
What’s New in Python 2.3
Release 1.00

A.M. Kuchling

October 2, 2003

amk@amk.ca

Contents

1 PEP 218: A Standard Set Datatype 2

2 PEP 255: Simple Generators 3

3 PEP 263: Source Code Encodings 5

4 PEP 273: Importing Modules from Zip Archives 6

5 PEP 277: Unicode file name support for Windows NT 6

6 PEP 278: Universal Newline Support 7

7 PEP 279: enumerate() 7

8 PEP 282: The logging Package 8

9 PEP 285: A Boolean Type 9

10 PEP 293: Codec Error Handling Callbacks 10

11 PEP 301: Package Index and Metadata for Distutils 11

12 PEP 302: New Import Hooks 12

13 PEP 305: Comma-separated Files 12

14 PEP 307: Pickle Enhancements 13

15 Extended Slices 14

16 Other Language Changes 16
16.1 String Changes. 18
16.2 Optimizations. 19

17 New, Improved, and Deprecated Modules 19
17.1 Date/Time Type. 26
17.2 The optparse Module. 27

18 Pymalloc: A Specialized Object Allocator 28

19 Build and C API Changes 29
19.1 Port-Specific Changes. 30

20 Other Changes and Fixes 30

21 Porting to Python 2.3 31

22 Acknowledgements 32

This article explains the new features in Python 2.3. Python 2.3 was released on July 29, 2003.

The main themes for Python 2.3 are polishing some of the features added in 2.2, adding various small but useful
enhancements to the core language, and expanding the standard library. The new object model introduced in the
previous version has benefited from 18 months of bugfixes and from optimization efforts that have improved the
performance of new-style classes. A few new built-in functions have been added such assum() andenumerate() .
The in operator can now be used for substring searches (e.g."ab" in "abc" returnsTrue).

Some of the many new library features include Boolean, set, heap, and date/time data types, the ability to import
modules from ZIP-format archives, metadata support for the long-awaited Python catalog, an updated version of
IDLE, and modules for logging messages, wrapping text, parsing CSV files, processing command-line options, using
BerkeleyDB databases... the list of new and enhanced modules is lengthy.

This article doesn’t attempt to provide a complete specification of the new features, but instead provides a convenient
overview. For full details, you should refer to the documentation for Python 2.3, such as thePython Library Reference
and thePython Reference Manual. If you want to understand the complete implementation and design rationale, refer
to the PEP for a particular new feature.

1 PEP 218: A Standard Set Datatype

The newsets module contains an implementation of a set datatype. TheSet class is for mutable sets, sets that can
have members added and removed. TheImmutableSet class is for sets that can’t be modified, and instances of
ImmutableSet can therefore be used as dictionary keys. Sets are built on top of dictionaries, so the elements within
a set must be hashable.

Here’s a simple example:

>>> import sets
>>> S = sets.Set([1,2,3])
>>> S
Set([1, 2, 3])
>>> 1 in S
True
>>> 0 in S
False
>>> S.add(5)
>>> S.remove(3)
>>> S
Set([1, 2, 5])
>>>

The union and intersection of sets can be computed with theunion() and intersection() methods; an al-

2 1 PEP 218: A Standard Set Datatype

ternative notation uses the bitwise operators& and | . Mutable sets also have in-place versions of these methods,
union update() andintersection update() .

>>> S1 = sets.Set([1,2,3])
>>> S2 = sets.Set([4,5,6])
>>> S1.union(S2)
Set([1, 2, 3, 4, 5, 6])
>>> S1 | S2 # Alternative notation
Set([1, 2, 3, 4, 5, 6])
>>> S1.intersection(S2)
Set([])
>>> S1 & S2 # Alternative notation
Set([])
>>> S1.union_update(S2)
>>> S1
Set([1, 2, 3, 4, 5, 6])
>>>

It’s also possible to take the symmetric difference of two sets. This is the set of all elements in the union that
aren’t in the intersection. Another way of putting it is that the symmetric difference contains all elements that
are in exactly one set. Again, there’s an alternative notation (ˆ), and an in-place version with the ungainly name
symmetric difference update() .

>>> S1 = sets.Set([1,2,3,4])
>>> S2 = sets.Set([3,4,5,6])
>>> S1.symmetric_difference(S2)
Set([1, 2, 5, 6])
>>> S1 ˆ S2
Set([1, 2, 5, 6])
>>>

There are alsoissubset() andissuperset() methods for checking whether one set is a subset or superset of
another:

>>> S1 = sets.Set([1,2,3])
>>> S2 = sets.Set([2,3])
>>> S2.issubset(S1)
True
>>> S1.issubset(S2)
False
>>> S1.issuperset(S2)
True
>>>

See Also:

PEP 218, “Adding a Built-In Set Object Type”
PEP written by Greg V. Wilson. Implemented by Greg V. Wilson, Alex Martelli, and GvR.

2 PEP 255: Simple Generators

In Python 2.2, generators were added as an optional feature, to be enabled by afrom future import
generators directive. In 2.3 generators no longer need to be specially enabled, and are now always present; this

3

means thatyield is now always a keyword. The rest of this section is a copy of the description of generators from
the “What’s New in Python 2.2” document; if you read it back when Python 2.2 came out, you can skip the rest of this
section.

You’re doubtless familiar with how function calls work in Python or C. When you call a function, it gets a private
namespace where its local variables are created. When the function reaches areturn statement, the local variables
are destroyed and the resulting value is returned to the caller. A later call to the same function will get a fresh new set
of local variables. But, what if the local variables weren’t thrown away on exiting a function? What if you could later
resume the function where it left off? This is what generators provide; they can be thought of as resumable functions.

Here’s the simplest example of a generator function:

def generate_ints(N):
for i in range(N):

yield i

A new keyword,yield , was introduced for generators. Any function containing ayield statement is a generator
function; this is detected by Python’s bytecode compiler which compiles the function specially as a result.

When you call a generator function, it doesn’t return a single value; instead it returns a generator object that supports
the iterator protocol. On executing theyield statement, the generator outputs the value ofi , similar to areturn
statement. The big difference betweenyield and areturn statement is that on reaching ayield the generator’s
state of execution is suspended and local variables are preserved. On the next call to the generator’s.next() method,
the function will resume executing immediately after theyield statement. (For complicated reasons, theyield
statement isn’t allowed inside thetry block of atry ...finally statement; read PEP 255 for a full explanation of
the interaction betweenyield and exceptions.)

Here’s a sample usage of thegenerate ints() generator:

>>> gen = generate_ints(3)
>>> gen
<generator object at 0x8117f90>
>>> gen.next()
0
>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
Traceback (most recent call last):

File "stdin", line 1, in ?
File "stdin", line 2, in generate_ints

StopIteration

You could equally writefor i in generate ints(5) , or a,b,c = generate ints(3) .

Inside a generator function, thereturn statement can only be used without a value, and signals the end of the
procession of values; afterwards the generator cannot return any further values.return with a value, such asreturn
5, is a syntax error inside a generator function. The end of the generator’s results can also be indicated by raising
StopIteration manually, or by just letting the flow of execution fall off the bottom of the function.

You could achieve the effect of generators manually by writing your own class and storing all the local variables of
the generator as instance variables. For example, returning a list of integers could be done by settingself.count
to 0, and having thenext() method incrementself.count and return it. However, for a moderately complicated
generator, writing a corresponding class would be much messier. ‘Lib/test/test generators.py’ contains a number of
more interesting examples. The simplest one implements an in-order traversal of a tree using generators recursively.

4 2 PEP 255: Simple Generators

A recursive generator that generates Tree leaves in in-order.
def inorder(t):

if t:
for x in inorder(t.left):

yield x
yield t.label
for x in inorder(t.right):

yield x

Two other examples in ‘Lib/test/test generators.py’ produce solutions for the N-Queens problem (placingN queens
on anNxN chess board so that no queen threatens another) and the Knight’s Tour (a route that takes a knight to every
square of anNxN chessboard without visiting any square twice).

The idea of generators comes from other programming languages, especially Icon (http://www.cs.arizona.edu/icon/),
where the idea of generators is central. In Icon, every expression and function call behaves like a generator. One
example from “An Overview of the Icon Programming Language” athttp://www.cs.arizona.edu/icon/docs/ipd266.htm
gives an idea of what this looks like:

sentence := "Store it in the neighboring harbor"
if (i := find("or", sentence)) > 5 then write(i)

In Icon thefind() function returns the indexes at which the substring “or” is found: 3, 23, 33. In theif statement,
i is first assigned a value of 3, but 3 is less than 5, so the comparison fails, and Icon retries it with the second value of
23. 23 is greater than 5, so the comparison now succeeds, and the code prints the value 23 to the screen.

Python doesn’t go nearly as far as Icon in adopting generators as a central concept. Generators are considered part of
the core Python language, but learning or using them isn’t compulsory; if they don’t solve any problems that you have,
feel free to ignore them. One novel feature of Python’s interface as compared to Icon’s is that a generator’s state is
represented as a concrete object (the iterator) that can be passed around to other functions or stored in a data structure.

See Also:

PEP 255, “Simple Generators”
Written by Neil Schemenauer, Tim Peters, Magnus Lie Hetland. Implemented mostly by Neil Schemenauer and
Tim Peters, with other fixes from the Python Labs crew.

3 PEP 263: Source Code Encodings

Python source files can now be declared as being in different character set encodings. Encodings are declared by
including a specially formatted comment in the first or second line of the source file. For example, a UTF-8 file can be
declared with:

#!/usr/bin/env python
-*- coding: UTF-8 -*-

Without such an encoding declaration, the default encoding used is 7-bit ASCII. Executing or importing modules that
contain string literals with 8-bit characters and have no encoding declaration will result in aDeprecationWarning
being signalled by Python 2.3; in 2.4 this will be a syntax error.

The encoding declaration only affects Unicode string literals, which will be converted to Unicode using the specified
encoding. Note that Python identifiers are still restricted to ASCII characters, so you can’t have variable names that

5

use characters outside of the usual alphanumerics.

See Also:

PEP 263, “Defining Python Source Code Encodings”
Written by Marc-Andŕe Lemburg and Martin von L̈owis; implemented by Suzuki Hisao and Martin von Löwis.

4 PEP 273: Importing Modules from Zip Archives

The newzipimport module adds support for importing modules from a ZIP-format archive. You don’t need to
import the module explicitly; it will be automatically imported if a ZIP archive’s filename is added tosys.path . For
example:

amk@nyman:˜/src/python$ unzip -l /tmp/example.zip
Archive: /tmp/example.zip

Length Date Time Name
-------- ---- ---- ----

8467 11-26-02 22:30 jwzthreading.py
-------- -------

8467 1 file
amk@nyman:˜/src/python$./python
Python 2.3 (#1, Aug 1 2003, 19:54:32)
>>> import sys
>>> sys.path.insert(0, ’/tmp/example.zip’) # Add .zip file to front of path
>>> import jwzthreading
>>> jwzthreading.__file__
’/tmp/example.zip/jwzthreading.py’
>>>

An entry insys.path can now be the filename of a ZIP archive. The ZIP archive can contain any kind of files, but
only files named ‘*.py’, ‘ *.pyc’, or ‘ *.pyo’ can be imported. If an archive only contains ‘*.py’ files, Python will not
attempt to modify the archive by adding the corresponding ‘*.pyc’ file, meaning that if a ZIP archive doesn’t contain
‘ *.pyc’ files, importing may be rather slow.

A path within the archive can also be specified to only import from a subdirectory; for example, the path
‘ /tmp/example.zip/lib/’ would only import from the ‘lib/’ subdirectory within the archive.

See Also:

PEP 273, “Import Modules from Zip Archives”
Written by James C. Ahlstrom, who also provided an implementation. Python 2.3 follows the specification in
PEP 273, but uses an implementation written by Just van Rossum that uses the import hooks described in PEP
302. See section 12 for a description of the new import hooks.

5 PEP 277: Unicode file name support for Windows NT

On Windows NT, 2000, and XP, the system stores file names as Unicode strings. Traditionally, Python has represented
file names as byte strings, which is inadequate because it renders some file names inaccessible.

Python now allows using arbitrary Unicode strings (within the limitations of the file system) for all functions that
expect file names, most notably theopen() built-in function. If a Unicode string is passed toos.listdir() ,
Python now returns a list of Unicode strings. A new function,os.getcwdu() , returns the current directory as a
Unicode string.

Byte strings still work as file names, and on Windows Python will transparently convert them to Unicode using the

6 5 PEP 277: Unicode file name support for Windows NT

mbcs encoding.

Other systems also allow Unicode strings as file names but convert them to byte strings before passing them to the
system, which can cause aUnicodeError to be raised. Applications can test whether arbitrary Unicode strings are
supported as file names by checkingos.path.supports unicode filenames , a Boolean value.

Under MacOS,os.listdir() may now return Unicode filenames.

See Also:

PEP 277, “Unicode file name support for Windows NT”
Written by Neil Hodgson; implemented by Neil Hodgson, Martin von Löwis, and Mark Hammond.

6 PEP 278: Universal Newline Support

The three major operating systems used today are Microsoft Windows, Apple’s Macintosh OS, and the various UNIX

derivatives. A minor irritation of cross-platform work is that these three platforms all use different characters to mark
the ends of lines in text files. UNIX uses the linefeed (ASCII character 10), MacOS uses the carriage return (ASCII
character 13), and Windows uses a two-character sequence of a carriage return plus a newline.

Python’s file objects can now support end of line conventions other than the one followed by the platform on which
Python is running. Opening a file with the mode’U’ or ’rU’ will open a file for reading in universal newline mode.
All three line ending conventions will be translated to a ‘\n ’ in the strings returned by the various file methods such
asread() andreadline() .

Universal newline support is also used when importing modules and when executing a file with theexecfile()
function. This means that Python modules can be shared between all three operating systems without needing to
convert the line-endings.

This feature can be disabled when compiling Python by specifying the--without-universal-newlines switch when
running Python’sconfigurescript.

See Also:

PEP 278, “Universal Newline Support”
Written and implemented by Jack Jansen.

7 PEP 279: enumerate()

A new built-in function,enumerate() , will make certain loops a bit clearer.enumerate(thing) , wherething is
either an iterator or a sequence, returns a iterator that will return(0, thing[0]) , (1, thing[1]) , (2, thing[2]) ,
and so forth.

A common idiom to change every element of a list looks like this:

for i in range(len(L)):
item = L[i]
... compute some result based on item ...
L[i] = result

This can be rewritten usingenumerate() as:

7

for i, item in enumerate(L):
... compute some result based on item ...
L[i] = result

See Also:

PEP 279, “The enumerate() built-in function”
Written and implemented by Raymond D. Hettinger.

8 PEP 282: The logging Package

A standard package for writing logs,logging , has been added to Python 2.3. It provides a powerful and flexible
mechanism for generating logging output which can then be filtered and processed in various ways. A configuration
file written in a standard format can be used to control the logging behavior of a program. Python includes handlers
that will write log records to standard error or to a file or socket, send them to the system log, or even e-mail them to
a particular address; of course, it’s also possible to write your own handler classes.

TheLogger class is the primary class. Most application code will deal with one or moreLogger objects, each one
used by a particular subsystem of the application. EachLogger is identified by a name, and names are organized into
a hierarchy using ‘. ’ as the component separator. For example, you might haveLogger instances named ‘server ’,
‘server.auth ’ and ‘server.network ’. The latter two instances are below ‘server ’ in the hierarchy. This
means that if you turn up the verbosity for ‘server ’ or direct ‘server ’ messages to a different handler, the changes
will also apply to records logged to ‘server.auth ’ and ‘server.network ’. There’s also a rootLogger that’s
the parent of all other loggers.

For simple uses, thelogging package contains some convenience functions that always use the root log:

import logging

logging.debug(’Debugging information’)
logging.info(’Informational message’)
logging.warning(’Warning:config file %s not found’, ’server.conf’)
logging.error(’Error occurred’)
logging.critical(’Critical error -- shutting down’)

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

In the default configuration, informational and debugging messages are suppressed and the output is sent to standard
error. You can enable the display of informational and debugging messages by calling thesetLevel() method on
the root logger.

Notice thewarning() call’s use of string formatting operators; all of the functions for logging messages take the
arguments(msg, arg1, arg2, ...) and log the string resulting frommsg %(arg1, arg2, ...) .

There’s also anexception() function that records the most recent traceback. Any of the other functions will also
record the traceback if you specify a true value for the keyword argumentexc info.

8 8 PEP 282: The logging Package

def f():
try: 1/0
except: logging.exception(’Problem recorded’)

f()

This produces the following output:

ERROR:root:Problem recorded
Traceback (most recent call last):

File "t.py", line 6, in f
1/0

ZeroDivisionError: integer division or modulo by zero

Slightly more advanced programs will use a logger other than the root logger. ThegetLogger(name) function is
used to get a particular log, creating it if it doesn’t exist yet.getLogger(None) returns the root logger.

log = logging.getLogger(’server’)
...

log.info(’Listening on port %i’, port)
...

log.critical(’Disk full’)
...

Log records are usually propagated up the hierarchy, so a message logged to ‘server.auth ’ is also seen by
‘server ’ and ‘root ’, but aLogger can prevent this by setting itspropagate attribute toFalse .

There are more classes provided by thelogging package that can be customized. When aLogger instance is
told to log a message, it creates aLogRecord instance that is sent to any number of differentHandler instances.
Loggers and handlers can also have an attached list of filters, and each filter can cause theLogRecord to be ignored
or can modify the record before passing it along. When they’re finally output,LogRecord instances are converted to
text by aFormatter class. All of these classes can be replaced by your own specially-written classes.

With all of these features thelogging package should provide enough flexibility for even the most complicated
applications. This is only an incomplete overview of its features, so please see thepackage’s reference documentation
for all of the details. Reading PEP 282 will also be helpful.

See Also:

PEP 282, “A Logging System”
Written by Vinay Sajip and Trent Mick; implemented by Vinay Sajip.

9 PEP 285: A Boolean Type

A Boolean type was added to Python 2.3. Two new constants were added to thebuiltin module,True and
False . (True andFalse constants were added to the built-ins in Python 2.2.1, but the 2.2.1 versions are simply set
to integer values of 1 and 0 and aren’t a different type.)

The type object for this new type is namedbool ; the constructor for it takes any Python value and converts it toTrue
or False .

9

>>> bool(1)
True
>>> bool(0)
False
>>> bool([])
False
>>> bool((1,))
True

Most of the standard library modules and built-in functions have been changed to return Booleans.

>>> obj = []
>>> hasattr(obj, ’append’)
True
>>> isinstance(obj, list)
True
>>> isinstance(obj, tuple)
False

Python’s Booleans were added with the primary goal of making code clearer. For example, if you’re reading a function
and encounter the statementreturn 1 , you might wonder whether the1 represents a Boolean truth value, an index,
or a coefficient that multiplies some other quantity. If the statement isreturn True , however, the meaning of the
return value is quite clear.

Python’s Booleans werenot added for the sake of strict type-checking. A very strict language such as Pascal would
also prevent you performing arithmetic with Booleans, and would require that the expression in anif statement
always evaluate to a Boolean result. Python is not this strict and never will be, as PEP 285 explicitly says. This means
you can still use any expression in anif statement, even ones that evaluate to a list or tuple or some random object.
The Boolean type is a subclass of theint class so that arithmetic using a Boolean still works.

>>> True + 1
2
>>> False + 1
1
>>> False * 75
0
>>> True * 75
75

To sum upTrue andFalse in a sentence: they’re alternative ways to spell the integer values 1 and 0, with the single
difference thatstr() andrepr() return the strings’True’ and’False’ instead of’1’ and’0’ .

See Also:

PEP 285, “Adding a bool type”
Written and implemented by GvR.

10 PEP 293: Codec Error Handling Callbacks

When encoding a Unicode string into a byte string, unencodable characters may be encountered. So far, Python has
allowed specifying the error processing as either “strict” (raisingUnicodeError), “ignore” (skipping the character),
or “replace” (using a question mark in the output string), with “strict” being the default behavior. It may be desirable to
specify alternative processing of such errors, such as inserting an XML character reference or HTML entity reference

10 10 PEP 293: Codec Error Handling Callbacks

into the converted string.

Python now has a flexible framework to add different processing strategies. New error handlers can be added with
codecs.register error , and codecs then can access the error handler withcodecs.lookup error . An
equivalent C API has been added for codecs written in C. The error handler gets the necessary state information such
as the string being converted, the position in the string where the error was detected, and the target encoding. The
handler can then either raise an exception or return a replacement string.

Two additional error handlers have been implemented using this framework: “backslashreplace” uses Python backslash
quoting to represent unencodable characters and “xmlcharrefreplace” emits XML character references.

See Also:

PEP 293, “Codec Error Handling Callbacks”
Written and implemented by Walter Dörwald.

11 PEP 301: Package Index and Metadata for Distutils

Support for the long-requested Python catalog makes its first appearance in 2.3.

The heart of the catalog is the new Distutilsregister command. Runningpython setup.py register will
collect the metadata describing a package, such as its name, version, maintainer, description, &c., and send it to a
central catalog server. The resulting catalog is available fromhttp://www.python.org/pypi.

To make the catalog a bit more useful, a new optionalclassifierskeyword argument has been added to the Distutils
setup() function. A list ofTrove-style strings can be supplied to help classify the software.

Here’s an example ‘setup.py’ with classifiers, written to be compatible with older versions of the Distutils:

from distutils import core
kw = {’name’: "Quixote",

’version’: "0.5.1",
’description’: "A highly Pythonic Web application framework",
...
}

if (hasattr(core, ’setup_keywords’) and
’classifiers’ in core.setup_keywords):
kw[’classifiers’] = \

[’Topic :: Internet :: WWW/HTTP :: Dynamic Content’,
’Environment :: No Input/Output (Daemon)’,
’Intended Audience :: Developers’],

core.setup(**kw)

The full list of classifiers can be obtained by runningpython setup.py register --list-classifiers .

See Also:

PEP 301, “Package Index and Metadata for Distutils”
Written and implemented by Richard Jones.

11

12 PEP 302: New Import Hooks

While it’s been possible to write custom import hooks ever since theihooks module was introduced in Python
1.3, no one has ever been really happy with it because writing new import hooks is difficult and messy. There have
been various proposed alternatives such as theimputil and iu modules, but none of them has ever gained much
acceptance, and none of them were easily usable from C code.

PEP 302 borrows ideas from its predecessors, especially from Gordon McMillan’siu module. Three new items are
added to thesys module:

• sys.path hooks is a list of callable objects; most often they’ll be classes. Each callable takes a string
containing a path and either returns an importer object that will handle imports from this path or raises an
ImportError exception if it can’t handle this path.

• sys.path importer cache caches importer objects for each path, sosys.path hooks will only need
to be traversed once for each path.

• sys.meta path is a list of importer objects that will be traversed beforesys.path is checked. This list is
initially empty, but user code can add objects to it. Additional built-in and frozen modules can be imported by
an object added to this list.

Importer objects must have a single method,find module(fullname, path=None) . fullnamewill be a module
or package name, e.g. ‘string ’ or ‘ distutils.core ’. find module() must return a loader object that has a
single method,load module(fullname) , that creates and returns the corresponding module object.

Pseudo-code for Python’s new import logic, therefore, looks something like this (simplified a bit; see PEP 302 for the
full details):

for mp in sys.meta_path:
loader = mp(fullname)
if loader is not None:

<module> = loader.load_module(fullname)

for path in sys.path:
for hook in sys.path_hooks:

try:
importer = hook(path)

except ImportError:
ImportError, so try the other path hooks
pass

else:
loader = importer.find_module(fullname)
<module> = loader.load_module(fullname)

Not found!
raise ImportError

See Also:

PEP 302, “New Import Hooks”
Written by Just van Rossum and Paul Moore. Implemented by Just van Rossum.

13 PEP 305: Comma-separated Files

Comma-separated files are a format frequently used for exporting data from databases and spreadsheets. Python 2.3
adds a parser for comma-separated files.

12 13 PEP 305: Comma-separated Files

Comma-separated format is deceptively simple at first glance:

Costs,150,200,3.95

Read a line and callline.split(’,’) : what could be simpler? But toss in string data that can contain commas,
and things get more complicated:

"Costs",150,200,3.95,"Includes taxes, shipping, and sundry items"

A big ugly regular expression can parse this, but using the newcsv package is much simpler:

import csv

input = open(’datafile’, ’rb’)
reader = csv.reader(input)
for line in reader:

print line

Thereader function takes a number of different options. The field separator isn’t limited to the comma and can be
changed to any character, and so can the quoting and line-ending characters.

Different dialects of comma-separated files can be defined and registered; currently there are two dialects, both used
by Microsoft Excel. A separatecsv.writer class will generate comma-separated files from a succession of tuples
or lists, quoting strings that contain the delimiter.

See Also:

PEP 305, “CSV File API”
Written and implemented by Kevin Altis, Dave Cole, Andrew McNamara, Skip Montanaro, Cliff Wells.

14 PEP 307: Pickle Enhancements

The pickle andcPickle modules received some attention during the 2.3 development cycle. In 2.2, new-style
classes could be pickled without difficulty, but they weren’t pickled very compactly; PEP 307 quotes a trivial example
where a new-style class results in a pickled string three times longer than that for a classic class.

The solution was to invent a new pickle protocol. Thepickle.dumps() function has supported a text-or-binary
flag for a long time. In 2.3, this flag is redefined from a Boolean to an integer: 0 is the old text-mode pickle format, 1
is the old binary format, and now 2 is a new 2.3-specific format. A new constant,pickle.HIGHEST PROTOCOL,
can be used to select the fanciest protocol available.

Unpickling is no longer considered a safe operation. 2.2’spickle provided hooks for trying to prevent unsafe
classes from being unpickled (specifically, asafe for unpickling attribute), but none of this code was
ever audited and therefore it’s all been ripped out in 2.3. You should not unpickle untrusted data in any version of
Python.

To reduce the pickling overhead for new-style classes, a new interface for customizing pickling was added using
three special methods: getstate , setstate , and getnewargs . Consult PEP 307 for the full
semantics of these methods.

As a way to compress pickles yet further, it’s now possible to use integer codes instead of long strings to identify
pickled classes. The Python Software Foundation will maintain a list of standardized codes; there’s also a range of
codes for private use. Currently no codes have been specified.

13

See Also:

PEP 307, “Extensions to the pickle protocol”
Written and implemented by Guido van Rossum and Tim Peters.

15 Extended Slices

Ever since Python 1.4, the slicing syntax has supported an optional third “step” or “stride” argument. For example,
these are all legal Python syntax:L[1:10:2] , L[:-1:1] , L[::-1] . This was added to Python at the request of
the developers of Numerical Python, which uses the third argument extensively. However, Python’s built-in list, tuple,
and string sequence types have never supported this feature, raising aTypeError if you tried it. Michael Hudson
contributed a patch to fix this shortcoming.

For example, you can now easily extract the elements of a list that have even indexes:

>>> L = range(10)
>>> L[::2]
[0, 2, 4, 6, 8]

Negative values also work to make a copy of the same list in reverse order:

>>> L[::-1]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

This also works for tuples, arrays, and strings:

>>> s=’abcd’
>>> s[::2]
’ac’
>>> s[::-1]
’dcba’

If you have a mutable sequence such as a list or an array you can assign to or delete an extended slice, but there are
some differences between assignment to extended and regular slices. Assignment to a regular slice can be used to
change the length of the sequence:

>>> a = range(3)
>>> a
[0, 1, 2]
>>> a[1:3] = [4, 5, 6]
>>> a
[0, 4, 5, 6]

Extended slices aren’t this flexible. When assigning to an extended slice, the list on the right hand side of the statement
must contain the same number of items as the slice it is replacing:

14 15 Extended Slices

>>> a = range(4)
>>> a
[0, 1, 2, 3]
>>> a[::2]
[0, 2]
>>> a[::2] = [0, -1]
>>> a
[0, 1, -1, 3]
>>> a[::2] = [0,1,2]
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: attempt to assign sequence of size 3 to extended slice of size 2

Deletion is more straightforward:

>>> a = range(4)
>>> a
[0, 1, 2, 3]
>>> a[::2]
[0, 2]
>>> del a[::2]
>>> a
[1, 3]

One can also now pass slice objects to thegetitem methods of the built-in sequences:

>>> range(10).__getitem__(slice(0, 5, 2))
[0, 2, 4]

Or use slice objects directly in subscripts:

>>> range(10)[slice(0, 5, 2)]
[0, 2, 4]

To simplify implementing sequences that support extended slicing, slice objects now have a method
indices(length) which, given the length of a sequence, returns a(start, stop, step) tuple that can be passed
directly to range() . indices() handles omitted and out-of-bounds indices in a manner consistent with regular
slices (and this innocuous phrase hides a welter of confusing details!). The method is intended to be used like this:

class FakeSeq:
...
def calc_item(self, i):

...
def __getitem__(self, item):

if isinstance(item, slice):
indices = item.indices(len(self))
return FakeSeq([self.calc_item(i) for i in range(*indices)])

else:
return self.calc_item(i)

15

From this example you can also see that the built-inslice object is now the type object for the slice type, and is no
longer a function. This is consistent with Python 2.2, whereint , str , etc., underwent the same change.

16 Other Language Changes

Here are all of the changes that Python 2.3 makes to the core Python language.

• Theyield statement is now always a keyword, as described in section 2 of this document.

• A new built-in functionenumerate() was added, as described in section 7 of this document.

• Two new constants,True andFalse were added along with the built-inbool type, as described in section 9
of this document.

• The int() type constructor will now return a long integer instead of raising anOverflowError when a
string or floating-point number is too large to fit into an integer. This can lead to the paradoxical result that
isinstance(int(expression), int) is false, but that seems unlikely to cause problems in practice.

• Built-in types now support the extended slicing syntax, as described in section 15 of this document.

• A new built-in function,sum(iterable, start=0) , adds up the numeric items in the iterable object and returns
their sum. sum() only accepts numbers, meaning that you can’t use it to concatenate a bunch of strings.
(Contributed by Alex Martelli.)

• list.insert(pos, value) used to insertvalueat the front of the list whenposwas negative. The behaviour
has now been changed to be consistent with slice indexing, so whenposis -1 the value will be inserted before
the last element, and so forth.

• list.index(value) , which searches forvaluewithin the list and returns its index, now takes optionalstart
andstoparguments to limit the search to only part of the list.

• Dictionaries have a new method,pop(key[, default]) , that returns the value corresponding tokeyand re-
moves that key/value pair from the dictionary. If the requested key isn’t present in the dictionary,default is
returned if it’s specified andKeyError raised if it isn’t.

>>> d = {1:2}
>>> d
{1: 2}
>>> d.pop(4)
Traceback (most recent call last):

File "stdin", line 1, in ?
KeyError: 4
>>> d.pop(1)
2
>>> d.pop(1)
Traceback (most recent call last):

File "stdin", line 1, in ?
KeyError: ’pop(): dictionary is empty’
>>> d
{}
>>>

There’s also a new class method,dict.fromkeys(iterable, value) , that creates a dictionary with keys
taken from the supplied iteratoriterableand all values set tovalue, defaulting toNone.

(Patches contributed by Raymond Hettinger.)

16 16 Other Language Changes

Also, thedict() constructor now accepts keyword arguments to simplify creating small dictionaries:

>>> dict(red=1, blue=2, green=3, black=4)
{’blue’: 2, ’black’: 4, ’green’: 3, ’red’: 1}

(Contributed by Just van Rossum.)

• The assert statement no longer checks thedebug flag, so you can no longer disable assertions by
assigning to debug . Running Python with the-O switch will still generate code that doesn’t execute any
assertions.

• Most type objects are now callable, so you can use them to create new objects such as functions, classes, and
modules. (This means that thenew module can be deprecated in a future Python version, because you can now
use the type objects available in thetypes module.) For example, you can create a new module object with
the following code:

>>> import types
>>> m = types.ModuleType(’abc’,’docstring’)
>>> m
<module ’abc’ (built-in)>
>>> m.__doc__
’docstring’

• A new warning,PendingDeprecationWarning was added to indicate features which are in the pro-
cess of being deprecated. The warning willnot be printed by default. To check for use of features that will
be deprecated in the future, supply-Walways::PendingDeprecationWarning:: on the command line or use
warnings.filterwarnings() .

• The process of deprecating string-based exceptions, as inraise "Error occurred" , has begun. Raising
a string will now triggerPendingDeprecationWarning .

• UsingNone as a variable name will now result in aSyntaxWarning warning. In a future version of Python,
None may finally become a keyword.

• The xreadlines() method of file objects, introduced in Python 2.1, is no longer necessary because files
now behave as their own iterator.xreadlines() was originally introduced as a faster way to loop over all
the lines in a file, but now you can simply writefor line in file obj . File objects also have a new
read-onlyencoding attribute that gives the encoding used by the file; Unicode strings written to the file will
be automatically converted to bytes using the given encoding.

• The method resolution order used by new-style classes has changed, though you’ll only notice the difference if
you have a really complicated inheritance hierarchy. Classic classes are unaffected by this change. Python 2.2
originally used a topological sort of a class’s ancestors, but 2.3 now uses the C3 algorithm as described in the
paper“A Monotonic Superclass Linearization for Dylan”. To understand the motivation for this change, read
Michele Simionato’s article“Python 2.3 Method Resolution Order”, or read the thread on python-dev starting
with the message athttp://mail.python.org/pipermail/python-dev/2002-October/029035.html. Samuele Pedroni
first pointed out the problem and also implemented the fix by coding the C3 algorithm.

• Python runs multithreaded programs by switching between threads after executing N bytecodes. The default
value for N has been increased from 10 to 100 bytecodes, speeding up single-threaded applications by reducing
the switching overhead. Some multithreaded applications may suffer slower response time, but that’s easily
fixed by setting the limit back to a lower number usingsys.setcheckinterval(N) . The limit can be
retrieved with the newsys.getcheckinterval() function.

17

• One minor but far-reaching change is that the names of extension types defined by the modules included with
Python now contain the module and a ‘. ’ in front of the type name. For example, in Python 2.2, if you created
a socket and printed its class , you’d get this output:

>>> s = socket.socket()
>>> s.__class__
<type ’socket’>

In 2.3, you get this:

>>> s.__class__
<type ’_socket.socket’>

• One of the noted incompatibilities between old- and new-style classes has been removed: you can now assign
to the name and bases attributes of new-style classes. There are some restrictions on what can be
assigned to bases along the lines of those relating to assigning to an instance’sclass attribute.

16.1 String Changes

• The in operator now works differently for strings. Previously, when evaluatingX in Y whereX andY are
strings,X could only be a single character. That’s now changed;X can be a string of any length, andX in Y
will return True if X is a substring ofY. If X is the empty string, the result is alwaysTrue .

>>> ’ab’ in ’abcd’
True
>>> ’ad’ in ’abcd’
False
>>> ’’ in ’abcd’
True

Note that this doesn’t tell you where the substring starts; if you need that information, use thefind() string
method.

• Thestrip() , lstrip() , andrstrip() string methods now have an optional argument for specifying the
characters to strip. The default is still to remove all whitespace characters:

>>> ’ abc ’.strip()
’abc’
>>> ’><><abc<><><>’.strip(’<>’)
’abc’
>>> ’><><abc<><><>\n’.strip(’<>’)
’abc<><><>\n’
>>> u’\u4000\u4001abc\u4000’.strip(u’\u4000’)
u’\u4001abc’
>>>

(Suggested by Simon Brunning and implemented by Walter Dörwald.)

• The startswith() andendswith() string methods now accept negative numbers for thestart andend
parameters.

• Another new string method iszfill() , originally a function in thestring module. zfill() pads a
numeric string with zeros on the left until it’s the specified width. Note that the%operator is still more flexible
and powerful thanzfill() .

18 16 Other Language Changes

>>> ’45’.zfill(4)
’0045’
>>> ’12345’.zfill(4)
’12345’
>>> ’goofy’.zfill(6)
’0goofy’

(Contributed by Walter D̈orwald.)

• A new type object,basestring , has been added. Both 8-bit strings and Unicode strings inherit from this
type, soisinstance(obj, basestring) will return True for either kind of string. It’s a completely
abstract type, so you can’t createbasestring instances.

• Interned strings are no longer immortal and will now be garbage-collected in the usual way when the only
reference to them is from the internal dictionary of interned strings. (Implemented by Oren Tirosh.)

16.2 Optimizations

• The creation of new-style class instances has been made much faster; they’re now faster than classic classes!

• The sort() method of list objects has been extensively rewritten by Tim Peters, and the implementation is
significantly faster.

• Multiplication of large long integers is now much faster thanks to an implementation of Karatsuba multiplication,
an algorithm that scales better than the O(n*n) required for the grade-school multiplication algorithm. (Original
patch by Christopher A. Craig, and significantly reworked by Tim Peters.)

• TheSET LINENOopcode is now gone. This may provide a small speed increase, depending on your compiler’s
idiosyncrasies. See section 20 for a longer explanation. (Removed by Michael Hudson.)

• xrange() objects now have their own iterator, makingfor i in xrange(n) slightly faster thanfor i
in range(n) . (Patch by Raymond Hettinger.)

• A number of small rearrangements have been made in various hotspots to improve performance, such as inlining
a function or removing some code. (Implemented mostly by GvR, but lots of people have contributed single
changes.)

The net result of the 2.3 optimizations is that Python 2.3 runs the pystone benchmark around 25% faster than Python
2.2.

17 New, Improved, and Deprecated Modules

As usual, Python’s standard library received a number of enhancements and bug fixes. Here’s a partial list of the most
notable changes, sorted alphabetically by module name. Consult the ‘Misc/NEWS’ file in the source tree for a more
complete list of changes, or look through the CVS logs for all the details.

• Thearray module now supports arrays of Unicode characters using the ‘u’ format character. Arrays also now
support using the+= assignment operator to add another array’s contents, and the*= assignment operator to
repeat an array. (Contributed by Jason Orendorff.)

• Thebsddb module has been replaced by version 4.1.6 of thePyBSDDBpackage, providing a more complete
interface to the transactional features of the BerkeleyDB library.

The old version of the module has been renamed tobsddb185 and is no longer built automatically; you’ll
have to edit ‘Modules/Setup’ to enable it. Note that the newbsddb package is intended to be compatible with

16.2 Optimizations 19

the old module, so be sure to file bugs if you discover any incompatibilities. When upgrading to Python 2.3,
if the new interpreter is compiled with a new version of the underlying BerkeleyDB library, you will almost
certainly have to convert your database files to the new version. You can do this fairly easily with the new
scripts ‘db2pickle.py’ and ‘pickle2db.py’ which you will find in the distribution’s ‘Tools/scripts’ directory. If
you’ve already been using the PyBSDDB package and importing it asbsddb3 , you will have to change your
import statements to import it asbsddb .

• The newbz2 module is an interface to the bz2 data compression library. bz2-compressed data is usually smaller
than correspondingzlib -compressed data. (Contributed by Gustavo Niemeyer.)

• A set of standard date/type types has been added in the newdatetime module. See the following section for
more details.

• The DistutilsExtension class now supports an extra constructor argument nameddependsfor listing addi-
tional source files that an extension depends on. This lets Distutils recompile the module if any of the depen-
dency files are modified. For example, if ‘sampmodule.c’ includes the header file ‘sample.h’, you would create
theExtension object like this:

ext = Extension("samp",
sources=["sampmodule.c"],
depends=["sample.h"])

Modifying ‘sample.h’ would then cause the module to be recompiled. (Contributed by Jeremy Hylton.)

• Other minor changes to Distutils: it now checks for the CC, CFLAGS, CPP, LDFLAGS, and CPPFLAGS
environment variables, using them to override the settings in Python’s configuration (contributed by Robert
Weber).

• Previously thedoctest module would only search the docstrings of public methods and functions for
test cases, but it now also examines private ones as well. TheDocTestSuite(function creates a
unittest.TestSuite object from a set ofdoctest tests.

• The newgc.get referents(object) function returns a list of all the objects referenced byobject.

• Thegetopt module gained a new function,gnu getopt() , that supports the same arguments as the existing
getopt() function but uses GNU-style scanning mode. The existinggetopt() stops processing options as
soon as a non-option argument is encountered, but in GNU-style mode processing continues, meaning that
options and arguments can be mixed. For example:

>>> getopt.getopt([’-f’, ’filename’, ’output’, ’-v’], ’f:v’)
([(’-f’, ’filename’)], [’output’, ’-v’])
>>> getopt.gnu_getopt([’-f’, ’filename’, ’output’, ’-v’], ’f:v’)
([(’-f’, ’filename’), (’-v’, ’’)], [’output’])

(Contributed by Peter̊Astrand.)

• Thegrp , pwd, andresource modules now return enhanced tuples:

>>> import grp
>>> g = grp.getgrnam(’amk’)
>>> g.gr_name, g.gr_gid
(’amk’, 500)

• Thegzip module can now handle files exceeding 2 Gb.

20 17 New, Improved, and Deprecated Modules

• The newheapq module contains an implementation of a heap queue algorithm. A heap is an array-like data
structure that keeps items in a partially sorted order such that, for every indexk, heap[k] <= heap[2* k+1]
andheap[k] <= heap[2* k+2] . This makes it quick to remove the smallest item, and inserting a new item
while maintaining the heap property is O(lg n). (Seehttp://www.nist.gov/dads/HTML/priorityque.html for more
information about the priority queue data structure.)

Theheapq module providesheappush() andheappop() functions for adding and removing items while
maintaining the heap property on top of some other mutable Python sequence type. Here’s an example that uses
a Python list:

>>> import heapq
>>> heap = []
>>> for item in [3, 7, 5, 11, 1]:
... heapq.heappush(heap, item)
...
>>> heap
[1, 3, 5, 11, 7]
>>> heapq.heappop(heap)
1
>>> heapq.heappop(heap)
3
>>> heap
[5, 7, 11]

(Contributed by Kevin O’Connor.)

• The IDLE integrated development environment has been updated using the code from the IDLEfork project
(http://idlefork.sf.net). The most notable feature is that the code being developed is now executed in a subpro-
cess, meaning that there’s no longer any need for manualreload() operations. IDLE’s core code has been
incorporated into the standard library as theidlelib package.

• The imaplib module now supports IMAP over SSL. (Contributed by Piers Lauder and Tino Lange.)

• The itertools contains a number of useful functions for use with iterators, inspired by various func-
tions provided by the ML and Haskell languages. For example,itertools.ifilter(predicate,
iterator) returns all elements in the iterator for which the functionpredicate() returnsTrue , and
itertools.repeat(obj, N) returnsobj N times. There are a number of other functions in the module;
see thepackage’s reference documentationfor details. (Contributed by Raymond Hettinger.)

• Two new functions in themath module,degrees(rads) andradians(degs) , convert between radians and
degrees. Other functions in themath module such asmath.sin() andmath.cos() have always required
input values measured in radians. Also, an optionalbaseargument was added tomath.log() to make it easier
to compute logarithms for bases other thane and10 . (Contributed by Raymond Hettinger.)

• Several new POSIX functions (getpgid() , killpg() , lchown() , loadavg() , major() ,
makedev() , minor() , andmknod()) were added to theposix module that underlies theos module.
(Contributed by Gustavo Niemeyer, Geert Jansen, and Denis S. Otkidach.)

• In theos module, the*stat() family of functions can now report fractions of a second in a timestamp. Such
time stamps are represented as floats, similar to the value returned bytime.time() .

During testing, it was found that some applications will break if time stamps are floats. For compatibility,
when using the tuple interface of thestat result time stamps will be represented as integers. When using
named fields (a feature first introduced in Python 2.2), time stamps are still represented as integers, unless
os.stat float times() is invoked to enable float return values:

21

>>> os.stat("/tmp").st_mtime
1034791200
>>> os.stat_float_times(True)
>>> os.stat("/tmp").st_mtime
1034791200.6335014

In Python 2.4, the default will change to always returning floats.

Application developers should enable this feature only if all their libraries work properly when confronted with
floating point time stamps, or if they use the tuple API. If used, the feature should be activated on an application
level instead of trying to enable it on a per-use basis.

• Theoptparse module contains a new parser for command-line arguments that can convert option values to
a particular Python type and will automatically generate a usage message. See the following section for more
details.

• The old and never-documentedlinuxaudiodev module has been deprecated, and a new version named
ossaudiodev has been added. The module was renamed because the OSS sound drivers can be used on
platforms other than Linux, and the interface has also been tidied and brought up to date in various ways.
(Contributed by Greg Ward and Nicholas FitzRoy-Dale.)

• The newplatform module contains a number of functions that try to determine various properties of the
platform you’re running on. There are functions for getting the architecture, CPU type, the Windows OS version,
and even the Linux distribution version. (Contributed by Marc-André Lemburg.)

• The parser objects provided by thepyexpat module can now optionally buffer character data, resulting
in fewer calls to your character data handler and therefore faster performance. Setting the parser object’s
buffer text attribute toTrue will enable buffering.

• The sample(population, k) function was added to therandom module. population is a sequence or
xrange object containing the elements of a population, andsample() choosesk elements from the pop-
ulation without replacing chosen elements.k can be any value up tolen(population) . For example:

>>> days = [’Mo’, ’Tu’, ’We’, ’Th’, ’Fr’, ’St’, ’Sn’]
>>> random.sample(days, 3) # Choose 3 elements
[’St’, ’Sn’, ’Th’]
>>> random.sample(days, 7) # Choose 7 elements
[’Tu’, ’Th’, ’Mo’, ’We’, ’St’, ’Fr’, ’Sn’]
>>> random.sample(days, 7) # Choose 7 again
[’We’, ’Mo’, ’Sn’, ’Fr’, ’Tu’, ’St’, ’Th’]
>>> random.sample(days, 8) # Can’t choose eight
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "random.py", line 414, in sample

raise ValueError, "sample larger than population"
ValueError: sample larger than population
>>> random.sample(xrange(1,10000,2), 10) # Choose ten odd nos. under 10000
[3407, 3805, 1505, 7023, 2401, 2267, 9733, 3151, 8083, 9195]

Therandom module now uses a new algorithm, the Mersenne Twister, implemented in C. It’s faster and more
extensively studied than the previous algorithm.

(All changes contributed by Raymond Hettinger.)

• The readline module also gained a number of new functions:get history item() ,
get current history length() , andredisplay() .

22 17 New, Improved, and Deprecated Modules

• The rexec and Bastion modules have been declared dead, and attempts to import them will fail with a
RuntimeError . New-style classes provide new ways to break out of the restricted execution environment
provided byrexec , and no one has interest in fixing them or time to do so. If you have applications using
rexec , rewrite them to use something else.

(Sticking with Python 2.2 or 2.1 will not make your applications any safer because there are known bugs in the
rexec module in those versions. To repeat: if you’re usingrexec , stop using it immediately.)

• The rotor module has been deprecated because the algorithm it uses for encryption is not believed to be
secure. If you need encryption, use one of the several AES Python modules that are available separately.

• Theshutil module gained amove(src, dest) function that recursively moves a file or directory to a new
location.

• Support for more advanced POSIX signal handling was added to thesignal but then removed again as it
proved impossible to make it work reliably across platforms.

• Thesocket module now supports timeouts. You can call thesettimeout(t) method on a socket object to
set a timeout oft seconds. Subsequent socket operations that take longer thant seconds to complete will abort
and raise asocket.timeout exception.

The original timeout implementation was by Tim O’Malley. Michael Gilfix integrated it into the Python
socket module and shepherded it through a lengthy review. After the code was checked in, Guido van Rossum
rewrote parts of it. (This is a good example of a collaborative development process in action.)

• On Windows, thesocket module now ships with Secure Sockets Layer (SSL) support.

• The value of the C PYTHONAPI VERSION macro is now exposed at the Python level as
sys.api version . The current exception can be cleared by calling the newsys.exc clear() function.

• The newtarfile module allows reading from and writing totar -format archive files. (Contributed by Lars
Gusẗabel.)

• The new textwrap module contains functions for wrapping strings containing paragraphs of text. The
wrap(text, width) function takes a string and returns a list containing the text split into lines of no more
than the chosen width. Thefill(text, width) function returns a single string, reformatted to fit into lines no
longer than the chosen width. (As you can guess,fill() is built on top ofwrap() . For example:

>>> import textwrap
>>> paragraph = "Not a whit, we defy augury: ... more text ..."
>>> textwrap.wrap(paragraph, 60)
["Not a whit, we defy augury: there’s a special providence in",

"the fall of a sparrow. If it be now, ’tis not to come; if it",
...]

>>> print textwrap.fill(paragraph, 35)
Not a whit, we defy augury: there’s
a special providence in the fall of
a sparrow. If it be now, ’tis not
to come; if it be not to come, it
will be now; if it be not now, yet
it will come: the readiness is all.
>>>

The module also contains aTextWrapper class that actually implements the text wrapping strategy. Both
the TextWrapper class and thewrap() and fill() functions support a number of additional keyword
arguments for fine-tuning the formatting; consult themodule’s documentationfor details. (Contributed by Greg
Ward.)

23

• The thread and threading modules now have companion modules,dummy thread and
dummy threading , that provide a do-nothing implementation of thethread module’s interface for plat-
forms where threads are not supported. The intention is to simplify thread-aware modules (ones thatdon’t rely
on threads to run) by putting the following code at the top:

try:
import threading as _threading

except ImportError:
import dummy_threading as _threading

In this example, threading is used as the module name to make it clear that the module being used is not
necessarily the actualthreading module. Code can call functions and use classes inthreading whether
or not threads are supported, avoiding anif statement and making the code slightly clearer. This module will
not magically make multithreaded code run without threads; code that waits for another thread to return or to do
something will simply hang forever.

• Thetime module’sstrptime() function has long been an annoyance because it uses the platform C library’s
strptime() implementation, and different platforms sometimes have odd bugs. Brett Cannon contributed a
portable implementation that’s written in pure Python and should behave identically on all platforms.

• The newtimeit module helps measure how long snippets of Python code take to execute. The ‘timeit.py’ file
can be run directly from the command line, or the module’sTimer class can be imported and used directly.
Here’s a short example that figures out whether it’s faster to convert an 8-bit string to Unicode by appending an
empty Unicode string to it or by using theunicode() function:

import timeit

timer1 = timeit.Timer(’unicode("abc")’)
timer2 = timeit.Timer(’"abc" + u""’)

Run three trials
print timer1.repeat(repeat=3, number=100000)
print timer2.repeat(repeat=3, number=100000)

On my laptop this outputs:
[0.36831796169281006, 0.37441694736480713, 0.35304892063140869]
[0.17574405670166016, 0.18193507194519043, 0.17565798759460449]

• TheTix module has received various bug fixes and updates for the current version of the Tix package.

• The Tkinter module now works with a thread-enabled version of Tcl. Tcl’s threading model requires that
widgets only be accessed from the thread in which they’re created; accesses from another thread can cause Tcl
to panic. For certain Tcl interfaces,Tkinter will now automatically avoid this when a widget is accessed
from a different thread by marshalling a command, passing it to the correct thread, and waiting for the re-
sults. Other interfaces can’t be handled automatically butTkinter will now raise an exception on such an
access so that you can at least find out about the problem. Seehttp://mail.python.org/pipermail/python-dev/2002-
December/031107.html for a more detailed explanation of this change. (Implemented by Martin von Löwis.)

• Calling Tcl methods through tkinter no longer returns only strings. Instead, if Tcl returns other objects
those objects are converted to their Python equivalent, if one exists, or wrapped with atkinter.Tcl Obj
object if no Python equivalent exists. This behavior can be controlled through thewantobjects() method
of tkapp objects.

When using tkinter through theTkinter module (as most Tkinter applications will), this feature is always
activated. It should not cause compatibility problems, since Tkinter would always convert string results to
Python types where possible.

24 17 New, Improved, and Deprecated Modules

If any incompatibilities are found, the old behavior can be restored by setting thewantobjects variable in
theTkinter module to false before creating the firsttkapp object.

import Tkinter
Tkinter.wantobjects = 0

Any breakage caused by this change should be reported as a bug.

• The UserDict module has a newDictMixin class which defines all dictionary methods for classes that
already have a minimum mapping interface. This greatly simplifies writing classes that need to be substitutable
for dictionaries, such as the classes in theshelve module.

Adding the mix-in as a superclass provides the full dictionary interface whenever the class defines
getitem , setitem , delitem , andkeys . For example:

>>> import UserDict
>>> class SeqDict(UserDict.DictMixin):
... """Dictionary lookalike implemented with lists."""
... def __init__(self):
... self.keylist = []
... self.valuelist = []
... def __getitem__(self, key):
... try:
... i = self.keylist.index(key)
... except ValueError:
... raise KeyError
... return self.valuelist[i]
... def __setitem__(self, key, value):
... try:
... i = self.keylist.index(key)
... self.valuelist[i] = value
... except ValueError:
... self.keylist.append(key)
... self.valuelist.append(value)
... def __delitem__(self, key):
... try:
... i = self.keylist.index(key)
... except ValueError:
... raise KeyError
... self.keylist.pop(i)
... self.valuelist.pop(i)
... def keys(self):
... return list(self.keylist)
...
>>> s = SeqDict()
>>> dir(s) # See that other dictionary methods are implemented
[’__cmp__’, ’__contains__’, ’__delitem__’, ’__doc__’, ’__getitem__’,

’__init__’, ’__iter__’, ’__len__’, ’__module__’, ’__repr__’,
’__setitem__’, ’clear’, ’get’, ’has_key’, ’items’, ’iteritems’,
’iterkeys’, ’itervalues’, ’keylist’, ’keys’, ’pop’, ’popitem’,
’setdefault’, ’update’, ’valuelist’, ’values’]

(Contributed by Raymond Hettinger.)

• The DOM implementation inxml.dom.minidom can now generate XML output in a particular encoding by
providing an optional encoding argument to thetoxml() andtoprettyxml() methods of DOM nodes.

25

• Thexmlrpclib module now supports an XML-RPC extension for handling nil data values such as Python’s
None. Nil values are always supported on unmarshalling an XML-RPC response. To generate requests contain-
ing None, you must supply a true value for theallow noneparameter when creating aMarshaller instance.

• The newDocXMLRPCServer module allows writing self-documenting XML-RPC servers. Run it in demo
mode (as a program) to see it in action. Pointing the Web browser to the RPC server produces pydoc-style
documentation; pointing xmlrpclib to the server allows invoking the actual methods. (Contributed by Brian
Quinlan.)

• Support for internationalized domain names (RFCs 3454, 3490, 3491, and 3492) has been added. The “idna”
encoding can be used to convert between a Unicode domain name and the ASCII-compatible encoding (ACE)
of that name.

>>> u"www.Alliancefran¸caise.nu".encode("idna")
’www.xn--alliancefranaise-npb.nu’

Thesocket module has also been extended to transparently convert Unicode hostnames to the ACE version
before passing them to the C library. Modules that deal with hostnames such ashttplib andftplib) also
support Unicode host names;httplib also sends HTTP ‘Host ’ headers using the ACE version of the domain
name.urllib supports Unicode URLs with non-ASCII host names as long as thepath part of the URL is
ASCII only.

To implement this change, thestringprep module, themkstringprep tool and thepunycode encoding
have been added.

17.1 Date/Time Type

Date and time types suitable for expressing timestamps were added as thedatetime module. The types don’t support
different calendars or many fancy features, and just stick to the basics of representing time.

The three primary types are:date , representing a day, month, and year;time , consisting of hour, minute, and
second; anddatetime , which contains all the attributes of bothdate andtime . There’s also atimedelta class
representing differences between two points in time, and time zone logic is implemented by classes inheriting from
the abstracttzinfo class.

You can create instances ofdate andtime by either supplying keyword arguments to the appropriate constructor,
e.g. datetime.date(year=1972, month=10, day=15) , or by using one of a number of class methods.
For example, thedate.today() class method returns the current local date.

Once created, instances of the date/time classes are all immutable. There are a number of methods for producing
formatted strings from objects:

>>> import datetime
>>> now = datetime.datetime.now()
>>> now.isoformat()
’2002-12-30T21:27:03.994956’
>>> now.ctime() # Only available on date, datetime
’Mon Dec 30 21:27:03 2002’
>>> now.strftime(’%Y %d %b’)
’2002 30 Dec’

The replace() method allows modifying one or more fields of adate or datetime instance, returning a new
instance:

26 17 New, Improved, and Deprecated Modules

>>> d = datetime.datetime.now()
>>> d
datetime.datetime(2002, 12, 30, 22, 15, 38, 827738)
>>> d.replace(year=2001, hour = 12)
datetime.datetime(2001, 12, 30, 12, 15, 38, 827738)
>>>

Instances can be compared, hashed, and converted to strings (the result is the same as that ofisoformat()). date
anddatetime instances can be subtracted from each other, and added totimedelta instances. The largest missing
feature is that there’s no standard library support for parsing strings and getting back adate or datetime .

For more information, refer to themodule’s reference documentation. (Contributed by Tim Peters.)

17.2 The optparse Module

Thegetopt module provides simple parsing of command-line arguments. The newoptparse module (originally
named Optik) provides more elaborate command-line parsing that follows the Unix conventions, automatically creates
the output for--help, and can perform different actions for different options.

You start by creating an instance ofOptionParser and telling it what your program’s options are.

import sys
from optparse import OptionParser

op = OptionParser()
op.add_option(’-i’, ’--input’,

action=’store’, type=’string’, dest=’input’,
help=’set input filename’)

op.add_option(’-l’, ’--length’,
action=’store’, type=’int’, dest=’length’,
help=’set maximum length of output’)

Parsing a command line is then done by calling theparse args() method.

options, args = op.parse_args(sys.argv[1:])
print options
print args

This returns an object containing all of the option values, and a list of strings containing the remaining arguments.

Invoking the script with the various arguments now works as you’d expect it to. Note that the length argument is
automatically converted to an integer.

$./python opt.py -i data arg1
<Values at 0x400cad4c: {’input’: ’data’, ’length’: None}>
[’arg1’]
$./python opt.py --input=data --length=4
<Values at 0x400cad2c: {’input’: ’data’, ’length’: 4}>
[]
$

17.2 The optparse Module 27

The help message is automatically generated for you:

$./python opt.py --help
usage: opt.py [options]

options:
-h, --help show this help message and exit
-iINPUT, --input=INPUT

set input filename
-lLENGTH, --length=LENGTH

set maximum length of output
$

See themodule’s documentationfor more details.

Optik was written by Greg Ward, with suggestions from the readers of the Getopt SIG.

18 Pymalloc: A Specialized Object Allocator

Pymalloc, a specialized object allocator written by Vladimir Marangozov, was a feature added to Python 2.1. Pymalloc
is intended to be faster than the systemmalloc() and to have less memory overhead for allocation patterns typical
of Python programs. The allocator uses C’smalloc() function to get large pools of memory and then fulfills smaller
memory requests from these pools.

In 2.1 and 2.2, pymalloc was an experimental feature and wasn’t enabled by default; you had to explicitly enable it
when compiling Python by providing the--with-pymalloc option to theconfigure script. In 2.3, pymalloc has had
further enhancements and is now enabled by default; you’ll have to supply--without-pymalloc to disable it.

This change is transparent to code written in Python; however, pymalloc may expose bugs in C extensions. Authors
of C extension modules should test their code with pymalloc enabled, because some incorrect code may cause core
dumps at runtime.

There’s one particularly common error that causes problems. There are a number of memory allocation functions in
Python’s C API that have previously just been aliases for the C library’smalloc() and free() , meaning that if
you accidentally called mismatched functions the error wouldn’t be noticeable. When the object allocator is enabled,
these functions aren’t aliases ofmalloc() andfree() any more, and calling the wrong function to free memory
may get you a core dump. For example, if memory was allocated usingPyObject Malloc() , it has to be freed
usingPyObject Free() , not free() . A few modules included with Python fell afoul of this and had to be fixed;
doubtless there are more third-party modules that will have the same problem.

As part of this change, the confusing multiple interfaces for allocating memory have been consolidated down into
two API families. Memory allocated with one family must not be manipulated with functions from the other family.
There is one family for allocating chunks of memory and another family of functions specifically for allocating Python
objects.

• To allocate and free an undistinguished chunk of memory use the “raw memory” family:PyMem Malloc() ,
PyMem Realloc() , andPyMem Free() .

• The “object memory” family is the interface to the pymalloc facility described above and is biased towards a
large number of “small” allocations:PyObject Malloc , PyObject Realloc , andPyObject Free .

• To allocate and free Python objects, use the “object” familyPyObject New() , PyObject NewVar() ,
andPyObject Del() .

Thanks to lots of work by Tim Peters, pymalloc in 2.3 also provides debugging features to catch memory overwrites

28 18 Pymalloc: A Specialized Object Allocator

and doubled frees in both extension modules and in the interpreter itself. To enable this support, compile a debugging
version of the Python interpreter by runningconfigurewith --with-pydebug.

To aid extension writers, a header file ‘Misc/pymemcompat.h’ is distributed with the source to Python 2.3 that allows
Python extensions to use the 2.3 interfaces to memory allocation while compiling against any version of Python since
1.5.2. You would copy the file from Python’s source distribution and bundle it with the source of your extension.

See Also:

http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/python/python/dist/src/Objects/obmalloc.c
For the full details of the pymalloc implementation, see the comments at the top of the file ‘Objects/obmalloc.c’
in the Python source code. The above link points to the file within the SourceForge CVS browser.

19 Build and C API Changes

Changes to Python’s build process and to the C API include:

• The C-level interface to the garbage collector has been changed to make it easier to write extension types that
support garbage collection and to debug misuses of the functions. Various functions have slightly different
semantics, so a bunch of functions had to be renamed. Extensions that use the old API will still compile but will
notparticipate in garbage collection, so updating them for 2.3 should be considered fairly high priority.

To upgrade an extension module to the new API, perform the following steps:

– RenamePy TPFLAGS GCto PyTPFLAGS HAVE GC.

– UsePyObject GC Newor PyObject GC NewVar to allocate objects, andPyObject GC Del
to deallocate them.

– Rename PyObject GC Init to PyObject GC Track and PyObject GC Fini to
PyObject GC UnTrack .

– RemovePyGC HEAD SIZE from object size calculations.

– Remove calls toPyObject AS GCandPyObject FROMGC.

• The cycle detection implementation used by the garbage collection has proven to be stable, so it’s now been
made mandatory. You can no longer compile Python without it, and the--with-cycle-gcswitch toconfigurehas
been removed.

• Python can now optionally be built as a shared library (‘libpython2.3.so’) by supplying--enable-sharedwhen
running Python’sconfigurescript. (Contributed by Ondrej Palkovsky.)

• TheDL EXPORTandDL IMPORTmacros are now deprecated. Initialization functions for Python extension
modules should now be declared using the new macroPyMODINIT FUNC, while the Python core will generally
use thePyAPI FUNCandPyAPI DATAmacros.

• The interpreter can be compiled without any docstrings for the built-in functions and modules by supplying
--without-doc-strings to theconfigure script. This makes the Python executable about 10% smaller, but will
also mean that you can’t get help for Python’s built-ins. (Contributed by Gustavo Niemeyer.)

• ThePyArg NoArgs() macro is now deprecated, and code that uses it should be changed. For Python 2.2 and
later, the method definition table can specify theMETH NOARGSflag, signalling that there are no arguments, and
the argument checking can then be removed. If compatibility with pre-2.2 versions of Python is important, the
code could usePyArg ParseTuple(args, "") instead, but this will be slower than usingMETH NOARGS.

• A new function, PyObject DelItemString(mapping, char * key) was added as shorthand for
PyObject DelItem(mapping, PyString New(key)) .

29

• File objects now manage their internal string buffer differently, increasing it exponentially when needed. This
results in the benchmark tests in ‘Lib/test/test bufio.py’ speeding up considerably (from 57 seconds to 1.7 sec-
onds, according to one measurement).

• It’s now possible to define class and static methods for a C extension type by setting either theMETH CLASS
or METH STATIC flags in a method’sPyMethodDef structure.

• Python now includes a copy of the Expat XML parser’s source code, removing any dependence on a system
version or local installation of Expat.

• If you dynamically allocate type objects in your extension, you should be aware of a change in the rules relating
to the module and name attributes. In summary, you will want to ensure the type’s dictionary
contains a’ module ’ key; making the module name the part of the type name leading up to the final
period will no longer have the desired effect. For more detail, read the API reference documentation or the
source.

19.1 Port-Specific Changes

Support for a port to IBM’s OS/2 using the EMX runtime environment was merged into the main Python source tree.
EMX is a POSIX emulation layer over the OS/2 system APIs. The Python port for EMX tries to support all the
POSIX-like capability exposed by the EMX runtime, and mostly succeeds;fork() andfcntl() are restricted by
the limitations of the underlying emulation layer. The standard OS/2 port, which uses IBM’s Visual Age compiler, also
gained support for case-sensitive import semantics as part of the integration of the EMX port into CVS. (Contributed
by Andrew MacIntyre.)

On MacOS, most toolbox modules have been weaklinked to improve backward compatibility. This means that modules
will no longer fail to load if a single routine is missing on the curent OS version. Instead calling the missing routine
will raise an exception. (Contributed by Jack Jansen.)

The RPM spec files, found in the ‘Misc/RPM/’ directory in the Python source distribution, were updated for 2.3.
(Contributed by Sean Reifschneider.)

Other new platforms now supported by Python include AtheOS (http://www.atheos.cx/), GNU/Hurd, and OpenVMS.

20 Other Changes and Fixes

As usual, there were a bunch of other improvements and bugfixes scattered throughout the source tree. A search
through the CVS change logs finds there were 523 patches applied and 514 bugs fixed between Python 2.2 and 2.3.
Both figures are likely to be underestimates.

Some of the more notable changes are:

• If the PYTHONINSPECT environment variable is set, the Python interpreter will enter the interactive prompt
after running a Python program, as if Python had been invoked with the-i option. The environment variable can
be set before running the Python interpreter, or it can be set by the Python program as part of its execution.

• The ‘regrtest.py’ script now provides a way to allow “all resources exceptfoo.” A resource name passed to the
-u option can now be prefixed with a hyphen (‘- ’) to mean “remove this resource.” For example, the option
‘ -uall,-bsddb ’ could be used to enable the use of all resources exceptbsddb .

• The tools used to build the documentation now work under Cygwin as well as UNIX .

• TheSET LINENO opcode has been removed. Back in the mists of time, this opcode was needed to produce
line numbers in tracebacks and support trace functions (for, e.g.,pdb). Since Python 1.5, the line numbers
in tracebacks have been computed using a different mechanism that works with “python -O”. For Python 2.3

30 20 Other Changes and Fixes

Michael Hudson implemented a similar scheme to determine when to call the trace function, removing the need
for SET LINENOentirely.

It would be difficult to detect any resulting difference from Python code, apart from a slight speed up when
Python is run without-O.

C extensions that access thef lineno field of frame objects should instead call
PyCode Addr2Line(f->f code, f->f lasti) . This will have the added effect of making the
code work as desired under “python -O” in earlier versions of Python.

A nifty new feature is that trace functions can now assign to thef lineno attribute of frame objects, changing
the line that will be executed next. A ‘jump ’ command has been added to thepdb debugger taking advantage
of this new feature. (Implemented by Richie Hindle.)

21 Porting to Python 2.3

This section lists previously described changes that may require changes to your code:

• yield is now always a keyword; if it’s used as a variable name in your code, a different name must be chosen.

• For stringsX andY, X in Y now works ifX is more than one character long.

• The int() type constructor will now return a long integer instead of raising anOverflowError when a
string or floating-point number is too large to fit into an integer.

• If you have Unicode strings that contain 8-bit characters, you must declare the file’s encoding (UTF-8, Latin-1,
or whatever) by adding a comment to the top of the file. See section 3 for more information.

• Calling Tcl methods through tkinter no longer returns only strings. Instead, if Tcl returns other objects
those objects are converted to their Python equivalent, if one exists, or wrapped with atkinter.Tcl Obj
object if no Python equivalent exists.

• Large octal and hex literals such as0xffffffff now trigger aFutureWarning . Currently they’re stored
as 32-bit numbers and result in a negative value, but in Python 2.4 they’ll become positive long integers.

There are a few ways to fix this warning. If you really need a positive number, just add an ‘L’ to the end of the
literal. If you’re trying to get a 32-bit integer with low bits set and have previously used an expression such as
(1 << 31) , it’s probably clearest to start with all bits set and clear the desired upper bits. For example, to
clear just the top bit (bit 31), you could write0xffffffffL &˜(1L<<31) .

• You can no longer disable assertions by assigning todebug .

• The Distutilssetup() function has gained various new keyword arguments such asdepends. Old versions
of the Distutils will abort if passed unknown keywords. A solution is to check for the presence of the new
get distutil options() function in your ‘setup.py’ and only uses the new keywords with a version of
the Distutils that supports them:

from distutils import core

kw = {’sources’: ’foo.c’, ...}
if hasattr(core, ’get_distutil_options’):

kw[’depends’] = [’foo.h’]
ext = Extension(**kw)

• UsingNone as a variable name will now result in aSyntaxWarning warning.

• Names of extension types defined by the modules included with Python now contain the module and a ‘. ’ in
front of the type name.

31

22 Acknowledgements

The author would like to thank the following people for offering suggestions, corrections and assistance with var-
ious drafts of this article: Jeff Bauer, Simon Brunning, Brett Cannon, Michael Chermside, Andrew Dalke, Scott
David Daniels, Fred L. Drake, Jr., David Fraser, Kelly Gerber, Raymond Hettinger, Michael Hudson, Chris Lambert,
Detlef Lannert, Martin von L̈owis, Andrew MacIntyre, Lalo Martins, Chad Netzer, Gustavo Niemeyer, Neal Norwitz,
Hans Nowak, Chris Reedy, Francesco Ricciardi, Vinay Sajip, Neil Schemenauer, Roman Suzi, Jason Tishler, Just
van Rossum.

32 22 Acknowledgements

	1 PEP 218: A Standard Set Datatype
	2 PEP 255: Simple Generators
	3 PEP 263: Source Code Encodings
	4 PEP 273: Importing Modules from Zip Archives
	5 PEP 277: Unicode file name support for Windows NT
	6 PEP 278: Universal Newline Support
	7 PEP 279: enumerate()
	8 PEP 282: The logging Package
	9 PEP 285: A Boolean Type
	10 PEP 293: Codec Error Handling Callbacks
	11 PEP 301: Package Index and Metadata for Distutils
	12 PEP 302: New Import Hooks
	13 PEP 305: Comma-separated Files
	14 PEP 307: Pickle Enhancements
	15 Extended Slices
	16 Other Language Changes
	16.1 String Changes
	16.2 Optimizations

	17 New, Improved, and Deprecated Modules
	17.1 Date/Time Type
	17.2 The optparse Module

	18 Pymalloc: A Specialized Object Allocator
	19 Build and C API Changes
	19.1 Port-Specific Changes

	20 Other Changes and Fixes
	21 Porting to Python 2.3
	22 Acknowledgements

