
Documenting Python
Release 2.4.1

Fred L. Drake, Jr.

30 March 2005

PythonLabs
Email: fdrake@acm.org

Abstract

The Python language has a substantial body of documentation, much of it contributed by various authors. The
markup used for the Python documentation is based on LATEX and requires a significant set of macros written
specifically for documenting Python. This document describes the macros introduced to support Python docu-
mentation and how they should be used to support a wide range of output formats.

This document describes the document classes and special markup used in the Python documentation. Au-
thors may use this guide, in conjunction with the template files provided with the distribution, to create or
maintain whole documents or sections.

If you’re interested in contributing to Python’s documentation, there’s no need to learn LATEX if you’re not so
inclined; plain text contributions are more than welcome as well.

Contents

1 Introduction 2

2 Directory Structure 2

3 Style Guide 3

4 LATEX Primer 4
4.1 Syntax . 4
4.2 Hierarchical Structure . 6
4.3 Common Environments . 7

5 Document Classes 7

6 Special Markup Constructs 7
6.1 Markup for the Preamble. 7
6.2 Meta-information Markup . 8
6.3 Information Units. 8
6.4 Showing Code Examples. 10
6.5 Inline Markup . 10
6.6 Miscellaneous Text Markup. 14
6.7 Module-specific Markup. 14
6.8 Library-level Markup. 15
6.9 Table Markup. 15
6.10 Reference List Markup. 17
6.11 Index-generating Markup . 18
6.12 Grammar Production Displays. 20
6.13 Graphical Interface Components. 20

7 Processing Tools 21
7.1 External Tools . 21
7.2 Internal Tools . 22
7.3 Working on Cygwin . 22

8 Including Graphics 23

9 Future Directions 24
9.1 Structured Documentation. 24
9.2 Discussion Forums. 25

Index 26

1 Introduction

Python’s documentation has long been considered to be good for a free programming language. There are a num-
ber of reasons for this, the most important being the early commitment of Python’s creator, Guido van Rossum, to
providing documentation on the language and its libraries, and the continuing involvement of the user community
in providing assistance for creating and maintaining documentation.

The involvement of the community takes many forms, from authoring to bug reports to just plain complaining
when the documentation could be more complete or easier to use. All of these forms of input from the community
have proved useful during the time I’ve been involved in maintaining the documentation.

This document is aimed at authors and potential authors of documentation for Python. More specifically, it is for
people contributing to the standard documentation and developing additional documents using the same tools as
the standard documents. This guide will be less useful for authors using the Python documentation tools for topics
other than Python, and less useful still for authors not using the tools at all.

The material in this guide is intended to assist authors using the Python documentation tools. It includes infor-
mation on the source distribution of the standard documentation, a discussion of the document types, reference
material on the markup defined in the document classes, a list of the external tools needed for processing docu-
ments, and reference material on the tools provided with the documentation resources. At the end, there is also a
section discussing future directions for the Python documentation and where to turn for more information.

If your interest is in contributing to the Python documentation, but you don’t have the time or inclination to
learn LATEX and the markup structures documented here, there’s a welcoming place for you among the Python
contributors as well. Any time you feel that you can clarify existing documentation or provide documentation
that’s missing, the existing documentation team will gladly work with you to integrate your text, dealing with the
markup for you. Please don’t let the material in this document stand between the documentation and your desire
to help out!

2 Directory Structure

The source distribution for the standard Python documentation contains a large number of directories. While
third-party documents do not need to be placed into this structure or need to be placed within a similar structure,
it can be helpful to know where to look for examples and tools when developing new documents using the Python
documentation tools. This section describes this directory structure.

The documentation sources are usually placed within the Python source distribution as the top-level directory
‘Doc/’, but are not dependent on the Python source distribution in any way.

The ‘Doc/’ directory contains a few files and several subdirectories. The files are mostly self-explanatory, including
a ‘README’ and a ‘Makefile’. The directories fall into three categories:

Document Sources

2 2 Directory Structure

The LATEX sources for each document are placed in a separate directory. These directories are given short
names which vaguely indicate the document in each:

Directory Document Title
api/ The Python/C API
dist/ Distributing Python Modules
doc/ Documenting Python
ext/ Extending and Embedding the Python Interpreter
inst/ Installing Python Modules
lib/ Python Library Reference
mac/ Macintosh Module Reference
ref/ Python Reference Manual
tut/ Python Tutorial
whatsnew/ What’s New in Python 2.4

Format-Specific Output
Most output formats have a directory which contains a ‘Makefile’ which controls the generation of that
format and provides storage for the formatted documents. The only variations within this category are
the Portable Document Format (PDF) and PostScript versions are placed in the directories ‘paper-a4/’ and
‘paper-letter/’ (this causes all the temporary files created by LATEX to be kept in the same place for each
paper size, where they can be more easily ignored).

Directory Output Formats
html/ HTML output
info/ GNU info output
isilo/ iSilo documents (for Palm OS devices)
paper-a4/ PDF and PostScript, A4 paper
paper-letter/ PDF and PostScript, US-Letter paper

Supplemental Files
Some additional directories are used to store supplemental files used for the various processes. Directories
are included for the shared LATEX document classes, the LATEX2HTML support, template files for various
document components, and the scripts used to perform various steps in the formatting processes.

Directory Contents
commontex/ Document content shared among documents
perl/ Support for LATEX2HTML processing
templates/ Example files for source documents
texinputs/ Style implementation for LATEX
tools/ Custom processing scripts

3 Style Guide

The Python documentation should follow theApple Publications Style Guidewherever possible. This particular
style guide was selected mostly because it seems reasonable and is easy to get online.

Topics which are not covered in the Apple’s style guide will be discussed in this document if necessary.

Many special names are used in the Python documentation, including the names of operating systems, program-
ming languages, standards bodies, and the like. Many of these were assigned LATEX macros at some point in the
distant past, and these macros lived on long past their usefulness. In the current markup, most of these entities
are not assigned any special markup, but the preferred spellings are given here to aid authors in maintaining the
consistency of presentation in the Python documentation.

Other terms and words deserve special mention as well; these conventions should be used to ensure consistency
throughout the documentation:

3

CPU For “central processing unit.” Many style guides say this should be spelled out on the first use (and if you
must use it, do so!). For the Python documentation, this abbreviation should be avoided since there’s no
reasonable way to predict which occurrence will be the first seen by the reader. It is better to use the word
“processor” instead.

POSIX The name assigned to a particular group of standards. This is always uppercase. Use the macro\POSIX
to represent this name.

Python The name of our favorite programming language is always capitalized.

Unicode The name of a character set and matching encoding. This is always written capitalized.

UNIX The name of the operating system developed at AT&T Bell Labs in the early 1970s. Use the macro\UNIX
to use this name.

4 LATEX Primer

This section is a brief introduction to LATEX concepts and syntax, to provide authors enough information to au-
thor documents productively without having to become “TEXnicians.” This does not teach everything needed to
know about writing LATEX for Python documentation; many of the standard “environments” are not described here
(though you will learn how to mark something as an environment).

Perhaps the most important concept to keep in mind while marking up Python documentation is that while TEX
is unstructured, LATEX was designed as a layer on top of TEX which specifically supports structured markup. The
Python-specific markup is intended to extend the structure provided by standard LATEX document classes to support
additional information specific to Python.

LATEX documents contain two parts: the preamble and the body. The preamble is used to specify certain metadata
about the document itself, such as the title, the list of authors, the date, and theclass the document belongs
to. Additional information used to control index generation and the use of bibliographic databases can also be
placed in the preamble. For most authors, the preamble can be most easily created by copying it from an existing
document and modifying a few key pieces of information.

Theclassof a document is used to place a document within a broad category of documents and set some funda-
mental formatting properties. For Python documentation, two classes are used: themanual class and thehowto
class. These classes also define the additional markup used to document Python concepts and structures. Spe-
cific information about these classes is provided in section 5, “Document Classes,” below. The first thing in the
preamble is the declaration of the document’s class.

After the class declaration, a number ofmacrosare used to provide further information about the document and
setup any additional markup that is needed. No output is generated from the preamble; it is an error to include
free text in the preamble because it would cause output.

The document body follows the preamble. This contains all the printed components of the document marked
up structurally. Generic LATEX structures include hierarchical sections, numbered and bulleted lists, and special
structures for the document abstract and indexes.

4.1 Syntax

There are some things that an author of Python documentation needs to know about LATEX syntax.

A commentis started by the “percent” character (‘%’) and continues through the end of the line and all leading
whitespace on the following line. This is a little different from any programming language I know of, so an
example is in order:

This is text.% comment
This is more text. % another comment

Still more text.

4 4 LATEX Primer

The first non-comment character following the first comment is the letter ‘T’ on the second line; the leading
whitespace on that line is consumed as part of the first comment. This means that there is no space between the
first and second sentences, so the period and letter ‘T’ will be directly adjacent in the typeset document.

Note also that though the first non-comment character after the second comment is the letter ‘S’, there is whites-
pace preceding the comment, so the two sentences are separated as expected.

A groupis an enclosure for a collection of text and commands which encloses the formatting context and constrains
the scope of any changes to that context made by commands within the group. Groups can be nested hierarchically.
The formatting context includes the font and the definition of additional macros (or overrides of macros defined
in outer groups). Syntactically, groups are enclosed in braces:

{text in a group}

An alternate syntax for a group using brackets,[...] , is used by macros and environment constructors which
take optional parameters; brackets do not normally hold syntactic significance. A degenerate group, containing
only one atomic bit of content, does not need to have an explicit group, unless it is required to avoid ambiguity.
Since Python tends toward the explicit, groups are also made explicit in the documentation markup.

Groups are used only sparingly in the Python documentation, except for their use in marking parameters to macros
and environments.

A macro is usually a simple construct which is identified by name and can take some number of parameters. In
normal LATEX usage, one of these can be optional. The markup is introduced using the backslash character (‘\ ’),
and the name is given by alphabetic characters (no digits, hyphens, or underscores). Required parameters should
be marked as a group, and optional parameters should be marked using the alternate syntax for a group.

For example, a macro which takes a single parameter would appear like this:

\name{parameter}

A macro which takes an optional parameter would be typed like this when the optional parameter is given:

\name[optional]

If both optional and required parameters are to be required, it looks like this:

\name[optional]{required}

A macro name may be followed by a space or newline; a space between the macro name and any parameters
will be consumed, but this usage is not practiced in the Python documentation. Such a space is still consumed
if there are no parameters to the macro, in which case inserting an empty group ({}) or explicit word space (‘\
’) immediately after the macro name helps to avoid running the expansion of the macro into the following text.
Macros which take no parameters but which should not be followed by a word space do not need special treatment
if the following character in the document source if not a name character (such as punctuation).

Each line of this example shows an appropriate way to write text which includes a macro which takes no parame-
ters:

This \UNIX{} is followed by a space.
This \UNIX\ is also followed by a space.
\UNIX, followed by a comma, needs no additional markup.

An environmentis a larger construct than a macro, and can be used for things with more content than would con-
veniently fit in a macro parameter. They are primarily used when formatting parameters need to be changed before

4.1 Syntax 5

and after a large chunk of content, but the content itself needs to be highly flexible. Code samples are presented
using an environment, and descriptions of functions, methods, and classes are also marked using environments.

Since the content of an environment is free-form and can consist of several paragraphs, they are actually marked
using a pair of macros:\begin and\end . These macros both take the name of the environment as a parameter.
An example is the environment used to mark the abstract of a document:

\begin{abstract}
This is the text of the abstract. It concisely explains what
information is found in the document.

It can consist of multiple paragraphs.
\end{abstract}

An environment can also have required and optional parameters of its own. These follow the parameter of the
\begin macro. This example shows an environment which takes a single required parameter:

\begin{datadesc}{controlnames}
A 33-element string array that contains the \ASCII{} mnemonics for
the thirty-two \ASCII{} control characters from 0 (NUL) to 0x1f
(US), in order, plus the mnemonic \samp{SP} for the space character.

\end{datadesc}

There are a number of less-used marks in LATEX which are used to enter characters which are not found inASCII or
which a considered special, oractivein TEX or LATEX. Given that these are often used adjacent to other characters,
the markup required to produce the proper character may need to be followed by a space or an empty group, or
the markup can be enclosed in a group. Some which are found in Python documentation are:

Character Markup
ˆ \textasciicircum
˜ \textasciitilde
> \textgreater
< \textless
ç \c c
ö \"o
ø \o

4.2 Hierarchical Structure

LATEX expects documents to be arranged in a conventional, hierarchical way, with chapters, sections, sub-sections,
appendixes, and the like. These are marked using macros rather than environments, probably because the end of a
section can be safely inferred when a section of equal or higher level starts.

There are six “levels” of sectioning in the document classes used for Python documentation, and the deepest two
levels1 are not used. The levels are:

Level Macro Name Notes
1 \chapter (1)
2 \section
3 \subsection
4 \subsubsection
5 \paragraph (2)
6 \subparagraph

Notes:
1The deepest levels have the highest numbers in the table.

6 4 LATEX Primer

(1) Only used for themanual documents, as described in section 5, “Document Classes.”

(2) Not the same as a paragraph of text; nobody seems to use this.

4.3 Common Environments

LATEX provides a variety of environments even without the additional markup provided by the Python-specific
document classes introduced in the next section. The following environments are provided as part of standard
LATEX and are being used in the standard Python documentation; descriptions will be added here as time allows.

abstract
alltt
description
displaymath
document
enumerate
figure
flushleft
itemize
list
math
quotation
quote
sloppypar
verbatim

5 Document Classes

Two LATEX document classes are defined specifically for use with the Python documentation. Themanual class
is for large documents which are sectioned into chapters, and thehowto class is for smaller documents.

Themanual documents are larger and are used for most of the standard documents. This document class is based
on the standard LATEX report class and is formatted very much like a long technical report. ThePython Reference
Manual is a good example of amanual document, and thePython Library Referenceis a large example.

The howto documents are shorter, and don’t have the large structure of themanual documents. This class is
based on the standard LATEX article class and is formatted somewhat like the Linux Documentation Project’s
“HOWTO” series as done originally using the LinuxDoc software. The original intent for the document class
was that it serve a similar role as the LDP’s HOWTO series, but the applicability of the class turns out to be
somewhat broader. This class is used for “how-to” documents (this document is an example) and for shorter
reference manuals for small, fairly cohesive module libraries. Examples of the later use includeUsing Kerberos
from Python, which contains reference material for an extension package. These documents are roughly equivalent
to a single chapter from a larger work.

6 Special Markup Constructs

The Python document classes define a lot of new environments and macros. This section contains the reference
material for these facilities. Documentation for “standard” LATEX constructs is not included here, though they are
used in the Python documentation.

6.1 Markup for the Preamble

\ release { ver}
Set the version number for the software described in the document.

4.3 Common Environments 7

\ setshortversion { sver}
Specify the “short” version number of the documented software to besver.

6.2 Meta-information Markup

\ sectionauthor { author}{ email}
Identifies the author of the current section.authorshould be the author’s name such that it can be used for
presentation (though it isn’t), andemailshould be the author’s email address. The domain name portion of
the address should be lower case.

No presentation is generated from this markup, but it is used to help keep track of contributions.

6.3 Information Units

XXX Explain terminology, or come up with something more “lay.”

There are a number of environments used to describe specific features provided by modules. Each environment
requires parameters needed to provide basic information about what is being described, and the environment
content should be the description. Most of these environments make entries in the general index (if one is being
produced for the document); if no index entry is desired, non-indexing variants are available for many of these
environments. The environments have names of the formfeaturedesc , and the non-indexing variants are named
featuredescni . The available variants are explicitly included in the list below.

For each of these environments, the first parameter,name, provides the name by which the feature is accessed.

Environments which describe features of objects within a module, such as object methods or data attributes, allow
an optionaltype nameparameter. When the feature is an attribute of class instances,type nameonly needs to
be given if the class was not the most recently described class in the module; thenamevalue from the most
recentclassdesc is implied. For features of built-in or extension types, thetype namevalue should always
be provided. Another special case includes methods and members of general “protocols,” such as the formatter
and writer protocols described for theformatter module: these may be documented without any specific
implementation classes, and will always require thetype nameparameter to be provided.

\begin{ cfuncdesc }{ type}{ name}{ args}
\end{ cfuncdesc }

Environment used to described a C function. Thetypeshould be specified as atypedef name,struct
tag, or the name of a primitive type. If it is a pointer type, the trailing asterisk should not be preceded by a
space.nameshould be the name of the function (or function-like pre-processor macro), andargsshould give
the types and names of the parameters. The names need to be given so they may be used in the description.

\begin{ cmemberdesc }{ container}{ type}{ name}
\end{ cmemberdesc }

Description for a structure member.containershould be thetypedef name, if there is one, otherwise if
should be ‘struct tag’. The type of the member should given astype, and the name should be given
asname. The text of the description should include the range of values allowed, how the value should be
interpreted, and whether the value can be changed. References to structure members in text should use the
\member macro.

\begin{ csimplemacrodesc }{ name}
\end{ csimplemacrodesc }

Documentation for a “simple” macro. Simple macros are macros which are used for code expansion,
but which do not take arguments so cannot be described as functions. This is not to be used for simple
constant definitions. Examples of it’s use in the Python documentation includePyObject HEADand
Py BEGIN ALLOWTHREADS.

\begin{ ctypedesc }[tag]{ name}
\end{ ctypedesc }

Environment used to described a C type. Thenameparameter should be thetypedef name. If the type is
defined as astruct without atypedef , nameshould have the formstruct tag. namewill be added
to the index unlesstag is provided, in which casetag will be used instead.tag should not be used for a
typedef name.

8 6 Special Markup Constructs

\begin{ cvardesc }{ type}{ name}
\end{ cvardesc }

Description of a global C variable.typeshould be thetypedef name,struct tag, or the name of a
primitive type. If variable has a pointer type, the trailing asterisk shouldnotbe preceded by a space.

\begin{ datadesc }{ name}
\end{ datadesc }

This environment is used to document global data in a module, including both variables and values used as
“defined constants.” Class and object attributes are not documented using this environment.

\begin{ datadescni }{ name}
\end{ datadescni }

Like datadesc , but without creating any index entries.

\begin{ excclassdesc }{ name}{ constructor parameters}
\end{ excclassdesc }

Describe an exception defined by a class.constructor parametersshould not include theself parameter or
the parentheses used in the call syntax. To describe an exception class without describing the parameters to
its constructor, use theexcdesc environment.

\begin{ excdesc }{ name}
\end{ excdesc }

Describe an exception. In the case of class exceptions, the constructor parameters are not described; use
excclassdesc to describe an exception class and its constructor.

\begin{ funcdesc }{ name}{ parameters}
\end{ funcdesc }

Describe a module-level function.parametersshould not include the parentheses used in the call syntax.
Object methods are not documented using this environment. Bound object methods placed in the module
namespace as part of the public interface of the module are documented using this, as they are equivalent to
normal functions for most purposes.

The description should include information about the parameters required and how they are used (especially
whether mutable objects passed as parameters are modified), side effects, and possible exceptions. A small
example may be provided.

\begin{ funcdescni }{ name}{ parameters}
\end{ funcdescni }

Like funcdesc , but without creating any index entries.

\begin{ classdesc }{ name}{ constructor parameters}
\end{ classdesc }

Describe a class and its constructor.constructor parametersshould not include theself parameter or the
parentheses used in the call syntax.

\begin{ classdesc* }{ name}
\end{ classdesc* }

Describe a class without describing the constructor. This can be used to describe classes that are merely
containers for attributes or which should never be instantiated or subclassed by user code.

\begin{ memberdesc }[type name]{ name}
\end{ memberdesc }

Describe an object data attribute. The description should include information about the type of the data to
be expected and whether it may be changed directly.

\begin{ memberdescni }[type name]{ name}
\end{ memberdescni }

Like memberdesc , but without creating any index entries.

\begin{ methoddesc }[type name]{ name}{ parameters}
\end{ methoddesc }

Describe an object method.parametersshould not include theself parameter or the parentheses used in the
call syntax. The description should include similar information to that described forfuncdesc .

\begin{ methoddescni }[type name]{ name}{ parameters}

6.3 Information Units 9

\end{ methoddescni }
Like methoddesc , but without creating any index entries.

6.4 Showing Code Examples

Examples of Python source code or interactive sessions are represented asverbatim environments. This envi-
ronment is a standard part of LATEX. It is important to only use spaces for indentation in code examples since TEX
drops tabs instead of converting them to spaces.

Representing an interactive session requires including the prompts and output along with the Python code. No
special markup is required for interactive sessions. After the last line of input or output presented, there should
not be an “unused” primary prompt; this is an example of whatnot to do:

>>> 1 + 1
2
>>>

Within theverbatim environment, characters special to LATEX do not need to be specially marked in any way.
The entire example will be presented in a monospaced font; no attempt at “pretty-printing” is made, as the en-
vironment must work for non-Python code and non-code displays. There should be no blank lines at the top or
bottom of anyverbatim display.

Longer displays of verbatim text may be included by storing the example text in an external file containing only
plain text. The file may be included using the standard\verbatiminput macro; this macro takes a single
argument naming the file containing the text. For example, to include the Python source file ‘example.py’, use:

\verbatiminput{example.py}

Use of \verbatiminput allows easier use of special editing modes for the included file. The file should be
placed in the same directory as the LATEX files for the document.

The Python Documentation Special Interest Group has discussed a number of approaches to creating pretty-printed
code displays and interactive sessions; see the Doc-SIG area on the Python Web site for more information on this
topic.

6.5 Inline Markup

The macros described in this section are used to mark just about anything interesting in the document text. They
may be used in headings (though anything involving hyperlinks should be avoided there) as well as in the body
text.

\ bfcode { text}
Like \code , but also makes the font bold-face.

\ cdata { name}
The name of a C-language variable.

\ cfunction { name}
The name of a C-language function.nameshould include the function name and the trailing parentheses.

\ character { char}
A character when discussing the character rather than a one-byte string value. The character will be typeset
as with\samp .

\ citetitle [url]{ title}
A title for a referenced publication. Ifurl is specified, the title will be made into a hyperlink when formatted
as HTML.

\ class { name}

10 6 Special Markup Constructs

A class name; a dotted name may be used.

\ code { text}
A short code fragment or literal constant value. Typically, it should not include any spaces since no quotation
marks are added.

\ constant { name}
The name of a “defined” constant. This may be a C-language#define or a Python variable that is not
intended to be changed.

\ csimplemacro { name}
The name of a “simple” macro. Simple macros are macros which are used for code expansion, but
which do not take arguments so cannot be described as functions. This is not to be used for simple
constant definitions. Examples of it’s use in the Python documentation includePyObject HEADand
Py BEGIN ALLOWTHREADS.

\ ctype { name}
The name of a Ctypedef or structure. For structures defined without atypedef , use\ctype{struct
struct tag} to make it clear that thestruct is required.

\ deprecated { version}{ what to do}
Declare whatever is being described as being deprecated starting with releaseversion. The text given aswhat
to doshould recommend something to use instead. It should be complete sentences. The entire deprecation
notice will be presented as a separate paragraph; it should either precede or succeed the description of the
deprecated feature.

\ dfn { term}
Mark the defining instance ofterm in the text. (No index entries are generated.)

\ e
Produces a backslash. This is convenient in\code , \file , and similar macros, and thealltt envi-
ronment, and is only defined there. To create a backslash in ordinary text (such as the contents of the
\citetitle macro), use the standard\textbackslash macro.

\ email { address}
An email address. Note that this isnothyperlinked in any of the possible output formats. The domain name
portion of the address should be lower case.

\ emph{ text}
Emphasized text; this will be presented in an italic font.

\ envvar { name}
An environment variable. Index entries are generated.

\ exception { name}
The name of an exception. A dotted name may be used.

\ file { file or dir}
The name of a file or directory. In the PDF and PostScript outputs, single quotes and a font change are used
to indicate the file name, but no quotes are used in the HTML output.Warning: The\file macro cannot
be used in the content of a section title due to processing limitations.

\ filenq { file or dir}
Like \file , but single quotes are never used. This can be used in conjunction with tables if a column will
only contain file or directory names.Warning: The \filenq macro cannot be used in the content of a
section title due to processing limitations.

\ function { name}
The name of a Python function; dotted names may be used.

\ infinity
The symbol for mathematical infinity:∞. Some Web browsers are not able to render the HTML represen-
tation of this symbol properly, but support is growing.

\ kbd { key sequence}
Mark a sequence of keystrokes. What formkey sequencetakes may depend on platform- or application-

6.5 Inline Markup 11

specific conventions. When there are no relevant conventions, the names of modifier keys should be spelled
out, to improve accessibility for new users and non-native speakers. For example, anxemacskey sequence
may be marked like\kbd{C-x C-f} , but without reference to a specific application or platform, the
same sequence should be marked as\kbd{Control-x Control-f} .

\ keyword { name}
The name of a keyword in a programming language.

\ mailheader { name}
The name of an RFC 822-style mail header. This markup does not imply that the header is being used in
an email message, but can be used to refer to any header of the same “style.” This is also used for headers
defined by the various MIME specifications. The header name should be entered in the same way it would
normally be found in practice, with the camel-casing conventions being preferred where there is more than
one common usage. The colon which follows the name of the header should not be included. For example:
\mailheader{Content-Type} .

\ makevar { name}
The name of amakevariable.

\ manpage{ name}{ section}
A reference to a UNIX manual page.

\ member{ name}
The name of a data attribute of an object.

\ method { name}
The name of a method of an object.nameshould include the method name and the trailing parentheses. A
dotted name may be used.

\ mimetype { name}
The name of a MIME type, or a component of a MIME type (the major or minor portion, taken alone).

\ module { name}
The name of a module; a dotted name may be used. This should also be used for package names.

\ newsgroup { name}
The name of a Usenet newsgroup.

\ note { text}
An especially important bit of information about an API that a user should be aware of when using whatever
bit of API the note pertains to. This should be the last thing in the paragraph as the end of the note is not
visually marked in any way. The content oftext should be written in complete sentences and include all
appropriate punctuation.

\ pep { number}
A reference to a Python Enhancement Proposal. This generates appropriate index entries. The text ‘PEP
number’ is generated; in the HTML output, this text is a hyperlink to an online copy of the specified PEP.

\ plusminus
The symbol for indicating a value that may take a positive or negative value of a specified magnitude,
typically represented by a plus sign placed over a minus sign. For example:\plusminus 3% .

\ program { name}
The name of an executable program. This may differ from the file name for the executable for some plat-
forms. In particular, the ‘.exe’ (or other) extension should be omitted for Windows programs.

\ programopt { option}
A command-line option to an executable program. Use this only for “short” options, and include the leading
hyphen.

\ longprogramopt { option}
A long command-line option to an executable program. This should only be used for long option names
which will be prefixed by two hyphens; the hyphens should not be provided as part ofoption.

\ refmodule [key]{ name}
Like \module , but create a hyperlink to the documentation for the named module. Note that the corre-

12 6 Special Markup Constructs

sponding\declaremodule must be in the same document. If the\declaremodule defines a module
key different from the module name, it must also be provided askeyto the\refmodule macro.

\ regexp { string}
Mark a regular expression.

\ rfc { number}
A reference to an Internet Request for Comments. This generates appropriate index entries. The text ‘RFC
number’ is generated; in the HTML output, this text is a hyperlink to an online copy of the specified RFC.

\ samp{ text}
A short code sample, but possibly longer than would be given using\code . Since quotation marks are
added, spaces are acceptable.

\ shortversion
The “short” version number of the documented software, as specified using the\setshortversion
macro in the preamble. For Python, the short version number for a release is the first three characters of the
sys.version value. For example, versions 2.0b1 and 2.0.1 both have a short version of 2.0. This may
not apply for all packages; if\setshortversion is not used, this produces an empty expansion. See
also the\version macro.

\ strong { text}
Strongly emphasized text; this will be presented using a bold font.

\ ulink { text}{ url}
A hypertext link with a target specified by a URL, but for which the link text should not be the title of
the resource. For resources being referenced by name, use the\citetitle macro. Not all formatted
versions support arbitrary hypertext links. Note that many characters are special to LATEX and this macro
does not always do the right thing. In particular, the tilde character (‘˜ ’) is mis-handled; encoding it as a
hex-sequence does work, use ‘%7e’ in place of the tilde character.

\ url { url}
A URL (or URN). The URL will be presented as text. In the HTML and PDF formatted versions, the
URL will also be a hyperlink. This can be used when referring to external resources without specific
titles; references to resources which have titles should be marked using the\citetitle macro. See the
comments about special characters in the description of the\ulink macro for special considerations.

\ var { name}
The name of a variable or formal parameter in running text.

\ version
The version number of the described software, as specified using\release in the preamble. See also the
\shortversion macro.

\ warning { text}
An important bit of information about an API that a user should be very aware of when using whatever bit
of API the warning pertains to. This should be the last thing in the paragraph as the end of the warning is
not visually marked in any way. The content oftextshould be written in complete sentences and include all
appropriate punctuation. This differs from\note in that it is recommended over\note for information
regarding security.

The following two macros are used to describe information that’s associated with changes from one release to
another. For features which are described by a single paragraph, these are typically added as separate source
lines at the end of the paragraph. When adding these to features described by multiple paragraphs, they
are usually collected in a single separate paragraph after the description. When both\versionadded and
\versionchanged are used,\versionadded should come first; the versions should be listed in chrono-
logical order. Both of these should come before availability statements. The location should be selected so the
explanation makes sense and may vary as needed.

\ versionadded [explanation]{ version}
The version of Python which added the described feature to the library or C API.explanationshould be a
brief explanation of the change consisting of a capitalized sentence fragment; a period will be appended by
the formatting process. When this applies to an entire module, it should be placed at the top of the module
section before any prose.

6.5 Inline Markup 13

\ versionchanged [explanation]{ version}
The version of Python in which the named feature was changed in some way (new parameters, changed side
effects, etc.).explanationshould be abrief explanation of the change consisting of a capitalized sentence
fragment; a period will be appended by the formatting process. This should not generally be applied to
modules.

6.6 Miscellaneous Text Markup

In addition to the inline markup, some additional “block” markup is defined to make it easier to bring attention to
various bits of text. The markup described here serves this purpose, and is intended to be used when marking one
or more paragraphs or other block constructs (such asverbatim environments).

\begin{ notice }[type]
\end{ notice }

Label some paragraphs as being worthy of additional attention from the reader. What sort of attention is
warranted can be indicated by specifying thetypeof the notice. The only values defined fortypearenote
andwarning ; these are equivalent in intent to the inline markup of the same name. Iftype is omitted,
note is used. Additional values may be defined in the future.

6.7 Module-specific Markup

The markup described in this section is used to provide information about a module being documented. A typical
use of this markup appears at the top of the section used to document a module. A typical example might look
like this:

\section{\module{spam} ---
Access to the SPAM facility}

\declaremodule{extension}{spam}
\platform{Unix}

\modulesynopsis{Access to the SPAM facility of \UNIX.}
\moduleauthor{Jane Doe}{jane.doe@frobnitz.org}

Python packages — collections of modules that can be described as a unit — are documented using the
same markup as modules. The name for a module in a package should be typed in “fully qualified” form
(it should include the package name). For example, a module “foo” in package “bar” should be marked as
\module{bar.foo} , and the beginning of the reference section would appear as:

\section{\module{bar.foo} ---
Module from the \module{bar} package}

\declaremodule{extension}{bar.foo}
\modulesynopsis{Nifty module from the \module{bar} package.}
\moduleauthor{Jane Doe}{jane.doe@frobnitz.org}

Note that the name of a package is also marked using\module .

\ declaremodule [key]{ type}{ name}
Requires two parameters: module type (‘standard ’, ‘ builtin ’, ‘ extension ’, or ‘’), and the module
name. An optional parameter should be given as the basis for the module’s “key” used for linking to or
referencing the section. The “key” should only be given if the module’s name contains any underscores,
and should be the name with the underscores stripped. Note that thetypeparameter must be one of the
values listed above or an error will be printed. For modules which are contained in packages, the fully-
qualified name should be given asnameparameter. This should be the first thing after the\section used
to introduce the module.

\ platform { specifier}

14 6 Special Markup Constructs

Specifies the portability of the module.specifieris a comma-separated list of keys that specify what plat-
forms the module is available on. The keys are short identifiers; examples that are in use include ‘IRIX ’,
‘Mac’, ‘ Windows ’, and ‘Unix ’. It is important to use a key which has already been used when applicable.
This is used to provide annotations in the Module Index and the HTML and GNU info output.

\ modulesynopsis { text}
Thetext is a short, “one line” description of the module that can be used as part of the chapter introduction.
This is must be placed after\declaremodule . The synopsis is used in building the contents of the table
inserted as the\localmoduletable . No text is produced at the point of the markup.

\ moduleauthor { name}{ email}
This macro is used to encode information about who authored a module. This is currently not used to
generate output, but can be used to help determine the origin of the module.

6.8 Library-level Markup

This markup is used when describing a selection of modules. For example, theMacintosh Library Modules
document uses this to help provide an overview of the modules in the collection, and many chapters in thePython
Library Referenceuse it for the same purpose.

\ localmoduletable
If a ‘ .syn’ file exists for the current chapter (or for the entire document inhowto documents), a
synopsistable is created with the contents loaded from the ‘.syn’ file.

6.9 Table Markup

There are three general-purpose table environments defined which should be used whenever possible. These
environments are defined to provide tables of specific widths and some convenience for formatting. These envi-
ronments are not meant to be general replacements for the standard LATEX table environments, but can be used for
an advantage when the documents are processed using the tools for Python documentation processing. In particu-
lar, the generated HTML looks good! There is also an advantage for the eventual conversion of the documentation
to XML (see section 9, “Future Directions”).

Each environment is namedtable cols, wherecols is the number of columns in the table specified in lower-case
Roman numerals. Within each of these environments, an additional macro,\line cols, is defined, wherecols
matches thecolsvalue of the corresponding table environment. These are supported forcolsvalues ofii , iii ,
andiv . These environments are all built on top of thetabular environment. Variants based on thelongtable
environment are also provided.

Note that all tables in the standard Python documentation use vertical lines between columns, and this must be
specified in the markup for each table. A general border around the outside of the table is not used, but would be
the responsibility of the processor; the document markup should not include an exterior border.

The longtable -based variants of the table environments are formatted with extra space before and after, so
should only be used on tables which are long enough that splitting over multiple pages is reasonable; tables with
fewer than twenty rows should never by marked using the long flavors of the table environments. The header row
is repeated across the top of each part of the table.

\begin{ tableii }{ colspec}{ col1font}{ heading1}{ heading2}
\end{ tableii }

Create a two-column table using the LATEX column specifiercolspec. The column specifier should indicate
vertical bars between columns as appropriate for the specific table, but should not specify vertical bars on
the outside of the table (that is considered a stylesheet issue). Thecol1fontparameter is used as a stylistic
treatment of the first column of the table: the first column is presented as\ col1font{column1} . To avoid
treating the first column specially,col1fontmay be ‘textrm ’. The column headings are taken from the
valuesheading1andheading2.

\begin{ longtableii }...
\end{ longtableii }

Like tableii , but produces a table which may be broken across page boundaries. The parameters are the
same as fortableii .

6.8 Library-level Markup 15

\ lineii { column1}{ column2}
Create a single table row within atableii or longtableii environment. The text for the first column
will be generated by applying the macro named by thecol1fontvalue when thetableii was opened.

\begin{ tableiii }{ colspec}{ col1font}{ heading1}{ heading2}{ heading3}
\end{ tableiii }

Like the tableii environment, but with a third column. The heading for the third column is given by
heading3.

\begin{ longtableiii }...
\end{ longtableiii }

Like tableiii , but produces a table which may be broken across page boundaries. The parameters are
the same as fortableiii .

\ lineiii { column1}{ column2}{ column3}
Like the\lineii macro, but with a third column. The text for the third column is given bycolumn3.

\begin{ tableiv }{ colspec}{ col1font}{ heading1}{ heading2}{ heading3}{ heading4}
\end{ tableiv }

Like thetableiii environment, but with a fourth column. The heading for the fourth column is given by
heading4.

\begin{ longtableiv }...
\end{ longtableiv }

Like tableiv , but produces a table which may be broken across page boundaries. The parameters are the
same as fortableiv .

\ lineiv { column1}{ column2}{ column3}{ column4}
Like the\lineiii macro, but with a fourth column. The text for the fourth column is given bycolumn4.

\begin{ tablev }{ colspec}{ col1font}{ heading1}{ heading2}{ heading3}{ heading4}{ heading5}
\end{ tablev }

Like the tableiv environment, but with a fifth column. The heading for the fifth column is given by
heading5.

\begin{ longtablev }...
\end{ longtablev }

Like tablev , but produces a table which may be broken across page boundaries. The parameters are the
same as fortablev .

\ linev { column1}{ column2}{ column3}{ column4}{ column5}
Like the\lineiv macro, but with a fifth column. The text for the fifth column is given bycolumn5.

An additional table-like environment issynopsistable . The table generated by this environment contains
two columns, and each row is defined by an alternate definition of\modulesynopsis . This environment is not
normally used by authors, but is created by the\localmoduletable macro.

Here is a small example of a table given in the documentation for thewarnings module; markup inside the table
cells is minimal so the markup for the table itself is readily discernable. Here is the markup for the table:

16 6 Special Markup Constructs

\begin{tableii}{l|l}{exception}{Class}{Description}
\lineii{Warning}

{This is the base class of all warning category classes. It
is a subclass of \exception{Exception}.}

\lineii{UserWarning}
{The default category for \function{warn()}.}

\lineii{DeprecationWarning}
{Base category for warnings about deprecated features.}

\lineii{SyntaxWarning}
{Base category for warnings about dubious syntactic

features.}
\lineii{RuntimeWarning}

{Base category for warnings about dubious runtime features.}
\lineii{FutureWarning}

{Base category for warnings about constructs that will change
semantically in the future.}

\end{tableii}

Here is the resulting table:

Class Description
Warning This is the base class of all warning category classes. It is a subclass ofException .
UserWarning The default category forwarn() .
DeprecationWarning Base category for warnings about deprecated features.
SyntaxWarning Base category for warnings about dubious syntactic features.
RuntimeWarning Base category for warnings about dubious runtime features.

Note that the class names are implicitly marked using the\exception macro, since that is given as thecol1font
value for thetableii environment. To create a table using different markup for the first column, usetextrm
for thecol1fontvalue and mark each entry individually.

To add a horizontal line between vertical sections of a table, use the standard\hline macro between the rows
which should be separated:

\begin{tableii}{l|l}{constant}{Language}{Audience}
\lineii{APL}{Masochists.}
\lineii{BASIC}{First-time programmers on PC hardware.}
\lineii{C}{\UNIX{} \&\ Linux kernel developers.}

\hline
\lineii{Python}{Everyone!}

\end{tableii}

Note that not all presentation formats are capable of displaying a horizontal rule in this position. This is how the
table looks in the format you’re reading now:

Language Audience
APL Masochists.
C UNIX & Linux kernel developers.
JavaScript Web developers.
Python Everyone!

6.10 Reference List Markup

Many sections include a list of references to module documentation or external documents. These lists are created
using theseealso or seealso* environments. These environments define some additional macros to support
creating reference entries in a reasonable manner.

6.10 Reference List Markup 17

Theseealso environment is typically placed in a section just before any sub-sections. This is done to ensure
that reference links related to the section are not hidden in a subsection in the hypertext renditions of the doc-
umentation. For the HTML output, it is shown as a “side bar,” boxed off from the main flow of the text. The
seealso* environment is different in that it should be used when a list of references is being presented as part
of the primary content; it is not specially set off from the text.

\begin{ seealso }
\end{ seealso }

This environment creates a “See also:” heading and defines the markup used to describe individual refer-
ences.

\begin{ seealso* }
\end{ seealso* }

This environment is used to create a list of references which form part of the main content. It is not given a
special header and is not set off from the main flow of the text. It provides the same additional markup used
to describe individual references.

For each of the following macros,why should be one or more complete sentences, starting with a capital letter
(unless it starts with an identifier, which should not be modified), and ending with the appropriate punctuation.

These macros are only defined within the content of theseealso andseealso* environments.

\ seelink { url}{ linktext}{ why}
References to specific on-line resources should be given using the\seelink macro if they don’t have a
meaningful title but there is some short description of what’s at the end of the link. Online documents which
have identifiable titles should be referenced using the\seetitle macro, using the optional parameter to
that macro to provide the URL.

\ seemodule [key]{ name}{ why}
Refer to another module.why should be a brief explanation of why the reference may be interesting.
The module name is given inname, with the link key given inkey if necessary. In the HTML and PDF
conversions, the module name will be a hyperlink to the referred-to module.Note: The module must be
documented in the same document (the corresponding\declaremodule is required).

\ seepep { number}{ title}{ why}
Refer to an Python Enhancement Proposal (PEP).numbershould be the official number assigned by the PEP
Editor, title should be the human-readable title of the PEP as found in the official copy of the document, and
whyshould explain what’s interesting about the PEP. This should be used to refer the reader to PEPs which
specify interfaces or language features relevant to the material in the annotated section of the documentation.

\ seerfc { number}{ title}{ why}
Refer to an IETF Request for Comments (RFC). Otherwise very similar to\seepep . This should be used
to refer the reader to PEPs which specify protocols or data formats relevant to the material in the annotated
section of the documentation.

\ seetext { text}
Add arbitrary texttext to the “See also:” list. This can be used to refer to off-line materials or on-line
materials using the\url macro. This should consist of one or more complete sentences.

\ seetitle [url]{ title}{ why}
Add a reference to an external document namedtitle. If url is given, the title is made a hyperlink in the
HTML version of the documentation, and displayed below the title in the typeset versions of the documen-
tation.

\ seeurl { url}{ why}
References to specific on-line resources should be given using the\seeurl macro if they don’t have
a meaningful title. Online documents which have identifiable titles should be referenced using the
\seetitle macro, using the optional parameter to that macro to provide the URL.

6.11 Index-generating Markup

Effective index generation for technical documents can be very difficult, especially for someone familiar with the
topic but not the creation of indexes. Much of the difficulty arises in the area of terminology: including the terms

18 6 Special Markup Constructs

an expert would use for a concept is not sufficient. Coming up with the terms that a novice would look up is fairly
difficult for an author who, typically, is an expert in the area she is writing on.

The truly difficult aspects of index generation are not areas with which the documentation tools can help. However,
ease of producing the index once content decisions are made is within the scope of the tools. Markup is provided
which the processing software is able to use to generate a variety of kinds of index entry with minimal effort.
Additionally, many of the environments described in section 6.3, “Information Units,” will generate appropriate
entries into the general and module indexes.

The following macro can be used to control the generation of index data, and should be used in the document
preamble:

\ makemodindex
This should be used in the document preamble if a “Module Index” is desired for a document containing
reference material on many modules. This causes a data filelib jobname.idx to be created from the
\declaremodule macros. This file can be processed by themakeindex program to generate a file
which can be\input into the document at the desired location of the module index.

There are a number of macros that are useful for adding index entries for particular concepts, many of which are
specific to programming languages or even Python.

\ bifuncindex { name}
Add an index entry referring to a built-in function namedname; parentheses should not be included after
name.

\ exindex { exception}
Add a reference to an exception namedexception. The exception should be class-based.

\ kwindex { keyword}
Add a reference to a language keyword (not a keyword parameter in a function or method call).

\ obindex { object type}
Add an index entry for a built-in object type.

\ opindex { operator}
Add a reference to an operator, such as ‘+’.

\ refmodindex [key]{ module}
Add an index entry for modulemodule; if modulecontains an underscore, the optional parameterkeyshould
be provided as the same string with underscores removed. An index entry “module(module)” will be
generated. This is intended for use with non-standard modules implemented in Python.

\ refexmodindex [key]{ module}
As for \refmodindex , but the index entry will be “module(extension module).” This is intended for use
with non-standard modules not implemented in Python.

\ refbimodindex [key]{ module}
As for \refmodindex , but the index entry will be “module(built-in module).” This is intended for use
with standard modules not implemented in Python.

\ refstmodindex [key]{ module}
As for \refmodindex , but the index entry will be “module(standard module).” This is intended for use
with standard modules implemented in Python.

\ stindex { statement}
Add an index entry for a statement type, such asprint or try /finally .

XXX Need better examples of difference from\kwindex .

Additional macros are provided which are useful for conveniently creating general index entries which should
appear at many places in the index by rotating a list of words. These are simple macros that simply use\index
to build some number of index entries. Index entries build using these macros contain both primary and secondary
text.

\ indexii { word1}{ word2}
Build two index entries. This is exactly equivalent to using\index{ word1! word2} and
\index{ word2! word1} .

6.11 Index-generating Markup 19

\ indexiii { word1}{ word2}{ word3}
Build three index entries. This is exactly equivalent to using\index{ word1! word2 word3} ,
\index{ word2! word3, word1} , and\index{ word3! word1 word2} .

\ indexiv { word1}{ word2}{ word3}{ word4}
Build four index entries. This is exactly equivalent to using\index{ word1! word2 word3
word4} , \index{ word2! word3 word4, word1} , \index{ word3! word4, word1 word2} , and
\index{ word4! word1 word2 word3} .

6.12 Grammar Production Displays

Special markup is available for displaying the productions of a formal grammar. The markup is simple and
does not attempt to model all aspects of BNF (or any derived forms), but provides enough to allow context-free
grammars to be displayed in a way that causes uses of a symbol to be rendered as hyperlinks to the definition of
the symbol. There is one environment and a pair of macros:

\begin{ productionlist }[language]
\end{ productionlist }

This environment is used to enclose a group of productions. The two macros are only defined within this
environment. If a document describes more than one language, the optional parameterlanguageshould be
used to distinguish productions between languages. The value of the parameter should be a short name that
can be used as part of a filename; colons or other characters that can’t be used in filename across platforms
should be included.

\ production { name}{ definition}
A production rule in the grammar. The rule defines the symbolnameto bedefinition. nameshould not
contain any markup, and the use of hyphens in a document which supports more than one grammar is
undefined.definitionmay contain\token macros and any additional content needed to describe the gram-
matical model ofsymbol. Only one\production may be used to define a symbol — multiple definitions
are not allowed.

\ token { name}
The name of a symbol defined by a\production macro, used in thedefinitionof a symbol. Where
possible, this will be rendered as a hyperlink to the definition of the symbolname.

Note that the entire grammar does not need to be defined in a singleproductionlist environment; any
number of groupings may be used to describe the grammar. Every use of the\token must correspond to a
\production .

The following is an example taken from thePython Reference Manual:

\begin{productionlist}
\production{identifier}

{(\token{letter}|"_") (\token{letter} | \token{digit} | "_")*}
\production{letter}

{\token{lowercase} | \token{uppercase}}
\production{lowercase}

{"a"..."z"}
\production{uppercase}

{"A"..."Z"}
\production{digit}

{"0"..."9"}
\end{productionlist}

6.13 Graphical Interface Components

The components of graphical interfaces will be assigned markup, but most of the specifics have not been deter-
mined.

\ guilabel { label}

20 6 Special Markup Constructs

Labels presented as part of an interactive user interface should be marked using\guilabel . This includes
labels from text-based interfaces such as those created usingcurses or other text-based libraries. Any
label used in the interface should be marked with this macro, including button labels, window titles, field
names, menu and menu selection names, and even values in selection lists.

\ menuselection { menupath}
Menu selections should be marked using a combination of\menuselection and\sub . This macro is
used to mark a complete sequence of menu selections, including selecting submenus and choosing a specific
operation, or any subsequence of such a sequence. The names of individual selections should be separated
by occurrences of\sub .

For example, to mark the selection “Start > Programs”, use this markup:

\menuselection{Start \sub Programs}

When including a selection that includes some trailing indicator, such as the ellipsis some operating systems
use to indicate that the command opens a dialog, the indicator should be omitted from the selection name.

Individual selection names within the\menuselection should not be marked using\guilabel since
that’s implied by using\menuselection .

\ sub
Separator for menu selections that include multiple levels. This macro is only defined within the context of
the\menuselection macro.

7 Processing Tools

7.1 External Tools

Many tools are needed to be able to process the Python documentation if all supported formats are required. This
section lists the tools used and when each is required. Consult the ‘Doc/README’ file to see if there are specific
version requirements for any of these.

dvips This program is a typical part of TEX installations. It is used to generate PostScript from the “device
independent” ‘.dvi’ files. It is needed for the conversion to PostScript.

emacs Emacs is the kitchen sink of programmers’ editors, and a damn fine kitchen sink it is. It also comes with
some of the processing needed to support the proper menu structures for Texinfo documents when an info
conversion is desired. This is needed for the info conversion. Usingxemacsinstead of FSFemacsmay lead
to instability in the conversion, but that’s because nobody seems to maintain the Emacs Texinfo code in a
portable manner.

latex LATEX is a large and extensible macro package by Leslie Lamport, based on TEX, a world-class typesetter by
Donald Knuth. It is used for the conversion to PostScript, and is needed for the HTML conversion as well
(LATEX2HTML requires one of the intermediate files it creates).

latex2html Probably the longest Perl script anyone ever attempted to maintain. This converts LATEX documents to
HTML documents, and does a pretty reasonable job. It is required for the conversions to HTML and GNU
info.

lynx This is a text-mode Web browser which includes an HTML-to-plain text conversion. This is used to convert
howto documents to text.

make Just about any version should work for the standard documents, but GNUmake is required for the ex-
perimental processes in ‘Doc/tools/sgmlconv/’, at least while they’re experimental. This is not required for
running themkhowto script.

makeindex This is a standard program for converting LATEX index data to a formatted index; it should be included
with all LATEX installations. It is needed for the PDF and PostScript conversions.

21

makeinfo GNU makeinfo is used to convert Texinfo documents to GNU info files. Since Texinfo is used as an
intermediate format in the info conversion, this program is needed in that conversion.

pdflatex pdfTEX is a relatively new variant of TEX, and is used to generate the PDF version of the manuals. It is
typically installed as part of most of the large TEX distributions.pdflatex is pdfTEX using the LATEX format.

perl Perl is required for LATEX2HTML and one of the scripts used to post-process LATEX2HTML output, as well
as the HTML-to-Texinfo conversion. This is required for the HTML and GNU info conversions.

python Python is used for many of the scripts in the ‘Doc/tools/’ directory; it is required for all conversions. This
shouldn’t be a problem if you’re interested in writing documentation for Python!

7.2 Internal Tools

This section describes the various scripts that are used to implement various stages of document processing or
to orchestrate entire build sequences. Most of these tools are only useful in the context of building the standard
documentation, but some are more general.

mkhowto This is the primary script used to format third-party documents. It contains all the logic needed to “get
it right.” The proper way to use this script is to make a symbolic link to it or run it in place; the actual script
file must be stored as part of the documentation source tree, though it may be used to format documents
outside the tree. Usemkhowto --help for a list of command line options.

mkhowto can be used for bothhowto andmanual class documents. It is usually a good idea to always
use the latest version of this tool rather than a version from an older source release of Python. It can be used
to generate DVI, HTML, PDF, PostScript, and plain text documents. The GNU info and iSilo formats will
be supported by this script in some future version.

Use the--help option on this script’s command line to get a summary of options for this script.

XXX Need more here.

7.3 Working on Cygwin

Installing the required tools under Cygwin under Cygwin can be a little tedious. Most of the required packages can
be installed using Cygwin’s graphical installer, while netpbm and LATEX2HTML must be installed from source.

Start with a reasonably modern version of Cygwin. If you haven’t upgraded for a few years, now would be a good
time.

Using the Cygwin installer, make sure your Cygwin installation includes Perl, Python, and the TEX packages. Perl
and Python are located under theInterpreters heading. The TEX packages are located under theText heading,
and are namedtetex-* . To ensure that all required packages are available, install everytetex package, except
tetex-x11 . (There may be a more minimal set, but I’ve not spent time trying to minimize the installation.)

The netpbm package is used by LATEX2HTML, and mustbe installed before LATEX2HTML can be successfully
installed, even though its features will not be used for most Python documentation. References to download
locations are located in thenetpbm README. Install from the latest stable source distribution according to the
instructions. (Note that binary packages of netpbm are sometimes available, but these may not work correctly with
LATEX2HTML.)

LATEX2HTML can be installed from the source archive, but only after munging one of the files in the distribution.
Download the source archive from the LATEX2HTML websitehttp://www.latex2html.org/ (or one of the many al-
ternate sites) and unpack it to a build directory. In the top level of this build directory there will be a file named
‘L2hos.pm’. Open ‘L2hos.pm’ in an editor, and near the bottom of the file replace the text$ˆO with the text
’unix’ . Proceed using this command to build and install the software:

% ./configure && make install

You should now be able to build at least the DVI, HTML, PDF, and PostScript versions of the formatted docu-
mentation.

22 7 Processing Tools

8 Including Graphics

The standard documentation included with Python makes no use of diagrams or images; this is intentional. The
outside tools used to format the documentation have not always been suited to working with graphics. As the tools
have evolved and been improved by their maintainers, support for graphics has improved.

The internal tools, starting with themkhowto script, do not provide any direct support for graphics. However,
mkhowto will not interfere with graphics support in the external tools.

Experience using graphics together with these tools and thehowto andmanual document classes is not exten-
sive, but has been known to work. The basic approach is this:

1. Create the image or graphic using your favorite application.

2. Convert the image to a format supported by the conversion to your desired output format. If you want to
generate HTML or PostScript, you can convert the image or graphic to encapsulated PostScript (a ‘.eps’
file); LATEX2HTML can convert that to a ‘.gif’ file; it may be possible to provide a ‘.gif’ file directly. If
you want to generate PDF, you need to provide an “encapsulated” PDF file. This can be generated from
encapsulated PostScript using theepstopdftool provided with the teTEX distribution on Linux and UNIX .

3. In your document, add this line to “import” the general graphics support packagegraphicx :

\usepackage{graphicx}

4. Where you want to include your graphic or image, include markup similar to this:

\begin{figure}
\centering
\includegraphics[width=5in]{myimage}
\caption{Description of my image}

\end{figure}

In particular, note for the\includegraphics macro that no file extension is provided. If you’re only
interested in one target format, you can include the extension of the appropriate input file, but to allow
support for multiple formats, omitting the extension makes life easier.

5. Runmkhowto normally.

If you’re working on systems which support some sort ofmake facility, you can use that to ensure the intermediate
graphic formats are kept up to date. This example shows a ‘Makefile’ used to format a document containing a
diagram created using thedia application:

23

default: pdf
all: html pdf ps

html: mydoc/mydoc.html
pdf: mydoc.pdf
ps: mydoc.ps

mydoc/mydoc.html: mydoc.tex mygraphic.eps
mkhowto --html $<

mydoc.pdf: mydoc.tex mygraphic.pdf
mkhowto --pdf $<

mydoc.ps: mydoc.tex mygraphic.eps
mkhowto --postscript $<

.SUFFIXES: .dia .eps .pdf

.dia.eps:
dia --nosplash --export $@ $<

.eps.pdf:
epstopdf $<

9 Future Directions

The history of the Python documentation is full of changes, most of which have been fairly small and evolutionary.
There has been a great deal of discussion about making large changes in the markup languages and tools used to
process the documentation. This section deals with the nature of the changes and what appears to be the most
likely path of future development.

9.1 Structured Documentation

Most of the small changes to the LATEX markup have been made with an eye to divorcing the markup from the
presentation, making both a bit more maintainable. Over the course of 1998, a large number of changes were
made with exactly this in mind; previously, changes had been made but in a less systematic manner and with more
concern for not needing to update the existing content. The result has been a highly structured and semantically
loaded markup language implemented in LATEX. With almost no basic TEX or LATEX markup in use, however, the
markup syntax is about the only evidence of LATEX in the actual document sources.

One side effect of this is that while we’ve been able to use standard “engines” for manipulating the documents,
such as LATEX and LATEX2HTML, most of the actual transformations have been created specifically for Python.
The LATEX document classes and LATEX2HTML support are both complete implementations of the specific markup
designed for these documents.

Combining highly customized markup with the somewhat esoteric systems used to process the documents leads
us to ask some questions: Can we do this more easily? and, Can we do this better? After a great deal of discussion
with the community, we have determined that actively pursuing modern structured documentation systems is worth
some investment of time.

There appear to be two real contenders in this arena: the Standard General Markup Language (SGML), and the
Extensible Markup Language (XML). Both of these standards have advantages and disadvantages, and many
advantages are shared.

SGML offers advantages which may appeal most to authors, especially those using ordinary text editors. There
are also additional abilities to define content models. A number of high-quality tools with demonstrated maturity
are available, but most are not free; for those which are, portability issues remain a problem.

24 9 Future Directions

The advantages of XML include the availability of a large number of evolving tools. Unfortunately, many of the
associated standards are still evolving, and the tools will have to follow along. This means that developing a robust
tool set that uses more than the basic XML 1.0 recommendation is not possible in the short term. The promised
availability of a wide variety of high-quality tools which support some of the most important related standards is
not immediate. Many tools are likely to be free, and the portability issues of those which are, are not expected to
be significant.

It turns out that converting to an XML or SGML system holds promise for translators as well; how much can be
done to ease the burden on translators remains to be seen, and may have some impact on the schema and specific
technologies used.

XXX Eventual migration to XML.

The documentation will be moved to XML in the future, and tools are being written which will convert the
documentation from the current format to something close to a finished version, to the extent that the desired
information is already present in the documentation. Some XSLT stylesheets have been started for presenting a
preliminary XML version as HTML, but the results are fairly rough.

The timeframe for the conversion is not clear since there doesn’t seem to be much time available to work on this,
but the apparent benefits are growing more substantial at a moderately rapid pace.

9.2 Discussion Forums

Discussion of the future of the Python documentation and related topics takes place in the Documentation Spe-
cial Interest Group, or “Doc-SIG.” Information on the group, including mailing list archives and subscription
information, is available athttp://www.python.org/sigs/doc-sig/. The SIG is open to all interested parties.

Comments and bug reports on the standard documents should be sent todocs@python.org. This may include com-
ments about formatting, content, grammatical and spelling errors, or this document. You can also send comments
on this document directly to the author atfdrake@acm.org.

9.2 Discussion Forums 25

Index

B
bfcode , 10
bifuncindex , 19

C
cdata , 10
cfuncdesc environment, 8
cfunction , 10
character , 10
citetitle , 10
class , 10
classdesc environment, 9
classdesc* environment, 9
cmemberdesc environment, 8
code , 11
constant , 11
csimplemacro , 11
csimplemacrodesc environment, 8
ctype , 11
ctypedesc environment, 8
cvardesc environment, 9

D
datadesc environment, 9
datadescni environment, 9
declaremodule , 14
deprecated , 11
dfn , 11

E
e, 11
email , 11
emph, 11
environments

cfuncdesc , 8
classdesc , 9
classdesc* , 9
cmemberdesc , 8
csimplemacrodesc , 8
ctypedesc , 8
cvardesc , 9
datadesc , 9
datadescni , 9
excclassdesc , 9
excdesc , 9
funcdesc , 9
funcdescni , 9
longtableii , 15
longtableiii , 16
longtableiv , 16
longtablev , 16
memberdesc , 9
memberdescni , 9
methoddesc , 9
methoddescni , 10

notice , 14
productionlist , 20
seealso , 18
seealso* , 18
tableii , 15
tableiii , 16
tableiv , 16
tablev , 16

envvar , 11
excclassdesc environment, 9
excdesc environment, 9
exception , 11
exindex , 19

F
file , 11
filenq , 11
funcdesc environment, 9
funcdescni environment, 9
function , 11

G
guilabel , 20

I
indexii , 19
indexiii , 20
indexiv , 20
infinity , 11

K
kbd , 11
keyword , 12
kwindex , 19

L
lineii , 16
lineiii , 16
lineiv , 16
linev , 16
localmoduletable , 15
longprogramopt , 12
longtableii environment, 15
longtableiii environment, 16
longtableiv environment, 16
longtablev environment, 16

M
mailheader , 12
makemodindex , 19
makevar , 12
manpage, 12
member, 12
memberdesc environment, 9
memberdescni environment, 9

26

menuselection , 21
method , 12
methoddesc environment, 9
methoddescni environment, 10
mimetype , 12
module , 12
moduleauthor , 15
modulesynopsis , 15

N
newsgroup , 12
note , 12
notice environment, 14

O
obindex , 19
opindex , 19

P
packages, 14
pep , 12
platform , 14
plusminus , 12
production , 20
productionlist environment, 20
program , 12
programopt , 12

R
refbimodindex , 19
refexmodindex , 19
refmodindex , 19
refmodule , 12
refstmodindex , 19
regexp , 13
release , 7
RFC

RFC 822, 12
rfc , 13

S
samp, 13
sectionauthor , 8
seealso environment, 18
seealso* environment, 18
seelink , 18
seemodule , 18
seepep , 18
seerfc , 18
seetext , 18
seetitle , 18
seeurl , 18
setshortversion , 8
shortversion , 13
stindex , 19
strong , 13
sub , 21

T
tableii environment, 15
tableiii environment, 16
tableiv environment, 16
tablev environment, 16
token , 20

U
ulink , 13
url , 13

V
var , 13
version , 13
versionadded , 13
versionchanged , 13

W
warning , 13

Index 27

	1 Introduction
	2 Directory Structure
	3 Style Guide
	4 Primer
	4.1 Syntax
	4.2 Hierarchical Structure
	4.3 Common Environments

	5 Document Classes
	6 Special Markup Constructs
	6.1 Markup for the Preamble
	6.2 Meta-information Markup
	6.3 Information Units
	6.4 Showing Code Examples
	6.5 Inline Markup
	6.6 Miscellaneous Text Markup
	6.7 Module-specific Markup
	6.8 Library-level Markup
	6.9 Table Markup
	6.10 Reference List Markup
	6.11 Index-generating Markup
	6.12 Grammar Production Displays
	6.13 Graphical Interface Components

	7 Processing Tools
	7.1 External Tools
	7.2 Internal Tools
	7.3 Working on Cygwin

	8 Including Graphics
	9 Future Directions
	9.1 Structured Documentation
	9.2 Discussion Forums

	Index

