that is compatible with both versions is_PyObject_Del , whose definition has suit-
ably adapted in Python 2.3.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class state-
ment); in the latter, this field is set to a deallocator suitable to matchPyType_GenericAlloc() and the
value of thePy_TPFLAGS_HAVE_GCflag bit.

inquiry tp_is_gc
An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is suf-
ficient to look at the object’s type’stp_flags field, and check thePy_TPFLAGS_HAVE_GCflag bit.
But some types have a mixture of statically and dynamically allocated instances, and the statically allocated
instances are not collectible. Such types should define this function; it should return1 for a collectible
instance, and0 for a non-collectible instance. The signature is

int tp_is_gc(PyObject * self)

(The only example of this are types themselves. The metatype,PyType_Type , defines this function to
distinguish between statically and dynamically allocated types.)

This field is inherited by subtypes. (VERSION NOTE: in Python 2.2, it was not inherited. It is inherited in
2.2.1 and later versions.)

PyObject* tp_bases
Tuple of base types.

This is set for types created by a class statement. It should beNULL for statically defined types.

This field is not inherited.

PyObject* tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending withobject , in
Method Resolution Order.

This field is not inherited; it is calculated fresh byPyType_Ready() .

PyObject* tp_cache
Unused. Not inherited. Internal use only.

122 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

PyObject* tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macroCOUNT_ALLOCSis defined, and are for internal
use only. They are documented here for completeness. None of these fields are inherited by subtypes.

Py_ssize_t tp_allocs
Number of allocations.

Py_ssize_t tp_frees
Number of frees.

Py_ssize_t tp_maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* tp_next
Pointer to the next type object with a non-zerotp_allocs field.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread
which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage
collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is
called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects
from some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which
called tp_dealloc will not violate any assumptions of the library.

10.4 Number Object Structures

PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol.
Almost every function below is used by the function of similar name documented in theNumber Protocol
section.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_divide;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_nonzero; /* Used by PyObject_IsTrue */
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
coercion nb_coerce; /* Used by the coerce() function */
unaryfunc nb_int;
unaryfunc nb_long;
unaryfunc nb_float;
unaryfunc nb_oct;

10.4. Number Object Structures 123

The Python/C API, Release 2.6.4

unaryfunc nb_hex;

/* Added in release 2.0 */
binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_divide;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

/* Added in release 2.2 */
binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

/* Added in release 2.5 */
unaryfunc nb_index;

} PyNumberMethods;

Binary and ternary functions may receive different kinds of arguments, depending on the flag bit
Py_TPFLAGS_CHECKTYPES:

• If Py_TPFLAGS_CHECKTYPESis not set, the function arguments are guaranteed to be of the object’s
type; the caller is responsible for calling the coercion method specified by thenb_coerce member to
convert the arguments:

coercion nb_coerce
This function is used byPyNumber_CoerceEx() and has the same signature. The first argument
is always a pointer to an object of the defined type. If the conversion to a common “larger” type is
possible, the function replaces the pointers with new references to the converted objects and returns0.
If the conversion is not possible, the function returns1. If an error condition is set, it will return-1 .

• If the Py_TPFLAGS_CHECKTYPESflag is set, binary and ternary functions must check the type of all
their operands, and implement the necessary conversions (at least one of the operands is an instance of the
defined type). This is the recommended way; with Python 3.0 coercion will disappear completely.

If the operation is not defined for the given operands, binary and ternary functions must return
Py_NotImplemented , if another error occurred they must returnNULLand set an exception.

10.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It
has three members:

lenfunc mp_length
This function is used byPyMapping_Length() andPyObject_Size() , and has the same signature.
This slot may be set toNULL if the object has no defined length.

binaryfunc mp_subscript
This function is used byPyObject_GetItem() and has the same signature. This slot must be filled for
thePyMapping_Check() function to return1, it can beNULL otherwise.

124 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

objobjargproc mp_ass_subscript
This function is used byPyObject_SetItem() and has the same signature. If this slot isNULL, the
object does not support item assignment.

10.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc sq_length
This function is used byPySequence_Size() andPyObject_Size() , and has the same signature.

binaryfunc sq_concat
This function is used byPySequence_Concat() and has the same signature. It is also used by the+
operator, after trying the numeric addition via thetp_as_number.nb_add slot.

ssizeargfunc sq_repeat
This function is used byPySequence_Repeat() and has the same signature. It is also used by the*
operator, after trying numeric multiplication via thetp_as_number.nb_mul slot.

ssizeargfunc sq_item
This function is used byPySequence_GetItem() and has the same signature. This slot must be filled
for thePySequence_Check() function to return1, it can beNULL otherwise.

Negative indexes are handled as follows: if thesq_length slot is filled, it is called and the sequence
length is used to compute a positive index which is passed tosq_item . If sq_length is NULL, the
index is passed as is to the function.

ssizeobjargproc sq_ass_item
This function is used byPySequence_SetItem() and has the same signature. This slot may be left to
NULL if the object does not support item assignment.

objobjproc sq_contains
This function may be used byPySequence_Contains() and has the same signature. This slot may
be left toNULL, in this casePySequence_Contains() simply traverses the sequence until it finds a
match.

binaryfunc sq_inplace_concat
This function is used byPySequence_InPlaceConcat() and has the same signature. It should mod-
ify its first operand, and return it.

ssizeargfunc sq_inplace_repeat
This function is used byPySequence_InPlaceRepeat() and has the same signature. It should mod-
ify its first operand, and return it.

10.7 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of data,
where each chunk is specified as a pointer/length pair. These chunks are calledsegmentsand are presumed to be
non-contiguous in memory.

If an object does not export the buffer interface, then itstp_as_buffer member in thePyTypeObject
structure should beNULL. Otherwise, thetp_as_buffer will point to aPyBufferProcs structure.

Note: It is very important that yourPyTypeObject structure usesPy_TPFLAGS_DEFAULTfor the value
of the tp_flags member rather than0. This tells the Python runtime that yourPyBufferProcs structure
contains thebf_getcharbuffer slot. Older versions of Python did not have this member, so a new Python
interpreter using an old extension needs to be able to test for its presence before using it.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.

10.6. Sequence Object Structures 125

The Python/C API, Release 2.6.4

The first slot isbf_getreadbuffer , of typegetreadbufferproc . If this slot isNULL, then the
object does not support reading from the internal data. This is non-sensical, so implementors should fill this
in, but callers should test that the slot contains a non-NULL value.

The next slot isbf_getwritebuffer having typegetwritebufferproc . This slot may beNULL
if the object does not allow writing into its returned buffers.

The third slot isbf_getsegcount , with typegetsegcountproc . This slot must not beNULL and is
used to inform the caller how many segments the object contains. Simple objects such asPyString_Type
andPyBuffer_Type objects contain a single segment. The last slot isbf_getcharbuffer , of type
getcharbufferproc . This slot will only be present if thePy_TPFLAGS_HAVE_GETCHARBUFFER
flag is present in thetp_flags field of the object’sPyTypeObject . Before using this slot, the caller
should test whether it is present by using thePyType_HasFeature() function. If the flag is present,
bf_getcharbuffer may beNULL, indicating that the object’s contents cannot be used as8-bit char-
acters. The slot function may also raise an error if the object’s contents cannot be interpreted as 8-bit
characters. For example, if the object is an array which is configured to hold floating point values, an excep-
tion may be raised if a caller attempts to usebf_getcharbuffer to fetch a sequence of 8-bit characters.
This notion of exporting the internal buffers as “text” is used to distinguish between objects that are binary
in nature, and those which have character-based content.

Note: The current policy seems to state that these characters may be multi-byte characters. This implies
that a buffer size ofN does not mean there areN characters present.

Py_TPFLAGS_HAVE_GETCHARBUFFER
Flag bit set in the type structure to indicate that thebf_getcharbuffer slot is known. This being set
does not indicate that the object supports the buffer interface or that thebf_getcharbuffer slot is
non-NULL.

(*readbufferproc)
Return a pointer to a readable segment of the buffer in*ptrptr . This function is allowed to raise an
exception, in which case it must return-1 . Thesegmentwhich is specified must be zero or positive, and
strictly less than the number of segments returned by thebf_getsegcount slot function. On success, it
returns the length of the segment, and sets*ptrptr to a pointer to that memory.

(*writebufferproc)
Return a pointer to a writable memory buffer in*ptrptr , and the length of that segment as the function
return value. The memory buffer must correspond to buffer segmentsegment. Must return-1 and set
an exception on error.TypeError should be raised if the object only supports read-only buffers, and
SystemError should be raised whensegmentspecifies a segment that doesn’t exist.

(*segcountproc)
Return the number of memory segments which comprise the buffer. Iflenpis notNULL, the implementation
must report the sum of the sizes (in bytes) of all segments in*lenp . The function cannot fail.

(*charbufferproc)
Return the size of the segmentsegmentthatptrptr is set to.*ptrptr is set to the memory buffer. Returns
-1 on error.

10.8 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from
object types which are “containers” for other objects which may also be containers. Types which do not store
references to other objects, or which only store references to atomic types (such as numbers or strings), do not
need to provide any explicit support for garbage collection.

To create a container type, thetp_flags field of the type object must include thePy_TPFLAGS_HAVE_GC
and provide an implementation of thetp_traverse handler. If instances of the type are mutable, atp_clear
implementation must also be provided.

Py_TPFLAGS_HAVE_GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these

126 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

objects will be referred to as container objects.

Constructors for container types must conform to two rules:

1. The memory for the object must be allocated usingPyObject_GC_New() or
PyObject_GC_VarNew() .

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject_GC_Track() .

TYPE* PyObject_GC_New (TYPE, PyTypeObject *type)
Analogous toPyObject_New() but for container objects with thePy_TPFLAGS_HAVE_GCflag set.

TYPE* PyObject_GC_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
Analogous toPyObject_NewVar() but for container objects with thePy_TPFLAGS_HAVE_GCflag
set. Changed in version 2.5: This function used anint type forsize. This might require changes in your
code for properly supporting 64-bit systems.

TYPE* PyObject_GC_Resize (TYPE, PyVarObject *op, Py_ssize_t newsize)
Resize an object allocated byPyObject_NewVar() . Returns the resized object orNULL on failure.
Changed in version 2.5: This function used anint type fornewsize. This might require changes in your
code for properly supporting 64-bit systems.

void PyObject_GC_Track (PyObject *op)
Adds the objectop to the set of container objects tracked by the collector. The collector can run at unex-
pected times so objects must be valid while being tracked. This should be called once all the fields followed
by thetp_traverse handler become valid, usually near the end of the constructor.

void _PyObject_GC_TRACK (PyObject *op)
A macro version ofPyObject_GC_Track() . It should not be used for extension modules.

Similarly, the deallocator for the object must conform to a similar pair of rules:

1. Before fields which refer to other containers are invalidated,PyObject_GC_UnTrack() must be called.

2. The object’s memory must be deallocated usingPyObject_GC_Del() .

void PyObject_GC_Del (void *op)
Releases memory allocated to an object usingPyObject_GC_New() or PyObject_GC_NewVar() .

void PyObject_GC_UnTrack (void *op)
Remove the objectop from the set of container objects tracked by the collector. Note that
PyObject_GC_Track() can be called again on this object to add it back to the set of tracked objects.
The deallocator (tp_dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

void _PyObject_GC_UNTRACK(PyObject *op)
A macro version ofPyObject_GC_UnTrack() . It should not be used for extension modules.

Thetp_traverse handler accepts a function parameter of this type:

(*visitproc)
Type of the visitor function passed to thetp_traverse handler. The function should be called with an
object to traverse asobjectand the third parameter to thetp_traverse handler asarg. The Python core
uses several visitor functions to implement cyclic garbage detection; it’s not expected that users will need
to write their own visitor functions.

Thetp_traverse handler must have the following type:

(*traverseproc)
Traversal function for a container object. Implementations must call thevisit function for each object
directly contained byself, with the parameters tovisit being the contained object and thearg value passed to
the handler. Thevisit function must not be called with aNULL object argument. Ifvisit returns a non-zero
value that value should be returned immediately.

To simplify writing tp_traverse handlers, aPy_VISIT() macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactlyvisit andarg:

10.8. Supporting Cyclic Garbage Collection 127

The Python/C API, Release 2.6.4

void Py_VISIT (PyObject *o)
Call thevisit callback, with argumentso andarg. If visit returns a non-zero value, then return it. Using this
macro,tp_traverse handlers look like:

static int
my_traverse (Noddy * self, visitproc visit, void * arg)
{

Py_VISIT(self - >foo);
Py_VISIT(self - >bar);
return 0;

}

New in version 2.4.

Thetp_clear handler must be of theinquiry type, orNULL if the object is immutable.

(*inquiry)
Drop references that may have created reference cycles. Immutable objects do not have to define this method
since they can never directly create reference cycles. Note that the object must still be valid after calling
this method (don’t just callPy_DECREF() on a reference). The collector will call this method if it detects
that this object is involved in a reference cycle.

128 Chapter 10. Object Implementation Support

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within
a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library aslib2to3 ; a standalone entry point is provided as
Tools/scripts/2to3 . See2to3 - Automated Python 2 to 3 code translation(in The Python Library
Reference).

abstract base classAbstract Base Classes (abbreviated ABCs) complementduck-typingby providing a way to
define interfaces when other techniques likehasattr() would be clumsy. Python comes with many
built-in ABCs for data structures (in thecollections module), numbers (in thenumbers module), and
streams (in theio module). You can create your own ABC with theabc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A
function or method may have both positional arguments and keyword arguments in its definition. Positional
and keyword arguments may be variable-length:* accepts or passes (if in the function definition or call)
several positional arguments in a list, while** does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example,
if an objecto has an attributea it would be referenced aso.a.

BDFL Benevolent Dictator For Life, a.k.a.Guido van Rossum, Python’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
interpreter. The bytecode is also cached in.pyc and.pyo files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said
to run on avirtual machinethat executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic classAny class which does not inherit fromobject . Seenew-style class. Classic classes will be removed
in Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example,int(3.15) converts the floating point number to the inte-
ger 3, but in 3+4.5 , each argument is of a different type (one int, one float), and both must be con-
verted to the same type before they can be added or it will raise aTypeError . Coercion between
two operands can be performed with thecoerce built-in function; thus,3+4.5 is equivalent to call-
ing operator.add(*coerce(3, 4.5)) and results inoperator.add(3.0, 4.5) . Without
coercion, all arguments of even compatible types would have to be normalized to the same value by the
programmer, e.g.,float(3)+4.5 rather than just3+4.5 .

129

http://www.python.org/~guido/

The Python/C API, Release 2.6.4

complex number An extension of the familiar real number system in which all numbers are expressed as a sum
of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square
root of -1), often writteni in mathematics orj in engineering. Python has built-in support for complex
numbers, which are written with this latter notation; the imaginary part is written with aj suffix, e.g.,3+1j .
To get access to complex equivalents of themath module, usecmath . Use of complex numbers is a fairly
advanced mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely
ignore them.

context manager An object which controls the environment seen in awith statement by defining
__enter__() and__exit__() methods. SeePEP 343.

CPython The canonical implementation of the Python programming language. The term “CPython” is used in
contexts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decorators areclassmethod() andstaticmethod() .

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

Seethe documentation for function definition(in The Python Language Reference) for more about decora-
tors.

descriptor Any new-styleobject which defines the methods__get__() , __set__() , or __delete__() .
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, usinga.b to get, set or delete an attribute looks up the object namedb in the class dictionary fora,
but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to
a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, seeImplementing Descriptors(in The Python Language
Reference).

dictionary An associative array, where arbitrary keys are mapped to values. The use ofdict closely resembles
that for list , but the keys can be any object with a__hash__() function, not just integers. Called a
hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the__doc__ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation
of the object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or
attribute signature rather than by explicit relationship to some type object (“If it looks like a duck and
quacks like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed
code improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests usingtype()
or isinstance() . (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employshasattr() tests orEAFPprogramming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of manytry andexcept statements. The technique contrasts with the
LBYLstyle common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an ac-
cumulation of expression elements like literals, names, attribute access, operators or function calls which
all return a value. In contrast to many other languages, not all language constructs are expressions. There

130 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

The Python/C API, Release 2.6.4

are alsostatements which cannot be used as expressions, such asprint or if . Assignments are also
statements, not expressions.

extension moduleA module written in C or C++, using Python’s C API to interact with the core and with user
code.

finder An object that tries to find theloader for a module. It must implement a method named
find_module() . SeePEP 302for details.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See alsoargumentandmethod.

__future__ A pseudo module which programmers can use to enable new language features which are not compat-
ible with the current interpreter. For example, the expression11/4 currently evaluates to2. If the module
in which it is executed had enabledtrue divisionby executing:

from __future__ import division

the expression11/4 would evaluate to2.75 . By importing the__future__ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the
default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage col-
lection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to
the caller using ayield statement instead of areturn statement. Generator functions often contain one
or morefor or while loops whichyield elements back to the caller. The function execution is stopped
at theyield keyword (returning the result) and is resumed there when the next element is requested by
calling thenext() method of the returned iterator.

generator expressionAn expression that returns a generator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optionalif expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL Seeglobal interpreter lock.

global interpreter lock The lock used by Python threads to assure that only one thread executes in theCPython
virtual machineat a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter to
be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much
finer granularity), but so far none have been successful because performance suffered in the common single-
processor case.

hashable An object is hashableif it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an__eq__() or __cmp__()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use
the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dic-
tionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare
unequal, and their hash value is theirid() .

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python. Good for beginners, it also serves as clear example
code for those wanting to implement a moderately sophisticated, multi-platform GUI application.

131

http://www.python.org/dev/peps/pep-0302

The Python/C API, Release 2.6.4

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression11/4 currently
evaluates to2 in contrast to the2.75 returned by float division. Also calledfloor division. When dividing
two integers the outcome will always be another integer (having the floor function applied to it). However,
if one of the operands is another numeric type (such as afloat), the result will be coerced (seecoercion)
to a common type. For example, an integer divided by a float will result in a float value, possibly with a
decimal fraction. Integer division can be forced by using the// operator instead of the/ operator. See also
__future__.

importer An object that both finds and loads a module; both afinderandloaderobject.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the
interpreter prompt, immediately execute them and see their results. Just launchpython with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas
or inspect modules and packages (rememberhelp(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See
alsointeractive.

iterable A container object capable of returning its members one at a time. Examples of iterables include all
sequence types (such aslist , str , andtuple) and some non-sequence types likedict andfile and
objects of any classes you define with an__iter__() or __getitem__() method. Iterables can be
used in afor loop and in many other places where a sequence is needed (zip() , map() , ...). When an
iterable object is passed as an argument to the built-in functioniter() , it returns an iterator for the object.
This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary
to call iter() or deal with iterator objects yourself. Thefor statement does that automatically for you,
creating a temporary unnamed variable to hold the iterator for the duration of the loop. See alsoiterator,
sequence, andgenerator.

iterator An object representing a stream of data. Repeated calls to the iterator’snext() method return suc-
cessive items in the stream. When no more data are available aStopIteration exception is raised
instead. At this point, the iterator object is exhausted and any further calls to itsnext() method just raise
StopIteration again. Iterators are required to have an__iter__() method that returns the iterator
object itself so every iterator is also iterable and may be used in most places where other iterables are ac-
cepted. One notable exception is code which attempts multiple iteration passes. A container object (such
as alist) produces a fresh new iterator each time you pass it to theiter() function or use it in afor
loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found inIterator Types(in The Python Library Reference).

keyword argument Arguments which are preceded with avariable_name= in the call. The variable name
designates the local name in the function to which the value is assigned.** is used to accept or pass a
dictionary of keyword arguments. Seeargument.

lambda An anonymous inline function consisting of a singleexpressionwhich is evaluated when the function is
called. The syntax to create a lambda function islambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with theEAFPapproach and is characterized by the presence of manyif statements.

list A built-in Pythonsequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a
list of strings containing even hex numbers (0x..) in the range from 0 to 255. Theif clause is optional. If
omitted, all elements inrange(256) are processed.

132 Appendix A. Glossary

The Python/C API, Release 2.6.4

loader An object that loads a module. It must define a method namedload_module() . A loader is typically
returned by afinder. SeePEP 302for details.

mapping A container object (such asdict) which supports arbitrary key lookups using the special method
__getitem__() .

metaclassThe class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

More information can be found inCustomizing class creation(in The Python Language Reference).

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its firstargument(which is usually calledself). Seefunctionand
nested scope.

mutable Mutable objects can change their value but keep theirid() . See alsoimmutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for ex-
ample,time.localtime() returns a tuple-like object where theyear is accessible either with an index
such ast[0] or with a named attribute liket.tm_year).

A named tuple can be a built-in type such astime.struct_time , or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple() . The latter approach automatically provides extra features such as a
self-documenting representation likeEmployee(name=’jones’, title=’programmer’) .

namespaceThe place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functions__builtin__.open()
andos.open() are distinguished by their namespaces. Namespaces also aid readability and maintain-
ability by making it clear which module implements a function. For instance, writingrandom.seed()
or itertools.izip() makes it clear that those functions are implemented by therandom and
itertools modules, respectively.

nested scopeThe ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style classAny class which inherits fromobject . This includes all built-in types likelist anddict .
Only new-style classes can use Python’s newer, versatile features like__slots__ , descriptors, properties,
and__getattribute__() .

More information can be found inNew-style and classic classes(in The Python Language Reference).

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of
anynew-style class.

positional argument The arguments assigned to local names inside a function or method, determined by the
order in which they were given in the call.* is used to either accept multiple positional arguments (when
in the definition), or pass several arguments as a list to a function. Seeargument.

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3
was something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common idiom
in Python is to loop over all elements of an iterable using afor statement. Many other languages don’t
have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)) :
print food[i]

133

http://www.python.org/dev/peps/pep-0302

The Python/C API, Release 2.6.4

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPythonimplementation. Thesys module defines agetrefcount() function that programmers can
call to return the reference count for a particular object.

__slots__A declaration inside anew-style classthat saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is
best reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequenceAn iterable which supports efficient element access using integer indices via the__getitem__()
special method and defines alen() method that returns the length of the sequence. Some built-in se-
quence types arelist , str , tuple , andunicode . Note thatdict also supports__getitem__()
and__len__() , but is considered a mapping rather than a sequence because the lookups use arbitrary
immutablekeys rather than integers.

slice An object usually containing a portion of asequence. A slice is created using the subscript notation,
[] with colons between numbers when several are given, such as invariable_name[1:3:5] . The
bracket (subscript) notation usesslice objects internally (or in older versions,__getslice__() and
__setslice__()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as
addition. Such methods have names starting and ending with double underscores. Special methods are
documented inSpecial method names(in The Python Language Reference).

statement A statement is part of a suite (a “block” of code). A statement is either anexpressionor a one of several
constructs with a keyword, such asif , while or print .

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they
can span multiple lines without the use of the continuation character, making them especially useful when
writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its__class__ attribute or can be retrieved withtype(obj) .

virtual machine A computer defined entirely in software. Python’s virtual machine executes thebytecodeemitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typing “import this ” at the interactive prompt.

134 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated fromreStructuredTextsources bySphinx, a document processor specifically writ-
ten for the Python documentation.

Development of the documentation and its toolchain takes place on thedocs@python.orgmailing list. We’re
always looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

• theDocutilsproject for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for hisAlternative Python Referenceproject from which Sphinx got many good ideas.

SeeReporting Bugs in Pythonfor information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably
not complete – if you feel that you or anyone else should be on this list, please let us know (send email to
docs@python.org), and we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesús Cea Avión, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander
Belopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl,
Keith Briggs, Ian Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario,
Mike Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter
Deutsch, Robert Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson,
Carey Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Hernán Martínez Foffani, Stefan Franke, Jim Ful-
ton, Peter Funk, Lele Gaifax, Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan
Giddy, Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond,
Harald Hanche-Olsen, Manus Hand, Gerhard Häring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas
Heller, Bernhard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hof-
fleit, Steve Holden, Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson,
Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas
de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel
Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph
Lefkowitz, Robert Lehmann, Marc-André Lemburg, Ross Light, Ulf A. Lindgren, Everett Lipman, Mirko Liss,
Martin von Löwis, Fredrik Lundh, Jeff MacDonald, John Machin, Andrew MacIntyre, Vladimir Marangozov,
Vincent Marchetti, Laura Matson, Daniel May, Rebecca McCreary, Doug Mennella, Paolo Milani, Skip Monta-
naro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata, Ng Pheng Siong, Koray Oner, Tomas Oppelstrup,
Denis S. Otkidach, Zooko O’Whielacronx, Shriphani Palakodety, William Park, Joonas Paalasmaa, Harri Pasanen,
Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin D. Pettit, Chris Phoenix, François Pinard,
Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider, Bernhard Reiter, Armin Rigo, Wes Rishel,
Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse II, Mark Russell, Nick Russo, Chris

135

http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

The Python/C API, Release 2.6.4

Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Schemenauer, Barry Scott, Joakim Sern-
brant, Justin Sheehy, Charlie Shepherd, Michael Simcich, Ionel Simionescu, Michael Sloan, Gregory P. Smith,
Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks, Greg Stein, Peter
Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio, Martijn
Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy Wel-
bourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe,
Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

It is only with the input and contributions of the Python community that Python has such wonderful documentation
– Thank You!

136 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.com/). In 2001, the Python Software Foundation (PSF, seehttp://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (seehttp://www.opensource.org/for the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes
2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes

Continued on next page

137

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

The Python/C API, Release 2.6.4

Table C.1 – continued from previous page
2.4.4 2.4.3 2006 PSF yes
2.5 2.4 2006 PSF yes
2.5.1 2.5 2007 PSF yes
2.5.2 2.5.1 2008 PSF yes
2.5.3 2.5.2 2008 PSF yes
2.6 2.5 2008 PSF yes
2.6.1 2.6 2008 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.4

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.6.4 software in source or binary form
and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.4 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2009 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.4 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.6.4 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.6.4.

4. PSF is making Python 2.6.4 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.6.4 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.4 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.4, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 2.6.4, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 BEOPEN PYTHON OPEN SOURCE LICENSE
AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

138 Appendix C. History and License

The Python/C API, Release 2.6.4

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available athttp://www.pythonlabs.com/logos.htmlmay be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

C.2. Terms and conditions for accessing or otherwise using Python 139

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

The Python/C API, Release 2.6.4

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 Copyright © 1991 - 1995,
Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download fromhttp://www.math.keio.ac.jp/matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

140 Appendix C. History and License

http://www.math.keio.ac.jp/

The Python/C API, Release 2.6.4

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

Thesocket module uses the functions,getaddrinfo() , andgetnameinfo() , which are coded in separate
source files from the WIDE Project,http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 141

http://www.wide.ad.jp/

The Python/C API, Release 2.6.4

C.3.3 Floating point exception control

The source for thefpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |

\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for themd5module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

142 Appendix C. History and License

The Python/C API, Release 2.6.4

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

C.3.5 Asynchronous socket services

Theasynchat andasyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 143

The Python/C API, Release 2.6.4

C.3.6 Cookie management

TheCookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

Theprofile andpstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the software
to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

Thetrace module contains the following notice:

144 Appendix C. History and License

The Python/C API, Release 2.6.4

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.9 UUencode and UUdecode functions

Theuu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3. Licenses and Acknowledgements for Incorporated Software 145

The Python/C API, Release 2.6.4

C.3.10 XML Remote Procedure Calls

Thexmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.11 test_epoll

Thetest_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

146 Appendix C. History and License

The Python/C API, Release 2.6.4

C.3.12 Select kqueue

Theselect and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 147

The Python/C API, Release 2.6.4

148 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2009 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

SeeHistory and Licensefor complete license and permissions information.

149

The Python/C API, Release 2.6.4

150 Appendix D. Copyright

INDEX

Symbols
..., 129
_PyImport_FindExtension (C function),26
_PyImport_Fini (C function),26
_PyImport_FixupExtension (C function),26
_PyImport_Init (C function),26
_PyObject_Del (C function),105
_PyObject_GC_TRACK (C function),127
_PyObject_GC_UNTRACK (C function),127
_PyObject_New (C function),105
_PyObject_NewVar (C function),105
_PyString_Resize (C function),58
_PyTuple_Resize (C function),74
_Py_NoneStruct (C variable),106
_Py_c_diff (C function),54
_Py_c_neg (C function),54
_Py_c_pow (C function),55
_Py_c_prod (C function),54
_Py_c_quot (C function),54
_Py_c_sum (C function),54
__all__ (package variable),25
__builtin__

module,8, 91
__dict__ (module attribute),82
__doc__ (module attribute),82
__file__ (module attribute),82
__future__,131
__import__

built-in function,25
__main__

module,8, 91
__name__ (module attribute),82
__slots__,134
_frozen (C type),26
_inittab (C type),27
_ob_next (C member),111
_ob_prev (C member),111
>>>, 129
2to3,129

A
abort(),24
abs

built-in function,42
abstract base class,129
apply

built-in function,39
argument,129
argv (in module sys),94
attribute,129

B
BaseException (built-in exception),22
BDFL, 129
buf (C member),69
buffer

object,68
buffer interface,68
BufferType (in module types),72
built-in function

__import__,25
abs,42
apply,39
bytes,38
classmethod,108
cmp,38
coerce,43
compile,26
divmod,41
float,44
hash,40, 114
int, 43
len,40, 44, 46, 75, 77, 89
long,44
pow,41, 43
reload,25
repr,38, 113
staticmethod,108
str,38
tuple,45, 76
type,40
unicode,38

bytearray
object,55

bytecode,129
bytes

built-in function,38

C
calloc(),101
charbufferproc (C type),126
class,129

151

The Python/C API, Release 2.6.4

object,78
classic class,129
classmethod

built-in function,108
ClassType (in module types),78
cleanup functions,24
close() (in module os),92
cmp

built-in function,38
CO_FUTURE_DIVISION (C variable),14
CObject

object,85
coerce

built-in function,43
coercion,129
compile

built-in function,26
complex number,129

object,54
context manager,130
copyright (in module sys),93
CPython,130

D
decorator,130
descriptor,130
dictionary,130

object,76
DictionaryType (in module types),76
DictType (in module types),76
divmod

built-in function,41
docstring,130
duck-typing,130

E
EAFP,130
environment variable

exec_prefix,3
PATH, 9
prefix,3
PYTHONDUMPREFS,111
PYTHONHOME,9, 94
PYTHONPATH,9

EOFError (built-in exception),81
errno,95
exc_info() (in module sys),7
exc_traceback (in module sys),7, 17
exc_type (in module sys),7, 17
exc_value (in module sys),7, 17
exceptions

module,8
exec_prefix,3
executable (in module sys),93
exit(), 24
expression,130
extension module,131

F
file

object,80
FileType (in module types),80
finder,131
float

built-in function,44
floating point

object,53
FloatType (in modules types),53
fopen(),81
free(),101
freeze utility,26
frozenset

object,88
function,131

object,79

G
garbage collection,131
generator,131
generator expression,131
GIL, 131
global interpreter lock,94, 131

H
hash

built-in function,40, 114
hashable,131

I
IDLE, 131
ihooks

module,25
immutable,131
importer,132
incr_item(),7, 8
inquiry (C type),128
instance

object,78
int

built-in function,43
integer

object,50
integer division,132
interactive,132
internal (C member),70
interpreted,132
interpreter lock,94
IntType (in modules types),50
itemsize (C member),70
iterable,132
iterator,132

K
KeyboardInterrupt (built-in exception),21
keyword argument,132

152 Index

The Python/C API, Release 2.6.4

L
lambda,132
LBYL, 132
len

built-in function,40, 44, 46, 75, 77, 89
list, 132

object,74
list comprehension,132
ListType (in module types),74
loader,132
lock, interpreter,94
long

built-in function,44
long integer

object,52
LONG_MAX, 51, 53
LongType (in modules types),52

M
main(),92, 94
malloc(),101
mapping,133

object,76
metaclass,133
METH_CLASS (built-in variable),108
METH_COEXIST (built-in variable),108
METH_KEYWORDS (built-in variable),107
METH_NOARGS (built-in variable),108
METH_O (built-in variable),108
METH_OLDARGS (built-in variable),108
METH_STATIC (built-in variable),108
METH_VARARGS (built-in variable),107
method,133

object,79
MethodType (in module types),79, 80
module

__builtin__,8, 91
__main__,8, 91
exceptions,8
ihooks,25
object,82
rexec,25
search path,8, 91, 93
signal,21
sys,8, 91
thread,96

modules (in module sys),25, 91
ModuleType (in module types),82
mp_ass_subscript (C member),124
mp_length (C member),124
mp_subscript (C member),124
mutable,133

N
named tuple,133
namespace,133
nb_coerce (C member),124
ndim (C member),69

nested scope,133
new-style class,133
None

object,50
numeric

object,50

O
ob_refcnt (C member),111
ob_size (C member),111
ob_type (C member),111
object,133

buffer,68
bytearray,55
class,78
CObject,85
complex number,54
dictionary,76
file, 80
floating point,53
frozenset,88
function,79
instance,78
integer,50
list, 74
long integer,52
mapping,76
method,79
module,82
None,50
numeric,50
sequence,55
set,88
string,56
tuple,73
type,4, 49

OverflowError (built-in exception),53

P
package variable

__all__,25
PATH, 9
path

module search,8, 91, 93
path (in module sys),8, 91, 93
platform (in module sys),93
positional argument,133
pow

built-in function,41, 43
prefix,3
Py_AtExit (C function),24
Py_BEGIN_ALLOW_THREADS,95
Py_BEGIN_ALLOW_THREADS (C macro),97
Py_BLOCK_THREADS (C macro),97
Py_buffer (C type),69
Py_BuildValue (C function),32
Py_CLEAR (C function),15
Py_CompileString (C function),13

Index 153

The Python/C API, Release 2.6.4

Py_CompileString(),14
Py_CompileStringFlags (C function),13
Py_complex (C type),54
Py_DECREF (C function),15
Py_DECREF(),4
Py_END_ALLOW_THREADS,95
Py_END_ALLOW_THREADS (C macro),97
Py_END_OF_BUFFER (C variable),72
Py_EndInterpreter (C function),92
Py_eval_input (C variable),13
Py_Exit (C function),24
Py_False (C variable),51
Py_FatalError (C function),24
Py_FatalError(),94
Py_FdIsInteractive (C function),23
Py_file_input (C variable),14
Py_Finalize (C function),91
Py_Finalize(),24, 91, 92
Py_FindMethod (C function),109
Py_GetBuildInfo (C function),94
Py_GetBuildNumber (C function),93
Py_GetCompiler (C function),93
Py_GetCopyright (C function),93
Py_GetExecPrefix (C function),92
Py_GetExecPrefix(),9
Py_GetPath (C function),93
Py_GetPath(),9, 92
Py_GetPlatform (C function),93
Py_GetPrefix (C function),92
Py_GetPrefix(),9
Py_GetProgramFullPath (C function),93
Py_GetProgramFullPath(),9
Py_GetProgramName (C function),92
Py_GetPythonHome (C function),94
Py_GetVersion (C function),93
Py_INCREF (C function),15
Py_INCREF(),4
Py_Initialize (C function),91
Py_Initialize(),8, 92, 96
Py_InitializeEx (C function),91
Py_InitModule (C function),106
Py_InitModule3 (C function),106
Py_InitModule4 (C function),106
Py_IsInitialized (C function),91
Py_IsInitialized(),9
Py_Main (C function),11
Py_NewInterpreter (C function),91
Py_None (C variable),50
Py_PRINT_RAW,81
Py_RETURN_FALSE (C macro),51
Py_RETURN_NONE (C macro),50
Py_RETURN_TRUE (C macro),51
Py_SetProgramName (C function),92
Py_SetProgramName(),9, 91–93
Py_SetPythonHome (C function),94
Py_single_input (C variable),14
PY_SSIZE_T_MAX,53
Py_TPFLAGS_BASETYPE (built-in variable),116

Py_TPFLAGS_CHECKTYPES (built-in variable),
115

Py_TPFLAGS_DEFAULT (built-in variable),116
Py_TPFLAGS_GC (built-in variable),115
Py_TPFLAGS_HAVE_CLASS (built-in variable),

116
Py_TPFLAGS_HAVE_GC (built-in variable),116
Py_TPFLAGS_HAVE_GETCHARBUFFER (built-

in variable),115, 126
Py_TPFLAGS_HAVE_INPLACEOPS (built-in

variable),115
Py_TPFLAGS_HAVE_ITER (built-in variable),116
Py_TPFLAGS_HAVE_RICHCOMPARE (built-in

variable),115
Py_TPFLAGS_HAVE_SEQUENCE_IN (built-in

variable),115
Py_TPFLAGS_HAVE_WEAKREFS (built-in vari-

able),116
Py_TPFLAGS_HEAPTYPE (built-in variable),116
Py_TPFLAGS_READY (built-in variable),116
Py_TPFLAGS_READYING (built-in variable),116
Py_tracefunc (C type),98
Py_True (C variable),51
Py_UNBLOCK_THREADS (C macro),97
Py_UNICODE (C type),59
Py_UNICODE_ISALNUM (C function),60
Py_UNICODE_ISALPHA (C function),60
Py_UNICODE_ISDECIMAL (C function),60
Py_UNICODE_ISDIGIT (C function),60
Py_UNICODE_ISLINEBREAK (C function),60
Py_UNICODE_ISLOWER (C function),60
Py_UNICODE_ISNUMERIC (C function),60
Py_UNICODE_ISSPACE (C function),60
Py_UNICODE_ISTITLE (C function),60
Py_UNICODE_ISUPPER (C function),60
Py_UNICODE_TODECIMAL (C function),61
Py_UNICODE_TODIGIT (C function),61
Py_UNICODE_TOLOWER (C function),60
Py_UNICODE_TONUMERIC (C function),61
Py_UNICODE_TOTITLE (C function),61
Py_UNICODE_TOUPPER (C function),60
Py_VaBuildValue (C function),34
Py_VISIT (C function),127
Py_XDECREF (C function),15
Py_XDECREF(),8
Py_XINCREF (C function),15
PyAnySet_Check (C function),89
PyAnySet_CheckExact (C function),89
PyArg_Parse (C function),31
PyArg_ParseTuple (C function),31
PyArg_ParseTupleAndKeywords (C function),31
PyArg_UnpackTuple (C function),32
PyArg_VaParse (C function),31
PyArg_VaParseTupleAndKeywords (C function),31
PyBool_Check (C function),51
PyBool_FromLong (C function),52
PyBuffer_Check (C function),72
PyBuffer_FillContiguousStrides (C function),72

154 Index

The Python/C API, Release 2.6.4

PyBuffer_FillInfo (C function),72
PyBuffer_FromMemory (C function),72
PyBuffer_FromObject (C function),72
PyBuffer_FromReadWriteMemory (C function),73
PyBuffer_FromReadWriteObject (C function),72
PyBuffer_IsContiguous (C function),71
PyBuffer_New (C function),73
PyBuffer_Release (C function),71
PyBuffer_SizeFromFormat (C function),71
PyBuffer_Type (C variable),72
PyBufferObject (C type),72
PyBufferProcs,72
PyBufferProcs (C type),125
PyByteArray_AS_STRING (C function),56
PyByteArray_AsString (C function),56
PyByteArray_Check (C function),56
PyByteArray_CheckExact (C function),56
PyByteArray_Concat (C function),56
PyByteArray_FromObject (C function),56
PyByteArray_FromStringAndSize (C function),56
PyByteArray_GET_SIZE (C function),56
PyByteArray_Resize (C function),56
PyByteArray_Size (C function),56
PyByteArray_Type (C variable),55
PyByteArrayObject (C type),55
PyCallable_Check (C function),39
PyCallIter_Check (C function),83
PyCallIter_New (C function),83
PyCallIter_Type (C variable),83
PyCell_Check (C function),86
PyCell_GET (C function),86
PyCell_Get (C function),86
PyCell_New (C function),86
PyCell_SET (C function),86
PyCell_Set (C function),86
PyCell_Type (C variable),86
PyCellObject (C type),86
PyCFunction (C type),107
PyClass_Check (C function),78
PyClass_IsSubclass (C function),78
PyClass_Type (C variable),78
PyClassObject (C type),78
PyCObject (C type),85
PyCObject_AsVoidPtr (C function),85
PyCObject_Check (C function),85
PyCObject_FromVoidPtr (C function),85
PyCObject_FromVoidPtrAndDesc (C function),85
PyCObject_GetDesc (C function),85
PyCObject_SetVoidPtr (C function),85
PyCompilerFlags (C type),14
PyComplex_AsCComplex (C function),55
PyComplex_Check (C function),55
PyComplex_CheckExact (C function),55
PyComplex_FromCComplex (C function),55
PyComplex_FromDoubles (C function),55
PyComplex_ImagAsDouble (C function),55
PyComplex_RealAsDouble (C function),55
PyComplex_Type (C variable),55

PyComplexObject (C type),55
PyDate_Check (C function),87
PyDate_CheckExact (C function),87
PyDate_FromDate (C function),87
PyDate_FromTimestamp (C function),88
PyDateTime_Check (C function),87
PyDateTime_CheckExact (C function),87
PyDateTime_DATE_GET_HOUR (C function),88
PyDateTime_DATE_GET_MICROSECOND (C

function),88
PyDateTime_DATE_GET_MINUTE (C function),

88
PyDateTime_DATE_GET_SECOND (C function),

88
PyDateTime_FromDateAndTime (C function),87
PyDateTime_FromTimestamp (C function),88
PyDateTime_GET_DAY (C function),88
PyDateTime_GET_MONTH (C function),87
PyDateTime_GET_YEAR (C function),87
PyDateTime_TIME_GET_HOUR (C function),88
PyDateTime_TIME_GET_MICROSECOND (C

function),88
PyDateTime_TIME_GET_MINUTE (C function),

88
PyDateTime_TIME_GET_SECOND (C function),

88
PyDelta_Check (C function),87
PyDelta_CheckExact (C function),87
PyDelta_FromDSU (C function),87
PyDescr_IsData (C function),83
PyDescr_NewClassMethod (C function),83
PyDescr_NewGetSet (C function),83
PyDescr_NewMember (C function),83
PyDescr_NewMethod (C function),83
PyDescr_NewWrapper (C function),83
PyDict_Check (C function),76
PyDict_CheckExact (C function),76
PyDict_Clear (C function),76
PyDict_Contains (C function),76
PyDict_Copy (C function),76
PyDict_DelItem (C function),76
PyDict_DelItemString (C function),76
PyDict_GetItem (C function),76
PyDict_GetItemString (C function),77
PyDict_Items (C function),77
PyDict_Keys (C function),77
PyDict_Merge (C function),78
PyDict_MergeFromSeq2 (C function),78
PyDict_New (C function),76
PyDict_Next (C function),77
PyDict_SetItem (C function),76
PyDict_SetItemString (C function),76
PyDict_Size (C function),77
PyDict_Type (C variable),76
PyDict_Update (C function),78
PyDict_Values (C function),77
PyDictObject (C type),76
PyDictProxy_New (C function),76

Index 155

The Python/C API, Release 2.6.4

PyErr_BadArgument (C function),19
PyErr_BadInternalCall (C function),20
PyErr_CheckSignals (C function),20
PyErr_Clear (C function),18
PyErr_Clear(),7, 8
PyErr_ExceptionMatches (C function),17
PyErr_ExceptionMatches(),8
PyErr_Fetch (C function),18
PyErr_Format (C function),18
PyErr_GivenExceptionMatches (C function),17
PyErr_NewException (C function),21
PyErr_NoMemory (C function),19
PyErr_NormalizeException (C function),17
PyErr_Occurred (C function),17
PyErr_Occurred(),7
PyErr_Print (C function),17
PyErr_PrintEx (C function),17
PyErr_Restore (C function),18
PyErr_SetExcFromWindowsErr (C function),19
PyErr_SetExcFromWindowsErrWithFilename (C

function),20
PyErr_SetFromErrno (C function),19
PyErr_SetFromErrnoWithFilename (C function),19
PyErr_SetFromWindowsErr (C function),19
PyErr_SetFromWindowsErrWithFilename (C func-

tion), 20
PyErr_SetInterrupt (C function),21
PyErr_SetNone (C function),19
PyErr_SetObject (C function),18
PyErr_SetString (C function),18
PyErr_SetString(),7
PyErr_Warn (C function),20
PyErr_WarnEx (C function),20
PyErr_WarnExplicit (C function),20
PyErr_WarnPy3k (C function),20
PyErr_WriteUnraisable (C function),21
PyEval_AcquireLock (C function),96
PyEval_AcquireLock(),91, 95
PyEval_AcquireThread (C function),96
PyEval_EvalCode (C function),13
PyEval_EvalCodeEx (C function),13
PyEval_EvalFrame (C function),13
PyEval_EvalFrameEx (C function),13
PyEval_GetBuiltins (C function),35
PyEval_GetCallStats (C function),99
PyEval_GetFrame (C function),35
PyEval_GetFuncDesc (C function),35
PyEval_GetFuncName (C function),35
PyEval_GetGlobals (C function),35
PyEval_GetLocals (C function),35
PyEval_GetRestricted (C function),35
PyEval_InitThreads (C function),96
PyEval_InitThreads(),91
PyEval_MergeCompilerFlags (C function),13
PyEval_ReInitThreads (C function),97
PyEval_ReleaseLock (C function),96
PyEval_ReleaseLock(),91, 95, 96
PyEval_ReleaseThread (C function),96

PyEval_ReleaseThread(),96
PyEval_RestoreThread (C function),97
PyEval_RestoreThread(),95, 96
PyEval_SaveThread (C function),97
PyEval_SaveThread(),95, 96
PyEval_SetProfile (C function),99
PyEval_SetTrace (C function),99
PyEval_ThreadsInitialized (C function),96
PyExc_ArithmeticError,22
PyExc_AssertionError,22
PyExc_AttributeError,22
PyExc_BaseException,22
PyExc_EnvironmentError,22
PyExc_EOFError,22
PyExc_Exception,22
PyExc_FloatingPointError,22
PyExc_ImportError,22
PyExc_IndexError,22
PyExc_IOError,22
PyExc_KeyboardInterrupt,22
PyExc_KeyError,22
PyExc_LookupError,22
PyExc_MemoryError,22
PyExc_NameError,22
PyExc_NotImplementedError,22
PyExc_OSError,22
PyExc_OverflowError,22
PyExc_ReferenceError,22
PyExc_RuntimeError,22
PyExc_StandardError,22
PyExc_SyntaxError,22
PyExc_SystemError,22
PyExc_SystemExit,22
PyExc_TypeError,22
PyExc_ValueError,22
PyExc_WindowsError,22
PyExc_ZeroDivisionError,22
PyFile_AsFile (C function),81
PyFile_Check (C function),80
PyFile_CheckExact (C function),80
PyFile_DecUseCount (C function),81
PyFile_FromFile (C function),81
PyFile_FromString (C function),80
PyFile_GetLine (C function),81
PyFile_IncUseCount (C function),81
PyFile_Name (C function),81
PyFile_SetBufSize (C function),81
PyFile_SetEncoding (C function),81
PyFile_SetEncodingAndErrors (C function),81
PyFile_SoftSpace (C function),81
PyFile_Type (C variable),80
PyFile_WriteObject (C function),81
PyFile_WriteString (C function),82
PyFileObject (C type),80
PyFloat_AS_DOUBLE (C function),54
PyFloat_AsDouble (C function),54
PyFloat_Check (C function),53
PyFloat_CheckExact (C function),53

156 Index

The Python/C API, Release 2.6.4

PyFloat_ClearFreeList (C function),54
PyFloat_FromDouble (C function),54
PyFloat_FromString (C function),53
PyFloat_GetInfo (C function),54
PyFloat_GetMax (C function),54
PyFloat_GetMin (C function),54
PyFloat_Type (C variable),53
PyFloatObject (C type),53
PyFrozenSet_Check (C function),89
PyFrozenSet_CheckExact (C function),89
PyFrozenSet_New (C function),89
PyFrozenSet_Type (C variable),89
PyFunction_Check (C function),79
PyFunction_GetClosure (C function),79
PyFunction_GetCode (C function),79
PyFunction_GetDefaults (C function),79
PyFunction_GetGlobals (C function),79
PyFunction_GetModule (C function),79
PyFunction_New (C function),79
PyFunction_SetClosure (C function),79
PyFunction_SetDefaults (C function),79
PyFunction_Type (C variable),79
PyFunctionObject (C type),79
PyGen_Check (C function),86
PyGen_CheckExact (C function),86
PyGen_New (C function),86
PyGen_Type (C variable),86
PyGenObject (C type),86
PyGILState_Ensure (C function),98
PyGILState_Release (C function),98
PyImport_AddModule (C function),25
PyImport_AppendInittab (C function),27
PyImport_Cleanup (C function),26
PyImport_ExecCodeModule (C function),25
PyImport_ExtendInittab (C function),27
PyImport_FrozenModules (C variable),26
PyImport_GetImporter (C function),26
PyImport_GetMagicNumber (C function),26
PyImport_GetModuleDict (C function),26
PyImport_Import (C function),25
PyImport_ImportFrozenModule (C function),26
PyImport_ImportModule (C function),24
PyImport_ImportModuleEx (C function),25
PyImport_ImportModuleLevel (C function),25
PyImport_ImportModuleNoBlock (C function),25
PyImport_ReloadModule (C function),25
PyIndex_Check (C function),44
PyInstance_Check (C function),78
PyInstance_New (C function),78
PyInstance_NewRaw (C function),79
PyInstance_Type (C variable),78
PyInt_AS_LONG (C function),51
PyInt_AsLong (C function),51
PyInt_AsSsize_t (C function),51
PyInt_AsUnsignedLongLongMask (C function),51
PyInt_AsUnsignedLongMask (C function),51
PyInt_Check (C function),50
PyInt_CheckExact (C function),50

PyInt_ClearFreeList (C function),51
PyInt_FromLong (C function),50
PyInt_FromSize_t (C function),51
PyInt_FromSsize_t (C function),51
PyInt_FromString (C function),50
PyInt_GetMax (C function),51
PyInt_Type (C variable),50
PyInterpreterState (C type),96
PyInterpreterState_Clear (C function),97
PyInterpreterState_Delete (C function),97
PyInterpreterState_Head (C function),100
PyInterpreterState_New (C function),97
PyInterpreterState_Next (C function),100
PyInterpreterState_ThreadHead (C function),100
PyIntObject (C type),50
PyIter_Check (C function),47
PyIter_Next (C function),47
PyList_Append (C function),75
PyList_AsTuple (C function),76
PyList_Check (C function),74
PyList_CheckExact (C function),74
PyList_GET_ITEM (C function),75
PyList_GET_SIZE (C function),75
PyList_GetItem (C function),75
PyList_GetItem(),6
PyList_GetSlice (C function),75
PyList_Insert (C function),75
PyList_New (C function),74
PyList_Reverse (C function),76
PyList_SET_ITEM (C function),75
PyList_SetItem (C function),75
PyList_SetItem(),5
PyList_SetSlice (C function),75
PyList_Size (C function),75
PyList_Sort (C function),75
PyList_Type (C variable),74
PyListObject (C type),74
PyLong_AsDouble (C function),53
PyLong_AsLong (C function),53
PyLong_AsLongLong (C function),53
PyLong_AsSsize_t (C function),53
PyLong_AsUnsignedLong (C function),53
PyLong_AsUnsignedLongLong (C function),53
PyLong_AsUnsignedLongLongMask (C function),

53
PyLong_AsUnsignedLongMask (C function),53
PyLong_AsVoidPtr (C function),53
PyLong_Check (C function),52
PyLong_CheckExact (C function),52
PyLong_FromDouble (C function),52
PyLong_FromLong (C function),52
PyLong_FromLongLong (C function),52
PyLong_FromSize_t (C function),52
PyLong_FromSsize_t (C function),52
PyLong_FromString (C function),52
PyLong_FromUnicode (C function),52
PyLong_FromUnsignedLong (C function),52
PyLong_FromUnsignedLongLong (C function),52

Index 157

The Python/C API, Release 2.6.4

PyLong_FromVoidPtr (C function),53
PyLong_Type (C variable),52
PyLongObject (C type),52
PyMapping_Check (C function),46
PyMapping_DelItem (C function),46
PyMapping_DelItemString (C function),46
PyMapping_GetItemString (C function),47
PyMapping_HasKey (C function),46
PyMapping_HasKeyString (C function),46
PyMapping_Items (C function),47
PyMapping_Keys (C function),46
PyMapping_Length (C function),46
PyMapping_SetItemString (C function),47
PyMapping_Size (C function),46
PyMapping_Values (C function),46
PyMappingMethods (C type),124
PyMarshal_ReadLastObjectFromFile (C function),

28
PyMarshal_ReadLongFromFile (C function),27
PyMarshal_ReadObjectFromFile (C function),28
PyMarshal_ReadObjectFromString (C function),28
PyMarshal_ReadShortFromFile (C function),27
PyMarshal_WriteLongToFile (C function),27
PyMarshal_WriteObjectToFile (C function),27
PyMarshal_WriteObjectToString (C function),27
PyMem_Del (C function),102
PyMem_Free (C function),102
PyMem_Malloc (C function),102
PyMem_New (C function),102
PyMem_Realloc (C function),102
PyMem_Resize (C function),102
PyMemberDef (C type),108
PyMethod_Check (C function),80
PyMethod_Class (C function),80
PyMethod_ClearFreeList (C function),80
PyMethod_Function (C function),80
PyMethod_GET_CLASS (C function),80
PyMethod_GET_FUNCTION (C function),80
PyMethod_GET_SELF (C function),80
PyMethod_New (C function),80
PyMethod_Self (C function),80
PyMethod_Type (C variable),79
PyMethodDef (C type),107
PyModule_AddIntConstant (C function),82
PyModule_AddIntMacro (C function),82
PyModule_AddObject (C function),82
PyModule_AddStringConstant (C function),82
PyModule_AddStringMacro (C function),82
PyModule_Check (C function),82
PyModule_CheckExact (C function),82
PyModule_GetDict (C function),82
PyModule_GetFilename (C function),82
PyModule_GetName (C function),82
PyModule_New (C function),82
PyModule_Type (C variable),82
PyNumber_Absolute (C function),42
PyNumber_Add (C function),41
PyNumber_And (C function),42

PyNumber_AsSsize_t (C function),44
PyNumber_Check (C function),41
PyNumber_Coerce (C function),43
PyNumber_CoerceEx (C function),43
PyNumber_Divide (C function),41
PyNumber_Divmod (C function),41
PyNumber_Float (C function),44
PyNumber_FloorDivide (C function),41
PyNumber_Index (C function),44
PyNumber_InPlaceAdd (C function),42
PyNumber_InPlaceAnd (C function),43
PyNumber_InPlaceDivide (C function),42
PyNumber_InPlaceFloorDivide (C function),42
PyNumber_InPlaceLshift (C function),43
PyNumber_InPlaceMultiply (C function),42
PyNumber_InPlaceOr (C function),43
PyNumber_InPlacePower (C function),43
PyNumber_InPlaceRemainder (C function),43
PyNumber_InPlaceRshift (C function),43
PyNumber_InPlaceSubtract (C function),42
PyNumber_InPlaceTrueDivide (C function),43
PyNumber_InPlaceXor (C function),43
PyNumber_Int (C function),43
PyNumber_Invert (C function),42
PyNumber_Long (C function),44
PyNumber_Lshift (C function),42
PyNumber_Multiply (C function),41
PyNumber_Negative (C function),41
PyNumber_Or (C function),42
PyNumber_Positive (C function),42
PyNumber_Power (C function),41
PyNumber_Remainder (C function),41
PyNumber_Rshift (C function),42
PyNumber_Subtract (C function),41
PyNumber_ToBase (C function),44
PyNumber_TrueDivide (C function),41
PyNumber_Xor (C function),42
PyNumberMethods (C type),123
PyObject (C type),106
PyObject_AsCharBuffer (C function),48
PyObject_AsFileDescriptor (C function),40
PyObject_AsReadBuffer (C function),48
PyObject_AsWriteBuffer (C function),48
PyObject_Bytes (C function),38
PyObject_Call (C function),39
PyObject_CallFunction (C function),39
PyObject_CallFunctionObjArgs (C function),39
PyObject_CallMethod (C function),39
PyObject_CallMethodObjArgs (C function),39
PyObject_CallObject (C function),39
PyObject_CheckBuffer (C function),70
PyObject_CheckReadBuffer (C function),48
PyObject_Cmp (C function),38
PyObject_Compare (C function),38
PyObject_CopyToObject (C function),71
PyObject_Del (C function),105
PyObject_DelAttr (C function),38
PyObject_DelAttrString (C function),38

158 Index

The Python/C API, Release 2.6.4

PyObject_DelItem (C function),40
PyObject_Dir (C function),40
PyObject_GC_Del (C function),127
PyObject_GC_New (C function),127
PyObject_GC_NewVar (C function),127
PyObject_GC_Resize (C function),127
PyObject_GC_Track (C function),127
PyObject_GC_UnTrack (C function),127
PyObject_GenericGetAttr (C function),37
PyObject_GenericSetAttr (C function),37
PyObject_GetAttr (C function),37
PyObject_GetAttrString (C function),37
PyObject_GetBuffer (C function),70
PyObject_GetItem (C function),40
PyObject_GetIter (C function),40
PyObject_HasAttr (C function),37
PyObject_HasAttrString (C function),37
PyObject_Hash (C function),40
PyObject_HashNotImplemented (C function),40
PyObject_HEAD (C macro),106
PyObject_HEAD_INIT (C macro),107
PyObject_Init (C function),105
PyObject_InitVar (C function),105
PyObject_IsInstance (C function),38
PyObject_IsSubclass (C function),39
PyObject_IsTrue (C function),40
PyObject_Length (C function),40
PyObject_New (C function),105
PyObject_NewVar (C function),105
PyObject_Not (C function),40
PyObject_Print (C function),37
PyObject_Repr (C function),38
PyObject_RichCompare (C function),38
PyObject_RichCompareBool (C function),38
PyObject_SetAttr (C function),37
PyObject_SetAttrString (C function),37
PyObject_SetItem (C function),40
PyObject_Size (C function),40
PyObject_Str (C function),38
PyObject_Type (C function),40
PyObject_TypeCheck (C function),40
PyObject_Unicode (C function),38
PyObject_VAR_HEAD (C macro),107
PyOS_AfterFork (C function),23
PyOS_ascii_atof (C function),34
PyOS_ascii_formatd (C function),34
PyOS_ascii_strtod (C function),34
PyOS_CheckStack (C function),23
PyOS_GetLastModificationTime (C function),23
PyOS_getsig (C function),23
PyOS_setsig (C function),23
PyOS_snprintf (C function),34
PyOS_stricmp (C function),35
PyOS_strnicmp (C function),35
PyOS_vsnprintf (C function),34
PyParser_SimpleParseFile (C function),12
PyParser_SimpleParseFileFlags (C function),12
PyParser_SimpleParseString (C function),12

PyParser_SimpleParseStringFlags (C function),12
PyParser_SimpleParseStringFlagsFilename (C func-

tion), 12
PyProperty_Type (C variable),83
PyRun_AnyFile (C function),11
PyRun_AnyFileEx (C function),11
PyRun_AnyFileExFlags (C function),11
PyRun_AnyFileFlags (C function),11
PyRun_File (C function),13
PyRun_FileEx (C function),13
PyRun_FileExFlags (C function),13
PyRun_FileFlags (C function),13
PyRun_InteractiveLoop (C function),12
PyRun_InteractiveLoopFlags (C function),12
PyRun_InteractiveOne (C function),12
PyRun_InteractiveOneFlags (C function),12
PyRun_SimpleFile (C function),12
PyRun_SimpleFileEx (C function),12
PyRun_SimpleFileExFlags (C function),12
PyRun_SimpleFileFlags (C function),12
PyRun_SimpleString (C function),11
PyRun_SimpleStringFlags (C function),11
PyRun_String (C function),12
PyRun_StringFlags (C function),12
PySeqIter_Check (C function),83
PySeqIter_New (C function),83
PySeqIter_Type (C variable),83
PySequence_Check (C function),44
PySequence_Concat (C function),44
PySequence_Contains (C function),45
PySequence_Count (C function),45
PySequence_DelItem (C function),45
PySequence_DelSlice (C function),45
PySequence_Fast (C function),45
PySequence_Fast_GET_ITEM (C function),46
PySequence_Fast_GET_SIZE (C function),46
PySequence_Fast_ITEMS (C function),46
PySequence_GetItem (C function),45
PySequence_GetItem(),6
PySequence_GetSlice (C function),45
PySequence_Index (C function),45
PySequence_InPlaceConcat (C function),44
PySequence_InPlaceRepeat (C function),44
PySequence_ITEM (C function),46
PySequence_Length (C function),44
PySequence_List (C function),45
PySequence_Repeat (C function),44
PySequence_SetItem (C function),45
PySequence_SetSlice (C function),45
PySequence_Size (C function),44
PySequence_Tuple (C function),45
PySequenceMethods (C type),125
PySet_Add (C function),89
PySet_Check (C function),89
PySet_Clear (C function),90
PySet_Contains (C function),89
PySet_Discard (C function),89
PySet_GET_SIZE (C function),89

Index 159

The Python/C API, Release 2.6.4

PySet_New (C function),89
PySet_Pop (C function),90
PySet_Size (C function),89
PySet_Type (C variable),88
PySetObject (C type),88
PySignal_SetWakeupFd (C function),21
PySlice_Check (C function),84
PySlice_GetIndices (C function),84
PySlice_GetIndicesEx (C function),84
PySlice_New (C function),84
PySlice_Type (C variable),84
PyString_AS_STRING (C function),57
PyString_AsDecodedObject (C function),59
PyString_AsEncodedObject (C function),59
PyString_AsString (C function),57
PyString_AsStringAndSize (C function),58
PyString_Check (C function),56
PyString_CheckExact (C function),56
PyString_Concat (C function),58
PyString_ConcatAndDel (C function),58
PyString_Decode (C function),58
PyString_Encode (C function),59
PyString_Format (C function),58
PyString_FromFormat (C function),57
PyString_FromFormatV (C function),57
PyString_FromString (C function),56
PyString_FromString(),76
PyString_FromStringAndSize (C function),57
PyString_GET_SIZE (C function),57
PyString_InternFromString (C function),58
PyString_InternInPlace (C function),58
PyString_Size (C function),57
PyString_Type (C variable),56
PyStringObject (C type),56
PySys_AddWarnOption (C function),24
PySys_GetFile (C function),24
PySys_GetObject (C function),23
PySys_ResetWarnOptions (C function),24
PySys_SetArgv (C function),94
PySys_SetArgv(),8, 91
PySys_SetObject (C function),24
PySys_SetPath (C function),24
PySys_WriteStderr (C function),24
PySys_WriteStdout (C function),24
Python 3000,133
Python Enhancement Proposals

PEP 238,14
PEP 302,131, 133
PEP 343,130

PYTHONDUMPREFS,111
PYTHONHOME,9, 94
Pythonic,133
PYTHONPATH,9
PyThreadState,94
PyThreadState (C type),96
PyThreadState_Clear (C function),97
PyThreadState_Delete (C function),97
PyThreadState_Get (C function),98

PyThreadState_GetDict (C function),98
PyThreadState_New (C function),97
PyThreadState_Next (C function),100
PyThreadState_SetAsyncExc (C function),98
PyThreadState_Swap (C function),98
PyTime_Check (C function),87
PyTime_CheckExact (C function),87
PyTime_FromTime (C function),87
PyTrace_C_CALL (C variable),99
PyTrace_C_EXCEPTION (C variable),99
PyTrace_C_RETURN (C variable),99
PyTrace_CALL (C variable),99
PyTrace_EXCEPTION (C variable),99
PyTrace_LINE (C variable),99
PyTrace_RETURN (C variable),99
PyTuple_Check (C function),73
PyTuple_CheckExact (C function),73
PyTuple_ClearFreeList (C function),74
PyTuple_GET_ITEM (C function),74
PyTuple_GET_SIZE (C function),73
PyTuple_GetItem (C function),73
PyTuple_GetSlice (C function),74
PyTuple_New (C function),73
PyTuple_Pack (C function),73
PyTuple_SET_ITEM (C function),74
PyTuple_SetItem (C function),74
PyTuple_SetItem(),5
PyTuple_Size (C function),73
PyTuple_Type (C variable),73
PyTupleObject (C type),73
PyType_Check (C function),49
PyType_CheckExact (C function),49
PyType_ClearCache (C function),49
PyType_GenericAlloc (C function),50
PyType_GenericNew (C function),50
PyType_HasFeature (C function),49
PyType_HasFeature(),126
PyType_IS_GC (C function),49
PyType_IsSubtype (C function),49
PyType_Modified (C function),49
PyType_Ready (C function),50
PyType_Type (C variable),49
PyTypeObject (C type),49
PyTZInfo_Check (C function),87
PyTZInfo_CheckExact (C function),87
PyUnicode_AS_DATA (C function),60
PyUnicode_AS_UNICODE (C function),60
PyUnicode_AsASCIIString (C function),66
PyUnicode_AsCharmapString (C function),66
PyUnicode_AsEncodedString (C function),62
PyUnicode_AsLatin1String (C function),65
PyUnicode_AsMBCSString (C function),67
PyUnicode_AsRawUnicodeEscapeString (C func-

tion), 65
PyUnicode_AsUnicode (C function),61
PyUnicode_AsUnicodeEscapeString (C function),

65
PyUnicode_AsUTF16String (C function),64

160 Index

The Python/C API, Release 2.6.4

PyUnicode_AsUTF32String (C function),63
PyUnicode_AsUTF8String (C function),63
PyUnicode_AsWideChar (C function),61
PyUnicode_Check (C function),60
PyUnicode_CheckExact (C function),60
PyUnicode_ClearFreeList (C function),60
PyUnicode_Compare (C function),68
PyUnicode_Concat (C function),67
PyUnicode_Contains (C function),68
PyUnicode_Count (C function),68
PyUnicode_Decode (C function),62
PyUnicode_DecodeASCII (C function),65
PyUnicode_DecodeCharmap (C function),66
PyUnicode_DecodeLatin1 (C function),65
PyUnicode_DecodeMBCS (C function),67
PyUnicode_DecodeMBCSStateful (C function),67
PyUnicode_DecodeRawUnicodeEscape (C func-

tion), 65
PyUnicode_DecodeUnicodeEscape (C function),64
PyUnicode_DecodeUTF16 (C function),64
PyUnicode_DecodeUTF16Stateful (C function),64
PyUnicode_DecodeUTF32 (C function),63
PyUnicode_DecodeUTF32Stateful (C function),63
PyUnicode_DecodeUTF8 (C function),62
PyUnicode_DecodeUTF8Stateful (C function),62
PyUnicode_Encode (C function),62
PyUnicode_EncodeASCII (C function),65
PyUnicode_EncodeCharmap (C function),66
PyUnicode_EncodeLatin1 (C function),65
PyUnicode_EncodeMBCS (C function),67
PyUnicode_EncodeRawUnicodeEscape (C func-

tion), 65
PyUnicode_EncodeUnicodeEscape (C function),65
PyUnicode_EncodeUTF16 (C function),64
PyUnicode_EncodeUTF32 (C function),63
PyUnicode_EncodeUTF8 (C function),63
PyUnicode_Find (C function),68
PyUnicode_Format (C function),68
PyUnicode_FromEncodedObject (C function),61
PyUnicode_FromObject (C function),61
PyUnicode_FromUnicode (C function),61
PyUnicode_FromWideChar (C function),61
PyUnicode_GET_DATA_SIZE (C function),60
PyUnicode_GET_SIZE (C function),60
PyUnicode_GetSize (C function),61
PyUnicode_Join (C function),67
PyUnicode_Replace (C function),68
PyUnicode_RichCompare (C function),68
PyUnicode_Split (C function),67
PyUnicode_Splitlines (C function),67
PyUnicode_Tailmatch (C function),68
PyUnicode_Translate (C function),67
PyUnicode_TranslateCharmap (C function),66
PyUnicode_Type (C variable),59
PyUnicodeObject (C type),59
PyVarObject (C type),106
PyVarObject_HEAD_INIT (C macro),107
PyWeakref_Check (C function),84

PyWeakref_CheckProxy (C function),84
PyWeakref_CheckRef (C function),84
PyWeakref_GET_OBJECT (C function),85
PyWeakref_GetObject (C function),85
PyWeakref_NewProxy (C function),85
PyWeakref_NewRef (C function),84
PyWrapper_New (C function),83

R
readbufferproc (C type),126
readonly (C member),69
realloc(),101
reference count,134
reload

built-in function,25
repr

built-in function,38, 113
rexec

module,25

S
search

path, module,8, 91, 93
segcountproc (C type),126
sequence,134

object,55
set

object,88
set_all(),6
setcheckinterval() (in module sys),94
setvbuf(),81
shape (C member),69
SIGINT, 21
signal

module,21
slice,134
SliceType (in module types),84
softspace (file attribute),81
special method,134
sq_ass_item (C member),125
sq_concat (C member),125
sq_contains (C member),125
sq_inplace_concat (C member),125
sq_inplace_repeat (C member),125
sq_item (C member),125
sq_length (C member),125
sq_repeat (C member),125
statement,134
staticmethod

built-in function,108
stderr (in module sys),91
stdin (in module sys),91
stdout (in module sys),91
str

built-in function,38
strerror(),19
strides (C member),69
string

Index 161

The Python/C API, Release 2.6.4

object,56
StringType (in module types),56
suboffsets (C member),69
sum_list(),6
sum_sequence(),7
sys

module,8, 91
SystemError (built-in exception),82

T
thread

module,96
tp_alloc (C member),121
tp_allocs (C member),123
tp_as_buffer (C member),115
tp_as_mapping (C member),114
tp_as_number (C member),113
tp_as_sequence (C member),114
tp_base (C member),119
tp_bases (C member),122
tp_basicsize (C member),112
tp_cache (C member),122
tp_call (C member),114
tp_clear (C member),117
tp_compare (C member),113
tp_dealloc (C member),112
tp_descr_get (C member),120
tp_descr_set (C member),120
tp_dict (C member),119
tp_dictoffset (C member),120
tp_doc (C member),116
tp_flags (C member),115
tp_free (C member),122
tp_frees (C member),123
tp_getattr (C member),113
tp_getattro (C member),114
tp_getset (C member),119
tp_hash (C member),114
tp_init (C member),121
tp_is_gc (C member),122
tp_itemsize (C member),112
tp_iter (C member),118
tp_iternext (C member),119
tp_maxalloc (C member),123
tp_members (C member),119
tp_methods (C member),119
tp_mro (C member),122
tp_name (C member),111
tp_new (C member),121
tp_next (C member),123
tp_print (C member),112
tp_repr (C member),113
tp_richcompare (C member),118
tp_setattr (C member),113
tp_setattro (C member),114
tp_str (C member),114
tp_subclasses (C member),122
tp_traverse (C member),116

tp_weaklist (C member),123
tp_weaklistoffset (C member),118
traverseproc (C type),127
triple-quoted string,134
tuple

built-in function,45, 76
object,73

TupleType (in module types),73
type,134

built-in function,40
object,4, 49

TypeType (in module types),49

U
ULONG_MAX, 53
unicode

built-in function,38

V
version (in module sys),93, 94
virtual machine,134
visitproc (C type),127

W
writebufferproc (C type),126

Z
Zen of Python,134

162 Index

	Introduction
	Include Files
	Objects, Types and Reference Counts
	Exceptions
	Embedding Python
	Debugging Builds

	The Very High Level Layer
	Reference Counting
	Exception Handling
	Standard Exceptions
	Deprecation of String Exceptions

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	String conversion and formatting
	Reflection

	Abstract Objects Layer
	Object Protocol
	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Numeric Objects
	Sequence Objects
	Mapping Objects
	Other Objects

	Initialization, Finalization, and Threads
	Thread State and the Global Interpreter Lock
	Profiling and Tracing
	Advanced Debugger Support

	Memory Management
	Overview
	Memory Interface
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Type Objects
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Supporting Cyclic Garbage Collection

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

