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This article explains the new features in Python 2.5. The final release of Python 2.5 is scheduled for August 2006;
PEP 356 describes the planned release schedule.

The changes in Python 2.5 are an interesting mix of language and library improvements. The library enhancements
will be more important to Python’s user community, I think, because several widely-useful packages were added.
New modules include ElementTree for XML processing (section 13.2), the SQLite database module (section 13.4),
and the ctypes module for calling C functions (section 13.1).

The language changes are of middling significance. Some pleasant new features were added, but most of them
aren’t features that you’ll use every day. Conditional expressions were finally added to the language using a novel
syntax; see section 1. The new ’with’ statement will make writing cleanup code easier (section 8). Values
can now be passed into generators (section 7). Imports are now visible as either absolute or relative (section 4).
Some corner cases of exception handling are handled better (section 6). All these improvements are worthwhile,
but they’re improvements to one specific language feature or another; none of them are broad modifications to
Python’s semantics.

As well as the language and library additions, other improvements and bugfixes were made throughout the source
tree. A search through the SVN change logs finds there were 353 patches applied and 458 bugs fixed between
Python 2.4 and 2.5. (Both figures are likely to be underestimates.)

This article doesn’t try to be a complete specification of the new features; instead changes are briefly intro-
duced using helpful examples. For full details, you should always refer to the documentation for Python 2.5 at
http://docs.python.org. If you want to understand the complete implementation and design rationale, refer to the
PEP for a particular new feature.

Comments, suggestions, and error reports for this document are welcome; please e-mail them to the author or
open a bug in the Python bug tracker.

1 PEP 308: Conditional Expressions

For a long time, people have been requesting a way to write conditional expressions, which are expressions that
return value A or value B depending on whether a Boolean value is true or false. A conditional expression lets
you write a single assignment statement that has the same effect as the following:

if condition:
x = true_value

else:
x = false_value

There have been endless tedious discussions of syntax on both python-dev and comp.lang.python. A vote was
even held that found the majority of voters wanted conditional expressions in some form, but there was no syntax
that was preferred by a clear majority. Candidates included C’s cond ? true_v : false_v, if cond
then true_v else false_v, and 16 other variations.

Guido van Rossum eventually chose a surprising syntax:

x = true_value if condition else false_value

Evaluation is still lazy as in existing Boolean expressions, so the order of evaluation jumps around a bit. The
condition expression in the middle is evaluated first, and the true value expression is evaluated only if the condition
was true. Similarly, the false value expression is only evaluated when the condition is false.

This syntax may seem strange and backwards; why does the condition go in the middle of the expression, and not
in the front as in C’s c ? x : y? The decision was checked by applying the new syntax to the modules in
the standard library and seeing how the resulting code read. In many cases where a conditional expression is used,
one value seems to be the ’common case’ and one value is an ’exceptional case’, used only on rarer occasions
when the condition isn’t met. The conditional syntax makes this pattern a bit more obvious:
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contents = ((doc + ’\n’) if doc else ’’)

I read the above statement as meaning “here contents is usually assigned a value of doc+’\n’; sometimes doc
is empty, in which special case an empty string is returned.” I doubt I will use conditional expressions very often
where there isn’t a clear common and uncommon case.

There was some discussion of whether the language should require surrounding conditional expressions with
parentheses. The decision was made to not require parentheses in the Python language’s grammar, but as a matter
of style I think you should always use them. Consider these two statements:

# First version -- no parens
level = 1 if logging else 0

# Second version -- with parens
level = (1 if logging else 0)

In the first version, I think a reader’s eye might group the statement into ’level = 1’, ’if logging’, ’else 0’, and think
that the condition decides whether the assignment to level is performed. The second version reads better, in my
opinion, because it makes it clear that the assignment is always performed and the choice is being made between
two values.

Another reason for including the brackets: a few odd combinations of list comprehensions and lambdas could
look like incorrect conditional expressions. See PEP 308 for some examples. If you put parentheses around your
conditional expressions, you won’t run into this case.

See Also:

PEP 308, “Conditional Expressions”
PEP written by Guido van Rossum and Raymond D. Hettinger; implemented by Thomas Wouters.

2 PEP 309: Partial Function Application

The functools module is intended to contain tools for functional-style programming.

One useful tool in this module is the partial() function. For programs written in a functional style, you’ll
sometimes want to construct variants of existing functions that have some of the parameters filled in. Consider
a Python function f(a, b, c); you could create a new function g(b, c) that was equivalent to f(1, b,
c). This is called “partial function application”.

partial takes the arguments (function, arg1, arg2, ... kwarg1=value1, kwarg2=value2). The re-
sulting object is callable, so you can just call it to invoke function with the filled-in arguments.

Here’s a small but realistic example:

import functools

def log (message, subsystem):
"Write the contents of ’message’ to the specified subsystem."
print ’%s: %s’ % (subsystem, message)
...

server_log = functools.partial(log, subsystem=’server’)
server_log(’Unable to open socket’)

Here’s another example, from a program that uses PyGTK. Here a context-sensitive pop-up menu is being con-
structed dynamically. The callback provided for the menu option is a partially applied version of the open_-
item() method, where the first argument has been provided.
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...
class Application:

def open_item(self, path):
...

def init (self):
open_func = functools.partial(self.open_item, item_path)
popup_menu.append( ("Open", open_func, 1) )

Another function in the functools module is the update_wrapper(wrapper, wrapped) function that
helps you write well-behaved decorators. update_wrapper() copies the name, module, and docstring at-
tribute to a wrapper function so that tracebacks inside the wrapped function are easier to understand. For example,
you might write:

def my_decorator(f):
def wrapper(*args, **kwds):

print ’Calling decorated function’
return f(*args, **kwds)

functools.update_wrapper(wrapper, f)
return wrapper

wraps() is a decorator that can be used inside your own decorators to copy the wrapped function’s information.
An alternate version of the previous example would be:

def my_decorator(f):
@functools.wraps(f)
def wrapper(*args, **kwds):

print ’Calling decorated function’
return f(*args, **kwds)

return wrapper

See Also:

PEP 309, “Partial Function Application”
PEP proposed and written by Peter Harris; implemented by Hye-Shik Chang and Nick Coghlan, with adap-
tations by Raymond Hettinger.

3 PEP 314: Metadata for Python Software Packages v1.1

Some simple dependency support was added to Distutils. The setup() function now has requires,
provides, and obsoletes keyword parameters. When you build a source distribution using the sdist
command, the dependency information will be recorded in the ‘PKG-INFO’ file.

Another new keyword parameter is download_url, which should be set to a URL for the package’s source
code. This means it’s now possible to look up an entry in the package index, determine the dependencies for a
package, and download the required packages.

VERSION = ’1.0’
setup(name=’PyPackage’,

version=VERSION,
requires=[’numarray’, ’zlib (>=1.1.4)’],
obsoletes=[’OldPackage’]
download_url=(’http://www.example.com/pypackage/dist/pkg-%s.tar.gz’

% VERSION),
)
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Another new enhancement to the Python package index at http://cheeseshop.python.org is storing source and
binary archives for a package. The new upload Distutils command will upload a package to the repository.

Before a package can be uploaded, you must be able to build a distribution using the sdist Distutils command.
Once that works, you can run python setup.py upload to add your package to the PyPI archive. Option-
ally you can GPG-sign the package by supplying the --sign and --identity options.

Package uploading was implemented by Martin von Löwis and Richard Jones.

See Also:

PEP 314, “Metadata for Python Software Packages v1.1”
PEP proposed and written by A.M. Kuchling, Richard Jones, and Fred Drake; implemented by Richard
Jones and Fred Drake.

4 PEP 328: Absolute and Relative Imports

The simpler part of PEP 328 was implemented in Python 2.4: parentheses could now be used to enclose the names
imported from a module using the from ... import ... statement, making it easier to import many
different names.

The more complicated part has been implemented in Python 2.5: importing a module can be specified to use
absolute or package-relative imports. The plan is to move toward making absolute imports the default in future
versions of Python.

Let’s say you have a package directory like this:

pkg/
pkg/__init__.py
pkg/main.py
pkg/string.py

This defines a package named pkg containing the pkg.main and pkg.string submodules.

Consider the code in the ‘main.py’ module. What happens if it executes the statement import string? In
Python 2.4 and earlier, it will first look in the package’s directory to perform a relative import, finds ‘pkg/string.py’,
imports the contents of that file as the pkg.string module, and that module is bound to the name ‘string’ in
the pkg.main module’s namespace.

That’s fine if pkg.string was what you wanted. But what if you wanted Python’s standard string module?
There’s no clean way to ignore pkg.string and look for the standard module; generally you had to look at the
contents of sys.modules, which is slightly unclean. Holger Krekel’s py.std package provides a tidier way to
perform imports from the standard library, import py ; py.std.string.join(), but that package isn’t
available on all Python installations.

Reading code which relies on relative imports is also less clear, because a reader may be confused about which
module, string or pkg.string, is intended to be used. Python users soon learned not to duplicate the names
of standard library modules in the names of their packages’ submodules, but you can’t protect against having your
submodule’s name being used for a new module added in a future version of Python.

In Python 2.5, you can switch import’s behaviour to absolute imports using a from __future__ import
absolute_import directive. This absolute-import behaviour will become the default in a future version (prob-
ably Python 2.7). Once absolute imports are the default, import string will always find the standard library’s
version. It’s suggested that users should begin using absolute imports as much as possible, so it’s preferable to
begin writing from pkg import string in your code.

Relative imports are still possible by adding a leading period to the module name when using the from ...
import form:
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# Import names from pkg.string
from .string import name1, name2
# Import pkg.string
from . import string

This imports the string module relative to the current package, so in pkg.main this will import name1 and
name2 from pkg.string. Additional leading periods perform the relative import starting from the parent of the
current package. For example, code in the A.B.C module can do:

from . import D # Imports A.B.D
from .. import E # Imports A.E
from ..F import G # Imports A.F.G

Leading periods cannot be used with the import modname form of the import statement, only the from ...
import form.

See Also:

PEP 328, “Imports: Multi-Line and Absolute/Relative”
PEP written by Aahz; implemented by Thomas Wouters.

http://codespeak.net/py/current/doc/index.html
The py library by Holger Krekel, which contains the py.std package.

5 PEP 338: Executing Modules as Scripts

The -m switch added in Python 2.4 to execute a module as a script gained a few more abilities. Instead of being
implemented in C code inside the Python interpreter, the switch now uses an implementation in a new module,
runpy.

The runpy module implements a more sophisticated import mechanism so that it’s now possible to run modules
in a package such as pychecker.checker. The module also supports alternative import mechanisms such as
the zipimport module. This means you can add a .zip archive’s path to sys.path and then use the -m switch
to execute code from the archive.

See Also:

PEP 338, “Executing modules as scripts”
PEP written and implemented by Nick Coghlan.

6 PEP 341: Unified try/except/finally

Until Python 2.5, the try statement came in two flavours. You could use a finally block to ensure that code
is always executed, or one or more except blocks to catch specific exceptions. You couldn’t combine both
except blocks and a finally block, because generating the right bytecode for the combined version was
complicated and it wasn’t clear what the semantics of the combined statement should be.

Guido van Rossum spent some time working with Java, which does support the equivalent of combining except
blocks and a finally block, and this clarified what the statement should mean. In Python 2.5, you can now
write:
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try:
block-1 ...

except Exception1:
handler-1 ...

except Exception2:
handler-2 ...

else:
else-block

finally:
final-block

The code in block-1 is executed. If the code raises an exception, the various except blocks are tested: if the
exception is of class Exception1, handler-1 is executed; otherwise if it’s of class Exception2, handler-2 is
executed, and so forth. If no exception is raised, the else-block is executed.

No matter what happened previously, the final-block is executed once the code block is complete and any raised
exceptions handled. Even if there’s an error in an exception handler or the else-block and a new exception is
raised, the code in the final-block is still run.

See Also:

PEP 341, “Unifying try-except and try-finally”
PEP written by Georg Brandl; implementation by Thomas Lee.

7 PEP 342: New Generator Features

Python 2.5 adds a simple way to pass values into a generator. As introduced in Python 2.3, generators only produce
output; once a generator’s code was invoked to create an iterator, there was no way to pass any new information
into the function when its execution is resumed. Sometimes the ability to pass in some information would be
useful. Hackish solutions to this include making the generator’s code look at a global variable and then changing
the global variable’s value, or passing in some mutable object that callers then modify.

To refresh your memory of basic generators, here’s a simple example:

def counter (maximum):
i = 0
while i < maximum:

yield i
i += 1

When you call counter(10), the result is an iterator that returns the values from 0 up to 9. On encountering
the yield statement, the iterator returns the provided value and suspends the function’s execution, preserving the
local variables. Execution resumes on the following call to the iterator’s next() method, picking up after the
yield statement.

In Python 2.3, yield was a statement; it didn’t return any value. In 2.5, yield is now an expression, returning
a value that can be assigned to a variable or otherwise operated on:

val = (yield i)

I recommend that you always put parentheses around a yield expression when you’re doing something with the
returned value, as in the above example. The parentheses aren’t always necessary, but it’s easier to always add
them instead of having to remember when they’re needed.

(PEP 342 explains the exact rules, which are that a yield-expression must always be parenthesized except when
it occurs at the top-level expression on the right-hand side of an assignment. This means you can write val =
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yield i but have to use parentheses when there’s an operation, as in val = (yield i) + 12.)

Values are sent into a generator by calling its send(value) method. The generator’s code is then resumed and
the yield expression returns the specified value. If the regular next() method is called, the yield returns
None.

Here’s the previous example, modified to allow changing the value of the internal counter.

def counter (maximum):
i = 0
while i < maximum:

val = (yield i)
# If value provided, change counter
if val is not None:

i = val
else:

i += 1

And here’s an example of changing the counter:

>>> it = counter(10)
>>> print it.next()
0
>>> print it.next()
1
>>> print it.send(8)
8
>>> print it.next()
9
>>> print it.next()
Traceback (most recent call last):
File ‘‘t.py’’, line 15, in ?
print it.next()

StopIteration

yield will usually return None, so you should always check for this case. Don’t just use its value in expressions
unless you’re sure that the send() method will be the only method used to resume your generator function.

In addition to send(), there are two other new methods on generators:

• throw(type, value=None, traceback=None) is used to raise an exception inside the generator; the
exception is raised by the yield expression where the generator’s execution is paused.

• close() raises a new GeneratorExit exception inside the generator to terminate the itera-
tion. On receiving this exception, the generator’s code must either raise GeneratorExit or
StopIteration. Catching the GeneratorExit exception and returning a value is illegal and will
trigger a RuntimeError; if the function raises some other exception, that exception is propagated to the
caller. close() will also be called by Python’s garbage collector when the generator is garbage-collected.

If you need to run cleanup code when a GeneratorExit occurs, I suggest using a try: ...
finally: suite instead of catching GeneratorExit.

The cumulative effect of these changes is to turn generators from one-way producers of information into both
producers and consumers.

Generators also become coroutines, a more generalized form of subroutines. Subroutines are entered at one point
and exited at another point (the top of the function, and a return statement), but coroutines can be entered,
exited, and resumed at many different points (the yield statements). We’ll have to figure out patterns for using
coroutines effectively in Python.

The addition of the close() method has one side effect that isn’t obvious. close() is called when a gen-
erator is garbage-collected, so this means the generator’s code gets one last chance to run before the generator
is destroyed. This last chance means that try...finally statements in generators can now be guaranteed to
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work; the finally clause will now always get a chance to run. The syntactic restriction that you couldn’t mix
yield statements with a try...finally suite has therefore been removed. This seems like a minor bit of
language trivia, but using generators and try...finally is actually necessary in order to implement the with
statement described by PEP 343. I’ll look at this new statement in the following section.

Another even more esoteric effect of this change: previously, the gi_frame attribute of a generator was always
a frame object. It’s now possible for gi_frame to be None once the generator has been exhausted.

See Also:

PEP 342, “Coroutines via Enhanced Generators”
PEP written by Guido van Rossum and Phillip J. Eby; implemented by Phillip J. Eby. Includes examples of
some fancier uses of generators as coroutines.

Earlier versions of these features were proposed in PEP 288 by Raymond Hettinger and PEP 325 by Samuele
Pedroni.

http://en.wikipedia.org/wiki/Coroutine
The Wikipedia entry for coroutines.

http://www.sidhe.org/˜dan/blog/archives/000178.html
An explanation of coroutines from a Perl point of view, written by Dan Sugalski.

8 PEP 343: The ’with’ statement

The ’with’ statement clarifies code that previously would use try...finally blocks to ensure that clean-up
code is executed. In this section, I’ll discuss the statement as it will commonly be used. In the next section, I’ll
examine the implementation details and show how to write objects for use with this statement.

The ’with’ statement is a new control-flow structure whose basic structure is:

with expression [as variable]:
with-block

The expression is evaluated, and it should result in an object that supports the context management protocol. This
object may return a value that can optionally be bound to the name variable. (Note carefully that variable is not
assigned the result of expression.) The object can then run set-up code before with-block is executed and some
clean-up code is executed after the block is done, even if the block raised an exception.

To enable the statement in Python 2.5, you need to add the following directive to your module:

from __future__ import with_statement

The statement will always be enabled in Python 2.6.

Some standard Python objects now support the context management protocol and can be used with the ’with’
statement. File objects are one example:

with open(’/etc/passwd’, ’r’) as f:
for line in f:

print line
... more processing code ...

After this statement has executed, the file object in f will have been automatically closed, even if the ’for’ loop
raised an exception part-way through the block.

The threading module’s locks and condition variables also support the ’with’ statement:
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lock = threading.Lock()
with lock:

# Critical section of code
...

The lock is acquired before the block is executed and always released once the block is complete.

The new localcontext() function in the decimal module makes it easy to save and restore the current
decimal context, which encapsulates the desired precision and rounding characteristics for computations:

from decimal import Decimal, Context, localcontext

# Displays with default precision of 28 digits
v = Decimal(’578’)
print v.sqrt()

with localcontext(Context(prec=16)):
# All code in this block uses a precision of 16 digits.
# The original context is restored on exiting the block.
print v.sqrt()

8.1 Writing Context Managers

Under the hood, the ’with’ statement is fairly complicated. Most people will only use ’with’ in company with
existing objects and don’t need to know these details, so you can skip the rest of this section if you like. Authors
of new objects will need to understand the details of the underlying implementation and should keep reading.

A high-level explanation of the context management protocol is:

• The expression is evaluated and should result in an object called a “context manager”. The context manager
must have __enter__() and __exit__() methods.

• The context manager’s __enter__() method is called. The value returned is assigned to VAR. If no ’as
VAR’ clause is present, the value is simply discarded.

• The code in BLOCK is executed.

• If BLOCK raises an exception, the __exit__(type, value, traceback) is called with the exception
details, the same values returned by sys.exc_info(). The method’s return value controls whether the
exception is re-raised: any false value re-raises the exception, and True will result in suppressing it. You’ll
only rarely want to suppress the exception, because if you do the author of the code containing the ’with’
statement will never realize anything went wrong.

• If BLOCK didn’t raise an exception, the __exit__() method is still called, but type, value, and traceback
are all None.

Let’s think through an example. I won’t present detailed code but will only sketch the methods necessary for a
database that supports transactions.

(For people unfamiliar with database terminology: a set of changes to the database are grouped into a transaction.
Transactions can be either committed, meaning that all the changes are written into the database, or rolled back,
meaning that the changes are all discarded and the database is unchanged. See any database textbook for more
information.)

Let’s assume there’s an object representing a database connection. Our goal will be to let the user write code like
this:
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db_connection = DatabaseConnection()
with db_connection as cursor:

cursor.execute(’insert into ...’)
cursor.execute(’delete from ...’)
# ... more operations ...

The transaction should be committed if the code in the block runs flawlessly or rolled back if there’s an exception.
Here’s the basic interface for DatabaseConnection that I’ll assume:

class DatabaseConnection:
# Database interface
def cursor (self):

"Returns a cursor object and starts a new transaction"
def commit (self):

"Commits current transaction"
def rollback (self):

"Rolls back current transaction"

The __enter__()method is pretty easy, having only to start a new transaction. For this application the resulting
cursor object would be a useful result, so the method will return it. The user can then add as cursor to their
’with’ statement to bind the cursor to a variable name.

class DatabaseConnection:
...
def __enter__ (self):

# Code to start a new transaction
cursor = self.cursor()
return cursor

The __exit__() method is the most complicated because it’s where most of the work has to be done. The
method has to check if an exception occurred. If there was no exception, the transaction is committed. The
transaction is rolled back if there was an exception.

In the code below, execution will just fall off the end of the function, returning the default value of None. None
is false, so the exception will be re-raised automatically. If you wished, you could be more explicit and add a
return statement at the marked location.

class DatabaseConnection:
...
def __exit__ (self, type, value, tb):

if tb is None:
# No exception, so commit
self.commit()

else:
# Exception occurred, so rollback.
self.rollback()
# return False

8.2 The contextlib module

The new contextlib module provides some functions and a decorator that are useful for writing objects for
use with the ’with’ statement.

The decorator is called contextmanager, and lets you write a single generator function instead of defining
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a new class. The generator should yield exactly one value. The code up to the yield will be executed as the
__enter__()method, and the value yielded will be the method’s return value that will get bound to the variable
in the ’with’ statement’s as clause, if any. The code after the yield will be executed in the __exit__()
method. Any exception raised in the block will be raised by the yield statement.

Our database example from the previous section could be written using this decorator as:

from contextlib import contextmanager

@contextmanager
def db_transaction (connection):

cursor = connection.cursor()
try:

yield cursor
except:

connection.rollback()
raise

else:
connection.commit()

db = DatabaseConnection()
with db_transaction(db) as cursor:

...

The contextlib module also has a nested(mgr1, mgr2, ...) function that combines a number of
context managers so you don’t need to write nested ’with’ statements. In this example, the single ’with’
statement both starts a database transaction and acquires a thread lock:

lock = threading.Lock()
with nested (db_transaction(db), lock) as (cursor, locked):

...

Finally, the closing(object) function returns object so that it can be bound to a variable, and calls ob-
ject.close() at the end of the block.

import urllib, sys
from contextlib import closing

with closing(urllib.urlopen(’http://www.yahoo.com’)) as f:
for line in f:

sys.stdout.write(line)

See Also:

PEP 343, “The “with” statement”
PEP written by Guido van Rossum and Nick Coghlan; implemented by Mike Bland, Guido van Rossum,
and Neal Norwitz. The PEP shows the code generated for a ’with’ statement, which can be helpful in
learning how the statement works.

../lib/module-contextlib.html
The documentation for the contextlib module.

9 PEP 352: Exceptions as New-Style Classes

Exception classes can now be new-style classes, not just classic classes, and the built-in Exception class and
all the standard built-in exceptions (NameError, ValueError, etc.) are now new-style classes.
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The inheritance hierarchy for exceptions has been rearranged a bit. In 2.5, the inheritance relationships are:

BaseException # New in Python 2.5
|- KeyboardInterrupt
|- SystemExit
|- Exception

|- (all other current built-in exceptions)

This rearrangement was done because people often want to catch all exceptions that indicate program errors.
KeyboardInterrupt and SystemExit aren’t errors, though, and usually represent an explicit action such
as the user hitting Control-C or code calling sys.exit(). A bare except: will catch all exceptions, so you
commonly need to list KeyboardInterrupt and SystemExit in order to re-raise them. The usual pattern
is:

try:
...

except (KeyboardInterrupt, SystemExit):
raise

except:
# Log error...
# Continue running program...

In Python 2.5, you can now write except Exception to achieve the same result, catching all the excep-
tions that usually indicate errors but leaving KeyboardInterrupt and SystemExit alone. As in previous
versions, a bare except: still catches all exceptions.

The goal for Python 3.0 is to require any class raised as an exception to derive from BaseException or some
descendant of BaseException, and future releases in the Python 2.x series may begin to enforce this con-
straint. Therefore, I suggest you begin making all your exception classes derive from Exception now. It’s been
suggested that the bare except: form should be removed in Python 3.0, but Guido van Rossum hasn’t decided
whether to do this or not.

Raising of strings as exceptions, as in the statement raise "Error occurred", is deprecated in Python 2.5
and will trigger a warning. The aim is to be able to remove the string-exception feature in a few releases.

See Also:

PEP 352, “Required Superclass for Exceptions”
PEP written by Brett Cannon and Guido van Rossum; implemented by Brett Cannon.

10 PEP 353: Using ssize t as the index type

A wide-ranging change to Python’s C API, using a new Py_ssize_t type definition instead of int, will permit
the interpreter to handle more data on 64-bit platforms. This change doesn’t affect Python’s capacity on 32-bit
platforms.

Various pieces of the Python interpreter used C’s int type to store sizes or counts; for example, the number of
items in a list or tuple were stored in an int. The C compilers for most 64-bit platforms still define int as a 32-bit
type, so that meant that lists could only hold up to 2**31 - 1 = 2147483647 items. (There are actually a few
different programming models that 64-bit C compilers can use – see http://www.unix.org/version2/whatsnew/lp64 -
wp.html for a discussion – but the most commonly available model leaves int as 32 bits.)

A limit of 2147483647 items doesn’t really matter on a 32-bit platform because you’ll run out of memory before
hitting the length limit. Each list item requires space for a pointer, which is 4 bytes, plus space for a PyObject
representing the item. 2147483647*4 is already more bytes than a 32-bit address space can contain.

It’s possible to address that much memory on a 64-bit platform, however. The pointers for a list that size would
only require 16 GiB of space, so it’s not unreasonable that Python programmers might construct lists that large.
Therefore, the Python interpreter had to be changed to use some type other than int, and this will be a 64-bit type
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on 64-bit platforms. The change will cause incompatibilities on 64-bit machines, so it was deemed worth making
the transition now, while the number of 64-bit users is still relatively small. (In 5 or 10 years, we may all be on
64-bit machines, and the transition would be more painful then.)

This change most strongly affects authors of C extension modules. Python strings and container types such as lists
and tuples now use Py_ssize_t to store their size. Functions such as PyList_Size() now return Py_-
ssize_t. Code in extension modules may therefore need to have some variables changed to Py_ssize_t.

The PyArg_ParseTuple() and Py_BuildValue() functions have a new conversion code, ‘n’, for Py_-
ssize_t. PyArg_ParseTuple()’s ‘s#’ and ‘t#’ still output int by default, but you can define the macro
PY_SSIZE_T_CLEAN before including ‘Python.h’ to make them return Py_ssize_t.

PEP 353 has a section on conversion guidelines that extension authors should read to learn about supporting 64-bit
platforms.

See Also:

PEP 353, “Using ssize t as the index type”
PEP written and implemented by Martin von Löwis.

11 PEP 357: The ’ index ’ method

The NumPy developers had a problem that could only be solved by adding a new special method, __index__.
When using slice notation, as in [start:stop:step], the values of the start, stop, and step indexes must all be
either integers or long integers. NumPy defines a variety of specialized integer types corresponding to unsigned
and signed integers of 8, 16, 32, and 64 bits, but there was no way to signal that these types could be used as slice
indexes.

Slicing can’t just use the existing __int__ method because that method is also used to implement coercion
to integers. If slicing used __int__, floating-point numbers would also become legal slice indexes and that’s
clearly an undesirable behaviour.

Instead, a new special method called __index__ was added. It takes no arguments and returns an integer giving
the slice index to use. For example:

class C:
def __index__ (self):

return self.value

The return value must be either a Python integer or long integer. The interpreter will check that the type returned
is correct, and raises a TypeError if this requirement isn’t met.

A corresponding nb_index slot was added to the C-level PyNumberMethods structure to let C extensions
implement this protocol. PyNumber_Index(obj) can be used in extension code to call the __index__-
function and retrieve its result.

See Also:

PEP 357, “Allowing Any Object to be Used for Slicing”
PEP written and implemented by Travis Oliphant.

12 Other Language Changes

Here are all of the changes that Python 2.5 makes to the core Python language.

• The dict type has a new hook for letting subclasses provide a default value when a key isn’t contained in
the dictionary. When a key isn’t found, the dictionary’s __missing__(key) method will be called. This
hook is used to implement the new defaultdict class in the collections module. The following
example defines a dictionary that returns zero for any missing key:
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class zerodict (dict):
def __missing__ (self, key):

return 0

d = zerodict({1:1, 2:2})
print d[1], d[2] # Prints 1, 2
print d[3], d[4] # Prints 0, 0

• Both 8-bit and Unicode strings have new partition(sep) and rpartition(sep) methods that
simplify a common use case.

The find(S) method is often used to get an index which is then used to slice the string and obtain the
pieces that are before and after the separator. partition(sep) condenses this pattern into a single
method call that returns a 3-tuple containing the substring before the separator, the separator itself, and the
substring after the separator. If the separator isn’t found, the first element of the tuple is the entire string and
the other two elements are empty. rpartition(sep) also returns a 3-tuple but starts searching from the
end of the string; the ‘r’ stands for ’reverse’.

Some examples:

>>> (’http://www.python.org’).partition(’://’)
(’http’, ’://’, ’www.python.org’)
>>> (’file:/usr/share/doc/index.html’).partition(’://’)
(’file:/usr/share/doc/index.html’, ’’, ’’)
>>> (u’Subject: a quick question’).partition(’:’)
(u’Subject’, u’:’, u’ a quick question’)
>>> ’www.python.org’.rpartition(’.’)
(’www.python’, ’.’, ’org’)
>>> ’www.python.org’.rpartition(’:’)
(’’, ’’, ’www.python.org’)

(Implemented by Fredrik Lundh following a suggestion by Raymond Hettinger.)

• The startswith() and endswith() methods of string types now accept tuples of strings to check for.

def is_image_file (filename):
return filename.endswith((’.gif’, ’.jpg’, ’.tiff’))

(Implemented by Georg Brandl following a suggestion by Tom Lynn.)

• The min() and max() built-in functions gained a key keyword parameter analogous to the key argument
for sort(). This parameter supplies a function that takes a single argument and is called for every value
in the list; min()/max() will return the element with the smallest/largest return value from this function.
For example, to find the longest string in a list, you can do:

L = [’medium’, ’longest’, ’short’]
# Prints ’longest’
print max(L, key=len)
# Prints ’short’, because lexicographically ’short’ has the largest value
print max(L)

(Contributed by Steven Bethard and Raymond Hettinger.)

• Two new built-in functions, any() and all(), evaluate whether an iterator contains any true or false
values. any() returns True if any value returned by the iterator is true; otherwise it will return False.
all() returns True only if all of the values returned by the iterator evaluate as true. (Suggested by Guido
van Rossum, and implemented by Raymond Hettinger.)
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• The result of a class’s __hash__() method can now be either a long integer or a regular integer. If a long
integer is returned, the hash of that value is taken. In earlier versions the hash value was required to be a
regular integer, but in 2.5 the id() built-in was changed to always return non-negative numbers, and users
often seem to use id(self) in __hash__() methods (though this is discouraged).

• ASCII is now the default encoding for modules. It’s now a syntax error if a module contains string literals
with 8-bit characters but doesn’t have an encoding declaration. In Python 2.4 this triggered a warning, not a
syntax error. See PEP 263 for how to declare a module’s encoding; for example, you might add a line like
this near the top of the source file:

# -*- coding: latin1 -*-

• A new warning, UnicodeWarning, is triggered when you attempt to compare a Unicode string and an 8-
bit string that can’t be converted to Unicode using the default ASCII encoding. The result of the comparison
is false:

>>> chr(128) == unichr(128) # Can’t convert chr(128) to Unicode
__main__:1: UnicodeWarning: Unicode equal comparison failed
to convert both arguments to Unicode - interpreting them
as being unequal

False
>>> chr(127) == unichr(127) # chr(127) can be converted
True

Previously this would raise a UnicodeDecodeError exception, but in 2.5 this could result in puzzling
problems when accessing a dictionary. If you looked up unichr(128) and chr(128) was being used
as a key, you’d get a UnicodeDecodeError exception. Other changes in 2.5 resulted in this exception
being raised instead of suppressed by the code in ‘dictobject.c’ that implements dictionaries.

Raising an exception for such a comparison is strictly correct, but the change might have broken code, so
instead UnicodeWarning was introduced.

(Implemented by Marc-André Lemburg.)

• One error that Python programmers sometimes make is forgetting to include an ‘ init .py’ module in a
package directory. Debugging this mistake can be confusing, and usually requires running Python with
the -v switch to log all the paths searched. In Python 2.5, a new ImportWarning warning is triggered
when an import would have picked up a directory as a package but no ‘ init .py’ was found. This warning
is silently ignored by default; provide the -Wd option when running the Python executable to display the
warning message. (Implemented by Thomas Wouters.)

• The list of base classes in a class definition can now be empty. As an example, this is now legal:

class C():
pass

(Implemented by Brett Cannon.)

12.1 Interactive Interpreter Changes

In the interactive interpreter, quit and exit have long been strings so that new users get a somewhat helpful
message when they try to quit:

>>> quit
’Use Ctrl-D (i.e. EOF) to exit.’
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In Python 2.5, quit and exit are now objects that still produce string representations of themselves, but are
also callable. Newbies who try quit() or exit() will now exit the interpreter as they expect. (Implemented
by Georg Brandl.)

The Python executable now accepts the standard long options --help and --version; on Windows, it also accepts
the /? option for displaying a help message. (Implemented by Georg Brandl.)

12.2 Optimizations

Several of the optimizations were developed at the NeedForSpeed sprint, an event held in Reykjavik, Iceland, from
May 21–28 2006. The sprint focused on speed enhancements to the CPython implementation and was funded by
EWT LLC with local support from CCP Games. Those optimizations added at this sprint are specially marked in
the following list.

• When they were introduced in Python 2.4, the built-in set and frozenset types were built on top of
Python’s dictionary type. In 2.5 the internal data structure has been customized for implementing sets, and
as a result sets will use a third less memory and are somewhat faster. (Implemented by Raymond Hettinger.)

• The speed of some Unicode operations, such as finding substrings, string splitting, and character map en-
coding and decoding, has been improved. (Substring search and splitting improvements were added by
Fredrik Lundh and Andrew Dalke at the NeedForSpeed sprint. Character maps were improved by Walter
Dörwald and Martin von Löwis.)

• The long(str, base) function is now faster on long digit strings because fewer intermediate results are
calculated. The peak is for strings of around 800–1000 digits where the function is 6 times faster. (Con-
tributed by Alan McIntyre and committed at the NeedForSpeed sprint.)

• It’s now illegal to mix iterating over a file with for line in file and calling the file object’s
read()/readline()/readlines() methods. Iteration uses an internal buffer and the read*()
methods don’t use that buffer. Instead they would return the data following the buffer, causing the data
to appear out of order. Mixing iteration and these methods will now trigger a ValueError from the
read*() method. (Implemented by Thomas Wouters.)

• The struct module now compiles structure format strings into an internal representation and caches this
representation, yielding a 20% speedup. (Contributed by Bob Ippolito at the NeedForSpeed sprint.)

• The re module got a 1 or 2% speedup by switching to Python’s allocator functions instead of the system’s
malloc() and free(). (Contributed by Jack Diederich at the NeedForSpeed sprint.)

• The code generator’s peephole optimizer now performs simple constant folding in expressions. If you write
something like a = 2+3, the code generator will do the arithmetic and produce code corresponding to a
= 5. (Proposed and implemented by Raymond Hettinger.)

• Function calls are now faster because code objects now keep the most recently finished frame (a “zombie
frame”) in an internal field of the code object, reusing it the next time the code object is invoked. (Original
patch by Michael Hudson, modified by Armin Rigo and Richard Jones; committed at the NeedForSpeed
sprint.)

Frame objects are also slightly smaller, which may improve cache locality and reduce memory usage a bit.
(Contributed by Neal Norwitz.)

• Python’s built-in exceptions are now new-style classes, a change that speeds up instantiation considerably.
Exception handling in Python 2.5 is therefore about 30% faster than in 2.4. (Contributed by Richard Jones,
Georg Brandl and Sean Reifschneider at the NeedForSpeed sprint.)

• Importing now caches the paths tried, recording whether they exist or not so that the interpreter makes fewer
open() and stat() calls on startup. (Contributed by Martin von Löwis and Georg Brandl.)
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13 New, Improved, and Removed Modules

The standard library received many enhancements and bug fixes in Python 2.5. Here’s a partial list of the most
notable changes, sorted alphabetically by module name. Consult the ‘Misc/NEWS’ file in the source tree for a
more complete list of changes, or look through the SVN logs for all the details.

• The audioop module now supports the a-LAW encoding, and the code for u-LAW encoding has been
improved. (Contributed by Lars Immisch.)

• The codecs module gained support for incremental codecs. The codec.lookup() function now re-
turns a CodecInfo instance instead of a tuple. CodecInfo instances behave like a 4-tuple to pre-
serve backward compatibility but also have the attributes encode, decode, incrementalencoder,
incrementaldecoder, streamwriter, and streamreader. Incremental codecs can receive in-
put and produce output in multiple chunks; the output is the same as if the entire input was fed to the
non-incremental codec. See the codecs module documentation for details. (Designed and implemented
by Walter Dörwald.)

• The collections module gained a new type, defaultdict, that subclasses the standard dict type.
The new type mostly behaves like a dictionary but constructs a default value when a key isn’t present,
automatically adding it to the dictionary for the requested key value.

The first argument to defaultdict’s constructor is a factory function that gets called whenever a key is
requested but not found. This factory function receives no arguments, so you can use built-in type construc-
tors such as list() or int(). For example, you can make an index of words based on their initial letter
like this:

words = """Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la diritta via era smarrita""".lower().split()

index = defaultdict(list)

for w in words:
init_letter = w[0]
index[init_letter].append(w)

Printing index results in the following output:

defaultdict(<type ’list’>, {’c’: [’cammin’, ’che’], ’e’: [’era’],
’d’: [’del’, ’di’, ’diritta’], ’m’: [’mezzo’, ’mi’],
’l’: [’la’], ’o’: [’oscura’], ’n’: [’nel’, ’nostra’],
’p’: [’per’], ’s’: [’selva’, ’smarrita’],
’r’: [’ritrovai’], ’u’: [’una’], ’v’: [’vita’, ’via’]}

(Contributed by Guido van Rossum.)

• The deque double-ended queue type supplied by the collections module now has a remove(value)
method that removes the first occurrence of value in the queue, raising ValueError if the value isn’t
found. (Contributed by Raymond Hettinger.)

• New module: The contextlib module contains helper functions for use with the new ’with’ statement.
See section 8.2 for more about this module.

• New module: The cProfile module is a C implementation of the existing profile mod-
ule that has much lower overhead. The module’s interface is the same as profile: you run
cProfile.run(’main()’) to profile a function, can save profile data to a file, etc. It’s not yet known
if the Hotshot profiler, which is also written in C but doesn’t match the profile module’s interface, will
continue to be maintained in future versions of Python. (Contributed by Armin Rigo.)

Also, the pstats module for analyzing the data measured by the profiler now supports directing the
output to any file object by supplying a stream argument to the Stats constructor. (Contributed by Skip
Montanaro.)
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• The csv module, which parses files in comma-separated value format, received several enhancements and
a number of bugfixes. You can now set the maximum size in bytes of a field by calling the csv.field_-
size_limit(new limit) function; omitting the new limit argument will return the currently-set limit.
The reader class now has a line_num attribute that counts the number of physical lines read from the
source; records can span multiple physical lines, so line_num is not the same as the number of records
read.

The CSV parser is now stricter about multi-line quoted fields. Previously, if a line ended within a quoted
field without a terminating newline character, a newline would be inserted into the returned field. This
behavior caused problems when reading files that contained carriage return characters within fields, so the
code was changed to return the field without inserting newlines. As a consequence, if newlines embedded
within fields are important, the input should be split into lines in a manner that preserves the newline
characters.

(Contributed by Skip Montanaro and Andrew McNamara.)

• The datetime class in the datetime module now has a strptime(string, format) method for pars-
ing date strings, contributed by Josh Spoerri. It uses the same format characters as time.strptime()
and time.strftime():

from datetime import datetime

ts = datetime.strptime(’10:13:15 2006-03-07’,
’%H:%M:%S %Y-%m-%d’)

• The SequenceMatcher.get_matching_blocks() method in the difflib module now guaran-
tees to return a minimal list of blocks describing matching subsequences. Previously, the algorithm would
occasionally break a block of matching elements into two list entries. (Enhancement by Tim Peters.)

• The doctest module gained a SKIP option that keeps an example from being executed at all. This is
intended for code snippets that are usage examples intended for the reader and aren’t actually test cases.

An encoding parameter was added to the testfile() function and the DocFileSuite class to specify
the file’s encoding. This makes it easier to use non-ASCII characters in tests contained within a docstring.
(Contributed by Bjorn Tillenius.)

• The email package has been updated to version 4.0. (Contributed by Barry Warsaw.)

• The fileinput module was made more flexible. Unicode filenames are now supported, and a mode
parameter that defaults to "r" was added to the input() function to allow opening files in binary or
universal-newline mode. Another new parameter, openhook, lets you use a function other than open() to
open the input files. Once you’re iterating over the set of files, the FileInput object’s new fileno()
returns the file descriptor for the currently opened file. (Contributed by Georg Brandl.)

• In the gc module, the new get_count() function returns a 3-tuple containing the current collection
counts for the three GC generations. This is accounting information for the garbage collector; when these
counts reach a specified threshold, a garbage collection sweep will be made. The existing gc.collect()
function now takes an optional generation argument of 0, 1, or 2 to specify which generation to collect.
(Contributed by Barry Warsaw.)

• The nsmallest() and nlargest() functions in the heapq module now support a key keyword
parameter similar to the one provided by the min()/max() functions and the sort() methods. For
example:

>>> import heapq
>>> L = ["short", ’medium’, ’longest’, ’longer still’]
>>> heapq.nsmallest(2, L) # Return two lowest elements, lexicographically
[’longer still’, ’longest’]
>>> heapq.nsmallest(2, L, key=len) # Return two shortest elements
[’short’, ’medium’]

(Contributed by Raymond Hettinger.)
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• The itertools.islice() function now accepts None for the start and step arguments. This makes it
more compatible with the attributes of slice objects, so that you can now write the following:

s = slice(5) # Create slice object
itertools.islice(iterable, s.start, s.stop, s.step)

(Contributed by Raymond Hettinger.)

• The format() function in the locale module has been modified and two new functions were added,
format_string() and currency().

The format() function’s val parameter could previously be a string as long as no more than one %char
specifier appeared; now the parameter must be exactly one %char specifier with no surrounding text. An
optional monetary parameter was also added which, if True, will use the locale’s rules for formatting
currency in placing a separator between groups of three digits.

To format strings with multiple %char specifiers, use the new format_string() function that works
like format() but also supports mixing %char specifiers with arbitrary text.

A new currency() function was also added that formats a number according to the current locale’s
settings.

(Contributed by Georg Brandl.)

• The mailbox module underwent a massive rewrite to add the capability to modify mailboxes in addi-
tion to reading them. A new set of classes that include mbox, MH, and Maildir are used to read mail-
boxes, and have an add(message) method to add messages, remove(key) to remove messages, and
lock()/unlock() to lock/unlock the mailbox. The following example converts a maildir-format mail-
box into an mbox-format one:

import mailbox

# ’factory=None’ uses email.Message.Message as the class representing
# individual messages.
src = mailbox.Maildir(’maildir’, factory=None)
dest = mailbox.mbox(’/tmp/mbox’)

for msg in src:
dest.add(msg)

(Contributed by Gregory K. Johnson. Funding was provided by Google’s 2005 Summer of Code.)

• New module: the msilib module allows creating Microsoft Installer ‘.msi’ files and CAB files. Some
support for reading the ‘.msi’ database is also included. (Contributed by Martin von Löwis.)

• The nis module now supports accessing domains other than the system default domain by supplying a
domain argument to the nis.match() and nis.maps() functions. (Contributed by Ben Bell.)

• The operator module’s itemgetter() and attrgetter() functions now support multiple fields.
A call such as operator.attrgetter(’a’, ’b’) will return a function that retrieves the a and b
attributes. Combining this new feature with the sort() method’s key parameter lets you easily sort lists
using multiple fields. (Contributed by Raymond Hettinger.)

• The optparse module was updated to version 1.5.1 of the Optik library. The OptionParser class
gained an epilog attribute, a string that will be printed after the help message, and a destroy() method
to break reference cycles created by the object. (Contributed by Greg Ward.)

• The os module underwent several changes. The stat_float_times variable now defaults to true,
meaning that os.stat() will now return time values as floats. (This doesn’t necessarily mean that
os.stat() will return times that are precise to fractions of a second; not all systems support such preci-
sion.)
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Constants named os.SEEK_SET, os.SEEK_CUR, and os.SEEK_END have been added; these are the
parameters to the os.lseek() function. Two new constants for locking are os.O_SHLOCK and os.O_-
EXLOCK.

Two new functions, wait3() and wait4(), were added. They’re similar the waitpid() function
which waits for a child process to exit and returns a tuple of the process ID and its exit status, but wait3()
and wait4() return additional information. wait3() doesn’t take a process ID as input, so it waits for
any child process to exit and returns a 3-tuple of process-id, exit-status, resource-usage as returned from
the resource.getrusage() function. wait4(pid) does take a process ID. (Contributed by Chad J.
Schroeder.)

On FreeBSD, the os.stat() function now returns times with nanosecond resolution, and the returned
object now has st_gen and st_birthtime. The st_flags member is also available, if the platform
supports it. (Contributed by Antti Louko and Diego Pettenò.)

• The Python debugger provided by the pdb module can now store lists of commands to execute when a
breakpoint is reached and execution stops. Once breakpoint #1 has been created, enter ‘commands 1’ and
enter a series of commands to be executed, finishing the list with ‘end’. The command list can include
commands that resume execution, such as ‘continue’ or ‘next’. (Contributed by Grégoire Dooms.)

• The pickle and cPickle modules no longer accept a return value of None from the __reduce__()
method; the method must return a tuple of arguments instead. The ability to return None was deprecated in
Python 2.4, so this completes the removal of the feature.

• The pkgutil module, containing various utility functions for finding packages, was enhanced to support
PEP 302’s import hooks and now also works for packages stored in ZIP-format archives. (Contributed by
Phillip J. Eby.)

• The pybench benchmark suite by Marc-André Lemburg is now included in the ‘Tools/pybench’ directory.
The pybench suite is an improvement on the commonly used ‘pystone.py’ program because pybench pro-
vides a more detailed measurement of the interpreter’s speed. It times particular operations such as function
calls, tuple slicing, method lookups, and numeric operations, instead of performing many different opera-
tions and reducing the result to a single number as ‘pystone.py’ does.

• The pyexpat module now uses version 2.0 of the Expat parser. (Contributed by Trent Mick.)

• The Queue class provided by the Queue module gained two new methods. join() blocks until all items
in the queue have been retrieved and all processing work on the items have been completed. Worker threads
call the other new method, task_done(), to signal that processing for an item has been completed.
(Contributed by Raymond Hettinger.)

• The old regex and regsubmodules, which have been deprecated ever since Python 2.0, have finally been
deleted. Other deleted modules: statcache, tzparse, whrandom.

• Also deleted: the ‘lib-old’ directory, which includes ancient modules such as dircmp and ni, was re-
moved. ‘lib-old’ wasn’t on the default sys.path, so unless your programs explicitly added the directory
to sys.path, this removal shouldn’t affect your code.

• The rlcompleter module is no longer dependent on importing the readline module and therefore
now works on non-UNIX platforms. (Patch from Robert Kiendl.)

• The SimpleXMLRPCServer and DocXMLRPCServer classes now have a rpc_paths attribute that
constrains XML-RPC operations to a limited set of URL paths; the default is to allow only ’/’ and
’/RPC2’. Setting rpc_paths to None or an empty tuple disables this path checking.

• The socket module now supports AF_NETLINK sockets on Linux, thanks to a patch from Philippe
Biondi. Netlink sockets are a Linux-specific mechanism for communications between a user-space pro-
cess and kernel code; an introductory article about them is at http://www.linuxjournal.com/article/7356. In
Python code, netlink addresses are represented as a tuple of 2 integers, (pid, group mask).

Two new methods on socket objects, recv_into(buffer) and recvfrom_into(buffer), store the re-
ceived data in an object that supports the buffer protocol instead of returning the data as a string. This means
you can put the data directly into an array or a memory-mapped file.

Socket objects also gained getfamily(), gettype(), and getproto() accessor methods to retrieve
the family, type, and protocol values for the socket.
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• New module: the spwd module provides functions for accessing the shadow password database on systems
that support shadow passwords.

• The struct is now faster because it compiles format strings into Struct objects with pack() and
unpack() methods. This is similar to how the re module lets you create compiled regular expression
objects. You can still use the module-level pack() and unpack() functions; they’ll create Struct
objects and cache them. Or you can use Struct instances directly:

s = struct.Struct(’ih3s’)

data = s.pack(1972, 187, ’abc’)
year, number, name = s.unpack(data)

You can also pack and unpack data to and from buffer objects directly using the pack_into(buffer,
offset, v1, v2, ...) and unpack_from(buffer, offset) methods. This lets you store data directly
into an array or a memory-mapped file.

(Struct objects were implemented by Bob Ippolito at the NeedForSpeed sprint. Support for buffer objects
was added by Martin Blais, also at the NeedForSpeed sprint.)

• The Python developers switched from CVS to Subversion during the 2.5 development process. Information
about the exact build version is available as the sys.subversion variable, a 3-tuple of (interpreter-
name, branch-name, revision-range). For example, at the time of writing my copy of 2.5 was reporting
(’CPython’, ’trunk’, ’45313:45315’).

This information is also available to C extensions via the Py_GetBuildInfo() function that returns
a string of build information like this: "trunk:45355:45356M, Apr 13 2006, 07:42:19".
(Contributed by Barry Warsaw.)

• Another new function, sys._current_frames(), returns the current stack frames for all running
threads as a dictionary mapping thread identifiers to the topmost stack frame currently active in that thread
at the time the function is called. (Contributed by Tim Peters.)

• The TarFile class in the tarfile module now has an extractall() method that extracts all mem-
bers from the archive into the current working directory. It’s also possible to set a different directory as the
extraction target, and to unpack only a subset of the archive’s members.

The compression used for a tarfile opened in stream mode can now be autodetected using the mode ’r|*’.
(Contributed by Lars Gustäbel.)

• The threadingmodule now lets you set the stack size used when new threads are created. The stack_-
size([size]) function returns the currently configured stack size, and supplying the optional size param-
eter sets a new value. Not all platforms support changing the stack size, but Windows, POSIX threading,
and OS/2 all do. (Contributed by Andrew MacIntyre.)

• The unicodedata module has been updated to use version 4.1.0 of the Unicode character database.
Version 3.2.0 is required by some specifications, so it’s still available as unicodedata.ucd_3_2_0.

• New module: the uuid module generates universally unique identifiers (UUIDs) according to RFC 4122.
The RFC defines several different UUID versions that are generated from a starting string, from system prop-
erties, or purely randomly. This module contains a UUID class and functions named uuid1(), uuid3(),
uuid4(), and uuid5() to generate different versions of UUID. (Version 2 UUIDs are not specified in
RFC 4122 and are not supported by this module.)
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>>> import uuid
>>> # make a UUID based on the host ID and current time
>>> uuid.uuid1()
UUID(’a8098c1a-f86e-11da-bd1a-00112444be1e’)

>>> # make a UUID using an MD5 hash of a namespace UUID and a name
>>> uuid.uuid3(uuid.NAMESPACE_DNS, ’python.org’)
UUID(’6fa459ea-ee8a-3ca4-894e-db77e160355e’)

>>> # make a random UUID
>>> uuid.uuid4()
UUID(’16fd2706-8baf-433b-82eb-8c7fada847da’)

>>> # make a UUID using a SHA-1 hash of a namespace UUID and a name
>>> uuid.uuid5(uuid.NAMESPACE_DNS, ’python.org’)
UUID(’886313e1-3b8a-5372-9b90-0c9aee199e5d’)

(Contributed by Ka-Ping Yee.)

• The weakref module’s WeakKeyDictionary and WeakValueDictionary types gained new
methods for iterating over the weak references contained in the dictionary. iterkeyrefs()
and keyrefs() methods were added to WeakKeyDictionary, and itervaluerefs() and
valuerefs() were added to WeakValueDictionary. (Contributed by Fred L. Drake, Jr.)

• The webbrowser module received a number of enhancements. It’s now usable as a script with python
-m webbrowser, taking a URL as the argument; there are a number of switches to control the behaviour
(-n for a new browser window, -t for a new tab). New module-level functions, open_new() and open_-
new_tab(), were added to support this. The module’s open() function supports an additional feature, an
autoraise parameter that signals whether to raise the open window when possible. A number of additional
browsers were added to the supported list such as Firefox, Opera, Konqueror, and elinks. (Contributed by
Oleg Broytmann and Georg Brandl.)

• The xmlrpclib module now supports returning datetime objects for the XML-RPC date type. Supply
use_datetime=True to the loads() function or the Unmarshaller class to enable this feature.
(Contributed by Skip Montanaro.)

• The zipfile module now supports the ZIP64 version of the format, meaning that a .zip archive can now
be larger than 4 GiB and can contain individual files larger than 4 GiB. (Contributed by Ronald Oussoren.)

• The zlib module’s Compress and Decompress objects now support a copy() method that makes a
copy of the object’s internal state and returns a new Compress or Decompress object. (Contributed by
Chris AtLee.)

13.1 The ctypes package

The ctypes package, written by Thomas Heller, has been added to the standard library. ctypes lets you call
arbitrary functions in shared libraries or DLLs. Long-time users may remember the dl module, which provides
functions for loading shared libraries and calling functions in them. The ctypes package is much fancier.

To load a shared library or DLL, you must create an instance of the CDLL class and provide the name or path of
the shared library or DLL. Once that’s done, you can call arbitrary functions by accessing them as attributes of the
CDLL object.

import ctypes

libc = ctypes.CDLL(’libc.so.6’)
result = libc.printf("Line of output\n")
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Type constructors for the various C types are provided: c_int, c_float, c_double, c_char_p (equivalent
to char *), and so forth. Unlike Python’s types, the C versions are all mutable; you can assign to their value
attribute to change the wrapped value. Python integers and strings will be automatically converted to the corre-
sponding C types, but for other types you must call the correct type constructor. (And I mean must; getting it
wrong will often result in the interpreter crashing with a segmentation fault.)

You shouldn’t use c_char_p with a Python string when the C function will be modifying the memory area,
because Python strings are supposed to be immutable; breaking this rule will cause puzzling bugs. When you
need a modifiable memory area, use create_string_buffer():

s = "this is a string"
buf = ctypes.create_string_buffer(s)
libc.strfry(buf)

C functions are assumed to return integers, but you can set the restype attribute of the function object to change
this:

>>> libc.atof(’2.71828’)
-1783957616
>>> libc.atof.restype = ctypes.c_double
>>> libc.atof(’2.71828’)
2.71828

ctypes also provides a wrapper for Python’s C API as the ctypes.pythonapi object. This object does not
release the global interpreter lock before calling a function, because the lock must be held when calling into the
interpreter’s code. There’s a py_object() type constructor that will create a PyObject * pointer. A simple
usage:

import ctypes

d = {}
ctypes.pythonapi.PyObject_SetItem(ctypes.py_object(d),

ctypes.py_object("abc"), ctypes.py_object(1))
# d is now {’abc’, 1}.

Don’t forget to use py_object(); if it’s omitted you end up with a segmentation fault.

ctypes has been around for a while, but people still write and distribution hand-coded extension modules because
you can’t rely on ctypes being present. Perhaps developers will begin to write Python wrappers atop a library
accessed through ctypes instead of extension modules, now that ctypes is included with core Python.

See Also:

http://starship.python.net/crew/theller/ctypes/
The ctypes web page, with a tutorial, reference, and FAQ.

../lib/module-ctypes.html
The documentation for the ctypes module.

13.2 The ElementTree package

A subset of Fredrik Lundh’s ElementTree library for processing XML has been added to the standard library
as xml.etree. The available modules are ElementTree, ElementPath, and ElementInclude from
ElementTree 1.2.6. The cElementTree accelerator module is also included.

The rest of this section will provide a brief overview of using ElementTree. Full documentation for ElementTree
is available at http://effbot.org/zone/element-index.htm.
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ElementTree represents an XML document as a tree of element nodes. The text content of the document is
stored as the .text and .tail attributes of (This is one of the major differences between ElementTree and the
Document Object Model; in the DOM there are many different types of node, including TextNode.)

The most commonly used parsing function is parse(), that takes either a string (assumed to contain a filename)
or a file-like object and returns an ElementTree instance:

from xml.etree import ElementTree as ET

tree = ET.parse(’ex-1.xml’)

feed = urllib.urlopen(
’http://planet.python.org/rss10.xml’)

tree = ET.parse(feed)

Once you have an ElementTree instance, you can call its getroot() method to get the root Element node.

There’s also an XML() function that takes a string literal and returns an Element node (not an ElementTree).
This function provides a tidy way to incorporate XML fragments, approaching the convenience of an XML literal:

svg = ET.XML("""<svg width="10px" version="1.0">
</svg>""")

svg.set(’height’, ’320px’)
svg.append(elem1)

Each XML element supports some dictionary-like and some list-like access methods. Dictionary-like operations
are used to access attribute values, and list-like operations are used to access child nodes.

Operation Result
elem[n] Returns n’th child element.
elem[m:n] Returns list of m’th through n’th child elements.
len(elem) Returns number of child elements.
list(elem) Returns list of child elements.

elem.append(elem2) Adds elem2 as a child.
elem.insert(index, elem2) Inserts elem2 at the specified location.

del elem[n] Deletes n’th child element.
elem.keys() Returns list of attribute names.

elem.get(name) Returns value of attribute name.
elem.set(name, value) Sets new value for attribute name.

elem.attrib Retrieves the dictionary containing attributes.
del elem.attrib[name] Deletes attribute name.

Comments and processing instructions are also represented as Element nodes. To check if a node is a comment
or processing instructions:

if elem.tag is ET.Comment:
...

elif elem.tag is ET.ProcessingInstruction:
...

To generate XML output, you should call the ElementTree.write() method. Like parse(), it can take
either a string or a file-like object:
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# Encoding is US-ASCII
tree.write(’output.xml’)

# Encoding is UTF-8
f = open(’output.xml’, ’w’)
tree.write(f, encoding=’utf-8’)

(Caution: the default encoding used for output is ASCII. For general XML work, where an element’s name may
contain arbitrary Unicode characters, ASCII isn’t a very useful encoding because it will raise an exception if an
element’s name contains any characters with values greater than 127. Therefore, it’s best to specify a different
encoding such as UTF-8 that can handle any Unicode character.)

This section is only a partial description of the ElementTree interfaces. Please read the package’s official docu-
mentation for more details.

See Also:

http://effbot.org/zone/element-index.htm
Official documentation for ElementTree.

13.3 The hashlib package

A new hashlib module, written by Gregory P. Smith, has been added to replace the md5 and sha modules.
hashlib adds support for additional secure hashes (SHA-224, SHA-256, SHA-384, and SHA-512). When
available, the module uses OpenSSL for fast platform optimized implementations of algorithms.

The old md5 and sha modules still exist as wrappers around hashlib to preserve backwards compatibility. The
new module’s interface is very close to that of the old modules, but not identical. The most significant difference
is that the constructor functions for creating new hashing objects are named differently.

# Old versions
h = md5.md5()
h = md5.new()

# New version
h = hashlib.md5()

# Old versions
h = sha.sha()
h = sha.new()

# New version
h = hashlib.sha1()

# Hash that weren’t previously available
h = hashlib.sha224()
h = hashlib.sha256()
h = hashlib.sha384()
h = hashlib.sha512()

# Alternative form
h = hashlib.new(’md5’) # Provide algorithm as a string

Once a hash object has been created, its methods are the same as before: update(string) hashes the specified
string into the current digest state, digest() and hexdigest() return the digest value as a binary string or a
string of hex digits, and copy() returns a new hashing object with the same digest state.

See Also:

../lib/module-hashlib.html
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The documentation for the hashlib module.

13.4 The sqlite3 package

The pysqlite module (http://www.pysqlite.org), a wrapper for the SQLite embedded database, has been added to
the standard library under the package name sqlite3.

SQLite is a C library that provides a lightweight disk-based database that doesn’t require a separate server process
and allows accessing the database using a nonstandard variant of the SQL query language. Some applications can
use SQLite for internal data storage. It’s also possible to prototype an application using SQLite and then port the
code to a larger database such as PostgreSQL or Oracle.

pysqlite was written by Gerhard Häring and provides a SQL interface compliant with the DB-API 2.0 specification
described by PEP 249.

If you’re compiling the Python source yourself, note that the source tree doesn’t include the SQLite code, only the
wrapper module. You’ll need to have the SQLite libraries and headers installed before compiling Python, and the
build process will compile the module when the necessary headers are available.

To use the module, you must first create a Connection object that represents the database. Here the data will
be stored in the ‘/tmp/example’ file:

conn = sqlite3.connect(’/tmp/example’)

You can also supply the special name ‘:memory:’ to create a database in RAM.

Once you have a Connection, you can create a Cursor object and call its execute() method to perform
SQL commands:

c = conn.cursor()

# Create table
c.execute(’’’create table stocks
(date text, trans text, symbol text,
qty real, price real)’’’)

# Insert a row of data
c.execute("""insert into stocks

values (’2006-01-05’,’BUY’,’RHAT’,100,35.14)""")

Usually your SQL operations will need to use values from Python variables. You shouldn’t assemble your query
using Python’s string operations because doing so is insecure; it makes your program vulnerable to an SQL
injection attack.

Instead, use the DB-API’s parameter substitution. Put ‘?’ as a placeholder wherever you want to use a value,
and then provide a tuple of values as the second argument to the cursor’s execute() method. (Other database
modules may use a different placeholder, such as ‘%s’ or ‘:1’.) For example:
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# Never do this -- insecure!
symbol = ’IBM’
c.execute("... where symbol = ’%s’" % symbol)

# Do this instead
t = (symbol,)
c.execute(’select * from stocks where symbol=?’, t)

# Larger example
for t in ((’2006-03-28’, ’BUY’, ’IBM’, 1000, 45.00),

(’2006-04-05’, ’BUY’, ’MSOFT’, 1000, 72.00),
(’2006-04-06’, ’SELL’, ’IBM’, 500, 53.00),
):

c.execute(’insert into stocks values (?,?,?,?,?)’, t)

To retrieve data after executing a SELECT statement, you can either treat the cursor as an iterator, call the cursor’s
fetchone() method to retrieve a single matching row, or call fetchall() to get a list of the matching rows.

This example uses the iterator form:

>>> c = conn.cursor()
>>> c.execute(’select * from stocks order by price’)
>>> for row in c:
... print row
...
(u’2006-01-05’, u’BUY’, u’RHAT’, 100, 35.140000000000001)
(u’2006-03-28’, u’BUY’, u’IBM’, 1000, 45.0)
(u’2006-04-06’, u’SELL’, u’IBM’, 500, 53.0)
(u’2006-04-05’, u’BUY’, u’MSOFT’, 1000, 72.0)
>>>

For more information about the SQL dialect supported by SQLite, see http://www.sqlite.org.

See Also:

http://www.pysqlite.org
The pysqlite web page.

http://www.sqlite.org
The SQLite web page; the documentation describes the syntax and the available data types for the supported
SQL dialect.

../lib/module-sqlite3.html
The documentation for the sqlite3 module.

PEP 249, “Database API Specification 2.0”
PEP written by Marc-André Lemburg.

13.5 The wsgiref package

The Web Server Gateway Interface (WSGI) v1.0 defines a standard interface between web servers and Python
web applications and is described in PEP 333. The wsgiref package is a reference implementation of the WSGI
specification.

The package includes a basic HTTP server that will run a WSGI application; this server is useful for debugging
but isn’t intended for production use. Setting up a server takes only a few lines of code:

28 13 New, Improved, and Removed Modules

http://www.sqlite.org
http://www.pysqlite.org
http://www.sqlite.org
../lib/module-sqlite3.html


from wsgiref import simple_server

wsgi_app = ...

host = ’’
port = 8000
httpd = simple_server.make_server(host, port, wsgi_app)
httpd.serve_forever()

See Also:

http://www.wsgi.org
A central web site for WSGI-related resources.

PEP 333, “Python Web Server Gateway Interface v1.0”
PEP written by Phillip J. Eby.

14 Build and C API Changes

Changes to Python’s build process and to the C API include:

• The Python source tree was converted from CVS to Subversion, in a complex migration procedure that was
supervised and flawlessly carried out by Martin von Löwis. The procedure was developed as PEP 347.

• Coverity, a company that markets a source code analysis tool called Prevent, provided the results of their
examination of the Python source code. The analysis found about 60 bugs that were quickly fixed. Many
of the bugs were refcounting problems, often occurring in error-handling code. See http://scan.coverity.com
for the statistics.

• The largest change to the C API came from PEP 353, which modifies the interpreter to use a Py_ssize_t
type definition instead of int. See the earlier section 10 for a discussion of this change.

• The design of the bytecode compiler has changed a great deal, no longer generating bytecode by traversing
the parse tree. Instead the parse tree is converted to an abstract syntax tree (or AST), and it is the abstract
syntax tree that’s traversed to produce the bytecode.

It’s possible for Python code to obtain AST objects by using the compile() built-in and specifying _-
ast.PyCF_ONLY_AST as the value of the flags parameter:

from _ast import PyCF_ONLY_AST
ast = compile("""a=0
for i in range(10):

a += i
""", "<string>", ’exec’, PyCF_ONLY_AST)

assignment = ast.body[0]
for_loop = ast.body[1]

No official documentation has been written for the AST code yet, but PEP 339 discusses the design. To
start learning about the code, read the definition of the various AST nodes in ‘Parser/Python.asdl’. A
Python script reads this file and generates a set of C structure definitions in ‘Include/Python-ast.h’. The
PyParser_ASTFromString() and PyParser_ASTFromFile(), defined in ‘Include/pythonrun.h’,
take Python source as input and return the root of an AST representing the contents. This AST can then be
turned into a code object by PyAST_Compile(). For more information, read the source code, and then
ask questions on python-dev.

The AST code was developed under Jeremy Hylton’s management, and implemented by (in alphabetical
order) Brett Cannon, Nick Coghlan, Grant Edwards, John Ehresman, Kurt Kaiser, Neal Norwitz, Tim Peters,
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Armin Rigo, and Neil Schemenauer, plus the participants in a number of AST sprints at conferences such
as PyCon.

• Evan Jones’s patch to obmalloc, first described in a talk at PyCon DC 2005, was applied. Python 2.4
allocated small objects in 256K-sized arenas, but never freed arenas. With this patch, Python will free
arenas when they’re empty. The net effect is that on some platforms, when you allocate many objects,
Python’s memory usage may actually drop when you delete them and the memory may be returned to the
operating system. (Implemented by Evan Jones, and reworked by Tim Peters.)

Note that this change means extension modules must be more careful when allocating memory. Python’s
API has many different functions for allocating memory that are grouped into families. For example,
PyMem_Malloc(), PyMem_Realloc(), and PyMem_Free() are one family that allocates raw mem-
ory, while PyObject_Malloc(), PyObject_Realloc(), and PyObject_Free() are another
family that’s supposed to be used for creating Python objects.

Previously these different families all reduced to the platform’s malloc() and free() functions. This
meant it didn’t matter if you got things wrong and allocated memory with the PyMem function but freed
it with the PyObject function. With 2.5’s changes to obmalloc, these families now do different things
and mismatches will probably result in a segfault. You should carefully test your C extension modules with
Python 2.5.

• The built-in set types now have an official C API. Call PySet_New() and PyFrozenSet_New() to
create a new set, PySet_Add() and PySet_Discard() to add and remove elements, and PySet_-
Contains and PySet_Size to examine the set’s state. (Contributed by Raymond Hettinger.)

• C code can now obtain information about the exact revision of the Python interpreter by call-
ing the Py_GetBuildInfo() function that returns a string of build information like this:
"trunk:45355:45356M, Apr 13 2006, 07:42:19". (Contributed by Barry Warsaw.)

• Two new macros can be used to indicate C functions that are local to the current file so that a faster calling
convention can be used. Py_LOCAL(type) declares the function as returning a value of the specified type
and uses a fast-calling qualifier. Py_LOCAL_INLINE(type) does the same thing and also requests the
function be inlined. If PY_LOCAL_AGGRESSIVE is defined before ‘python.h’ is included, a set of more
aggressive optimizations are enabled for the module; you should benchmark the results to find out if these
optimizations actually make the code faster. (Contributed by Fredrik Lundh at the NeedForSpeed sprint.)

• PyErr_NewException(name, base, dict) can now accept a tuple of base classes as its base argu-
ment. (Contributed by Georg Brandl.)

• The PyErr_Warn() function for issuing warnings is now deprecated in favour of PyErr_-
WarnEx(category, message, stacklevel) which lets you specify the number of stack frames
separating this function and the caller. A stacklevel of 1 is the function calling PyErr_WarnEx(), 2 is
the function above that, and so forth. (Added by Neal Norwitz.)

• The CPython interpreter is still written in C, but the code can now be compiled with a C++ compiler without
errors. (Implemented by Anthony Baxter, Martin von Löwis, Skip Montanaro.)

• The PyRange_New() function was removed. It was never documented, never used in the core code, and
had dangerously lax error checking. In the unlikely case that your extensions were using it, you can replace
it by something like the following:

range = PyObject_CallFunction((PyObject*) &PyRange_Type, "lll",
start, stop, step);

14.1 Port-Specific Changes

• MacOS X (10.3 and higher): dynamic loading of modules now uses the dlopen() function instead of
MacOS-specific functions.

• MacOS X: a --enable-universalsdk switch was added to the configure script that compiles the interpreter
as a universal binary able to run on both PowerPC and Intel processors. (Contributed by Ronald Oussoren.)
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• Windows: ‘.dll’ is no longer supported as a filename extension for extension modules. ‘.pyd’ is now the only
filename extension that will be searched for.

15 Porting to Python 2.5

This section lists previously described changes that may require changes to your code:

• ASCII is now the default encoding for modules. It’s now a syntax error if a module contains string literals
with 8-bit characters but doesn’t have an encoding declaration. In Python 2.4 this triggered a warning, not
a syntax error.

• Previously, the gi_frame attribute of a generator was always a frame object. Because of the PEP 342
changes described in section 7, it’s now possible for gi_frame to be None.

• A new warning, UnicodeWarning, is triggered when you attempt to compare a Unicode string and an 8-
bit string that can’t be converted to Unicode using the default ASCII encoding. Previously such comparisons
would raise a UnicodeDecodeError exception.

• Library: the csv module is now stricter about multi-line quoted fields. If your files contain newlines em-
bedded within fields, the input should be split into lines in a manner which preserves the newline characters.

• Library: the locale module’s format() function’s would previously accept any string as long as no
more than one %char specifier appeared. In Python 2.5, the argument must be exactly one %char specifier
with no surrounding text.

• Library: The pickle and cPickle modules no longer accept a return value of None from the __-
reduce__() method; the method must return a tuple of arguments instead. The modules also no longer
accept the deprecated bin keyword parameter.

• Library: The SimpleXMLRPCServer and DocXMLRPCServer classes now have a rpc_paths at-
tribute that constrains XML-RPC operations to a limited set of URL paths; the default is to allow only ’/’
and ’/RPC2’. Setting rpc_paths to None or an empty tuple disables this path checking.

• C API: Many functions now use Py_ssize_t instead of int to allow processing more data on 64-bit
machines. Extension code may need to make the same change to avoid warnings and to support 64-bit
machines. See the earlier section 10 for a discussion of this change.

• C API: The obmalloc changes mean that you must be careful to not mix usage of the PyMem_*() and
PyObject_*() families of functions. Memory allocated with one family’s *_Malloc() must be freed
with the corresponding family’s *_Free() function.
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