Porting Extension Modules to Pythog

Release 3.2.4

Guido van Rossum
Fred L. Drake, Jr., editor

April 06, 2013

Python Software Foundation
Email: docs@python.org

Contents
1 Conditional compilation i
2 Changes to Object APIs ii
2.1 str/unicode Unification 0 e e e e e e e e e e ii
2.2 long/int Unification 0 e e e e e e e e e e e e ii
3 Module initialization and state iii
4 CObject replaced with Capsule iv
5 Other options vii
Indexix

author Benjamin Peterson

Abstract

Although changing the C-API was not one of Python 3’s objectives, the many Python-level changes made
leaving Python 2’s API intact impossible. In fact, some changes such as int () and long () unification
are more obvious on the C level. This document endeavors to document incompatibilities and how they can
be worked around.

1 Conditional compilation

The easiest way to compile only some code for Python 3 is to check if PY_ MAJOR_VERSION is greater than or
equal to 3.

#1f PY MAJOR _VERSION >= 3
#define IS _PY3K
#endif

API functions that are not present can be aliased to their equivalents within conditional blocks.

2 Changes to Object APIs

Python 3 merged together some types with similar functions while cleanly separating others.

2.1 str/unicode Unification

Python 3’s str() (PyString_x functions in C) type is equivalent to Python 2’s unicode ()
(PyUnicode_«). The old 8-bit string type has become bytes (). Python 2.6 and later provide a compati-
bility header, bytesobject .h, mapping PyBytes names to PyString ones. For best compatibility with
Python 3, PyUnicode should be used for textual data and PyBytes for binary data. It’s also important to re-
member that PyBytes and PyUnicode in Python 3 are not interchangeable like PyString and PyUnicode
are in Python 2. The following example shows best practices with regards to PyUnicode, PyString, and
PyBytes.

#include "stdlib.h"
#include "Python.h"
#include "bytesobject.h"

/* text example x*/

static PyObject =

say_hello (PyObject =xself, PyObject =*args) {
PyObject #name, =xresult;

if (!PyArg_ParseTuple (args, "U:say_hello", &name))
return NULL;

result = PyUnicode_FromFormat ("Hello, %$S!", name);
return result;

/+* just a forward */
static char % do_encode (PyObject «);

/% bytes example #*/

static PyObject =«

encode_object (PyObject xself, PyObject xargs) {
char xencoded;
PyObject +*result, +*myobij;

if (!PyArg_ParseTuple (args, "O:encode_object", &myobij))
return NULL;

encoded = do_encode (myobij) ;
if (encoded == NULL)
return NULL;
result = PyBytes_FromString(encoded);
free (encoded) ;
return result;

2.2 long/int Unification

Python 3 has only one integer type, int (). But it actually corresponds to Python 2’s 1ong () type—the int ()
type used in Python 2 was removed. In the C-API, PyInt_« functions are replaced by their PyLong_ * equiva-
lents.

The best course of action here is using the PyInt_ « functions aliased to PyLong_* found in intobject.h.
The abstract PyNumber_ x APIs can also be used in some cases.

#include "Python.h"
#include "intobject.h"

static PyObject =«

add_ints (PyObject =xself, PyObject =*args) {
int one, two;
PyObject *result;

if (!PyArg_ParseTuple (args, "ii:add_ints", &one, &two))
return NULL;

return PyInt_FromLong(one + two);

3 Module initialization and state

Python 3 has a revamped extension module initialization system. (See

PEP 3121.) Instead of storing module state in globals, they should be stored in an interpreter specific structure.
Creating modules that act correctly in both Python 2 and Python 3 is tricky. The following simple example
demonstrates how.

#include "Python.h"

struct module_state {
PyObject +*error;
}i

#1f PY MAJOR_VERSION >= 3

#define GETSTATE (m) ((struct module statex*)PyModule GetState (m))
#else

#define GETSTATE (m) (&_state)

static struct module_state _state;

#endif

static PyObject =

error_out (PyObject xm) {
struct module_state *st = GETSTATE (m) ;
PyErr_SetString(st—->error, "something bad happened");
return NULL;

static PyMethodDef myextension_methods[] = {
{"error_out", (PyCFunction)error_out, METH_NOARGS, NULL},
{NULL, NULL}

}i

#if PY MAJOR _VERSION >= 3
static int myextension_traverse (PyObject »m, visitproc visit, wvoid *arg) {

Py_VISIT (GETSTATE (m) —>error) ;
return 0O;

static int myextension_clear (PyObject xm) {

http://www.python.org/dev/peps/pep-3121

Py_CLEAR (GETSTATE (m) —>error) ;
return 0O;

static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"myextension",
NULL,
sizeof (struct module_state),
myextension_methods,
NULL,
myextension_traverse,
myextension_clear,
NULL

}i

#define INITERROR return NULL

PyObject =
PyInit_myextension (void)

#else
#define INITERROR return

void
initmyextension (void)
#endif
{
#if PY MAJOR _VERSION >= 3
PyObject smodule = PyModule_Create (&moduledef);

#else

PyObject xmodule = Py_InitModule ("myextension", myextension_methods) ;
#endif

if (module == NULL)

INITERROR;
struct module_state *st = GETSTATE (module) ;

st->error = PyErr_NewException ("myextension.Error", NULL, NULL);

if (st->error == NULL) {
Py_DECREF (module) ;
INITERROR;

#1f PY MAJOR _VERSION >= 3
return module;

#endif

}

4 CObject replaced with Capsule

The Capsule object was introduced in Python 3.1 and 2.7 to replace CObject. CObjects were useful, but
the CObject API was problematic: it didn’t permit distinguishing between valid CObjects, which allowed mis-
matched CObjects to crash the interpreter, and some of its APIs relied on undefined behavior in C. (For further
reading on the rationale behind Capsules, please see issue 5630.)

http://bugs.python.org/issue5630

If you’re currently using CObjects, and you want to migrate to 3.1 or newer, you’ll need to switch to Capsules.
CObject was deprecated in 3.1 and 2.7 and completely removed in Python 3.2. If you only support 2.7, or 3.1
and above, you can simply switch to Capsule. If you need to support Python 3.0, or versions of Python earlier
than 2.7, you’ll have to support both CObjects and Capsules. (Note that Python 3.0 is no longer supported, and it
is not recommended for production use.)

The following example header file capsulethunk.h may solve the problem for you. Simply write your code
against the Capsule API and include this header file after Python.h. Your code will automatically use Cap-
sules in versions of Python with Capsules, and switch to CObjects when Capsules are unavailable.

capsulethunk.h simulates Capsules using CObjects. However, CObJject provides no place to store the
capsule’s “name”. As a result the simulated Capsule objects created by capsulethunk.h behave slightly
differently from real Capsules. Specifically:

* The name parameter passed in to PyCapsule_New () is ignored.

* The name parameter passed in to PyCapsule_IsValid () and PyCapsule_GetPointer () isig-
nored, and no error checking of the name is performed.

* PyCapsule_GetName () always returns NULL.

* PyCapsule_SetName () always raises an exception and returns failure. (Since there’s no way to store
a name in a CObject, noisy failure of PyCapsule_SetName () was deemed preferable to silent failure
here. If this is inconvenient, feel free to modify your local copy as you see fit.)

You can find capsulethunk.h in the Python source distribution as Doc/includes/capsulethunk.h. We also
include it here for your convenience:

#ifndef _ CAPSULETHUNK_H
#define _ CAPSULETHUNK_H

#if ((PY _VERSION_HEX < 0x02070000) \
|| ((PY_VERSION_HEX >= 0x03000000) \
&& (PY _VERSION_HEX < 0x03010000)))

#define _ PyCapsule_GetField(capsule, field, default_value) \
(PyCapsule_CheckExact (capsule) \
? (((PyCObject x)capsule)->field) \
(default_value) \

#define _ PyCapsule_SetField(capsule, field, value) \
(PyCapsule_CheckExact (capsule) \
? (((PyCObject x)capsule)->field = value), 1 \
0\

#define PyCapsule_Type PyCObject_Type
#define PyCapsule_CheckExact (capsule) (PyCObject_Check (capsule))

#define PyCapsule IsValid(capsule, name) (PyCObject_Check (capsule))

#define PyCapsule_New (pointer, name, destructor) |\
(PyCObject_FromVoidPtr (pointer, destructor))

#define PyCapsule_GetPointer (capsule, name) \
(PyCObject_AsVoidPtr (capsule))

/#* Don’t call PyCObject_SetPointer here, it fails i1f there’s a destructor =/

http://hg.python.org/cpython/file/3.2/Doc/includes/capsulethunk.h

#define PyCapsule_SetPointer (capsule, pointer) |\
__PyCapsule SetField(capsule, cobject, pointer)

#define PyCapsule_GetDestructor (capsule) \
_ _PyCapsule GetField(capsule, destructor)

#define PyCapsule_SetDestructor (capsule, dtor) |\
__PyCapsule SetField(capsule, destructor, dtor)

/ *
* Sorry, there’s simply no place
* to store a Capsule "name" in a CObject.
*/

#define PyCapsule GetName (capsule) NULL

static int
PyCapsule_SetName (PyObject +capsule, const char xunused)
{
unused = unused;
PyErr_SetString (PyExc_NotImplementedError,
"can’t use PyCapsule_SetName with CObjects");
return 1;

#define PyCapsule_GetContext (capsule) \
__PyCapsule GetField(capsule, descr)

#define PyCapsule_SetContext (capsule, context) \
__ _PyCapsule_SetField(capsule, descr, context)

static void =
PyCapsule_Import (const char xname, int no_block)
{

PyObject *object = NULL;

void *return_value = NULL;

char *trace;

size_t name_length = (strlen(name) + 1) % sizeof (char);

char *name_dup = (char x)PyMem MALLOC (name_length);
if (!name_dup) {

return NULL;
memcpy (name_dup, name, name_length);

trace = name_dup;
while (trace) {

char *dot = strchr(trace, ’'.7);
if (dot) {
xdot++ = "\0’;

if (object == NULL) {

if (no_block) {
object = PyImport_ImportModuleNoBlock (trace);
} else {
object = PyImport_ImportModule (trace);
if (!object) {
PyErr_Format (PyExc_ImportError,
"PyCapsule_Import could not
"import module \"%s\"", trace);

"

}
} else {
PyObject #*object2 = PyObject_GetAttrString(object, trace);

Py_DECREF (object) ;
object = object2;

}
if (!object) {
goto EXIT;

trace = dot;

if (PyCObject_Check (object)) {

PyCObject *cobject = (PyCObject =x)object;
return_value = cobject->cobject;
} else {

PyErr_Format (PyExc_AttributeError,
"PyCapsule_Import \"%s\" is not valid",
name) ;

EXIT:
Py_XDECREF (object) ;
if (name_dup) {
PyMem_FREE (name_dup) ;

}

return return_value;

#endif /% #if PY VERSION_HEX < 0x02070000 %/

#endif /+ _ CAPSULETHUNK_H */

5 Other options

If you are writing a new extension module, you might consider Cython. It translates a Python-like language to C.
The extension modules it creates are compatible with Python 3 and Python 2.

http://www.cython.org

Index
P

Python Enhancement Proposals
PEP 3121, iii

	Conditional compilation
	Changes to Object APIs
	str/unicode Unification
	long/int Unification

	Module initialization and state
	CObject replaced with Capsule
	Other options
	Index

