The Python/C API
Release 2.7.16rcl

Guido van Rossum
and the Python development team

February 16, 2019

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Imclude Files o e 3
1.2 Objects, Types and Reference Counts i 4
1.3 Exceptions o . e e e e e e e 7
1.4 Embedding Python e 9
1.5 Debugging Builds L 10
The Very High Level Layer 11
Reference Counting 15
Exception Handling 17
4.1 Unicode Exception Objects e 21
4.2 Recursion Control L e e e e 22
4.3 Standard Exceptions. 0oL e e e e 22
4.4 Standard Warning Categories L e e e 24
4.5 String Exceptions 24
Utilities 25
5.1 Operating System Utilities e 25
5.2 System Functions e 25
5.3 Process Control L e 26
5.4 Importing Modules e 27
5.5 Data marshalling supporto e e e e 30
5.6 Parsing arguments and building valueso Lo 31
5.7 String conversion and formatting oL oL o 37
5.8 Reflection L 39
5.9 Codec registry and support functions Lo oL e 40
Abstract Objects Layer 43
6.1 Object Protocol e 43
6.2 Number Protocol e 47
6.3 Sequence Protocol o e e 51
6.4 Mapping Protocol e 53
6.5 Iterator Protocol L 54
6.6 Old Buffer Protocol 55
Concrete Objects Layer 57
7.1 Fundamental Objects L e 57
7.2 Numeric Objects o L e e e 58
7.3 Sequence Objects L e e e e e e e 65

7.4 Mapping Objects o o e e e e e e e e e

7.5 Other Objects o e e
8 [Initialization, Finalization, and Threads
8.1 Initializing and finalizing the interpreter oL oL Lo
8.2 Process-wide parameters L. Lo e e
8.3 Thread State and the Global Interpreter Lock,
8.4 Sub-interpreter SUPPOrto e e e e e e e e e
8.5 Asynchronous Notifications
8.6 Profiling and Tracing L e e e
8.7 Advanced Debugger Support e
9 Memory Management
9.1 OVErview e e e
9.2 Memory Interface oL
9.3 Object allocators« . . L e
9.4 The pymalloc allocator e
9.5 Examples e e e
10 Object Implementation Support
10.1 Allocating Objects on the Heap o . o o i s
10.2 Common Object Structures 0 i i i e e e e e e e e e e e e e
10.3 Type Objects o o o e e e e e e
10.4 Number Object Structures o o i e e
10.5 Mapping Object Structures L . . L e e
10.6 Sequence Object StTUucCtures o v it i e e e e e e e e
10.7 Buffer Object Structures o . o e
10.8 Supporting Cyclic Garbage Collection o
A Glossary
B About these documents
B.1 Contributors to the Python Documentation
C History and License
C.1 History of the software e
C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright
Index

113
113
114
116
122
123
123
125

127
127
128
129
129
130

131
131
132
137
152
153
153
154
155

159

169
169

171
171
172
175

187

189

ii

The Python/C API, Release 2.7.16rcl

This manual documents the API used by C and C++ programmers who want to write extension modules
or embed Python. It is a companion to extending-index, which describes the general principles of extension
writing but does not document the API functions in detail.

CONTENTS 1

The Python/C API, Release 2.7.16rcl

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python
interpreter at a variety of levels. The API is equally usable from C-++, but for brevity it is generally referred
to as the Python/C API. There are two fundamentally different reasons for using the Python/C API. The
first reason is to write extension modules for specific purposes; these are C modules that extend the Python
interpreter. This is probably the most common use. The second reason is to use Python as a component in
a larger application; this technique is generally referred to as embedding Python in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works
well. There are several tools that automate the process to some extent. While people have embedded Python
in other applications since its early existence, the process of embedding Python is less straightforward than
writing an extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover,
most applications that embed Python will need to provide a custom extension as well, so it’s probably a good
idea to become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the
following line:

’ #include "Python.h"

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, <limits.h>,
<assert.h> and <stdlib.h> (if available).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some
systems, you must include Python.h before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one
of the prefixes Py or _Py. Names beginning with Py are for internal use by the Python implementation
and should not be used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin with Py or _Py. This confuses the reader, and
jeopardizes the portability of the user code to future Python versions, which may define additional names
beginning with one of these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/
include/pythonversion/ and exec_ prefix/include/pythonversion/, where prefix and exec prefix are defined
by the corresponding parameters to Python’s configure script and version is sys.version[:3]. On Windows,
the headers are installed in prefix/include, where prefix is the installation directory specified to the installer.

The Python/C API, Release 2.7.16rcl

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do
not place the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will
break on multi-platform builds since the platform independent headers under prefix include the platform
specific headers from exec_ prefix.

C++ users should note that though the API is defined entirely using C, the header files do properly declare
the entry points to be extern "C", so there is no need to do anything special to use the APT from C++.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyObject*.
This type is a pointer to an opaque data type representing an arbitrary Python object. Since all Python
object types are treated the same way by the Python language in most situations (e.g., assignments, scope
rules, and argument passing), it is only fitting that they should be represented by a single C type. Almost
all Python objects live on the heap: you never declare an automatic or static variable of type PyObject, only
pointer variables of type PyObject* can be declared. The sole exception are the type objects; since these
must never be deallocated, they are typically static PyTypeObject objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines
what kind of object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained
in types). For each of the well-known types there is a macro to check whether an object is of that type; for
instance, PyList Check(a) is true if (and only if) the object pointed to by a is a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory
size; it counts how many different places there are that have a reference to an object. Such a place could be
another object, or a global (or static) C variable, or a local variable in some C function. When an object’s
reference count becomes zero, the object is deallocated. If it contains references to other objects, their
reference count is decremented. Those other objects may be deallocated in turn, if this decrement makes
their reference count become zero, and so on. (There’s an obvious problem with objects that reference each
other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py INCREF() to in-
crement an object’s reference count by one, and Py DECREF() to decrement it by one. The Py DECREF()
macro is considerably more complex than the incref one, since it must check whether the reference count
becomes zero and then cause the object’s deallocator to be called. The deallocator is a function pointer
contained in the object’s type structure. The type-specific deallocator takes care of decrementing the ref-
erence counts for other objects contained in the object if this is a compound object type, such as a list, as
well as performing any additional finalization that’s needed. There’s no chance that the reference count can
overflow; at least as many bits are used to hold the reference count as there are distinct memory locations
in virtual memory (assuming sizeof(Py ssize t) >= sizeof(void*)). Thus, the reference count increment is
a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer
to an object. In theory, the object’s reference count goes up by one when the variable is made to point
to it and it goes down by one when the variable goes out of scope. However, these two cancel each other
out, so at the end the reference count hasn’t changed. The only real reason to use the reference count is to
prevent the object from being deallocated as long as our variable is pointing to it. If we know that there
is at least one other reference to the object that lives at least as long as our variable, there is no need to
increment the reference count temporarily. An important situation where this arises is in objects that are
passed as arguments to C functions in an extension module that are called from Python; the call mechanism
guarantees to hold a reference to every argument for the duration of the call.

4 Chapter 1. Introduction

The Python/C API, Release 2.7.16rcl

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing
its reference count. Some other operation might conceivably remove the object from the list, decrementing
its reference count and possible deallocating it. The real danger is that innocent-looking operations may
invoke arbitrary Python code which could do this; there is a code path which allows control to flow back to
the user from a Py DECREF(), so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject
PyNumber , PySequence or PyMapping). These operations always increment the reference count of the
object they return. This leaves the caller with the responsibility to call Py DECREF() when they are done
with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of ref-
erences. Ownership pertains to references, never to objects (objects are not owned: they are always shared).
“Owning a reference” means being responsible for calling Py DECREF on it when the reference is no longer
needed. Ownership can also be transferred, meaning that the code that receives ownership of the reference
then becomes responsible for eventually decref’ing it by calling Py DECREF() or Py XDECREF() when
it’s no longer needed—or passing on this responsibility (usually to its caller). When a function passes own-
ership of a reference on to its caller, the caller is said to receive a new reference. When no ownership is
transferred, the caller is said to borrow the reference. Nothing needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function
steals a reference to the object, or it does not. Stealing a reference means that when you pass a reference
to a function, that function assumes that it now owns that reference, and you are not responsible for it any
longer.

Few functions steal references; the two notable exceptions are PyList SetItem() and PyTuple SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions
were designed to steal a reference because of a common idiom for populating a tuple or list with newly
created objects; for example, the code to create the tuple (1, 2, "three") could look like this (forgetting
about error handling for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple Setltem(t, 0, PyInt FromLong(1L));
PyTuple Setltem(t, 1, PyInt FromLong(2L));
PyTuple Setltem(t, 2, PyString FromString("three'));

Here, PyInt _FromLong() returns a new reference which is immediately stolen by PyTuple Setltem(). When
you want to keep using an object although the reference to it will be stolen, use Py INCREF() to grab
another reference before calling the reference-stealing function.

Incidentally, PyTuple Setltem() is the only way to set tuple items; PySequence Setltem() and PyOb-
ject_Setltem() refuse to do this since tuples are an immutable data type. You should only use PyTu-
ple SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList New() and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s
a generic function, Py BuildValue(), that can create most common objects from C values, directed by a
format string. For example, the above two blocks of code could be replaced by the following (which also
takes care of the error checking):

1.2. Objects, Types and Reference Counts 5

The Python/C API, Release 2.7.16rcl

PyObject *tuple, *list;

tuple = Py BuildValue("(iis)", 1, 2, "three");
list = Py BuildValue("[iis|", 1, 2, "three");

It is much more common to use PyObject Setltem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour
regarding reference counts is much saner, since you don’t have to increment a reference count so you can
give a reference away (“have it be stolen”). For example, this function sets all items of a list (actually, any
mutable sequence) to a given item:

int
set _all(PyObject *target, PyObject *item)
{

int i, n;

n = PyObject_Length(target);
if (n < 0)
return -1;
for (i =0;1 < n;i++) {
PyObject *index — PylInt FromLong(i);
if (!index)
return -1;
if (PyObject SetItem(target, index, item) < 0) {
Py DECREF (index);
return -1;

}
Py DECREF (index);

}

return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions
does not change your ownership responsibilities for that reference, many functions that return a reference
to an object give you ownership of the reference. The reason is simple: in many cases, the returned object
is created on the fly, and the reference you get is the only reference to the object. Therefore, the generic
functions that return object references, like PyObject Getltem() and PySequence Getltem(), always return
a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function
you call only — the plumage (the type of the object passed as an argument to the function) doesn’t enter
into it! Thus, if you extract an item from a list using PyList GetlItem(), you don’t own the reference — but
if you obtain the same item from the same list using PySequence Getltem() (which happens to take exactly
the same arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers;
once using PyList _ GetlItem(), and once using PySequence Getltem().

long
sum_list(PyObject *list)
{

int i, n;

long total = 0;
PyObject *item;

n = PyList_ Size(list);
if (n < 0)

(continues on next page)

6 Chapter 1. Introduction

The Python/C API, Release 2.7.16rcl

continued from previous page
g

return -1; /* Not a list *
for (i = 0;1 < n;i++) {
item — PyList GetItem(list, i); /* Can 't fail *
if ('PyInt_Check(item)) continue; /* Skip non-integers
total += PyInt AsLong(item);

}

return total;

*

long
sum_sequence(PyObject *sequence)
{
int i, n;
long total = 0;
PyObject *item;
n — PySequence Length(sequence);
if (n < 0)
return -1; /* Has no length *
for (i = 0;1 < n;i++){
item = PySequence Getltem(sequence, i);
if (item —— NULL)
return -1; /* Not a sequence, or other failure *
if (PyInt _Check(item))
total += PyInt AsLong(item);
Py DECREF (item); /* Discard reference ownership *
}

return total,

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types
such as int, long, double and char*. A few structure types are used to describe static tables used to list the
functions exported by a module or the data attributes of a new object type, and another is used to describe
the value of a complex number. These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled
exceptions are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach
the top-level interpreter, where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API
can raise exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general,
when a function encounters an error, it sets an exception, discards any object references that it owns, and
returns an error indicator. If not documented otherwise, this indicator is either NULL or -1, depending on
the function’s return type. A few functions return a Boolean true/false result, with false indicating an error.
Very few functions return no explicit error indicator or have an ambiguous return value, and require explicit
testing for errors with PyErr Occurred(). These exceptions are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded
application). A thread can be in one of two states: an exception has occurred, or not. The function
PyErr Occurred() can be used to check for this: it returns a borrowed reference to the exception type

1.3. Exceptions 7

The Python/C API, Release 2.7.16rcl

object when an exception has occurred, and NULL otherwise. There are a number of functions to set the
exception state: PyErr SetString() is the most common (though not the most general) function to set the
exception state, and PyErr Clear() clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the
corresponding exception value, and the traceback. These have the same meanings as the Python objects
sys.exc__type, sys.exc_value, and sys.exc_traceback; however, they are not the same: the Python objects
represent the last exception being handled by a Python try ... except statement, while the C level exception
state only exists while an exception is being passed on between C functions until it reaches the Python
bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python
code is to call the function sys.exc_info(), which returns the per-thread exception state for Python code.
Also, the semantics of both ways to access the exception state have changed so that a function which catches
an exception will save and restore its thread’s exception state so as to preserve the exception state of its
caller. This prevents common bugs in exception handling code caused by an innocent-looking function
overwriting the exception being handled; it also reduces the often unwanted lifetime extension for objects
that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the
called function raised an exception, and if so, pass the exception state on to its caller. It should discard any
object references that it owns, and return an error indicator, but it should not set another exception — that
would overwrite the exception that was just raised, and lose important information about the exact cause of
the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence() example
above. It so happens that this example doesn’t need to clean up any owned references when it detects an
error. The following example function shows some error cleanup. First, to remind you why you like Python,
we show the equivalent Python code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item — 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item(PyObject *dict, PyObject *key)

* Objects all initialized to NULL for Py XDECREF */
PyObject *item — NULL, *const _one — NULL, *incremented item — NULL;
int rv = -1; /* Return value initialized to -1 (failure) *

item — PyObject _GetItem(dict, key);
if (item —— NULL) {
/* Handle KeyError only: *
if ('PyErr_ExceptionMatches(PyExc_KeyError))
goto error;
* Clear the error and use zero: *
PyErr Clear();
item = PyInt FromLong(0L);
if (item —— NULL)
goto error;

(continues on next page)

8 Chapter 1. Introduction

The Python/C API, Release 2.7.16rcl

continued from previous page
g

const _one = PyInt FromLong(1L);
if (const _one == NULL)
goto error;

incremented _item — PyNumber Add(item, const one);
if (incremented item —— NULL)
goto error;

if (PyObject SetItem(dict, key, incremented item) < 0)
goto error;

rv = 0; /* Success

* Continue with cleanup code *

*

error:
* Cleanup code, shared by success and failure path */

/* Use Py XDECREF() to ignore NULL references */
Py XDECREF (item);

Py XDECREF(const_ one);

Py XDECREF (incremented item);

return rv; /* -1 for error, 0 for success *

}

This example represents an endorsed use of the goto statement in C! It illustrates the use of Py-
Err ExceptionMatches() and PyErr Clear() to handle specific exceptions, and the use of Py XDECREF()
to dispose of owned references that may be NULL (note the 'X"' in the name; Py DECREF() would crash
when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to -1 (failure) and
only set to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter
have to worry about is the initialization, and possibly the finalization, of the Python interpreter. Most
functionality of the interpreter can only be used after the interpreter has been initialized.

The basic initialization function is Py Initialize(). This initializes the table of loaded modules, and creates
the fundamental modules ~ builtin , main , sys, and exceptions. It also initializes the module
search path (sys.path).

Py Initialize() does not set the “script argument list” (sys.argv). If this variable is needed by Python code
that will be executed later, it must be set explicitly with a call to PySys SetArgvEx(argc, argv, updatepath)
after the call to Py Initialize().

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py Initialize() calculates the module search path based upon its best guess for the location of the stan-
dard Python interpreter executable, assuming that the Python library is found in a fixed location relative
to the Python interpreter executable. In particular, it looks for a directory named lib/pythonX.Y relative
to the parent directory where the executable named python is found on the shell command search path (the
environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries
are in /usr/local/lib/pythonX.Y. (In fact, this particular path is also the “fallback” location, used when
no executable file named python is found along PATH.) The user can override this behavior by setting

1.4. Embedding Python 9

The Python/C API, Release 2.7.16rcl

the environment variable PYTHONHOME, or insert additional directories in front of the standard path by
setting PYTHONPATH.

The embedding application can steer the search by calling Py SetProgramName(file) before calling
Py_ Initialize(). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in
front of the standard path. An application that requires total control has to provide its own implementa-
tion of Py GetPath(), Py GetPrefix(), Py GetExecPrefix(), and Py GetProgramFullPath() (all defined
in Modules/getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over
(make another call to Py Initialize()) or the application is simply done with its use of Python and wants
to free memory allocated by Python. This can be accomplished by calling Py Finalize(). The function
Py _IsInitialized() returns true if Python is currently in the initialized state. More information about these
functions is given in a later chapter. Notice that Py Finalize() does not free all memory allocated by the
Python interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.5 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules.
These checks tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator,
or low-level profiling of the main interpreter loop. Only the most frequently-used builds will be described in
the remainder of this section.

Compiling the interpreter with the Py DEBUG macro defined produces what is generally meant by “a debug
build” of Python. Py DEBUG is enabled in the Unix build by adding --with-pydebug to the ./configure
command. It is also implied by the presence of the not-Python-specific _ DEBUG macro. When Py DEBUG
is enabled in the Unix build, compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:
¢ Extra checks are added to the object allocator.
¢ Extra checks are added to the parser and compiler.
¢ Downcasts from wide types to narrow types are checked for loss of information.

e A number of assertions are added to the dictionary and set implementations. In addition, the set
object acquires a test c_api() method.

 Sanity checks of the input arguments are added to frame creation.

e The storage for long ints is initialized with a known invalid pattern to catch reference to uninitialized
digits.

¢ Low-level tracing and extra exception checking are added to the runtime virtual machine.
¢ Extra checks are added to the memory arena implementation.
* Extra debugging is added to the thread module.

There may be additional checks not mentioned here.

Defining Py TRACE REFS enables reference tracing. When defined, a circular doubly linked list of active
objects is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well.

Upon exit, all existing references are printed. (In interactive mode this happens after every statement run
by the interpreter.) Implied by Py DEBUG.

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

10 Chapter 1. Introduction

CHAPTER

TWO

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they
will not let you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start sym-
bols are Py eval input, Py file input, and Py _single input. These are described following the functions
which accept them as parameters.

Note also that several of these functions take FILE* parameters. One particular issue which needs to be
handled carefully is that the FILE structure for different C libraries can be different and incompatible. Under
Windows (at least), it is possible for dynamically linked extensions to actually use different libraries, so care
should be taken that FILE* parameters are only passed to these functions if it is certain that they were
created by the same library that the Python runtime is using.

int Py Main(int argc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed
Python. The argc and argv parameters should be prepared exactly as those which are passed to a
C program’s main() function. It is important to note that the argument list may be modified (but
the contents of the strings pointed to by the argument list are not). The return value will be 0 if the
interpreter exits normally (ie, without an exception), 1 if the interpreter exits due to an exception, or
2 if the parameter list does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the
process, as long as Py InspectFlag is not set.

int PyRun _AnyFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun AnyFileExFlags() below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_AnyFileFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun _AnyFileExFlags() below, leaving the closeit argument set to
0.

int PyRun _AnyFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun AnyFileExFlags() below, leaving the flags argument set to
NULL.

int PyRun_AnyFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix
pseudo-terminal), return the value of PyRun InteractiveLoop(), otherwise return the result of
PyRun_SimpleFile(). If filename is NULL, this function uses "??77?" as the filename.

int PyRun_ SimpleString(const char *command)
This is a simplified interface to PyRun SimpleStringFlags() below, leaving the PyCompilerFlags*
argument set to NULL.

11

The Python/C API, Release 2.7.16rcl

int PyRun _SimpleStringFlags(const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the _ main module according to the flags
argument. If main does not already exist, it is created. Returns 0 on success or -1 if an
exception was raised. If there was an error, there is no way to get the exception information. For the
meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the
process, as long as Py InspectFlag is not set.

int PyRun_SimpleFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun _SimpleFileExFlags() below, leaving closeit set to 0 and flags
set to NULL.

int PyRun_SimpleFileFlags(FILE *{p, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving closeit set to 0.

int PyRun_SimpleFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun SimpleFileExFlags() below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags(), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file. If closeit is true, the file is closed before
PyRun SimpleFileExFlags returns.

int PyRun InteractiveOne(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags() below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to
the flags argument. The user will be prompted using sys.psl and sys.ps2. Returns 0 when the input
was executed successfully, -1 if there was an exception, or an error code from the errcode.h include
file distributed as part of Python if there was a parse error. (Note that errcode.h is not included by
Python.h, so must be included specifically if needed.)

int PyRun_InteractiveLoop(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags() below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached.
The user will be prompted using sys.psl and sys.ps2. Returns 0 at EOF.

struct _node* PyParser SimpleParseString(const char *str, int start)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename() below, leaving filename
set to NULL and flags set to 0.

struct _node* PyParser SimpleParseStringFlags(const char *str, int start, int flags)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename() below, leaving filename
set to NULL.

struct _node* PyParser SimpleParseStringFlagsFilename(const char *str, const char *filename,
int start, int flags)
Parse Python source code from str using the start token start according to the flags argument. The
result can be used to create a code object which can be evaluated efficiently. This is useful if a code
fragment must be evaluated many times.

struct _node* PyParser SimpleParseFile(FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser SimpleParseFileFlags() below, leaving flags set to 0.

struct _node* PyParser SimpleParseFileFlags(FILE *fp, const char *filename, int start, int flags)
Similar to PyParser SimpleParseStringFlagsFilename(), but the Python source code is read from fp
instead of an in-memory string.

12 Chapter 2. The Very High Level Layer

The Python/C API, Release 2.7.16rcl

PyObject® PyRun_ String(const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun _StringFlags() below, leaving
flags set to NULL.

PyObject* PyRun_ StringFlags(const char *str, int start, PyObject *globals, PyObject *locals, Py-
CompilerFlags *flags)
Return value: New reference. Execute Python source code from str in the context specified by the
dictionaries globals and locals with the compiler flags specified by flags. The parameter start specifies
the start token that should be used to parse the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals)
Return value: New reference. This is a simplified interface to PyRun FileExFlags() below, leaving
closeit set to 0 and flags set to NULL.

PyObject* PyRun_FileEx(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit)
Return value: New reference. This is a simplified interface to PyRun FileExFlags() below, leaving
flags set to NULL.

PyObject* PyRun_FileFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyOb-
ject *locals, PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun FileExFlags() below, leaving
closeit set to 0.

PyObject* PyRun_FileExFlags(FILE *{p, const char *filename, int start, PyObject *globals, PyOb-
ject *locals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun StringFlags(), but the Python source code is read
from fp instead of an in-memory string. filename should be the name of the file. If closeit is true, the
file is closed before PyRun _FileExFlags() returns.

PyObject* Py CompileString(const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py CompileStringFlags() below, leaving
flags set to NULL.

PyObject* Py CompileStringFlags(const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. Parse and compile the Python source code in str, returning the resulting
code object. The start token is given by start; this can be used to constrain the code which can be
compiled and should be Py eval input, Py file input, or Py _single input. The filename specified
by filename is used to construct the code object and may appear in tracebacks or SyntaxError exception
messages. This returns NULL if the code cannot be parsed or compiled.

PyObject* PyEval EvalCode(PyCodeObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval EvalCodeEx(), with just the
code object, and the dictionaries of global and local variables. The other arguments are set to NULL.

PyObject* PyEval EvalCodeEx(PyCodeObject *co, PyObject *globals, PyObject *locals, PyOb-
ject **args, int argcount, PyObject **kws, int kwcount, PyOb-
ject **defs, int defcount, PyObject *closure)
Evaluate a precompiled code object, given a particular environment for its evaluation. This environ-
ment consists of dictionaries of global and local variables, arrays of arguments, keywords and defaults,
and a closure tuple of cells.

PyObject* PyEval EvalFrame(PyFrameObject *f)
Evaluate an execution frame. This is a simplified interface to PyEval EvalFrameEx, for backward
compatibility.

13

The Python/C API, Release 2.7.16rcl

PyObject* PyEval EvalFrameEx(PyFrameObject *f, int throwflag)
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The
code object associated with the execution frame f is executed, interpreting bytecode and executing
calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes an
exception to immediately be thrown; this is used for the throw() methods of generator objects.

int PyEval MergeCompilerFlags(PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on
failure.

int Py eval input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString().

int Py file input
The start symbol from the Python grammar for sequences of statements as read from a file or other
source; for use with Py CompileString(). This is the symbol to use when compiling arbitrarily long
Python source code.

int Py single input
The start symbol from the Python grammar for a single statement; for use with Py CompileString().
This is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is
passed as int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags.
In this case, from _ future _ import can modify flags.

Whenever PyCompilerFlags *flags is NULL, cf flags is treated as equal to 0, and any modification
due to from __ future _ import is discarded.

struct PyCompilerFlags {
int cf _flags;
}

int CO_FUTURE _DIVISION
This bit can be set in flags to cause division operator / to be interpreted as “true division” according
to PEP 238.

14 Chapter 2. The Very High Level Layer

https://www.python.org/dev/peps/pep-0238

CHAPTER

THREE

REFERENCE COUNTING

The macros in this section are used for managing reference counts of Python objects.

void Py INCREF(PyObject *o)
Increment the reference count for object 0. The object must not be NULL; if you aren’t sure that it
isn’t NULL, use Py XINCREF().

void Py XINCREF(PyObject *o)
Increment the reference count for object o. The object may be NULL, in which case the macro has no
effect.

void Py DECREF(PyObject *o)
Decrement the reference count for object o. The object must not be NULL; if you aren’t sure that it
isn’t NULL, use Py XDECREF(). If the reference count reaches zero, the object’s type’s deallocation
function (which must not be NULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a
class instance with a __del () method is deallocated). While exceptions in such code are not
propagated, the executed code has free access to all Python global variables. This means that any
object that is reachable from a global variable should be in a consistent state before Py DECREF ()
is invoked. For example, code to delete an object from a list should copy a reference to the deleted
object in a temporary variable, update the list data structure, and then call Py DECREF() for
the temporary variable.

void Py XDECREF (PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has
no effect; otherwise the effect is the same as for Py DECREF(), and the same warning applies.

void Py CLEAR(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has
no effect; otherwise the effect is the same as for Py DECREF(), except that the argument is also set
to NULL. The warning for Py DECREF() does not apply with respect to the object passed because
the macro carefully uses a temporary variable and sets the argument to NULL before decrementing its
reference count.

It is a good idea to use this macro whenever decrementing the value of a variable that might be
traversed during garbage collection.

New in version 2.4.

The following functions are for runtime dynamic embedding of Python: Py IncRef(PyObject *o),
Py DecRef(PyObject *o). They are simply exported function versions of Py XINCREF() and
Py XDECREF(), respectively.

15

The Python/C API, Release 2.7.16rcl

The following functions or macros are only for use within the interpreter core: Py Dealloc(),
_ Py ForgetReference(), Py NewReference(), as well as the global variable Py RefTotal.

16 Chapter 3. Reference Counting

CHAPTER

FOUR

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important
to understand some of the basics of Python exception handling. It works somewhat like the Unix errno
variable: there is a global indicator (per thread) of the last error that occurred. Most functions don’t clear
this on success, but will set it to indicate the cause of the error on failure. Most functions also return an error
indicator, usually NULL if they are supposed to return a pointer, or -1 if they return an integer (exception:
the PyArg *() functions return 1 for success and 0 for failure).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator;
the function it called already set it. It is responsible for either handling the error and clearing the exception
or returning after cleaning up any resources it holds (such as object references or memory allocations); it
should not continue normally if it is not prepared to handle the error. If returning due to an error, it
is important to indicate to the caller that an error has been set. If the error is not handled or carefully
propagated, additional calls into the Python/C API may not behave as intended and may fail in mysterious
ways.

The error indicator consists of three Python objects corresponding to the Python variables sys.exc type,
sys.exc_ value and sys.exc traceback. API functions exist to interact with the error indicator in various
ways. There is a separate error indicator for each thread.

void PyErr PrintEx(int set sys last vars)
Print a standard traceback to sys.stderr and clear the error indicator. Call this function only when the
error indicator is set. (Otherwise it will cause a fatal error!)

If set sys last vars is nonzero, the variables sys.last type, sys.last value and sys.last traceback
will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print()
Alias for PyErr_ PrintEx(1).

PyObject* PyErr _Occurred()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception
type (the first argument to the last call to one of the PyErr_ Set*() functions or to PyErr_ Restore()).

If not set, return NULL. You do not own a reference to the return value, so you do not need to
Py DECREF() it.

Note: Do not compare the return value to a specific exception; use PyErr ExceptionMatches()
instead, shown below. (The comparison could easily fail since the exception may be an instance
instead of a class, in the case of a class exception, or it may be a subclass of the expected exception.)

int PyErr ExceptionMatches(PyObject *exc)
Equivalent to PyErr GivenExceptionMatches(PyErr Occurred(), exc). This should only be called
when an exception is actually set; a memory access violation will occur if no exception has been raised.

17

The Python/C API, Release 2.7.16rcl

int PyErr GivenExceptionMatches(PyObject *given, PyObject *exc)
Return true if the given exception matches the exception in exc. If exc is a class object, this also
returns true when given is an instance of a subclass. If exc is a tuple, all exceptions in the tuple (and
recursively in subtuples) are searched for a match.

void PyErr NormalizeException(PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_ Fetch() below can be “unnormalized”,
meaning that *exc is a class object but *val is not an instance of the same class. This function can be
used to instantiate the class in that case. If the values are already normalized, nothing happens. The
delayed normalization is implemented to improve performance.

void PyErr_ Clear()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is
not set, set all three variables to NULL. If it is set, it will be cleared and you own a reference to each
object retrieved. The value and traceback object may be NULL even when the type object is not.

Note: This function is normally only used by code that needs to handle exceptions or by code that
needs to save and restore the error indicator temporarily.

void PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If
the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value
or traceback. The exception type should be a class. Do not pass an invalid exception type or value.
(Violating these rules will cause subtle problems later.) This call takes away a reference to each object:
you must own a reference to each object before the call and after the call you no longer own these
references. (If you don’t understand this, don’t use this function. I warned you.)

Note: This function is normally only used by code that needs to save and restore the error indicator
temporarily; use PyErr Fetch() to save the current exception state.

void PyErr_SetString(PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type;
it is normally one of the standard exceptions, e.g. PyExc RuntimeError. You need not increment its
reference count. The second argument is an error message; it is converted to a string object.

void PyErr_SetObject(PyObject *type, PyObject *value)
This function is similar to PyErr_SetString() but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyErr_Format(PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception
should be a Python exception class. The format and subsequent parameters help format the error
message; they have the same meaning and values as in PyString FromFormat().

void PyErr_SetNone(PyObject *type)
This is a shorthand for PyErr SetObject(type, Py None).
int PyErr_ BadArgument()
This is a shorthand for PyErr_SetString(PyExc _TypeError, message), where message indicates that
a built-in operation was invoked with an illegal argument. It is mostly for internal use.
PyObject* PyErr_ NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr SetNone(PyExc MemoryError); it re-

18 Chapter 4. Exception Handling

The Python/C API, Release 2.7.16rcl

turns NULL so an object allocation function can write return PyErr NoMemory(); when it runs out
of memory.

PyObject* PyErr _SetFromErrno(PyObject *type)

Return value: Always NULL. This is a convenience function to raise an exception when a C library
function has returned an error and set the C variable errno. It constructs a tuple object whose first
item is the integer errno value and whose second item is the corresponding error message (gotten
from strerror()), and then calls PyErr_SetObject(type, object). On Unix, when the errno value is
EINTR, indicating an interrupted system call, this calls PyErr CheckSignals(), and if that set the
error indicator, leaves it set to that. The function always returns NULL, so a wrapper function around
a system call can write return PyErr SetFromErrno(type); when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject(PyObject *type, PyObject *filenameObject)
Similar to PyErr_SetFromErrno(), with the additional behavior that if filenameObject is not NULL,
it is passed to the constructor of type as a third parameter. In the case of exceptions such as IOError
and OSError, this is used to define the filename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilename(PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_ SetFromErrnoWithFilenameObject(), but the filename
is given as a C string.

PyObject* PyErr_SetFromWindowsErr(int ierr)
Return value: Always NULL. This is a convenience function to raise WindowsError. If called with ierr
of 0, the error code returned by a call to GetLastError() is used instead. It calls the Win32 function For-
matMessage() to retrieve the Windows description of error code given by ierr or GetLastError(), then it
constructs a tuple object whose first item is the ierr value and whose second item is the corresponding er-
ror message (gotten from FormatMessage()), and then calls PyErr _SetObject(PyExc WindowsError,
object). This function always returns NULL. Availability: Windows.

PyObject* PyErr SetExcFromWindowsErr(PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr _SetFromWindowsErr(), with an additional parameter
specifying the exception type to be raised. Availability: Windows.

New in version 2.3.

PyObject* PyErr _SetFromWindowsErrWithFilenameObject(int ierr, PyObject *filenameObject)
Similar to PyErr_SetFromWindowsErr(), with the additional behavior that if filenameObject is not
NULL, it is passed to the constructor of WindowsError as a third parameter. Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename(int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr SetFromWindowsErrWithFilenameObject(), but the
filename is given as a C string. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject(PyObject *type, int ierr, PyOb-
ject *filename)
Similar to PyErr SetFromWindowsErrWithFilenameObject(), with an additional parameter specify-
ing the exception type to be raised. Availability: Windows.

New in version 2.3.

PyObject* PyErr_SetExcFromWindowsErrWithFilename(PyObject *type, int ierr, const char *file-
name)
Return value: Always NULL. Similar to PyErr SetFromWindowsErrWithFilename(), with an addi-
tional parameter specifying the exception type to be raised. Availability: Windows.

New in version 2.3.

void PyErr_ BadInternalCall()
This is a shorthand for PyErr SetString(PyExc SystemError, message), where message indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is
mostly for internal use.

19

The Python/C API, Release 2.7.16rcl

int PyErr WarnEx(PyObject *category, char *message, int stacklevel)
Issue a warning message. The category argument is a warning category (see below) or NULL; the
message argument is a message string. stacklevel is a positive number giving a number of stack frames;
the warning will be issued from the currently executing line of code in that stack frame. A stacklevel
of 1 is the function calling PyErr WarnEx(), 2 is the function above that, and so forth.

This function normally prints a warning message to sys.stderr; however, it is also possible that the user
has specified that warnings are to be turned into errors, and in that case this will raise an exception. It
is also possible that the function raises an exception because of a problem with the warning machinery
(the implementation imports the warnings module to do the heavy lifting). The return value is 0
if no exception is raised, or -1 if an exception is raised. (It is not possible to determine whether a
warning message is actually printed, nor what the reason is for the exception; this is intentional.) If an
exception is raised, the caller should do its normal exception handling (for example, Py DECREF()
owned references and return an error value).

Warning categories must be subclasses of PyExc Warning; PyExc Warning is a subclass of
PyExc_Exception; the default warning category is PyExc RuntimeWarning. The standard Python
warning categories are available as global variables whose names are enumerated at Standard Warning
Categories.

For information about warning control, see the documentation for the warnings module and the -W
option in the command line documentation. There is no C API for warning control.

int PyErr Warn(PyObject *category, char *message)
Issue a warning message. The category argument is a warning category (see below) or NULL; the
message argument is a message string. The warning will appear to be issued from the function calling
PyErr Warn(), equivalent to calling PyErr WarnEx() with a stacklevel of 1.

Deprecated; use PyErr WarnEx() instead.

int PyErr_ WarnExplicit(PyObject *category, const char *message, const char *filename, int lineno,
const char *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward
wrapper around the Python function warnings.warn _explicit(), see there for more information. The
module and registry arguments may be set to NULL to get the default effect described there.

int PyErr WarnPy3k(char *message, int stacklevel)
Issue a DeprecationWarning with the given message and stacklevel if the Py Py3kWarningFlag flag is
enabled.

New in version 2.6.

int PyErr _CheckSignals()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the
processes and if so, invokes the corresponding signal handler. If the signal module is supported, this
can invoke a signal handler written in Python. In all cases, the default effect for SIGINT is to raise
the KeyboardInterrupt exception. If an exception is raised the error indicator is set and the function
returns -1; otherwise the function returns 0. The error indicator may or may not be cleared if it was
previously set.

void PyErr_ SetInterrupt()
This function simulates the effect of a SIGINT signal arriving — the next time PyErr CheckSignals()
is called, KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.

int PySignal SetWakeupFd(int fd)
This utility function specifies a file descriptor to which a '\0' byte will be written whenever a signal
is received. It returns the previous such file descriptor. The value -1 disables the feature; this is the
initial state. This is equivalent to signal.set wakeup fd() in Python, but without any error checking.
fd should be a valid file descriptor. The function should only be called from the main thread.

20 Chapter 4. Exception Handling

The Python/C API, Release 2.7.16rcl

New in version 2.6.

PyObject* PyErr NewException(char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The
name argument must be the name of the new exception, a C string of the form module.classname.
The base and dict arguments are normally NULL. This creates a class object derived from Exception
(accessible in C as PyExc_Exception).

The module attribute of the new class is set to the first part (up to the last dot) of the name
argument, and the class name is set to the last part (after the last dot). The base argument can be
used to specify alternate base classes; it can either be only one class or a tuple of classes. The dict
argument can be used to specify a dictionary of class variables and methods.

PyObject* PyErr_ NewExceptionWithDoc(char *name, char *doc, PyObject *base, PyObject *dict)
Return value: New reference. Same as PyErr NewException(), except that the new exception class
can easily be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception
class.

New in version 2.7.

void PyErr_ WriteUnraisable(PyObject *obj)
This utility function prints a warning message to sys.stderr when an exception has been set but it is
impossible for the interpreter to actually raise the exception. It is used, for example, when an exception
occurs in an __del () method.

The function is called with a single argument obj that identifies the context in which the unraisable
exception occurred. If possible, the repr of obj will be printed in the warning message.

4.1 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject® PyUnicodeDecodeError _Create(const char *encoding, const char *object,
Py ssize t length, Py ssize t start, Py _ssize t end,
const char *reason)
Create a UnicodeDecodeError object with the attributes encoding, object, length, start, end and
reason.

PyObject* PyUnicodeEncodeError Create(const char *encoding, const Py UNICODE *object,
Py ssize t length, Py ssize t start, Py ssize t end,
const char *reason)
Create a UnicodeEncodeError object with the attributes encoding, object, length, start, end and
reason.

PyObject® PyUnicodeTranslateError Create(const Py UNICODE *object, Py ssize t length,

Py ssize t start, Py ssize t end, const char *reason)
Create a UnicodeTranslateError object with the attributes object, length, start, end and reason.

PyObject* PyUnicodeDecodeError GetEncoding(PyObject *exc)
PyObject* PyUnicodeEncodeError GetEncoding(PyObject *exc)
Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError GetObject(PyObject *exc)

PyObject* PyUnicodeEncodeError GetObject(PyObject *exc)

PyObject* PyUnicodeTranslateError GetObject(PyObject *exc)
Return the object attribute of the given exception object.

int PyUnicodeDecodeError GetStart(PyObject *exc, Py ssize t *start)
int PyUnicodeEncodeError GetStart(PyObject *exc, Py ssize t *start)

4.1. Unicode Exception Objects 21

The Python/C API, Release 2.7.16rcl

int PyUnicodeTranslateError GetStart(PyObject *exc, Py ssize t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL.
Return 0 on success, -1 on failure.

int PyUnicodeDecodeError _SetStart(PyObject *exc, Py ssize t start)
int PyUnicodeEncodeError SetStart(PyObject *exc, Py ssize t start)
int PyUnicodeTranslateError _SetStart(PyObject *exc, Py ssize t start)
Set the start attribute of the given exception object to start. Return 0 on success, -1 on failure.

int PyUnicodeDecodeError GetEnd(PyObject *exc, Py ssize t *end)

int PyUnicodeEncodeError GetEnd(PyObject *exc, Py ssize t *end)

int PyUnicodeTranslateError GetEnd(PyObject *exc, Py ssize t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL.
Return 0 on success, -1 on failure.

int PyUnicodeDecodeError _SetEnd(PyObject *exc, Py ssize t end)
int PyUnicodeEncodeError SetEnd(PyObject *exc, Py ssize t end)
int PyUnicodeTranslateError _SetEnd(PyObject *exc, Py ssize t end)
Set the end attribute of the given exception object to end. Return 0 on success, -1 on failure.

PyObject* PyUnicodeDecodeError GetReason(PyObject *exc)

PyObject* PyUnicodeEncodeError GetReason(PyObject *exc)

PyObject* PyUnicodeTranslateError GetReason(PyObject *exc)
Return the reason attribute of the given exception object.

int PyUnicodeDecodeError _SetReason(PyObject *exc, const char *reason)
int PyUnicodeEncodeError _SetReason(PyObject *exc, const char *reason)
int PyUnicodeTranslateError _SetReason(PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return 0 on success, -1 on failure.

4.2 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in
extension modules. They are needed if the recursive code does not necessarily invoke Python code (which
tracks its recursion depth automatically).

int Py EnterRecursiveCall(const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE STACKCHECK is defined, this function checks if the OS stack overflowed using
PyOS CheckStack(). In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RuntimeError is set
and a nonzero value is returned. Otherwise, zero is returned.

where should be a string such as " in instance check" to be concatenated to the RuntimeError message
caused by the recursion depth limit.

void Py _LeaveRecursiveCall()
Ends a Py EnterRecursiveCall(). Must be called once for each successful invocation of
Py _EnterRecursiveCall().

4.3 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc__ followed by the
Python exception name. These have the type PyObject®; they are all class objects. For completeness, here

22 Chapter 4. Exception Handling

The Python/C API, Release 2.7.16rcl

are all the variables:

C Name Python Name Notes
PyExc_BaseException BaseException (1), (4)
PyExc_Exception Exception (1)
PyExc_StandardError StandardError (1)
PyExc_ ArithmeticError ArithmeticError (1)
PyExc_AssertionError AssertionError

PyExc__ AttributeError AttributeError

PyExc BufferError BufferError
PyExc_EnvironmentError EnvironmentError (1)
PyExc_EOFError EOFError
PyExc_FloatingPointError FloatingPointError

PyExc GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError

PyExc IndexError IndexError

PyExc IOError IOError

PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (1)
PyExc_MemoryError MemoryError

PyExc NameError NameError
PyExc_NotImplementedError | NotImplementedError
PyExc OSError OSError

PyExc OverflowError OverflowError

PyExc _ReferenceError ReferenceError (2)
PyExc_RuntimeError RuntimeError

PyExc Stoplteration Stoplteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError

PyExc_ SystemExit SystemExit
PyExc_TabError TabError
PyExc_TypeError TypeError
PyExc_UnboundLocalError UnboundLocalError

PyExc UnicodeDecodeError UnicodeDecodeError
PyExc_UnicodeEncodeError UnicodeEncodeError

PyExc UnicodeError UnicodeError

PyExc_UnicodeTranslateError

UnicodeTranslateError

PyExc VMSError

VMSError

PyExc_ValueError ValueError
PyExc_WindowsError WindowsError (3)
PyExc_ZeroDivisionError ZeroDivisionError

Notes:

(1) This is a base class for other standard exceptions.

(2) This is the same as weakref.ReferenceError.

(3) Only defined on Windows; protect code that uses this by testing that the
MS_ WINDOWS is defined.

(4) New in version 2.5.

preprocessor macro

4.3. Standard Exceptions

23

The Python/C API, Release 2.7.16rcl

(5) Only defined on VMS; protect code that uses this by testing that the preprocessor macro ~ VMS is
defined.

4.4 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc _ followed
by the Python exception name. These have the type PyObject™; they are all class objects. For completeness,

here are all the variables:

C Name Python Name Notes
PyExc Warning Warning (1)
PyExc_BytesWarning BytesWarning

PyExc DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning

PyExc PendingDeprecationWarning | PendingDeprecationWarning
PyExc_RuntimeWarning RuntimeWarning

PyExc SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning

PyExc UserWarning UserWarning

Notes:

(1) This is a base class for other standard warning categories.

4.5 String Exceptions

Changed in version 2.6: All exceptions to be raised or caught must be derived from BaseException. Trying
to raise a string exception now raises TypeError.

24 Chapter 4. Exception Handling

CHAPTER

FIVE

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable
across platforms, using Python modules from C, and parsing function arguments and constructing Python
values from C values.

5.1 Operating System Utilities

int Py _FdIsInteractive(FILE *fp, const char *filename)
Return true (nonzero) if the standard I/0 file fp with name filename is deemed interactive. This is
the case for files for which isatty(fileno(fp)) is true. If the global flag Py InteractiveFlag is true, this
function also returns true if the filename pointer is NULL or if the name is equal to one of the strings
'<stdin>" or '?777".

void PyOS__ AfterFork()
Function to update some internal state after a process fork; this should be called in the new process
if the Python interpreter will continue to be used. If a new executable is loaded into the new process,
this function does not need to be called.

int PyOS_ CheckStack()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ com-
piler). USE_STACKCHECK will be defined automatically; you should never change the definition in
your own code.

PyOS_sighandler t PyOS_getsig(int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction() or
signal(). Do not call those functions directly! PyOS sighandler t is a typedef alias for void (*)(int).

PyOS_sighandler t PyOS _setsig(int i, PyOS_sighandler t h)
Set the signal handler for signal i to be h; return the old signal handler. This is a thin wrapper around
either sigaction() or signal(). Do not call those functions directly! PyOS sighandler t is a typedef
alias for void (*)(int).

5.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all
work with the current interpreter thread’s sys module’s dict, which is contained in the internal thread state
structure.

25

The Python/C API, Release 2.7.16rcl

PyObject *PySys_GetObject(char *name)
Return value: Borrowed reference. Return the object name from the sys module or NULL if it does
not exist, without setting an exception.

FILE *PySys_ GetFile(char *name, FILE *def)
Return the FILE* associated with the object name in the sys module, or def if name is not in the
module or is not associated with a FILE*.

int PySys SetObject(char *name, PyObject *v)
Set name in the sys module to v unless v is NULL, in which case name is deleted from the sys module.
Returns 0 on success, -1 on error.

void PySys ResetWarnOptions()
Reset sys.warnoptions to an empty list.

void PySys AddWarnOption(char *s)
Append s to sys.warnoptions.

void PySys_SetPath(char *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the
platform’s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout(const char *format, ...)
Write the output string described by format to sys.stdout. No exceptions are raised, even if truncation
occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000
bytes, the output string is truncated. In particular, this means that no unrestricted “%s” formats
should occur; these should be limited using “%.<N>s” where <N> is a decimal number calculated so
that <N> plus the maximum size of other formatted text does not exceed 1000 bytes. Also watch out
for “%f”, which can print hundreds of digits for very large numbers.

If a problem occurs, or sys.stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys WriteStderr(const char *format, ...)
As above, but write to sys.stderr or stderr instead.

5.3 Process Control

void Py FatalError(const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only
be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be corrupted. On Unix, the standard C
library function abort() is called which will attempt to produce a core file.

void Py Exit(int status)
Exit the current process. This calls Py Finalize() and then calls the standard C library function
exit(status).

int Py AtExit(void (*func)())
Register a cleanup function to be called by Py Finalize(). The cleanup function will be called with
no arguments and should return no value. At most 32 cleanup functions can be registered. When
the registration is successful, Py AtExit() returns 0; on failure, it returns -1. The cleanup function
registered last is called first. Each cleanup function will be called at most once. Since Python’s internal
finalization will have completed before the cleanup function, no Python APIs should be called by func.

26 Chapter 5. Utilities

The Python/C API, Release 2.7.16rcl

5.4 Importing Modules

PyObject* Pylmport _ImportModule(const char *name)
Return value: New reference. This is a simplified interface to PyImport ImportModuleEx() below,
leaving the globals and locals arguments set to NULL and level set to 0. When the name argument
contains a dot (when it specifies a submodule of a package), the fromlist argument is set to the list ['*']
so that the return value is the named module rather than the top-level package containing it as would
otherwise be the case. (Unfortunately, this has an additional side effect when name in fact specifies a
subpackage instead of a submodule: the submodules specified in the package’s __all _ variable are
loaded.) Return a new reference to the imported module, or NULL with an exception set on failure.
Before Python 2.4, the module may still be created in the failure case — examine sys.modules to find
out. Starting with Python 2.4, a failing import of a module no longer leaves the module in sys.modules.

Changed in version 2.4: Failing imports remove incomplete module objects.
Changed in version 2.6: Always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock(const char *name)
This version of PyImport ImportModule() does not block. It’s intended to be used in C functions that
import other modules to execute a function. The import may block if another thread holds the import
lock. The function Pylmport ImportModuleNoBlock() never blocks. It first tries to fetch the module
from sys.modules and falls back to Pylmport ImportModule() unless the lock is held, in which case
the function will raise an ImportError.

New in version 2.6.

PyObject* PyImport ImportModuleEx(char *name, PyObject *globals, PyObject *locals, PyOb-
ject *fromlist)
Return value: New reference. Import a module. This is best described by referring to the built-in
Python function __ import (), as the standard __import () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with
an exception set on failure (before Python 2.4, the module may still be created in this case). Like
for __import__ (), the return value when a submodule of a package was requested is normally the
top-level package, unless a non-empty fromlist was given.

Changed in version 2.4: Failing imports remove incomplete module objects.

Changed in version 2.6: The function is an alias for PyImport ImportModuleLevel() with -1 as level,
meaning relative import.

PyObject* Pylmport ImportModuleLevel(char *name, PyObject *globals, PyObject *locals, PyOb-
ject *fromlist, int level)
Return value: New reference. Import a module. This is best described by referring to the built-in
Python function __ import (), as the standard __import () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an
exception set on failure. Like for import (), the return value when a submodule of a package

was requested is normally the top-level package, unless a non-empty fromlist was given.
New in version 2.5.

PyObject® PyImport Import(PyObject *name)
Return value: New reference. This is a higher-level interface that calls the current “import hook
function”. Tt invokes the __import () function from the __ builtins __ of the current globals. This
means that the import is done using whatever import hooks are installed in the current environment,
e.g. by rexec or ihooks.

Changed in version 2.6: Always uses absolute imports.

5.4. Importing Modules 27

The Python/C API, Release 2.7.16rcl

PyObject® PyImport ReloadModule(PyObject *m)

Return value: New reference. Reload a module. This is best described by referring to the built-in
Python function reload(), as the standard reload() function calls this function directly. Return a new
reference to the reloaded module, or NULL with an exception set on failure (the module still exists in
this case).

PyObject* PyImport _AddModule(const char *name)

Return value: Borrowed reference. Return the module object corresponding to a module name. The
name argument may be of the form package.module. First check the modules dictionary if there’s one
there, and if not, create a new one and insert it in the modules dictionary. Return NULL with an
exception set on failure.

Note: This function does not load or import the module; if the module wasn’t already loaded, you
will get an empty module object. Use Pylmport ImportModule() or one of its variants to import a
module. Package structures implied by a dotted name for name are not created if not already present.

PyObject* PyImport _ ExecCodeModule(char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package.module) and a
code object read from a Python bytecode file or obtained from the built-in function compile(), load
the module. Return a new reference to the module object, or NULL with an exception set if an error
occurred. Before Python 2.4, the module could still be created in error cases. Starting with Python
2.4, name is removed from sys.modules in error cases, and even if name was already in sys.modules
on entry to Pylmport ExecCodeModule(). Leaving incompletely initialized modules in sys.modules
is dangerous, as imports of such modules have no way to know that the module object is an unknown

(and probably damaged with respect to the module author’s intents) state.
The module’s __file_ attribute will be set to the code object’s co_ filename.

This function will reload the module if it was already imported. See PyImport ReloadModule() for
the intended way to reload a module.

If name points to a dotted name of the form package.module, any package structures not already
created will still not be created.

Changed in version 2.4: name is removed from sys.modules in error cases.

PyObject* Pylmport ExecCodeModuleEx(char *name, PyObject *co, char *pathname)

Return value: New reference. Like PyImport ExecCodeModule(), but the _ file attribute of the
module object is set to pathname if it is non-NULL.

long PyImport GetMagicNumber()

Return the magic number for Python bytecode files (a.k.a. .pyc and .pyo files). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* PyImport GetModuleDict()

Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a.
sys.modules). Note that this is a per-interpreter variable.

PyObject* Pylmport_ GetImporter(PyObject *path)

Return an importer object for a sys.path/pkg. path _ item path, possibly by fetching it from the
sys.path _importer cache dict. If it wasn’t yet cached, traverse sys.path hooks until a hook is found
that can handle the path item. Return None if no hook could; this tells our caller it should fall back to
the built-in import mechanism. Cache the result in sys.path _importer cache. Return a new reference
to the importer object.

New in version 2.6.

28

Chapter 5. Utilities

The Python/C API, Release 2.7.16rcl

void _PyImport_Init()

Initialize the import mechanism. For internal use only.

void PyImport _Cleanup()

Empty the module table. For internal use only.

void _PyImport Fini()

Finalize the import mechanism. For internal use only.

PyObject* PyImport FindExtension(char *, char *)

For internal use only.

PyObject* PyImport FixupExtension(char *, char *)

For internal use only.

int PyImport ImportFrozenModule(char *name)

Load a frozen module named name. Return 1 for success, 0 if the module is not found, and -1 with
an exception set if the initialization failed. To access the imported module on a successful load, use
PyImport ImportModule(). (Note the misnomer — this function would reload the module if it was
already imported.)

struct _frozen

This is the structure type definition for frozen module descriptors, as generated by the freeze utility
(see Tools/freeze/ in the Python source distribution). Its definition, found in Include/import.h, is:

struct _frozen {
char *name;
unsigned char *code;
int size;

};

struct _frozen* PyIlmport FrozenModules

This pointer is initialized to point to an array of struct _frozen records, terminated by one whose
members are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-
party code could play tricks with this to provide a dynamically created collection of frozen modules.

int PyImport AppendInittab(const char *name, void (*initfunc)(void))

Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport ExtendInittab(), returning -1 if the table could not be extended. The new module can be
imported by the name name, and uses the function initfunc as the initialization function called on the
first attempted import. This should be called before Py Initialize().

struct _inittab

Structure describing a single entry in the list of built-in modules. Each of these structures gives
the name and initialization function for a module built into the interpreter. Programs which embed
Python may use an array of these structures in conjunction with PyImport ExtendInittab() to provide
additional built-in modules. The structure is defined in Include/import.h as:

struct _inittab {
char *name;
void (*initfunc)(void);

b

int Pylmport ExtendInittab(struct inittab *newtab)

Add a collection of modules to the table of built-in modules. The newtab array must end with a
sentinel entry which contains NULL for the name field; failure to provide the sentinel value can result
in a memory fault. Returns 0 on success or -1 if insufficient memory could be allocated to extend the
internal table. In the event of failure, no modules are added to the internal table. This should be
called before Py Initialize().

0.4

Importing Modules 29

The Python/C API, Release 2.7.16rcl

5.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal
module. There are functions to write data into the serialization format, and additional functions that can
be used to read the data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version 0 is the historical version, version 1 (new in
Python 2.4) shares interned strings in the file, and upon unmarshalling. Version 2 (new in Python 2.5) uses
a binary format for floating point numbers. Py MARSHAL VERSION indicates the current file format
(currently 2).

void PyMarshal WriteLongToFile(long value, FILE *file, int version)
Marshal a long integer, value, to file. This will only write the least-significant 32 bits of value; regardless
of the size of the native long type.

Changed in version 2.4: version indicates the file format.

void PyMarshal WriteObjectToFile(PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file.

Changed in version 2.4: version indicates the file format.

PyObject* PyMarshal WriteObjectToString(PyObject *value, int version)
Return value: New reference. Return a string object containing the marshalled representation of value.

Changed in version 2.4: version indicates the file format.
The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in
a negative numeric value (where that’s relevant), but it’s not clear that negative values won’t be handled
properly when there’s no error. What’s the right way to tell? Should only non-negative values be written
using these routines?

long PyMarshal ReadLongFromFile(FILE *file)
Return a C long from the data stream in a FILE* opened for reading. Only a 32-bit value can be read
in using this function, regardless of the native size of long.

int PyMarshal _ReadShortFromFile(FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be
read in using this function, regardless of the native size of short.

PyObject* PyMarshal ReadObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for
reading. On error, sets the appropriate exception (EOFError or TypeError) and returns NULL.

PyObject* PyMarshal ReadLastObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for
reading. Unlike PyMarshal ReadObjectFromFile(), this function assumes that no further objects will
be read from the file, allowing it to aggressively load file data into memory so that the de-serialization
can operate from data in memory rather than reading a byte at a time from the file. Only use these
variant if you are certain that you won’t be reading anything else from the file. On error, sets the
appropriate exception (EOFError or TypeError) and returns NULL.

PyObject* PyMarshal ReadObjectFromString(char *string, Py ssize t len)
Return value: New reference. Return a Python object from the data stream in a character buffer
containing len bytes pointed to by string. On error, sets the appropriate exception (EOFError or
TypeError) and returns NULL.

30 Chapter 5. Utilities

The Python/C API, Release 2.7.16rcl

Changed in version 2.5: This function used an int type for len. This might require changes in your
code for properly supporting 64-bit systems.

5.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information
and examples are available in extending-index.

The first three of these functions described, PyArg ParseTuple(), PyArg ParseTupleAndKeywords(), and
PyArg Parse(), all use format strings which are used to tell the function about the expected arguments.
The format strings use the same syntax for each of these functions.

A format string consists of zero or more “format units.” A format unit describes one Python object; it is
usually a single character or a parenthesized sequence of format units. With a few exceptions, a format unit
that is not a parenthesized sequence normally corresponds to a single address argument to these functions.
In the following description, the quoted form is the format unit; the entry in (round) parentheses is the
Python object type that matches the format unit; and the entry in [square| brackets is the type of the C
variable(s) whose address should be passed.

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw
storage for the returned unicode or bytes area. Also, you won’t have to release any memory yourself, except
with the es, es#, et and et# formats.

s (string or Unicode) [const char *] Convert a Python string or Unicode object to a C pointer to a character
string. You must not provide storage for the string itself; a pointer to an existing string is stored into
the character pointer variable whose address you pass. The C string is NUL-terminated. The Python
string must not contain embedded NUL bytes; if it does, a TypeError exception is raised. Unicode
objects are converted to C strings using the default encoding. If this conversion fails, a UnicodeError
is raised.

s# (string, Unicode or any read buffer compatible object) [const char *, int (or Py ssize t, see below)]
This variant on s stores into two C variables, the first one a pointer to a character string, the second
one its length. In this case the Python string may contain embedded null bytes. Unicode objects pass
back a pointer to the default encoded string version of the object if such a conversion is possible. All
other read-buffer compatible objects pass back a reference to the raw internal data representation.

Starting with Python 2.5 the type of the length argument can be controlled by defining the macro
PY SSIZE T CLEAN before including Python.h. If the macro is defined, length is a Py ssize t
rather than an int.

s* (string, Unicode, or any buffer compatible object) [Py buffer] Similar to s#, this code fills a Py buffer
structure provided by the caller. The buffer gets locked, so that the caller can subsequently use
the buffer even inside a Py BEGIN ALLOW _ THREADS block; the caller is responsible for calling
PyBuffer Release with the structure after it has processed the data.

New in version 2.6.

z (string, Unicode or None) [const char *| Like s, but the Python object may also be None, in which case
the C pointer is set to NULL.

7# (string, Unicode, None or any read buffer compatible object) [const char *, int] This is to s# as z is to
s.

z* (string, Unicode, None or any buffer compatible object) [Py buffer| This is to s* as z is to s.
New in version 2.6.

u (Unicode) [Py_UNICODE *| Convert a Python Unicode object to a C pointer to a NUL-terminated buffer
of 16-bit Unicode (UTF-16) data. As with s, there is no need to provide storage for the Unicode data

5.6. Parsing arguments and building values 31

The Python/C API, Release 2.7.16rcl

buffer; a pointer to the existing Unicode data is stored into the Py UNICODE pointer variable whose
address you pass.

u# (Unicode) [Py UNICODE *, int] This variant on u stores into two C variables, the first one a pointer
to a Unicode data buffer, the second one its length. Non-Unicode objects are handled by interpreting
their read-buffer pointer as pointer to a Py UNICODE array.

es (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer] This vari-
ant on s is used for encoding Unicode and objects convertible to Unicode into a character buffer.
It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char* which
points to the name of an encoding as a NUL-terminated string, or NULL, in which case the default
encoding is used. An exception is raised if the named encoding is not known to Python. The second
argument must be a char**; the value of the pointer it references will be set to a buffer with the contents
of the argument text. The text will be encoded in the encoding specified by the first argument.

PyArg ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this buffer
and adjust *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem Free() to free the allocated buffer after use.

et (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer] Same as es
except that 8-bit string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

es# (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer, int *buffer length]
This variant on s# is used for encoding Unicode and objects convertible to Unicode into a character
buffer. Unlike the es format, this variant allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case the default encoding
is used. An exception is raised if the named encoding is not known to Python. The second argument
must be a char**; the value of the pointer it references will be set to a buffer with the contents of the
argument text. The text will be encoded in the encoding specified by the first argument. The third
argument must be a pointer to an integer; the referenced integer will be set to the number of bytes in
the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded
data into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible
for calling PyMem Free() to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple() will use
this location as the buffer and interpret the initial value of *buffer length as the buffer size. It will
then copy the encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a
TypeError will be set. Note: starting from Python 3.6 a ValueError will be set.

In both cases, *buffer length is set to the length of the encoded data without the trailing NUL byte.

et# (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer, int *buffer length]
Same as es# except that string objects are passed through without recoding them. Instead, the
implementation assumes that the string object uses the encoding passed in as parameter.

b (integer) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C
unsigned char.

B (integer) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char.

New in version 2.3.

32 Chapter 5. Utilities

The Python/C API, Release 2.7.16rcl

h (integer) [short int] Convert a Python integer to a C short int.

H (integer) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow check-
ing.

New in version 2.3.

i (integer) [int] Convert a Python integer to a plain C int.

I (integer) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.
New in version 2.3.

1 (integer) [long int] Convert a Python integer to a C long int.

k (integer) [unsigned long] Convert a Python integer or long integer to a C unsigned long without overflow
checking.

New in version 2.3.

L (integer) [PY LONG _LONG] Convert a Python integer to a C long long. This format is only available
on platforms that support long long (or _int64 on Windows).

K (integer) [unsigned PY LONG_LONG] Convert a Python integer or long integer to a C unsigned long
long without overflow checking. This format is only available on platforms that support unsigned long
long (or unsigned _int64 on Windows).

New in version 2.3.
n (integer) [Py ssize t] Convert a Python integer or long integer to a C Py _ssize t.
New in version 2.5.
¢ (string of length 1) [char] Convert a Python character, represented as a string of length 1, to a C char.
f (float) [float] Convert a Python floating point number to a C float.
d (float) [double] Convert a Python floating point number to a C double.
D (complex) [Py_complex] Convert a Python complex number to a C Py complex structure.

O (object) [PyObject *| Store a Python object (without any conversion) in a C object pointer. The C
program thus receives the actual object that was passed. The object’s reference count is not increased.
The pointer stored is not NULL.

O! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but
takes two C arguments: the first is the address of a Python type object, the second is the address of
the C variable (of type PyObject*) into which the object pointer is stored. If the Python object does
not have the required type, TypeError is raised.

0& (object) [converter, anything] Convert a Python object to a C variable through a converter function.
This takes two arguments: the first is a function, the second is the address of a C variable (of arbitrary
type), converted to void *. The converter function in turn is called as follows:

’ status = converter(object, address);

where object is the Python object to be converted and address is the void* argument that was passed
to the PyArg Parse®() function. The returned status should be 1 for a successful conversion and 0 if
the conversion has failed. When the conversion fails, the converter function should raise an exception
and leave the content of address unmodified.

S (string) [PyStringObject *| Like O but requires that the Python object is a string object. Raises Type-
Error if the object is not a string object. The C variable may also be declared as PyObject*.

5.6. Parsing arguments and building values 33

The Python/C API, Release 2.7.16rcl

U (Unicode string) [PyUnicodeObject *] Like O but requires that the Python object is a Unicode object.
Raises TypeError if the object is not a Unicode object. The C variable may also be declared as
PyObject*.

t# (read-only character buffer) [char *, int] Like s#, but accepts any object which implements the read-
only buffer interface. The char* variable is set to point to the first byte of the buffer, and the int is
set to the length of the buffer. Only single-segment buffer objects are accepted; TypeError is raised
for all others.

w (read-write character buffer) [char *] Similar to s, but accepts any object which implements the read-write
buffer interface. The caller must determine the length of the buffer by other means, or use w# instead.
Only single-segment buffer objects are accepted; TypeError is raised for all others.

w# (read-write character buffer) [char * Py ssize t] Like s#, but accepts any object which implements
the read-write buffer interface. The char * variable is set to point to the first byte of the buffer, and
the Py ssize t is set to the length of the buffer. Only single-segment buffer objects are accepted;
TypeError is raised for all others.

w* (read-write byte-oriented buffer) [Py buffer] This is to w what s* is to s.
New in version 2.6.

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of
format units in items. The C arguments must correspond to the individual format units in items.
Format units for sequences may be nested.

Note: Prior to Python version 1.5.2; this format specifier only accepted a tuple containing the
individual parameters, not an arbitrary sequence. Code which previously caused TypeError to be
raised here may now proceed without an exception. This is not expected to be a problem for existing
code.

It is possible to pass Python long integers where integers are requested; however no proper range checking
is done — the most significant bits are silently truncated when the receiving field is too small to receive the
value (actually, the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses.
They are:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables cor-
responding to optional arguments should be initialized to their default value — when an optional
argument is not specified, PyArg ParseTuple() does not touch the contents of the corresponding C
variable(s).

: The list of format units ends here; the string after the colon is used as the function name in error messages
(the “associated value” of the exception that PyArg ParseTuple() raises).

; The list of format units ends here; the string after the semicolon is used as the error message instead of
the default error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not
decrement their reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by
the format string; these are used to store values from the input tuple. There are a few cases, as described in
the list of format units above, where these parameters are used as input values; they should match what is
specified for the corresponding format unit in that case.

For the conversion to succeed, the arg object must match the format and the format must be exhausted.
On success, the PyArg Parse®() functions return true, otherwise they return false and raise an appropriate

34 Chapter 5. Utilities

The Python/C API, Release 2.7.16rcl

exception. When the PyArg Parse®() functions fail due to conversion failure in one of the format units, the
variables at the addresses corresponding to that and the following format units are left untouched.

int PyArg ParseTuple(PyObject *args, const char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables. Returns
true on success; on failure, it returns false and raises the appropriate exception.

int PyArg VaParse(PyObject *args, const char *format, va_ list vargs)
Identical to PyArg ParseTuple(), except that it accepts a va_list rather than a variable number of
arguments.

int PyArg ParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *key-

words|, ...)
Parse the parameters of a function that takes both positional and keyword parameters into local

variables. Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format,
char *keywords|[], va_list vargs)
Identical to PyArg ParseTupleAndKeywords(), except that it accepts a va_ list rather than a variable
number of arguments.

int PyArg Parse(PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of “old-style” functions — these are functions which
use the METH OLDARGS parameter parsing method. This is not recommended for use in parameter
parsing in new code, and most code in the standard interpreter has been modified to no longer use
this for that purpose. It does remain a convenient way to decompose other tuples, however, and may
continue to be used for that purpose.

int PyArg UnpackTuple(PyObject *args, const char *name, Py ssize t min, Py ssize t max, ...)

A simpler form of parameter retrieval which does not use a format string to specify the types of
the arguments. Functions which use this method to retrieve their parameters should be declared as
METH VARARGS in function or method tables. The tuple containing the actual parameters should
be passed as args; it must actually be a tuple. The length of the tuple must be at least min and no
more than max; min and max may be equal. Additional arguments must be passed to the function,
each of which should be a pointer to a PyObject™ variable; these will be filled in with the values from
args; they will contain borrowed references. The variables which correspond to optional parameters
not given by args will not be filled in; these should be initialized by the caller. This function returns
true on success and false if args is not a tuple or contains the wrong number of elements; an exception
will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the weakref helper module
for weak references:

static PyObject *

weakref ref(PyObject *self, PyObject *args)

{
PyObject *object;
PyObject *callback = NULL;
PyObject *result — NULL;

if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref NewRef(object, callback);
}

return result;

}

The call to PyArg UnpackTuple() in this example is entirely equivalent to this call to
PyArg ParseTuple():

5.6. Parsing arguments and building values 35

The Python/C API, Release 2.7.16rcl

’PyArg_ParseTuple(args, "O|O:ret", &object, &callback)

New in version 2.2.

Changed in version 2.5: This function used an int type for min and max. This might require changes
in your code for properly supporting 64-bit systems.

PyObject* Py BuildValue(const char *format, ...)

Return value: New reference. Create a new value based on a format string similar to those accepted
by the PyArg Parse™() family of functions and a sequence of values. Returns the value or NULL in
the case of an error; an exception will be raised if NULL is returned.

Py BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two
or more format units. If the format string is empty, it returns None; if it contains exactly one format
unit, it returns whatever object is described by that format unit. To force it to return a tuple of size
0 or one, parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and
s# formats, the required data is copied. Buffers provided by the caller are never referenced by the
objects created by Py BuildValue(). In other words, if your code invokes malloc() and passes the
allocated memory to Py BuildValue(), your code is responsible for calling free() for that memory once
Py BuildValue() returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is
the Python object type that the format unit will return; and the entry in [square| brackets is the type
of the C value(s) to be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units
such as s#). This can be used to make long format strings a tad more readable.

s (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointer is
NULL, None is used.

s# (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointer
is NULL, the length is ignored and None is returned.

z (string or None) [char *] Same as s.
7# (string or None) [char *, int] Same as s#.

u (Unicode string) [Py UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4)
data to a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (Unicode string) [Py_UNICODE * int] Convert a Unicode (UCS-2 or UCS-4) data buffer and its
length to a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored
and None is returned.

i (integer) [int] Convert a plain C int to a Python integer object.

b (integer) [char] Convert a plain C char to a Python integer object.

h (integer) [short int] Convert a plain C short int to a Python integer object.

1 (integer) [long int] Convert a C long int to a Python integer object.

B (integer) [unsigned char] Convert a C unsigned char to a Python integer object.

H (integer) [unsigned short int] Convert a C unsigned short int to a Python integer object.

I (integer/long) [unsigned int] Convert a C unsigned int to a Python integer object or a Python long
integer object, if it is larger than sys.maxint.

36

Chapter 5. Utilities

The Python/C API, Release 2.7.16rcl

k (integer/long) [unsigned long] Convert a C unsigned long to a Python integer object or a Python
long integer object, if it is larger than sys.maxint.

L (long) [PY LONG_LONG] Convert a C long long to a Python long integer object. Ounly available
on platforms that support long long.

K (long) [unsigned PY LONG_ LONG]| Convert a C unsigned long long to a Python long integer
object. Only available on platforms that support unsigned long long.

n (int) [Py ssize t] Convert a C Py _ssize t to a Python integer or long integer.
New in version 2.5.
¢ (string of length 1) [char| Convert a C int representing a character to a Python string of length 1.
d (float) [double] Convert a C double to a Python floating point number.
f (float) [float] Same as d.
D (complex) [Py _complex *] Convert a C Py complex structure to a Python complex number.

O (object) [PyObject *| Pass a Python object untouched (except for its reference count, which is
incremented by one). If the object passed in is a NULL pointer, it is assumed that this was
caused because the call producing the argument found an error and set an exception. Therefore,
Py BuildValue() will return NULL but won’t raise an exception. If no exception has been raised
yet, SystemError is set.

S (object) [PyObject *| Same as O.

N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object.
Useful when the object is created by a call to an object constructor in the argument list.

O& (object) [converter, anything] Convert anything to a Python object through a converter function.
The function is called with anything (which should be compatible with void *) as its argument
and should return a “new” Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same
number of items.

[items] (list) [matching-items| Convert a sequence of C values to a Python list with the same number
of items.

{items} (dictionary) [matching-items] Convert a sequence of C values to a Python dictionary. Each
pair of consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject* Py VaBuildValue(const char *format, va_list vargs)
Identical to Py BuildValue(), except that it accepts a va_list rather than a variable number of argu-
ments.

5.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_ snprintf(char *str, size t size, const char *format, ...)
Output not more than size bytes to str according to the format string format and the extra arguments.
See the Unix man page snprintf(2).

int PyOS _ vsnprintf(char *str, size t size, const char *format, va_list va)
Output not more than size bytes to str according to the format string format and the variable argument
list va. Unix man page vsnprintf(2).

5.7. String conversion and formatting 37

The Python/C API, Release 2.7.16rcl

PyOS _snprintf() and PyOS_ vsnprintf() wrap the Standard C library functions snprintf() and vsnprintf().
Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions do not.

The wrappers ensure that str*[*size-1] is always '\0' upon return. They never write more than size bytes
(including the trailing '\0' into str. Both functions require that str != NULL, size > 0 and format !=
NULL.

If the platform doesn’t have vsnprintf() and the buffer size needed to avoid truncation exceeds size by more
than 512 bytes, Python aborts with a Py FatalError.

The return value (rv) for these functions should be interpreted as follows:

e When 0 <= rv < size, the output conversion was successful and rv characters were written to str
(excluding the trailing '\0' byte at str*[*rv]).

¢ When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have
been needed to succeed. str¥*[*size-1] is '\0"' in this case.

e When rv < 0, “something bad happened.” str*[*size-1] is '\0"' in this case too, but the rest of str is
undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS _string to_double(const char *s, char **endptr, PyObject *overflow _exception)
Convert a string s to a double, raising a Python exception on failure. The set of accepted strings
corresponds to the set of strings accepted by Python’s float() constructor, except that s must not have
leading or trailing whitespace. The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise ValueError and return -1.0 if the string is not a
valid representation of a floating-point number.

If endptr is not NULL, convert as much of the string as possible and set *endptr to point to the first
unconverted character. If no initial segment of the string is the valid representation of a floating-point
number, set *endptr to point to the beginning of the string, raise ValueError, and return -1.0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on
many platforms) then if overflow exception is NULL return Py HUGE VAL (with an appropriate
sign) and don’t set any exception. Otherwise, overflow exception must point to a Python exception
object; raise that exception and return -1.0. In both cases, set *endptr to point to the first character
after the converted value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appro-
priate Python exception and return -1.0.

New in version 2.7.

double PyOS ascii_strtod(const char *nptr, char **endptr)
Convert a string to a double. This function behaves like the Standard C function strtod() does in the
C locale. It does this without changing the current locale, since that would not be thread-safe.

PyOS ascii_strtod() should typically be used for reading configuration files or other non-user input
that should be locale independent.

See the Unix man page strtod(2) for details.
New in version 2.4.
Deprecated since version 2.7: Use PyOS string to double() instead.

char* PyOS _ascii_formatd(char *buffer, size t buf len, const char *format, double d)

Convert a double to a string using the '.' as the decimal separator. format is a printf()-style format
string specifying the number format. Allowed conversion characters are 'e', 'E', 'f', "F' 'g' and
'G'.

38 Chapter 5. Utilities

The Python/C API, Release 2.7.16rcl

The return value is a pointer to buffer with the converted string or NULL if the conversion failed.
New in version 2.4.

Deprecated since version 2.7: This function is removed in Python 2.7 and 3.1. Use
PyOS_double to_string() instead.

char* PyOS_double to_string(double val, char format code, int precision, int flags, int *ptype)
Convert a double val to a string using supplied format code, precision, and flags.

format code must be one of 'e', 'E', '"f' 'F' 'g' 'G' or 'r'. For 'r', the supplied precision
must be 0 and is ignored. The 'r' format code specifies the standard repr() format.

flags can be zero or more of the values Py DTSF SIGN, Py DTSF ADD DOT 0, or
Py DTSF ALT, or-ed together:

« Py DTSF SIGN means to always precede the returned string with a sign character, even if val
is non-negative.

« Py DTSF ADD DOT 0 means to ensure that the returned string will not look like an integer.

e Py DTSF_ ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf() '#"' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py DTST FINITE,
Py DTST INFINITE, or Py DTST NAN, signifying that val is a finite number, an infinite number,
or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The
caller is responsible for freeing the returned string by calling PyMem Free().

New in version 2.7.

double PyOS _ascii _atof(const char *nptr)
Convert a string to a double in a locale-independent way.

See the Unix man page atof(2) for details.
New in version 2.4.
Deprecated since version 3.1: Use PyOS _string to_double() instead.

char* PyOS _stricmp(char *s1, char *s2)
Case insensitive comparison of strings. The function works almost identically to strcmp() except that
it ignores the case.

New in version 2.6.

char* PyOS _strnicmp(char *s1, char *s2, Py ssize t size)
Case insensitive comparison of strings. The function works almost identically to strncmp() except that
it ignores the case.

New in version 2.6.

5.8 Reflection

PyObject* PyEval GetBuiltins()
Return value: Borrowed reference. Return a dictionary of the builtins in the current execution frame,
or the interpreter of the thread state if no frame is currently executing.

5.8. Reflection 39

The Python/C API, Release 2.7.16rcl

PyObject* PyEval GetLocals()
Return value: Borrowed reference. Return a dictionary of the local variables in the current execution
frame, or NULL if no frame is currently executing.

PyObject* PyEval GetGlobals()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution
frame, or NULL if no frame is currently executing.

PyFrameObject* PyEval GetFrame()
Return value: Borrowed reference. Return the current thread state’s frame, which is NULL if no frame
is currently executing.

int PyFrame GetLineNumber(PyFrameObject *frame)
Return the line number that frame is currently executing.

int PyEval GetRestricted()
If there is a current frame and it is executing in restricted mode, return true, otherwise false.

const char®* PyEval GetFuncName(PyObject *func)
Return the name of func if it is a function, class or instance object, else the name of funcs type.

const char®* PyEval GetFuncDesc(PyObject *func)
Return a description string, depending on the type of func. Return values include “()” for func-
tions and methods, ” constructor”, ” instance”, and ” object”. Concatenated with the result of PyE-
val GetFuncName(), the result will be a description of func.

5.9 Codec registry and support functions

int PyCodec_ Register(PyObject *search function)
Register a new codec search function.

As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always
first in the list of search functions.

int PyCodec_ KnownEncoding(const char *encoding)
Return 1 or 0 depending on whether there is a registered codec for the given encoding.

PyObject* PyCodec Encode(PyObject *object, const char *encoding, const char *errors)
Generic codec based encoding API.

object is passed through the encoder function found for the given encoding using the error handling
method defined by errors. errors may be NULL to use the default method defined for the codec. Raises
a LookupError if no encoder can be found.

PyObject* PyCodec_Decode(PyObject *object, const char *encoding, const char *errors)
Generic codec based decoding API.

object is passed through the decoder function found for the given encoding using the error handling
method defined by errors. errors may be NULL to use the default method defined for the codec. Raises
a LookupError if no encoder can be found.

5.9.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which
makes encodings looked up through this mechanism effectively case-insensitive. If no codec is found, a
KeyError is set and NULL returned.

40 Chapter 5. Utilities

The Python/C API, Release 2.7.16rcl

PyObject* PyCodec_Encoder(const char *encoding)
Get an encoder function for the given encoding.

PyObject* PyCodec_Decoder(const char *encoding)
Get a decoder function for the given encoding.

PyObject* PyCodec_IncrementalEncoder(const char *encoding, const char *errors)
Get an IncrementalEncoder object for the given encoding.

PyObject* PyCodec IncrementalDecoder(const char *encoding, const char *errors)
Get an IncrementalDecoder object for the given encoding.

PyObject* PyCodec_StreamReader(const char *encoding, PyObject *stream, const char *errors)
Get a StreamReader factory function for the given encoding.

PyObject* PyCodec StreamWriter(const char *encoding, PyObject *stream, const char *errors)
Get a StreamWriter factory function for the given encoding.

5.9.2 Registry API for Unicode encoding error handlers

int PyCodec_ RegisterError(const char *name, PyObject *error)
Register the error handling callback function error under the given name. This callback function will be
called by a codec when it encounters unencodable characters/undecodable bytes and name is specified
as the error parameter in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes
and their offset in the original string (see Unicode Exception Objects for functions to extract this
information). The callback must either raise the given exception, or return a two-item tuple containing
the replacement for the problematic sequence, and an integer giving the offset in the original string at
which encoding/decoding should be resumed.

Return 0 on success, -1 on error.

PyObject* PyCodec_LookupError(const char *name)
Lookup the error handling callback function registered under name. As a special case NULL can be
passed, in which case the error handling callback for “strict” will be returned.

PyObject* PyCodec_StrictErrors(PyObject *exc)
Raise exc as an exception.

PyObject* PyCodec_IgnoreErrors(PyObject *exc)
Ignore the unicode error, skipping the faulty input.

PyObject* PyCodec_ReplaceErrors(PyObject *exc)
Replace the unicode encode error with ? or U+FFFD.

PyObject* PyCodec_ XMLCharRefReplaceErrors(PyObject *exc)
Replace the unicode encode error with XML character references.

PyObject* PyCodec_BackslashReplaceErrors(PyObject *exc)
Replace the unicode encode error with backslash escapes (\x, \u and \U).

5.9. Codec registry and support functions 41

The Python/C API, Release 2.7.16rcl

42 Chapter 5. Utilities

CHAPTER

SIX

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of
object types (e.g. all numerical types, or all sequence types). When used on object types for which they do
not apply, they will raise a Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that
has been created by PyList New(), but whose items have not been set to some non-NULL value yet.

6.1 Object Protocol

int PyObject Print(PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing
options. The only option currently supported is Py PRINT RAWS; if given, the str() of the object is
written instead of the repr().

int PyObject HasAttr(PyObject *o, PyObject *attr name)
Returns 1if o has the attribute attr _name, and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name). This function always succeeds.

int PyObject HasAttrString(PyObject *o, const char *attr name)
Returns 1if o has the attribute attr _name, and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr _name). This function always succeeds.

PyObject™ PyObject GetAttr(PyObject *o, PyObject *attr _name)
Return value: New reference. Retrieve an attribute named attr name from object o. Returns the
attribute value on success, or NULL on failure. This is the equivalent of the Python expression o.
attr_name.

PyObject* PyObject GetAttrString(PyObject *o, const char *attr name)
Return value: New reference. Retrieve an attribute named attr name from object o. Returns the
attribute value on success, or NULL on failure. This is the equivalent of the Python expression o.
attr_name.

PyObject* PyObject GenericGetAttr(PyObject *o, PyObject *name)
Generic attribute getter function that is meant to be put into a type object’s tp _getattro slot. It looks
for a descriptor in the dictionary of classes in the object’s MRO as well as an attribute in the object’s
__dict__ (if present). As outlined in descriptors, data descriptors take preference over instance
attributes, while non-data descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject _SetAttr(PyObject *o, PyObject *attr name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and
return -1 on failure; return 0 on success. This is the equivalent of the Python statement o.attr _name
=v.

43

The Python/C API, Release 2.7.16rcl

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using PyOb-
ject DelAttr().

int PyObject _SetAttrString(PyObject *o, const char *attr name, PyObject *v)
Set the value of the attribute named attr _name, for object o, to the value v. Raise an exception and
return -1 on failure; return 0 on success. This is the equivalent of the Python statement o.attr _name
=v.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using PyOb-
ject DelAttrString().

int PyObject GenericSetAttr(PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’s tp setattro
slot. It looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found
it takes preference over setting or deleting the attribute in the instance dictionary. Otherwise, the
attribute is set or deleted in the object’s dict __ (if present). On success, 0 is returned, otherwise
an AttributeError is raised and -1 is returned.

int PyObject DelAttr(PyObject *o, PyObject *attr name)
Delete attribute named attr _name, for object o. Returns -1 on failure. This is the equivalent of the
Python statement del o.attr name.

int PyObject DelAttrString(PyObject *o, const char *attr name)
Delete attribute named attr _name, for object o. Returns -1 on failure. This is the equivalent of the
Python statement del o.attr name.

PyObject* PyObject RichCompare(PyObject *ol, PyObject *02, int opid)

Return value: New reference. Compare the values of ol and 02 using the operation specified by opid,
which must be one of Py LT, Py LE, Py EQ, Py NE, Py GT, or Py_GE, corresponding to <,

<=, ==, =, >, or >= respectively. This is the equivalent of the Python expression ol op 02, where
op is the operator corresponding to opid. Returns the value of the comparison on success, or NULL
on failure.

int PyObject _RichCompareBool(PyObject *ol, PyObject *02, int opid)
Compare the values of 0l and 02 using the operation specified by opid, which must be one of Py LT,
Py LE, Py EQ, Py NE, Py GT, or Py_GE, corresponding to <, <=, ==, =, >, or >= respec-
tively. Returns -1 on error, 0 if the result is false, 1 otherwise. This is the equivalent of the Python
expression ol op 02, where op is the operator corresponding to opid.

Note: If ol and 02 are the same object, PyObject RichCompareBool() will always return 1 for Py EQ
and 0 for Py NE.

int PyObject Cmp(PyObject *o1, PyObject *02, int *result)
Compare the values of 0l and 02 using a routine provided by ol, if one exists, otherwise with a routine
provided by 02. The result of the comparison is returned in result. Returns -1 on failure. This is the
equivalent of the Python statement result = cmp(ol, 02).

int PyObject Compare(PyObject *ol, PyObject *02)
Compare the values of ol and 02 using a routine provided by o1, if one exists, otherwise with a routine
provided by 02. Returns the result of the comparison on success. On error, the value returned is
undefined; use PyErr Occurred() to detect an error. This is equivalent to the Python expression
cmp(ol, 02).

PyObject* PyObject Repr(PyObject *o)
Return value: New reference. Compute a string representation of object o. Returns the string repre-
sentation on success, NULL on failure. This is the equivalent of the Python expression repr(o). Called
by the repr() built-in function and by reverse quotes.

44 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.7.16rcl

PyObject* PyObject Str(PyObject *o)
Return value: New reference. Compute a string representation of object o. Returns the string repre-
sentation on success, NULL on failure. This is the equivalent of the Python expression str(o). Called
by the str() built-in function and by the print statement.

PyObject* PyObject Bytes(PyObject *o)
Compute a bytes representation of object o. In 2.x, this is just an alias for PyObject Str().

PyObject* PyObject Unicode(PyObject *o)
Return value: New reference. Compute a Unicode string representation of object o. Returns the
Unicode string representation on success, NULL on failure. This is the equivalent of the Python
expression unicode(o). Called by the unicode() built-in function.

int PyObject IsInstance(PyObject *inst, PyObject *cls)

Returns 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns -1 and
sets an exception. If cls is a type object rather than a class object, PyObject IsInstance() returns 1
if inst is of type cls. If cls is a tuple, the check will be done against every entry in cls. The result will
be 1 when at least one of the checks returns 1, otherwise it will be 0. If inst is not a class instance and
cls is neither a type object, nor a class object, nor a tuple, inst must have a __class __ attribute —
the class relationship of the value of that attribute with cls will be used to determine the result of this
function.

New in version 2.1.
Changed in version 2.2: Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of
extensions to the class system may want to be aware of. If A and B are class objects, B is a subclass of A
if it inherits from A either directly or indirectly. If either is not a class object, a more general mechanism is
used to determine the class relationship of the two objects. When testing if B is a subclass of A, if A is B,
PyObject IsSubclass() returns true. If A and B are different objects, B’s ___bases _ attribute is searched
in a depth-first fashion for A — the presence of the _ bases _ attribute is considered sufficient for this
determination.

int PyObject IsSubclass(PyObject *derived, PyObject *cls)
Returns 1 if the class derived is identical to or derived from the class cls, otherwise returns 0. In case
of an error, returns -1. If cls is a tuple, the check will be done against every entry in cls. The result
will be 1 when at least one of the checks returns 1, otherwise it will be 0. If either derived or cls is not
an actual class object (or tuple), this function uses the generic algorithm described above.

New in version 2.1.
Changed in version 2.3: Older versions of Python did not support a tuple as the second argument.

int PyCallable Check(PyObject *o)
Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This function
always succeeds.

PyObject® PyObject Call(PyObject *callable object, PyObject *args, PyObject *kw)
Return value: New reference. Call a callable Python object callable object, with arguments given by
the tuple args, and named arguments given by the dictionary kw. If no named arguments are needed,
kw may be NULL. args must not be NULL, use an empty tuple if no arguments are needed. Returns
the result of the call on success, or NULL on failure. This is the equivalent of the Python expression
apply(callable object, args, kw) or callable object(*args, **kw).

New in version 2.2.

PyObject* PyObject CallObject(PyObject *callable object, PyObject *args)
Return value: New reference. Call a callable Python object callable object, with arguments given by
the tuple args. If no arguments are needed, then args may be NULL. Returns the result of the call on

6.1. Object Protocol 45

The Python/C API, Release 2.7.16rcl

success, or NULL on failure. This is the equivalent of the Python expression apply(callable object,
args) or callable object(*args).

PyObject* PyObject CallFunction(PyObject *callable, char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C
arguments. The C arguments are described using a Py BuildValue() style format string. The for-
mat may be NULL, indicating that no arguments are provided. Returns the result of the call on
success, or NULL on failure. This is the equivalent of the Python expression apply(callable, args) or
callable(*args). Note that if you only pass PyObject * args, PyObject CallFunctionObjArgs() is a
faster alternative.

PyObject® PyObject CallMethod(PyObject *o, char *method, char *format, ...)
Return value: New reference. Call the method named method of object o with a variable number of C
arguments. The C arguments are described by a Py BuildValue() format string that should produce a
tuple. The format may be NULL, indicating that no arguments are provided. Returns the result of the
call on success, or NULL on failure. This is the equivalent of the Python expression o.method(args).
Note that if you only pass PyObject * args, PyObject CallMethodObjArgs() is a faster alternative.

PyObject* PyObject CallFunctionObjArgs(PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyOb-
ject™ arguments. The arguments are provided as a variable number of parameters followed by NULL.
Returns the result of the call on success, or NULL on failure.

New in version 2.2.

PyObject* PyObject CallMethodObjArgs(PyObject *o, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the object o, where the name of the method is given
as a Python string object in name. It is called with a variable number of PyObject* arguments. The
arguments are provided as a variable number of parameters followed by NULL. Returns the result of
the call on success, or NULL on failure.

New in version 2.2.

long PyObject Hash(PyObject *o)
Compute and return the hash value of an object o. On failure, return -1. This is the equivalent of the
Python expression hash(o).

long PyObject HashNotImplemented(PyObject *o)
Set a TypeError indicating that type(o) is not hashable and return -1. This function receives special
treatment when stored in a tp__hash slot, allowing a type to explicitly indicate to the interpreter that
it is not hashable.

New in version 2.6.

int PyObject IsTrue(PyObject *o)
Returns 1 if the object o is considered to be true, and O otherwise. This is equivalent to the Python
expression not not o. On failure, return -1.

int PyObject Not(PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python
expression not o. On failure, return -1.

PyObject* PyObject Type(PyObject *o)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object
type of object o. On failure, raises SystemError and returns NULL. This is equivalent to the Python
expression type(o). This function increments the reference count of the return value. There’s really no
reason to use this function instead of the common expression o->ob_type, which returns a pointer of
type PyTypeObject™, except when the incremented reference count is needed.

46 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.7.16rcl

int PyObject TypeCheck(PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of type. Both parameters must be non-NULL.

New in version 2.2.

Py ssize t PyObject Length(PyObject *o)

Py ssize t PyObject Size(PyObject *o)
Return the length of object o. If the object o provides either the sequence and mapping protocols, the
sequence length is returned. On error, -1 is returned. This is the equivalent to the Python expression
len(o).

Changed in version 2.5: These functions returned an int type. This might require changes in your code
for properly supporting 64-bit systems.

PyObject* PyObject Getltem(PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure.
This is the equivalent of the Python expression o[key].

int PyObject _SetItem(PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return -1 on failure; return 0 on success.
This is the equivalent of the Python statement o[key] = v.

int PyObject Delltem(PyObject *o, PyObject *key)
Delete the mapping for key from o. Returns -1 on failure. This is the equivalent of the Python
statement del o[key].

int PyObject AsFileDescriptor(PyObject *o)
Derives a file descriptor from a Python object. If the object is an integer or long integer, its value is
returned. If not, the object’s fileno() method is called if it exists; the method must return an integer
or long integer, which is returned as the file descriptor value. Returns -1 on failure.

PyObject* PyObject Dir(PyObject *o)
Return value: New reference. This is equivalent to the Python expression dir(o), returning a (possibly
empty) list of strings appropriate for the object argument, or NULL if there was an error. If the
argument is NULL, this is like the Python dir(), returning the names of the current locals; in this case,
if no execution frame is active then NULL is returned but PyErr_ Occurred() will return false.

PyObject* PyObject GetIter(PyObject *o)
Return value: New reference. This is equivalent to the Python expression iter(o). It returns a new iter-
ator for the object argument, or the object itself if the object is already an iterator. Raises TypeError
and returns NULL if the object cannot be iterated.

6.2 Number Protocol

int PyNumber Check(PyObject *o)
Returns 1 if the object o provides numeric protocols, and false otherwise. This function always succeeds.
PyObject* PyNumber Add(PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding ol and 02, or NULL on failure. This is the
equivalent of the Python expression ol + 02.

PyObject® PyNumber Subtract(PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from ol, or NULL on failure. This
is the equivalent of the Python expression ol - 02.

PyObject* PyNumber Multiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying ol and 02, or NULL on failure. This
is the equivalent of the Python expression ol * 02.

6.2. Number Protocol 47

The Python/C API, Release 2.7.16rcl

PyObject® PyNumber Divide(PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of dividing ol by 02, or NULL on failure. This is the
equivalent of the Python expression ol / 02.

PyObject* PyNumber FloorDivide(PyObject *ol, PyObject *02)
Return value: New reference. Return the floor of ol divided by 02, or NULL on failure. This is
equivalent to the “classic” division of integers.

New in version 2.2.

PyObject* PyNumber TrueDivide(PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of ol
divided by 02, or NULL on failure. The return value is “approximate” because binary floating point
numbers are approximate; it is not possible to represent all real numbers in base two. This function
can return a floating point value when passed two integers.

New in version 2.2.

PyObject® PyNumber Remainder(PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing ol by 02, or NULL on failure. This
is the equivalent of the Python expression ol % 02.

PyObject* PyNumber Divmod(PyObject *o1, PyObject *02)
Return value: New reference. See the built-in function divmod(). Returns NULL on failure. This is
the equivalent of the Python expression divmod(ol, 02).

PyObject* PyNumber Power(PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow(). Returns NULL on failure. This is the
equivalent of the Python expression pow(ol, 02, 03), where 03 is optional. If 03 is to be ignored, pass
Py None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject* PyNumber Negative(PyObject *o)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the
equivalent of the Python expression -o.

PyObject® PyNumber Positive(PyObject *o)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the
Python expression +o.

PyObject* PyNumber Absolute(PyObject *o)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the
equivalent of the Python expression abs(o).

PyObject® PyNumber Invert(PyObject *o)
Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This
is the equivalent of the Python expression ~o.

PyObject* PyNumber Lshift(PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting ol by 02 on success, or NULL on
failure. This is the equivalent of the Python expression ol << 02.

PyObject* PyNumber Rshift(PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting ol by 02 on success, or NULL on
failure. This is the equivalent of the Python expression ol >> 02.

PyObject® PyNumber And(PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise and” of 0ol and 02 on success and NULL on failure.
This is the equivalent of the Python expression ol & 02.

PyObject® PyNumber Xor(PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise exclusive or” of ol by 02 on success, or NULL on

48 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.7.16rcl

failure. This is the equivalent of the Python expression ol ~ 02.

PyObject* PyNumber Or(PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of ol and 02 on success, or NULL on failure.
This is the equivalent of the Python expression ol | 02.

PyObject® PyNumber InPlaceAdd(PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding ol and 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement ol +=
02.

PyObject® PyNumber InPlaceSubtract(PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from ol, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement ol -=
02.

PyObject* PyNumber InPlaceMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying ol and 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement ol *=
02.

PyObject® PyNumber InPlaceDivide(PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of dividing ol by 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement ol /=
02.

PyObject* PyNumber InPlaceFloorDivide(PyObject *ol, PyObject *02)
Return value: New reference. Returns the mathematical floor of dividing ol by 02, or NULL on failure.
The operation is done in-place when ol supports it. This is the equivalent of the Python statement ol

//= 02.

New in version 2.2.

PyObject® PyNumber InPlaceTrueDivide(PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of ol
divided by 02, or NULL on failure. The return value is “approximate” because binary floating point
numbers are approximate; it is not possible to represent all real numbers in base two. This function
can return a floating point value when passed two integers. The operation is done in-place when ol
supports it.

New in version 2.2.

PyObject® PyNumber InPlaceRemainder(PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing ol by 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement ol %=
02.

PyObject® PyNumber InPlacePower(PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow(). Returns NULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python statement 01 **= 02 when 03
is Py _None, or an in-place variant of pow(ol, 02, 03) otherwise. If 03 is to be ignored, pass Py None
in its place (passing NULL for 03 would cause an illegal memory access).

PyObject® PyNumber InPlaceLshift(PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting ol by 02 on success, or NULL on

failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement ol <<= 02.

PyObject* PyNumber InPlaceRshift(PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting ol by 02 on success, or NULL on

6.2. Number Protocol 49

The Python/C API, Release 2.7.16rcl

failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement ol >>= 02.

PyObject® PyNumber InPlaceAnd(PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise and” of ol and 02 on success and NULL on failure.
The operation is done in-place when ol supports it. This is the equivalent of the Python statement ol

&= 02.

PyObject* PyNumber InPlaceXor(PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise exclusive or” of ol by 02 on success, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement ol ~= o2.

PyObject* PyNumber InPlaceOr(PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of ol and 02 on success, or NULL on failure.
The operation is done in-place when ol supports it. This is the equivalent of the Python statement ol
|= 02.

int PyNumber Coerce(PyObject **pl, PyObject **p2)
This function takes the addresses of two variables of type PyObject*. If the objects pointed to by *pl
and *p2 have the same type, increment their reference count and return 0 (success). If the objects
can be converted to a common numeric type, replace *p1 and *p2 by their converted value (with ‘new’
reference counts), and return 0. If no conversion is possible, or if some other error occurs, return -1
(failure) and don’t increment the reference counts. The call PyNumber_ Coerce(&o1, &02) is equivalent
to the Python statement ol, 02 = coerce(ol, 02).

int PyNumber CoerceEx(PyObject **p1, PyObject **p2)
This function is similar to PyNumber Coerce(), except that it returns 1 when the conversion is not
possible and when no error is raised. Reference counts are still not increased in this case.

PyObject* PyNumber Int(PyObject *o)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on
failure. If the argument is outside the integer range a long object will be returned instead. This is the
equivalent of the Python expression int(0).

PyObject® PyNumber Long(PyObject *o)
Return value: New reference. Returns the o converted to a long integer object on success, or NULL
on failure. This is the equivalent of the Python expression long(o).

PyObject* PyNumber Float(PyObject *o)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure.
This is the equivalent of the Python expression float(o).

PyObject* PyNumber Index(PyObject *o)
Returns the o converted to a Python int or long on success or NULL with a TypeError exception raised
on failure.

New in version 2.5.

PyObject* PyNumber ToBase(PyObject *n, int base)
Returns the integer n converted to base as a string with a base marker of 'Ob', '0o', or 'Ox" if
applicable. When base is not 2, 8, 10, or 16, the format is 'x#num' where x is the base. If n is not
an int object, it is converted with PyNumber Index() first.

New in version 2.6.

Py ssize t PyNumber AsSsize t(PyObject *o, PyObject *exc)
Returns o converted to a Py ssize t value if o can be interpreted as an integer. If o can be converted
to a Python int or long but the attempt to convert to a Py ssize t value would raise an OverflowError,
then the exc argument is the type of exception that will be raised (usually IndexError or OverflowError).

50 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.7.16rcl

If exc is NULL, then the exception is cleared and the value is clipped to PY SSIZE T MIN for a
negative integer or PY SSIZE T MAX for a positive integer.

New in version 2.5.

int PyIndex Check(PyObject *o)
Returns 1 if o is an index integer (has the nb_index slot of the tp_as number structure filled in), and
0 otherwise.

New in version 2.5.

6.3 Sequence Protocol

int PySequence Check(PyObject *o)
Return 1 if the object provides sequence protocol, and 0 otherwise. This function always succeeds.

Py ssize t PySequence Size(PyObject *o)

Py ssize t PySequence Length(PyObject *o)
Returns the number of objects in sequence o on success, and -1 on failure. This is equivalent to the
Python expression len(o).

Changed in version 2.5: These functions returned an int type. This might require changes in your code
for properly supporting 64-bit systems.

PyObject* PySequence Concat(PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of ol and 02 on success, and NULL on failure.
This is the equivalent of the Python expression ol + o2.

PyObject® PySequence Repeat(PyObject *o, Py ssize t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL
on failure. This is the equivalent of the Python expression o * count.

Changed in version 2.5: This function used an int type for count. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PySequence InPlaceConcat(PyObject *o1, PyObject *02)
Return value: New reference. Return the concatenation of o1 and 02 on success, and NULL on failure.
The operation is done in-place when ol supports it. This is the equivalent of the Python expression
ol += o2.

PyObject® PySequence InPlaceRepeat(PyObject *o, Py ssize t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL
on failure. The operation is done in-place when o supports it. This is the equivalent of the Python
expression 0 *— count.

Changed in version 2.5: This function used an int type for count. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PySequence Getltem(PyObject *o, Py ssize t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent
of the Python expression oli].

Changed in version 2.5: This function used an int type for i. This might require changes in your code
for properly supporting 64-bit systems.

PyObject* PySequence GetSlice(PyObject *o, Py ssize_t il, Py ssize t i2)
Return value: New reference. Return the slice of sequence object o between il and i2, or NULL on
failure. This is the equivalent of the Python expression o[il:i2].

6.3. Sequence Protocol 51

The Python/C API, Release 2.7.16rcl

Changed in version 2.5: This function used an int type for i1 and i2. This might require changes in
your code for properly supporting 64-bit systems.

int PySequence SetItem(PyObject *o, Py ssize t i, PyObject *v)
Assign object v to the ith element of 0. Raise an exception and return -1 on failure; return 0 on success.
This is the equivalent of the Python statement o[i] = v. This function does not steal a reference to v.

If v is NULL, the element is deleted, however this feature is deprecated in favour of using PySe-
quence _Delltem().

Changed in version 2.5: This function used an int type for i. This might require changes in your code
for properly supporting 64-bit systems.

int PySequence Delltem(PyObject *o, Py ssize t i)
Delete the ith element of object o. Returns -1 on failure. This is the equivalent of the Python statement
del ofi].

Changed in version 2.5: This function used an int type for i. This might require changes in your code
for properly supporting 64-bit systems.

int PySequence SetSlice(PyObject *o, Py ssize t il, Py ssize t i2, PyObject *v)
Assign the sequence object v to the slice in sequence object o from il to i2. Raise an exception and
return -1 on failure; return 0 on success. This is the equivalent of the Python statement ofil:i2] = v.

If v is NULL, the slice is deleted, however this feature is deprecated in favour of using PySe-
quence_DelSlice().

Changed in version 2.5: This function used an int type for il and i2. This might require changes in
your code for properly supporting 64-bit systems.

int PySequence DelSlice(PyObject *o, Py ssize t il, Py ssize t i2)
Delete the slice in sequence object o from il to i2. Returns -1 on failure. This is the equivalent of the
Python statement del o[il:i2].

Changed in version 2.5: This function used an int type for il and i2. This might require changes in
your code for properly supporting 64-bit systems.

Py ssize t PySequence Count(PyObject *o, PyObject *value)
Return the number of occurrences of value in o, that is, return the number of keys for which o[key]
== value. On failure, return -1. This is equivalent to the Python expression o.count(value).

Changed in version 2.5: This function returned an int type. This might require changes in your code
for properly supporting 64-bit systems.

int PySequence Contains(PyObject *o, PyObject *value)
Determine if o contains value. If an item in o is equal to value, return 1, otherwise return 0. On error,
return -1. This is equivalent to the Python expression value in o.

Py ssize t PySequence Index(PyObject *o, PyObject *value)
Return the first index i for which o[i] == value. On error, return -1. This is equivalent to the Python
expression o.index(value).

Changed in version 2.5: This function returned an int type. This might require changes in your code
for properly supporting 64-bit systems.

PyObject* PySequence List(PyObject *o)
Return value: New reference. Return a list object with the same contents as the arbitrary sequence o.
The returned list is guaranteed to be new.

PyObject™ PySequence Tuple(PyObject *o)
Return value: New reference. Return a tuple object with the same contents as the arbitrary sequence

52 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.7.16rcl

o or NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be
constructed with the appropriate contents. This is equivalent to the Python expression tuple(o).

PyObject* PySequence Fast(PyObject *o, const char *m)
Return value: New reference. Return the sequence o as a list, unless it is already a tuple or list, in
which case o is returned. Use PySequence Fast GET ITEM() to access the members of the result.
Returns NULL on failure. If the object is not a sequence, raises TypeError with m as the message
text.

PyObject* PySequence Fast GET ITEM(PyObject *o, Py ssize t 1)
Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence Fast(), o is not NULL, and that i is within bounds.

Changed in version 2.5: This function used an int type for i. This might require changes in your code
for properly supporting 64-bit systems.

PyObject** PySequence Fast ITEMS(PyObject *o)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence Fast()
and o is not NULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying
array pointer in contexts where the sequence cannot change.

New in version 2.4.

PyObject® PySequence ITEM(PyObject *o, Py ssize t i)
Return value: New reference. Return the ith element of o or NULL on failure. Macro form of
PySequence Getltem() but without checking that PySequence Check() on o is true and without
adjustment for negative indices.

New in version 2.3.

Changed in version 2.5: This function used an int type for i. This might require changes in your code
for properly supporting 64-bit systems.

Py ssize t PySequence Fast GET SIZE(PyObject *o)
Returns the length of o, assuming that o was returned by PySequence Fast() and that o is not NULL.
The size can also be gotten by calling PySequence Size() on o, but PySequence Fast GET SIZE()
is faster because it can assume o is a list or tuple.

6.4 Mapping Protocol

int PyMapping_Check(PyObject *o)
Return 1 if the object provides mapping protocol, and 0 otherwise. This function always succeeds.

Py ssize t PyMapping Size(PyObject *o)

Py ssize t PyMapping Length(PyObject *o)
Returns the number of keys in object o on success, and -1 on failure. For objects that do not provide
mapping protocol, this is equivalent to the Python expression len(o).

Changed in version 2.5: These functions returned an int type. This might require changes in your code
for properly supporting 64-bit systems.

int PyMapping_DelltemString(PyObject *o, char *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to the
Python statement del o[key].

6.4. Mapping Protocol 53

The Python/C API, Release 2.7.16rcl

int PyMapping Delltem(PyObject *o, PyObject *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to the
Python statement del o[key].

int PyMapping HasKeyString(PyObject *o, char *key)
On success, return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to
olkey], returning True on success and False on an exception. This function always succeeds.

int PyMapping HasKey(PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to o[key], returning
True on success and False on an exception. This function always succeeds.

PyObject* PyMapping Keys(PyObject *o)
Return value: New reference. On success, return a list of the keys in object o. On failure, return
NULL. This is equivalent to the Python expression o.keys().

PyObject* PyMapping Values(PyObject *o)
Return value: New reference. On success, return a list of the values in object o. On failure, return
NULL. This is equivalent to the Python expression o.values().

PyObject* PyMapping_Items(PyObject *o)
Return value: New reference. On success, return a list of the items in object o, where each item is a
tuple containing a key-value pair. On failure, return NULL. This is equivalent to the Python expression
o.items().

PyObject* PyMapping GetItemString(PyObject *o, char *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure.
This is the equivalent of the Python expression o[key].

int PyMapping SetItemString(PyObject *o, char *key, PyObject *v)
Map the object key to the value v in object o. Returns -1 on failure. This is the equivalent of the
Python statement o[key| = v.

6.5 Iterator Protocol

New in version 2.2.
There are two functions specifically for working with iterators.

int Pylter Check(PyObject *o)
Return true if the object o supports the iterator protocol.

This function can return a false positive in the case of old-style classes because those classes always
define a tp_iternext slot with logic that either invokes a next() method or raises a TypeError.

PyObject™* Pylter Next(PyObject *o)
Return value: New reference. Return the next value from the iteration o. The object must be an
iterator (it is up to the caller to check this). If there are no remaining values, returns NULL with
no exception set. If an error occurs while retrieving the item, returns NULL and passes along the
exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator — PyObject GetIter(obj);
PyObject *item;

if (iterator —— NULL) {
* propagate error *

(continues on next page)

54 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.7.16rcl

continued from previous page
g

}

while (item — Pylter Next(iterator)) {
* do something with item *

* release reference when done *
Py DECREF (item);
}

Py DECREF (iterator);

if (PyErr_Occurred()) {

* propagate error ¥,

else {
* continue doing useful work *

6.6 Old Buffer Protocol

This section describes the legacy buffer protocol, which has been introduced in Python 1.6. It is still
supported but deprecated in the Python 2.x series. Python 3 introduces a new buffer protocol which fixes
weaknesses and shortcomings of the protocol, and has been backported to Python 2.6. See Buffers and

Memoryview Objects for more information.

int PyObject AsCharBuffer(PyObject *obj, const char **buffer, Py ssize t *buffer len)

Returns a pointer to a read-only memory location usable as character-based input. The obj argument
must support the single-segment character buffer interface. On success, returns 0, sets buffer to the
memory location and buffer len to the buffer length. Returns -1 and sets a TypeError on error.

New in version 1.6.

Changed in version 2.5: This function used an int * type for buffer len. This might require changes
in your code for properly supporting 64-bit systems.

int PyObject AsReadBuffer(PyObject *obj, const void **buffer, Py ssize t *buffer len)

Returns a pointer to a read-only memory location containing arbitrary data. The obj argument must
support the single-segment readable buffer interface. On success, returns 0, sets buffer to the memory
location and buffer len to the buffer length. Returns -1 and sets a TypeError on error.

New in version 1.6.

Changed in version 2.5: This function used an int * type for buffer len. This might require changes
in your code for properly supporting 64-bit systems.

int PyObject CheckReadBuffer(PyObject *o)

Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0.

New in version 2.2.

int PyObject AsWriteBuffer(PyObject *obj, void **buffer, Py ssize t *buffer len)

Returns a pointer to a writeable memory location. The obj argument must support the single-segment,
character buffer interface. On success, returns 0, sets buffer to the memory location and buffer len to
the buffer length. Returns -1 and sets a TypeError on error.

New in version 1.6.

6.6. Old Buffer Protocol 55

The Python/C API, Release 2.7.16rcl

Changed in version 2.5: This function used an int * type for buffer len. This might require changes
in your code for properly supporting 64-bit systems.

56 Chapter 6. Abstract Objects Layer

CHAPTER

SEVEN

CONCRETE OBJECTS LAYER

The functions in this chapter are specific to certain Python object types. Passing them an object of the
wrong type is not a good idea; if you receive an object from a Python program and you are not sure that it
has the right type, you must perform a type check first; for example, to check that an object is a dictionary,
use PyDict _Check(). The chapter is structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are
passed in, many of them do not check for NULL being passed instead of a valid object. Allowing NULL
to be passed in can cause memory access violations and immediate termination of the interpreter.

7.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType Type
This is the type object for type objects; it is the same object as type and types.TypeType in the
Python layer.

int PyType Check(PyObject *o)
Return true if the object o is a type object, including instances of types derived from the standard
type object. Return false in all other cases.

int PyType CheckExact(PyObject *o)
Return true if the object o is a type object, but not a subtype of the standard type object. Return
false in all other cases.

New in version 2.2.

unsigned int PyType ClearCache()
Clear the internal lookup cache. Return the current version tag.

New in version 2.6.

void PyType Modified(PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called
after any manual modification of the attributes or base classes of the type.

o7

The Python/C API, Release 2.7.16rcl

New in version 2.6.

int PyType HasFeature(PyObject *o, int feature)
Return true if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType IS GC(PyObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS_ HAVE _ GC.

New in version 2.0.

int PyType IsSubtype(PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.

New in version 2.2.

This function only checks for actual subtypes, which means that __ subclasscheck () is not called
on b. Call PyObject IsSubclass() to do the same check that issubclass() would do.

PyObject* PyType GenericAlloc(PyTypeObject *type, Py ssize t nitems)
Return value: New reference. New in version 2.2.

Changed in version 2.5: This function used an int type for nitems. This might require changes in your
code for properly supporting 64-bit systems.

PyObject® PyType GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. New in version 2.2.

int PyType Ready(PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This
function is responsible for adding inherited slots from a type’s base class. Return 0 on success, or
return -1 and sets an exception on error.

New in version 2.2.

7.1.2 The None Object

Note that the Py TypeObject for None is not directly exposed in the Python/C API. Since None is a singleton,
testing for object identity (using == in C) is sufficient. There is no PyNone_ Check() function for the same
reason.

PyObject* Py None
The Python None object, denoting lack of value. This object has no methods. It needs to be treated
just like any other object with respect to reference counts.

Py RETURN NONE
Properly handle returning Py None from within a C function.

New in version 2.4.

7.2 Numeric Objects

7.2.1 Plain Integer Objects

PyIntObject
This subtype of PyObject represents a Python integer object.

o8 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

PyTypeObject Pylnt _Type
This instance of PyTypeObject represents the Python plain integer type. This is the same object as
int and types.IntType.

int PyInt _Check(PyObject *o)
Return true if o is of type PyInt _Type or a subtype of PyInt _Type.

Changed in version 2.2: Allowed subtypes to be accepted.

int PyInt _CheckExact(PyObject *o)
Return true if o is of type PyInt _Type, but not a subtype of PyInt _Type.

New in version 2.2.

PyObject* PyInt_FromString(char *str, char **pend, int base)

Return value: New reference. Return a new PyIntObject or PyLongObject based on the string value
in str, which is interpreted according to the radix in base. If pend is non-NULL, *pend will point to
the first character in str which follows the representation of the number. If base is 0, the radix will be
determined based on the leading characters of str: if str starts with '0x' or '0X"', radix 16 will be
used; if str starts with '0', radix 8 will be used; otherwise radix 10 will be used. If base is not 0, it
must be between 2 and 36, inclusive. Leading spaces are ignored. If there are no digits, ValueError
will be raised. If the string represents a number too large to be contained within the machine’s long
int type and overflow warnings are being suppressed, a PyLongObject will be returned. If overflow
warnings are not being suppressed, NULL will be returned in this case.

PyObject* PyInt_FromLong(long ival)
Return value: New reference. Create a new integer object with a value of ival.

The current implementation keeps an array of integer objects for all integers between -5 and 256, when
you create an int in that range you actually just get back a reference to the existing object. So it should
be possible to change the value of 1. I suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyInt _FromSsize t(Py_ssize t ival)
Return value: New reference. Create a new integer object with a value of ival. If the value is larger
than LONG _MAX or smaller than LONG MIN, a long integer object is returned.

New in version 2.5.

PyObject* PyInt_FromSize t(size t ival)
Create a new integer object with a value of ival. If the value exceeds LONG MAX, a long integer
object is returned.

New in version 2.5.

long PyInt_ AsLong(PyObject *io)
Will first attempt to cast the object to a PyIntObject, if it is not already one, and then return its
value. If there is an error, -1 is returned, and the caller should check PyErr Occurred() to find out
whether there was an error, or whether the value just happened to be -1.

long PyInt AS LONG(PyObject *io)
Return the value of the object io. No error checking is performed.
unsigned long PyInt AsUnsignedLongMask(PyObject *io)

Will first attempt to cast the object to a PyIntObject or PyLongObject, if it is not already one, and
then return its value as unsigned long. This function does not check for overflow.

New in version 2.3.

unsigned PY LONG _LONG PyInt_AsUnsignedLongLongMask(PyObject *io)
Will first attempt to cast the object to a PyIntObject or PyLongObject, if it is not already one, and
then return its value as unsigned long long, without checking for overflow.

7.2. Numeric Objects 59

The Python/C API, Release 2.7.16rcl

New in version 2.3.

Py ssize t PyInt AsSsize t(PyObject *io)
Will first attempt to cast the object to a PyIntObject or PyLongObject, if it is not already one, and
then return its value as Py ssize t.

New in version 2.5.

long PyInt _ GetMax()
Return the system’s idea of the largest integer it can handle (LONG MAX, as defined in the system
header files).

int PyInt_ ClearFreeList()
Clear the integer free list. Return the number of items that could not be freed.

New in version 2.6.

7.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py False
and Py True. As such, the normal creation and deletion functions don’t apply to booleans. The following
macros are available, however.
int PyBool _Check(PyObject *o)

Return true if o is of type PyBool Type.

New in version 2.3.

PyObject* Py False
The Python False object. This object has no methods. It needs to be treated just like any other object
with respect to reference counts.

PyObject* Py True
The Python True object. This object has no methods. It needs to be treated just like any other object
with respect to reference counts.

Py RETURN_ FALSE
Return Py _False from a function, properly incrementing its reference count.

New in version 2.4.

Py RETURN_TRUE
Return Py _True from a function, properly incrementing its reference count.

New in version 2.4.

PyObject® PyBool FromLong(long v)
Return value: New reference. Return a new reference to Py True or Py False depending on the truth
value of v.

New in version 2.3.

7.2.3 Long Integer Objects

PyLongObject
This subtype of PyObject represents a Python long integer object.

PyTypeObject PyLong Type
This instance of PyTypeObject represents the Python long integer type. This is the same object as
long and types.LongType.

60 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

int PyLong Check(PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject.

Changed in version 2.2: Allowed subtypes to be accepted.

int PyLong CheckExact(PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject.

New in version 2.2.

PyObject* PyLong FromLong(long v)
Return value: New reference. Return a new PyLongObject object from v, or NULL on failure.

PyObject* PyLong FromUnsignedLong(unsigned long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long, or NULL
on failure.

PyObject* PyLong FromSsize t(Py ssize t v)
Return value: New reference. Return a new PyLongObject object from a C Py_ssize t, or NULL on
failure.

New in version 2.6.

PyObject* PyLong FromSize t(size t v)
Return value: New reference. Return a new PyLongObject object from a C size _t, or NULL on failure.

New in version 2.6.

PyObject* PyLong FromLongLong(PY LONG_LONG v)
Return value: New reference. Return a new PyLongObject object from a C long long, or NULL on
failure.

PyObject* PyLong FromUnsignedLongLong(unsigned PY LONG_LONG v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long long, or
NULL on failure.

PyObject* PyLong_FromDouble(double v)
Return value: New reference. Return a new PyLongObject object from the integer part of v, or NULL
on failure.

PyObject* PyLong FromString(char *str, char **pend, int base)
Return value: New reference. Return a new PyLongObject based on the string value in str, which is
interpreted according to the radix in base. If pend is non-NULL, *pend will point to the first character
in str which follows the representation of the number. If base is 0, the radix will be determined based
on the leading characters of str: if str starts with 'Ox' or '0X"', radix 16 will be used; if str starts
with '0', radix 8 will be used; otherwise radix 10 will be used. If base is not 0, it must be between 2
and 36, inclusive. Leading spaces are ignored. If there are no digits, ValueError will be raised.

PyObject* PyLong FromUnicode(Py UNICODE *u, Py ssize t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python long integer value.
The first parameter, u, points to the first character of the Unicode string, length gives the number of
characters, and base is the radix for the conversion. The radix must be in the range [2, 36]; if it is out
of range, ValueError will be raised.

New in version 1.6.

Changed in version 2.5: This function used an int for length. This might require changes in your code
for properly supporting 64-bit systems.

PyObject* PyLong_FromVoidPtr(void *p)
Return value: New reference. Create a Python integer or long integer from the pointer p. The pointer
value can be retrieved from the resulting value using PyLong AsVoidPtr().

7.2. Numeric Objects 61

The Python/C API, Release 2.7.16rcl

New in version 1.5.2.
Changed in version 2.5: If the integer is larger than LONG _MAX a positive long integer is returned.

long PyLong AsLong(PyObject *pylong)
Return a C long representation of the contents of pylong. If pylong is greater than LONG_MAX, an
OverflowError is raised and -1 will be returned.

long PyLong AsLongAndOverflow(PyObject *pylong, int *overflow)
Return a C long representation of the contents of pylong. If pylong is greater than LONG _MAX or
less than LONG _ MIN, set *overflow to 1 or -1, respectively, and return -1; otherwise, set *overflow to
0. If any other exception occurs (for example a TypeError or MemoryError), then -1 will be returned
and *overflow will be 0.

New in version 2.7.

PY LONG_LONG PyLong AsLongLongAndOverflow(PyObject *pylong, int *overflow)
Return a C long long representation of the contents of pylong. If pylong is greater than
PY LLONG_MAX or less than PY LLONG _MIN, set *overflow to 1 or -1, respectively, and re-
turn -1; otherwise, set *overflow to 0. If any other exception occurs (for example a TypeError or
MemoryError), then -1 will be returned and *overflow will be 0.

New in version 2.7.

Py ssize t PyLong AsSsize t(PyObject *pylong)
Return a C Py ssize t representation of the contents of pylong. If pylong is greater than
PY SSIZE T MAX, an OverflowError is raised and -1 will be returned.

New in version 2.6.

unsigned long PyLong AsUnsignedLong(PyObject *pylong)
Return a C unsigned long representation of the contents of pylong. If pylong is greater than
ULONG_MAX, an OverflowError is raised.

PY LONG_LONG PyLong AsLongLong(PyObject *pylong)
Return a C long long from a Python long integer. If pylong cannot be represented as a long long, an
OverflowError is raised and -1 is returned.

New in version 2.2.

unsigned PY LONG _LONG PyLong_AsUnsignedLongLong(PyObject *pylong)
Return a C unsigned long long from a Python long integer. If pylong cannot be represented as an
unsigned long long, an OverflowError is raised and (unsigned long long)-1 is returned.

New in version 2.2.
Changed in version 2.7: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong AsUnsignedLongMask(PyObject *io)
Return a C unsigned long from a Python long integer, without checking for overflow.

New in version 2.3.

unsigned PY LONG LONG PyLong AsUunsignedLongLongMask(PyObject *io)
Return a C unsigned long long from a Python long integer, without checking for overflow.

New in version 2.3.

double PyLong _AsDouble(PyObject *pylong)
Return a C double representation of the contents of pylong. If pylong cannot be approximately
represented as a double, an OverflowError exception is raised and -1.0 will be returned.

void* PyLong AsVoidPtr(PyObject *pylong)
Convert a Python integer or long integer pylong to a C void pointer. If pylong cannot be converted, an

62 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

OverflowError will be raised. This is only assured to produce a usable void pointer for values created
with PyLong_FromVoidPtr().

New in version 1.5.2.

Changed in version 2.5: For values outside 0..LONG MAX, both signed and unsigned integers are
accepted.

7.2.4 Floating Point Objects

PyFloatObject
This subtype of PyObject represents a Python floating point object.

PyTypeObject PyFloat Type
This instance of PyTypeObject represents the Python floating point type. This is the same object as
float and types.FloatType.

int PyFloat Check(PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject.

Changed in version 2.2: Allowed subtypes to be accepted.

int PyFloat CheckExact(PyObject *p)
Return true if its argument is a PyFloatObject, but not a subtype of PyFloatObject.

New in version 2.2.

PyObject™ PyFloat FromString(PyObject *str, char **pend)
Return value: New reference. Create a PyFloatObject object based on the string value in str, or NULL
on failure. The pend argument is ignored. It remains only for backward compatibility.

PyObject* PyFloat FromDouble(double v)
Return value: New reference. Create a PyFloatObject object from v, or NULL on failure.

double PyFloat _AsDouble(PyObject *pyfloat)
Return a C double representation of the contents of pyfloat. If pyfloat is not a Python floating point
object but has a _ float () method, this method will first be called to convert pyfloat into a float.
This method returns -1.0 upon failure, so one should call PyErr Occurred() to check for errors.

double PyFloat AS DOUBLE(PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject* PyFloat GetInfo(void)
Return a structseq instance which contains information about the precision, minimum and maximum
values of a float. It’s a thin wrapper around the header file float.h.

New in version 2.6.

double PyFloat GetMax()
Return the maximum representable finite float DBL MAX as C double.

New in version 2.6.

double PyFloat _GetMin()
Return the minimum normalized positive float DBL MIN as C double.

New in version 2.6.

int PyFloat_ ClearFreeList()
Clear the float free list. Return the number of items that could not be freed.

New in version 2.6.

7.2. Numeric Objects 63

The Python/C API, Release 2.7.16rcl

void PyFloat AsString(char *buf, PyFloatObject *v)
Convert the argument v to a string, using the same rules as str(). The length of buf should be at least
100.

This function is unsafe to call because it writes to a buffer whose length it does not know.
Deprecated since version 2.7: Use PyObject Str() or PyOS double to_string() instead.

void PyFloat _AsReprString(char *buf, PyFloatObject *v)
Same as PyFloat AsString, except uses the same rules as repr(). The length of buf should be at least
100.

This function is unsafe to call because it writes to a buffer whose length it does not know.

Deprecated since version 2.7: Use PyObject Repr() or PyOS double to_string() instead.

7.2.5 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one
is the Python object exposed to Python programs, and the other is a C structure which represents the actual
complex number value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by
value rather than dereferencing them through pointers. This is consistent throughout the API.

Py complex
The C structure which corresponds to the value portion of a Python complex number object. Most of
the functions for dealing with complex number objects use structures of this type as input or output
values, as appropriate. It is defined as:

typedef struct {
double real;
double imag;

} Py_complex;

Py complex Py ¢ sum(Py_ complex left, Py complex right)
Return the sum of two complex numbers, using the C Py complex representation.

Py complex Py c¢_diff(Py complex left, Py complex right)
Return the difference between two complex numbers, using the C Py _complex representation.

Py complex Py c¢ neg(Py complex complex)
Return the negation of the complex number complex, using the C Py complex representation.

Py complex Py c¢_prod(Py_complex left, Py complex right)
Return the product of two complex numbers, using the C Py complex representation.

Py complex Py c¢_quot(Py complex dividend, Py complex divisor)
Return the quotient of two complex numbers, using the C Py complex representation.

If divisor is null, this method returns zero and sets errno to EDOM.

Py complex Py ¢ pow(Py complex num, Py complex exp)
Return the exponentiation of num by exp, using the C Py complex representation.

If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

64 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

Complex Numbers as Python Objects

PyComplexObject
This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex Type
This instance of PyTypeObject represents the Python complex number type. It is the same object as
complex and types.ComplexType.

int PyComplex Check(PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject.

Changed in version 2.2: Allowed subtypes to be accepted.

int PyComplex CheckExact(PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject.

New in version 2.2.

PyObject* PyComplex FromCComplex(Py complex v)
Return value: New reference. Create a new Python complex number object from a C Py complex
value.

PyObject* PyComplex FromDoubles(double real, double imag)
Return value: New reference. Return a new PyComplexObject object from real and imag.

double PyComplex RealAsDouble(PyObject *op)
Return the real part of op as a C double.

double PyComplex ImagAsDouble(PyObject *op)
Return the imaginary part of op as a C double.

Py _complex PyComplex AsCComplex(PyObject *op)
Return the Py complex value of the complex number op. Upon failure, this method returns -1.0 as a
real value.

Changed in version 2.6: If op is not a Python complex number object but has a __ complex ()
method, this method will first be called to convert op to a Python complex number object.

7.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the
specific kinds of sequence objects that are intrinsic to the Python language.

7.3.1 Byte Array Objects

New in version 2.6.

PyByteArrayObject
This subtype of PyObject represents a Python bytearray object.

PyTypeObject PyByteArray Type
This instance of PyTypeObject represents the Python bytearray type; it is the same object as bytearray
in the Python layer.

7.3. Sequence Objects 65

The Python/C API, Release 2.7.16rcl

Type check macros
int PyByteArray Check(PyObject *o)
Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type.

int PyByteArray CheckExact(PyObject *o)
Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray
type.

Direct API functions
PyObject* PyByteArray FromObject(PyObject *o)
Return a new bytearray object from any object, o, that implements the buffer protocol.

PyObject* PyByteArray FromStringAndSize(const char *string, Py ssize t len)
Create a new bytearray object from string and its length, len. On failure, NULL is returned.

PyObject™ PyByteArray Concat(PyObject *a, PyObject *b)
Concat bytearrays a and b and return a new bytearray with the result.

Py ssize t PyByteArray Size(PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.

char* PyByteArray AsString(PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer.

int PyByteArray Resize(PyObject *bytearray, Py ssize t len)
Resize the internal buffer of bytearray to len.

Macros

These macros trade safety for speed and they don’t check pointers.

char* PyByteArray AS STRING(PyObject *bytearray)
Macro version of PyByteArray AsString().

Py ssize t PyByteArray GET SIZE(PyObject *bytearray)
Macro version of PyByteArray Size().

7.3.2 String/Bytes Objects

These functions raise TypeError when expecting a string parameter and are called with a non-string param-
eter.

Note: These functions have been renamed to PyBytes * in Python 3.x. Unless otherwise noted, the
PyBytes functions available in 3.x are aliased to their PyString * equivalents to help porting.

PyStringObject
This subtype of PyObject represents a Python string object.

PyTypeObject PyString Type
This instance of PyTypeObject represents the Python string type; it is the same object as str and
types.StringType in the Python layer. .

66 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

int PyString Check(PyObject *o)
Return true if the object o is a string object or an instance of a subtype of the string type.

Changed in version 2.2: Allowed subtypes to be accepted.

int PyString CheckExact(PyObject *o)
Return true if the object o is a string object, but not an instance of a subtype of the string type.

New in version 2.2.

PyObject* PyString FromString(const char *v)
Return value: New reference. Return a new string object with a copy of the string v as value on
success, and NULL on failure. The parameter v must not be NULL; it will not be checked.

PyObject* PyString FromStringAndSize(const char *v, Py ssize t len)
Return value: New reference. Return a new string object with a copy of the string v as value and
length len on success, and NULL on failure. If v is NULL, the contents of the string are uninitialized.

Changed in version 2.5: This function used an int type for len. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyString FromFormat(const char *format, ...)
Return value: New reference. Take a C printf()-style format string and a variable number of arguments,
calculate the size of the resulting Python string and return a string with the values formatted into it.
The variable arguments must be C types and must correspond exactly to the format characters in the
format string. The following format characters are allowed:

Format | Type Comment

Charac-

ters

%% n/a The literal % character.

%oc int A single character, represented as a C int.

%d int Exactly equivalent to printf("%d").

%u un- Exactly equivalent to printf("%u").
signed
int

%ld long Exactly equivalent to printf("%1d").

%lu un- Exactly equivalent to printf("%Iu").
signed
long

%lld long Exactly equivalent to printf("%I11d").
long

Pollu un- Exactly equivalent to printf("%llu").
signed
long
long

%ozd Py ssize| Exactly equivalent to printf("%zd").

%ozu size_t Exactly equivalent to printf("%zu").

%i int Exactly equivalent to printf("%i").

%ox int Exactly equivalent to printf("%x").

%os char* A null-terminated C character array.

%p void* The hex representation of a C pointer. Mostly equivalent to printf("%p")

except that it is guaranteed to start with the literal Ox regardless of what the
platform’s printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the
result string, and any extra arguments discarded.

7.3. Sequence Objects 67

The Python/C API, Release 2.7.16rcl

Note: The “%lld” and “%llu” format specifiers are only available when HAVE LONG _LONG is
defined.

Changed in version 2.7: Support for “%lld” and “%llu” added.

PyObject* PyString FromFormatV(const char *format, va_list vargs)
Return value: New reference. Identical to PyString FromFormat() except that it takes exactly two
arguments.

Py ssize t PyString Size(PyObject *string)
Return the length of the string in string object string.

Changed in version 2.5: This function returned an int type. This might require changes in your code
for properly supporting 64-bit systems.

Py ssize t PyString GET SIZE(PyObject *string)
Macro form of PyString Size() but without error checking.

Changed in version 2.5: This macro returned an int type. This might require changes in your code for
properly supporting 64-bit systems.

char* PyString AsString(PyObject *string)
Return a NUL-terminated representation of the contents of string. The pointer refers to the internal
buffer of string, not a copy. The data must not be modified in any way, unless the string was just
created using PyString FromStringAndSize(NULL, size). It must not be deallocated. If string is a
Unicode object, this function computes the default encoding of string and operates on that. If string
is not a string object at all, PyString AsString() returns NULL and raises TypeError.

char* PyString AS STRING(PyObject *string)
Macro form of PyString AsString() but without error checking. Only string objects are supported;
no Unicode objects should be passed.

int PyString AsStringAndSize(PyObject *obj, char **buffer, Py ssize t *length)
Return a NUL-terminated representation of the contents of the object obj through the output variables
buffer and length.

The function accepts both string and Unicode objects as input. For Unicode objects it returns the
default encoded version of the object. If length is NULL, the resulting buffer may not contain NUL
characters; if it does, the function returns -1 and a TypeError is raised.

The buffer refers to an internal string buffer of obj, not a copy. The data must not be modified in any
way, unless the string was just created using PyString FromStringAndSize(NULL, size). It must not
be deallocated. If string is a Unicode object, this function computes the default encoding of string
and operates on that. If string is not a string object at all, PyString AsStringAndSize() returns -1
and raises TypeError.

Changed in version 2.5: This function used an int * type for length. This might require changes in
your code for properly supporting 64-bit systems.

void PyString Concat(PyObject **string, PyObject *newpart)
Create a new string object in *string containing the contents of newpart appended to string; the caller
will own the new reference. The reference to the old value of string will be stolen. If the new string
cannot be created, the old reference to string will still be discarded and the value of *string will be set
to NULL; the appropriate exception will be set.

void PyString ConcatAndDel(PyObject **string, PyObject *newpart)
Create a new string object in *string containing the contents of newpart appended to string. This
version decrements the reference count of newpart.

68 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

int

PyString Resize(PyObject **string, Py ssize t newsize)

A way to resize a string object even though it is “immutable”. Only use this to build up a brand new
string object; don’t use this if the string may already be known in other parts of the code. It is an
error to call this function if the refcount on the input string object is not one. Pass the address of
an existing string object as an lvalue (it may be written into), and the new size desired. On success,
*string holds the resized string object and 0 is returned; the address in *string may differ from its
input value. If the reallocation fails, the original string object at *string is deallocated, *string is set
to NULL, a memory exception is set, and -1 is returned.

Changed in version 2.5: This function used an int type for newsize. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyString Format(PyObject *format, PyObject *args)

Return value: New reference. Return a new string object from format and args. Analogous to format
% args. The args argument must be a tuple or dict.

void PyString InternInPlace(PyObject **string)

Intern the argument *string in place. The argument must be the address of a pointer variable pointing
to a Python string object. If there is an existing interned string that is the same as *string, it sets
*string to it (decrementing the reference count of the old string object and incrementing the reference
count of the interned string object), otherwise it leaves *string alone and interns it (incrementing its
reference count). (Clarification: even though there is a lot of talk about reference counts, think of this
function as reference-count-neutral; you own the object after the call if and only if you owned it before
the call.)

Note: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString InternFromString(const char *v)

Return value: New reference. A combination of PyString FromString() and PyS-
tring InternInPlace(), returning either a new string object that has been interned, or a new (“owned”)
reference to an earlier interned string object with the same value.

Note: This function is not available in 3.x and does not have a PyBytes alias.

PyObject™ PyString Decode(const char *s, Py ssize t size, const char *encoding, const char *errors)

Return value: New reference. Create an object by decoding size bytes of the encoded buffer s using
the codec registered for encoding. encoding and errors have the same meaning as the parameters of
the same name in the unicode() built-in function. The codec to be used is looked up using the Python
codec registry. Return NULL if an exception was raised by the codec.

Note: This function is not available in 3.x and does not have a PyBytes alias.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyString AsDecodedObject(PyObject *str, const char *encoding, const char *errors)

Return value: New reference. Decode a string object by passing it to the codec registered for encoding
and return the result as Python object. encoding and errors have the same meaning as the parameters
of the same name in the string encode() method. The codec to be used is looked up using the Python
codec registry. Return NULL if an exception was raised by the codec.

7.3.

Sequence Objects 69

The Python/C API, Release 2.7.16rcl

Note: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString Encode(const char *s, Py ssize t size, const char *encoding, const char *errors)
Return value: New reference. Encode the char buffer of the given size by passing it to the codec
registered for encoding and return a Python object. encoding and errors have the same meaning as
the parameters of the same name in the string encode() method. The codec to be used is looked up
using the Python codec registry. Return NULL if an exception was raised by the codec.

Note: This function is not available in 3.x and does not have a PyBytes alias.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyString AsEncodedObject(PyObject *str, const char *encoding, const char *errors)
Return value: New reference. Encode a string object using the codec registered for encoding and
return the result as Python object. encoding and errors have the same meaning as the parameters of
the same name in the string encode() method. The codec to be used is looked up using the Python
codec registry. Return NULL if an exception was raised by the codec.

Note: This function is not available in 3.x and does not have a PyBytes alias.

7.3.3 Unicode Objects and Codecs

Unicode Objects
Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:

Py UNICODE

This type represents the storage type which is used by Python internally as basis for holding Unicode
ordinals. Python’s default builds use a 16-bit type for Py UNICODE and store Unicode values inter-
nally as UCS2. It is also possible to build a UCS4 version of Python (most recent Linux distributions
come with UCS4 builds of Python). These builds then use a 32-bit type for Py UNICODE and store
Unicode data internally as UCS4. On platforms where wchar t is available and compatible with the
chosen Python Unicode build variant, Py UNICODE is a typedef alias for wchar _t to enhance native
platform compatibility. On all other platforms, Py UNICODE is a typedef alias for either unsigned
short (UCS2) or unsigned long (UCS4).

Note that UCS2 and UCS4 Python builds are not binary compatible. Please keep this in mind when writing
extensions or interfaces.

PyUnicodeObject
This subtype of PyObject represents a Python Unicode object.

PyTypeObject PyUnicode Type
This instance of PyTypeObject represents the Python Unicode type. It is exposed to Python code as
unicode and types.UnicodeType.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only
data of Unicode objects:

70 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

int PyUnicode Check(PyObject *o)
Return true if the object o is a Unicode object or an instance of a Unicode subtype.

Changed in version 2.2: Allowed subtypes to be accepted.

int PyUnicode CheckExact(PyObject *o)
Return true if the object o is a Unicode object, but not an instance of a subtype.

New in version 2.2.

Py ssize t PyUnicode GET SIZE(PyObject *o)
Return the size of the object. o has to be a PyUnicodeObject (not checked).

Changed in version 2.5: This function returned an int type. This might require changes in your code
for properly supporting 64-bit systems.

Py ssize_t PyUnicode GET DATA SIZE(PyObject *o)
Return the size of the object’s internal buffer in bytes. o has to be a PyUnicodeObject (not checked).

Changed in version 2.5: This function returned an int type. This might require changes in your code
for properly supporting 64-bit systems.

Py UNICODE* PyUnicode AS UNICODE(PyObject *o)
Return a pointer to the internal Py UNICODE buffer of the object. o has to be a PyUnicodeObject
(not checked).

const char® PyUnicode AS_ DATA(PyObject *o)
Return a pointer to the internal buffer of the object. o has to be a PyUnicodeObject (not checked).

int PyUnicode ClearFreeList()
Clear the free list. Return the total number of freed items.

New in version 2.6.

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through
these macros which are mapped to C functions depending on the Python configuration.

int Py UNICODE ISSPACE(Py UNICODE ch)
Return 1 or 0 depending on whether ch is a whitespace character.

int Py UNICODE ISLOWER(Py UNICODE ch)
Return 1 or 0 depending on whether ch is a lowercase character.

int Py UNICODE ISUPPER(Py UNICODE ch)
Return 1 or 0 depending on whether ch is an uppercase character.

int Py UNICODE ISTITLE(Py UNICODE ch)
Return 1 or 0 depending on whether ch is a titlecase character.

int Py UNICODE ISLINEBREAK(Py UNICODE ch)
Return 1 or 0 depending on whether ch is a linebreak character.

int Py UNICODE ISDECIMAL(Py UNICODE ch)
Return 1 or 0 depending on whether ch is a decimal character.

int Py UNICODE ISDIGIT(Py UNICODE ch)
Return 1 or 0 depending on whether ch is a digit character.

int Py UNICODE ISNUMERIC(Py UNICODE ch)
Return 1 or 0 depending on whether ch is a numeric character.

7.3. Sequence Objects 71

The Python/C API, Release 2.7.16rcl

int Py UNICODE ISALPHA(Py UNICODE ch)

Return 1 or 0 depending on whether ch is an alphabetic character.
int Py UNICODE ISALNUM(Py UNICODE ch)

Return 1 or 0 depending on whether ch is an alphanumeric character.

These APIs can be used for fast direct character conversions:

Py UNICODE Py UNICODE TOLOWER(Py UNICODE ch)
Return the character ch converted to lower case.

Py UNICODE Py UNICODE TOUPPER(Py UNICODE ch)
Return the character ch converted to upper case.

Py UNICODE Py UNICODE TOTITLE(Py UNICODE ch)
Return the character ch converted to title case.

int Py UNICODE TODECIMAL(Py UNICODE ch)
Return the character ch converted to a decimal positive integer. Return -1 if this is not possible. This
macro does not raise exceptions.

int Py UNICODE TODIGIT(Py UNICODE ch)
Return the character ch converted to a single digit integer. Return -1 if this is not possible. This macro
does not raise exceptions.

double Py UNICODE TONUMERIC(Py UNICODE ch)
Return the character ch converted to a double. Return -1.0 if this is not possible. This macro does
not raise exceptions.

Plain Py UNICODE

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode FromUnicode(const Py UNICODE *u, Py_ssize t size)
Return value: New reference. Create a Unicode object from the Py UNICODE buffer u of the given
size. u may be NULL which causes the contents to be undefined. It is the user’s responsibility to fill
in the needed data. The buffer is copied into the new object. If the buffer is not NULL, the return
value might be a shared object. Therefore, modification of the resulting Unicode object is only allowed
when u is NULL.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode FromStringAndSize(const char *u, Py ssize t size)
Return value: New reference. Create a Unicode object from the char buffer u. The bytes will be
interpreted as being UTF-8 encoded. u may also be NULL which causes the contents to be undefined.
It is the user’s responsibility to fill in the needed data. The buffer is copied into the new object. If the
buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.

New in version 2.6.

PyObject *PyUnicode FromString(const char *u)
Return value: New reference. Create a Unicode object from a UTF-8 encoded null-terminated char
buffer u.

New in version 2.6.

PyObject* PyUnicode FromFormat(const char *format, ...)
Return value: New reference. Take a C printf()-style format string and a variable number of arguments,

72 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

calculate the size of the resulting Python unicode string and return a string with the values formatted
into it. The variable arguments must be C types and must correspond exactly to the format characters
in the format string. The following format characters are allowed:

Format Characters | Type Comment

%% n/a The literal % character.

%c int A single character, represented as a C int.
%d int Exactly equivalent to printf("%d").

%u unsigned int Exactly equivalent to printf("%u").

%ld long Exactly equivalent to printf("%1d").

%olu unsigned long Exactly equivalent to printf("%lu").

%ozd Py ssize t Exactly equivalent to printf("%zd").

Y%ozu size_t Exactly equivalent to printf("%zu").

%1 int Exactly equivalent to printf("%i").

%ox int Exactly equivalent to printf("%x").

%os char* A null-terminated C character array.

%p void* The hex representation of a C pointer. Mostly

equivalent to printf("%p") except that it is guaranteed
to start with the literal Ox regardless of what the
platform’s printf yields.

%U PyObject* A unicode object.

%V PyObject®, char * | A unicode object (which may be NULL) and a
null-terminated C character array as a second
parameter (which will be used, if the first parameter is

NULL).
%S PyObject™* The result of calling PyObject Unicode().
%R PyObject* The result of calling PyObject Repr().

An unrecognized format character causes all the rest of the format string to be copied as-is to the
result string, and any extra arguments discarded.

New in version 2.6.

PyObject* PyUnicode FromFormatV(const char *format, va_list vargs)
Return value: New reference. Identical to PyUnicode FromFormat() except that it takes exactly two
arguments.

New in version 2.6.

Py UNICODE* PyUnicode AsUnicode(PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py UNICODE buffer, NULL if unicode
is not a Unicode object. Note that the resulting Py UNICODE* string may contain embedded null
characters, which would cause the string to be truncated when used in most C functions.

Py ssize t PyUnicode GetSize(PyObject *unicode)
Return the length of the Unicode object.

Changed in version 2.5: This function returned an int type. This might require changes in your code
for properly supporting 64-bit systems.

PyObject* PyUnicode FromEncodedObject(PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Coerce an encoded object obj to a Unicode object and return a reference
with incremented refcount.

String and other char buffer compatible objects are decoded according to the given encoding and using
the error handling defined by errors. Both can be NULL to have the interface use the default values
(see the next section for details).

7.3. Sequence Objects 73

The Python/C API, Release 2.7.16rcl

All other objects, including Unicode objects, cause a TypeError to be set.

The API returns NULL if there was an error. The caller is responsible for decref’ing the returned
objects.

PyObject® PyUnicode FromObject(PyObject *obj)
Return value: New reference. Shortcut for PyUnicode FromEncodedObject(obj, NULL, "strict")
which is used throughout the interpreter whenever coercion to Unicode is needed.

If the platform supports wchar t and provides a header file wchar.h, Python can interface directly to this
type using the following functions. Support is optimized if Python’s own Py UNICODE type is identical
to the system’s wchar_t.

wchar _t Support

wchar _t support for platforms which support it:

PyObject* PyUnicode FromWideChar(const wchar _t *w, Py ssize t size)
Return value: New reference. Create a Unicode object from the wchar t buffer w of the given size.
Return NULL on failure.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

Py ssize t PyUnicode AsWideChar(PyUnicodeObject *unicode, wchar t *w, Py ssize t size)
Copy the Unicode object contents into the wchar t buffer w. At most size wchar t characters are
copied (excluding a possibly trailing O-termination character). Return the number of wchar t char-
acters copied or -1 in case of an error. Note that the resulting wchar t string may or may not be
O-terminated. It is the responsibility of the caller to make sure that the wchar t string is O-terminated
in case this is required by the application. Also, note that the wchar t* string might contain null
characters, which would cause the string to be truncated when used with most C functions.

Changed in version 2.5: This function returned an int type and used an int type for size. This might
require changes in your code for properly supporting 64-bit systems.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly
usable via the following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as
the ones of the built-in unicode() Unicode object constructor.

Setting encoding to NULL causes the default encoding to be used which is ASCII. The file system calls
should use Py FileSystemDefaultEncoding as the encoding for file names. This variable should be treated
as read-only: on some systems, it will be a pointer to a static string, on others, it will change at run-time
(such as when the application invokes setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined
for the codec. Default error handling for all built-in codecs is “strict” (ValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for
simplicity.

Generic Codecs

These are the generic codec APIs:

74 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

PyObject® PyUnicode Decode(const char *s, Py ssize t size, const char *encoding, const char *er-

rors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string

s. encoding and errors have the same meaning as the parameters of the same name in the unicode()
built-in function. The codec to be used is looked up using the Python codec registry. Return NULL if
an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode Encode(const Py UNICODE *s, Py ssize t size, const char *encoding, const

char *errors)
Return value: New reference. Encode the Py UNICODE buffer s of the given size and return a Python

string object. encoding and errors have the same meaning as the parameters of the same name in the
Unicode encode() method. The codec to be used is looked up using the Python codec registry. Return
NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode AsEncodedString(PyObject *unicode, const char *encoding, const char *er-

rors)
Return value: New reference. Encode a Unicode object and return the result as Python string object.

encoding and errors have the same meaning as the parameters of the same name in the Unicode
encode() method. The codec to be used is looked up using the Python codec registry. Return NULL
if an exception was raised by the codec.

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject* PyUnicode DecodeUTF8(const char *s, Py ssize t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded
string s. Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode DecodeUTF8Stateful(const char *s, Py ssize t size, const char *errors,
Py ssize t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTFS8(). If
consumed is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error.
Those bytes will not be decoded and the number of bytes that have been decoded will be stored in
consumed.

New in version 2.4.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode EncodeUTF8(const Py UNICODE *s, Py ssize t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer s of the given size using UTF-8 and
return a Python string object. Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

7.3. Sequence Objects 75

The Python/C API, Release 2.7.16rcl

PyObject® PyUnicode AsUTF8String(PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python
string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject* PyUnicode DecodeUTF32(const char *s, Py ssize t size, const char *errors, int *byte-
order)
Decode size bytes from a UTF-32 encoded buffer string and return the corresponding Unicode object.

errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder —= 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the
decoder switches to this byte order and the BOM is not copied into the resulting Unicode string. If
*byteorder is -1 or 1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
In a narrow build code points outside the BMP will be decoded as surrogate pairs.

If byteorder is NULL, the codec starts in native order mode.

Return NULL if an exception was raised by the codec.

New in version 2.6.

PyObject® PyUnicode DecodeUTF32Stateful(const char *s, Py ssize t size, const char *errors,
int *byteorder, Py ssize t *consumed)
If consumed is NULL, behave like PyUnicode DecodeUTF32(). If consumed is not NULL, PyUni-
code DecodeUTF32Stateful() will not treat trailing incomplete UTF-32 byte sequences (such as a
number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number of
bytes that have been decoded will be stored in consumed.

New in version 2.6.

PyObject* PyUnicode EncodeUTF32(const Py UNICODE *s, Py ssize t size, const char *errors,
int byteorder)
Return a Python bytes object holding the UTF-32 encoded value of the Unicode data in s. Output is

written according to the following byte order:

byteorder —— -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the
other two modes, no BOM mark is prepended.

If Py UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.

New in version 2.6.

76 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

PyObject® PyUnicode AsUTF32String(PyObject *unicode)
Return a Python string using the UTF-32 encoding in native byte order. The string always starts with
a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by the codec.

New in version 2.6.

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject® PyUnicode DecodeUTF16(const char *s, Py ssize t size, const char *errors, int *byte-

order)
Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the

corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder —= 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the
decoder switches to this byte order and the BOM is not copied into the resulting Unicode string. If
*byteorder is -1 or 1, any byte order mark is copied to the output (where it will result in either a \ufeff
or a \ufffe character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode DecodeUTF16Stateful(const char *s, Py ssize t size, const char *errors,
int *byteorder, Py ssize t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16(). If
consumed is not NULL, PyUnicode DecodeUTF16Stateful() will not treat trailing incomplete UTF-
16 byte sequences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes
will not be decoded and the number of bytes that have been decoded will be stored in consumed.

New in version 2.4.

Changed in version 2.5: This function used an int type for size and an int * type for consumed. This
might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode EncodeUTF16(const Py UNICODE *s, Py ssize t size, const char *errors,

int byteorder)
Return value: New reference. Return a Python string object holding the UTF-16 encoded value of the

Unicode data in s. Output is written according to the following byte order:

byteorder —= -1: little endian
byteorder —— 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the
other two modes, no BOM mark is prepended.

7.3. Sequence Objects 7

The Python/C API, Release 2.7.16rcl

If Py UNICODE WIDE is defined, a single Py UNICODE value may get represented as a surrogate
pair. If it is not defined, each Py UNICODE values is interpreted as a UCS-2 character.

Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode AsUTF16String(PyObject *unicode)
Return value: New reference. Return a Python string using the UTF-16 encoding in native byte order.
The string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception
was raised by the codec.

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject* PyUnicode DecodeUTF7(const char *s, Py ssize t size, const char *errors)
Create a Unicode object by decoding size bytes of the UTF-7 encoded string s. Return NULL if an
exception was raised by the codec.

PyObject* PyUnicode DecodeUTF7Stateful(const char *s, Py ssize t size, const char *errors,
Py ssize t *consumed)
If consumed is NULL, behave like PyUnicode DecodeUTF7(). If consumed is not NULL, trailing
incomplete UTF-7 base-64 sections will not be treated as an error. Those bytes will not be decoded
and the number of bytes that have been decoded will be stored in consumed.

PyObject® PyUnicode EncodeUTF7(const Py UNICODE *s, Py ssize t size, int base64SetO,
int base64WhiteSpace, const char *errors)
Encode the Py UNICODE buffer of the given size using UTF-7 and return a Python bytes object.

Return NULL if an exception was raised by the codec.

If base64SetO is nonzero, “Set O” (punctuation that has no otherwise special meaning) will be encoded
in base-64. If base64WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to
zero for the Python “utf-7” codec.

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:

PyObject® PyUnicode DecodeUnicodeEscape(const char *s, Py ssize t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape
encoded string s. Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode EncodeUnicodeEscape(const Py UNICODE *s, Py ssize t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Unicode-Escape
and return a Python string object. Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode AsUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as
Python string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

78 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:

PyObject* PyUnicode DecodeRawUnicodeEscape(const char *s, Py ssize t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-
Escape encoded string s. Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode EncodeRawUnicodeEscape(const Py UNICODE *s, Py ssize t size, const

char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Raw-Unicode-

Escape and return a Python string object. Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject® PyUnicode AsRawUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the
result as Python string object. Error handling is “strict”. Return NULL if an exception was raised by
the codec.

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are
accepted by the codecs during encoding.

PyObject® PyUnicode DecodeLatinl(const char *s, Py ssize t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded
string s. Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode EncodeLatinl(const Py UNICODE *s, Py ssize t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Latin-1 and
return a Python string object. Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode AsLatin1String(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python
string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject® PyUnicode DecodeASCII(const char *s, Py ssize t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded
string s. Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

7.3. Sequence Objects 79

The Python/C API, Release 2.7.16rcl

PyObject® PyUnicode EncodeASCII(const Py UNICODE *s, Py ssize t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using ASCII and
return a Python string object. Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode AsASCIIString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python
string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was
done to obtain most of the standard codecs included in the encodings package). The codec uses mapping to
encode and decode characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are then
interpreted as Unicode ordinals) or None (meaning “undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are then
interpreted as Latin-1 ordinals) or None (meaning “undefined mapping” and causing an error).

The mapping objects provided must only support the getitem _ mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value
will be interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those
mappings which map characters to different code points.

These are the mapping codec APIs:

PyObject* PyUnicode DecodeCharmap(const char *s, Py ssize t size, PyObject *mapping, const
char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s
using the given mapping object. Return NULL if an exception was raised by the codec. If mapping
is NULL latin-1 decoding will be done. Else it can be a dictionary mapping byte or a unicode string,
which is treated as a lookup table. Byte values greater that the length of the string and U+FFFE
“characters” are treated as “undefined mapping”.

Changed in version 2.4: Allowed unicode string as mapping argument.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject® PyUnicode EncodeCharmap(const Py UNICODE *s, Py ssize t size, PyObject *map-
ping, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using the given
mapping object and return a Python string object. Return NULL if an exception was raised by the
codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject® PyUnicode AsCharmapString(PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the
result as Python string object. Error handling is “strict”. Return NULL if an exception was raised by
the codec.

The following codec API is special in that maps Unicode to Unicode.

&0 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

PyObject® PyUnicode TranslateCharmap(const Py UNICODE *s, Py ssize t size, PyObject *ta-
ble, const char *errors)
Return value: New reference. Translate a Py UNICODE buffer of the given size by applying a
character mapping table to it and return the resulting Unicode object. Return NULL when an exception
was raised by the codec.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing
deletion of the character).

Mapping tables need only provide the getitem () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied
as-is.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS
converters to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one.
The target encoding is defined by the user settings on the machine running the codec.

PyObject* PyUnicode DecodeMBCS(const char *s, Py ssize t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded
string s. Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode DecodeMBCSStateful(const char *s, int size, const char *errors, int *con-
sumed)
If consumed is NULL, behave like PyUnicode DecodeMBCS(). If consumed is not NULL, PyUni-
code DecodeMBCSStateful() will not decode trailing lead byte and the number of bytes that have
been decoded will be stored in consumed.

New in version 2.5.

PyObject* PyUnicode EncodeMBCS(const Py UNICODE *s, Py ssize t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using MBCS and
return a Python string object. Return NULL if an exception was raised by the codec.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode AsMBCSString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python
string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings
in the descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or -1 if an exception occurs.

7.3. Sequence Objects 81

The Python/C API, Release 2.7.16rcl

PyObject* PyUnicode Concat(PyObject *left, PyObject *right)

Return value: New reference. Concat two strings giving a new Unicode string.

PyObject* PyUnicode Split(PyObject *s, PyObject *sep, Py ssize t maxsplit)

Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting
will be done at all whitespace substrings. Otherwise, splits occur at the given separator. At most
maxsplit splits will be done. If negative, no limit is set. Separators are not included in the resulting
list.

Changed in version 2.5: This function used an int type for maxsplit. This might require changes in
your code for properly supporting 64-bit systems.

PyObject® PyUnicode Splitlines(PyObject *s, int keepend)

Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings.
CRLF is considered to be one line break. If keepend is 0, the Line break characters are not included
in the resulting strings.

PyObject* PyUnicode Translate(PyObject *str, PyObject *table, const char *errors)

Return value: New reference. Translate a string by applying a character mapping table to it and return
the resulting Unicode object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing
deletion of the character).

Mapping tables need only provide the getitem () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied
as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error
handling.

PyObject* PyUnicode Join(PyObject *separator, PyObject *seq)

Return value: New reference. Join a sequence of strings using the given separator and return the
resulting Unicode string.

Py ssize t PyUnicode Tailmatch(PyObject *str, PyObject *substr, Py ssize t start,

Py ssize t end, int direction)
Return 1 if substr matches str[start:end] at the given tail end (direction == -1 means to do a prefix
match, direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.

Changed in version 2.5: This function used an int type for start and end. This might require changes
in your code for properly supporting 64-bit systems.

Py ssize t PyUnicode Find(PyObject *str, PyObject *substr, Py ssize t start, Py ssize t end,

int direction)
Return the first position of substr in str[start:end] using the given direction (direction == 1 means to
do a forward search, direction == -1 a backward search). The return value is the index of the first
match; a value of -1 indicates that no match was found, and -2 indicates that an error occurred and
an exception has been set.

Changed in version 2.5: This function used an int type for start and end. This might require changes
in your code for properly supporting 64-bit systems.

Py ssize t PyUnicode Count(PyObject *str, PyObject *substr, Py ssize t start, Py ssize t end)

Return the number of non-overlapping occurrences of substr in str[start:end]. Return -1 if an error
occurred.

Changed in version 2.5: This function returned an int type and used an int type for start and end.
This might require changes in your code for properly supporting 64-bit systems.

82

Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

PyObject® PyUnicode Replace(PyObject — *str, PyObject *substr, PyObject *replstr,
Py ssize t maxcount)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and
return the resulting Unicode object. maxcount == -1 means replace all occurrences.

Changed in version 2.5: This function used an int type for maxcount. This might require changes in
your code for properly supporting 64-bit systems.
int PyUnicode Compare(PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.
int PyUnicode RichCompare(PyObject *left, PyObject *right, int op)
Rich compare two unicode strings and return one of the following:

e NULL in case an exception was raised
e Py True or Py False for successful comparisons
¢ Py Notlmplemented in case the type combination is unknown

Note that Py EQ and Py _NE comparisons can cause a UnicodeWarning in case the conversion of the
arguments to Unicode fails with a UnicodeDecodeError.

Possible values for op are Py GT, Py _GE, Py EQ, Py NE, Py LT, and Py LE.

PyObject* PyUnicode Format(PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to
format % args.

int PyUnicode Contains(PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.

element has to coerce to a one element Unicode string. -1 is returned if there was an error.

7.3.4 Buffers and Memoryview Objects

Python objects implemented in C can export a group of functions called the “buffer interface.” These functions
can be used by an object to expose its data in a raw, byte-oriented format. Clients of the object can use the
buffer interface to access the object data directly, without needing to copy it first.

Two examples of objects that support the buffer interface are strings and arrays. The string object exposes
the character contents in the buffer interface’s byte-oriented form. An array can only expose its contents via
the old-style buffer interface. This limitation does not apply to Python 3, where memoryview objects can
be constructed from arrays, too. Array elements may be multi-byte values.

An example user of the buffer interface is the file object’s write() method. Any object that can export a
series of bytes through the buffer interface can be written to a file. There are a number of format codes to
PyArg ParseTuple() that operate against an object’s buffer interface, returning data from the target object.

Starting from version 1.6, Python has been providing Python-level buffer objects and a C-level buffer API so
that any built-in or used-defined type can expose its characteristics. Both, however, have been deprecated
because of various shortcomings, and have been officially removed in Python 3 in favour of a new C-level
buffer API and a new Python-level object named memoryview.

The new buffer API has been backported to Python 2.6, and the memoryview object has been backported
to Python 2.7. It is strongly advised to use them rather than the old APIs,; unless you are blocked from
doing so for compatibility reasons.

7.3. Sequence Objects 83

The Python/C API, Release 2.7.16rcl

The new-style Py buffer struct

Py buffer

void *buf
A pointer to the start of the memory for the object.

Py ssize t len
The total length of the memory in bytes.

int readonly
An indicator of whether the buffer is read only.

const char *format

A NULL terminated string in struct module style syntax giving the contents of the elements
available through the buffer. If this is NULL, "B" (unsigned bytes) is assumed.

int ndim

The number of dimensions the memory represents as a multi-dimensional array. If it is 0, strides
and suboffsets must be NULL.

Py ssize t *shape
An array of Py _ssize_ts the length of ndim giving the shape of the memory as a multi-dimensional
array. Note that ((*shape)[0] * ... * (*shape)[ndims-1])*itemsize should be equal to len.

Py ssize t *strides
An array of Py ssize ts the length of ndim giving the number of bytes to skip to get to a new
element in each dimension.

Py ssize t *suboffsets
An array of Py _ssize ts the length of ndim. If these suboffset numbers are greater than or equal
to 0, then the value stored along the indicated dimension is a pointer and the suboffset value
dictates how many bytes to add to the pointer after de-referencing. A suboffset value that it
negative indicates that no de-referencing should occur (striding in a contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the
default value).

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-
dimensional index when there are both non-NULL strides and suboffsets:

void *get item pointer(int ndim, void *buf, Py ssize t *strides,

Py ssize t *suboffsets, Py ssize t *indices) {
char *pointer — (char*)buf;
int i
for (i = 0;1 < ndim; i++) {

pointer +— strides[i] * indices]i];

if (suboffsets|[i] >=0) {

pointer = *((char**)pointer) + suboffsets][i];

}

}

return (void*)pointer;

}

Py ssize t itemsize
This is a storage for the itemsize (in bytes) of each element of the shared memory. It is technically
un-necessary as it can be obtained using PyBuffer SizeFromFormat(), however an exporter may
know this information without parsing the format string and it is necessary to know the itemsize
for proper interpretation of striding. Therefore, storing it is more convenient and faster.

84 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

void *internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer
by the exporter and used to store flags about whether or not the shape, strides, and suboffsets
arrays must be freed when the buffer is released. The consumer should never alter this value.

Buffer related functions

int PyObject CheckBuffer(PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0.

int PyObject GetBuffer(PyObject *obj, Py buffer *view, int flags)
Export obj into a Py buffer, view. These arguments must never be NULL. The flags argument is a
bit field indicating what kind of buffer the caller is prepared to deal with and therefore what kind of
buffer the exporter is allowed to return. The buffer interface allows for complicated memory sharing
possibilities, but some caller may not be able to handle all the complexity but may want to see if the
exporter will let them take a simpler view to its memory.

Some exporters may not be able to share memory in every possible way and may need to raise errors
to signal to some consumers that something is just not possible. These errors should be a BufferError
unless there is another error that is actually causing the problem. The exporter can use flags information
to simplify how much of the Py buffer structure is filled in with non-default values and/or raise an
error if the object can’t support a simpler view of its memory.

0 is returned on success and -1 on error.

The following table gives possible values to the flags arguments.

7.3. Sequence Objects 85

The Python/C API, Release 2.7.16rcl

Flag

Description

PyBUF _SIMPLE

This is the default flag state. The returned buffer may or may not have writable
memory. The format of the data will be assumed to be unsigned bytes. This
is a “stand-alone” flag constant. It never needs to be ‘|’d to the others. The
exporter will raise an error if it cannot provide such a contiguous buffer of
bytes.

Py- The returned buffer must be writable. If it is not writable, then raise an error.
BUF _WRITABLE
Py- This implies PyBUF _ND. The returned buffer must provide strides informa-

BUF_STRIDES

tion (i.e. the strides cannot be NULL). This would be used when the consumer
can handle strided, discontiguous arrays. Handling strides automatically as-
sumes you can handle shape. The exporter can raise an error if a strided
representation of the data is not possible (i.e. without the suboffsets).

PyBUF ND The returned buffer must provide shape information. The memory will be
assumed C-style contiguous (last dimension varies the fastest). The exporter
may raise an error if it cannot provide this kind of contiguous buffer. If this
is not given then shape will be NULL.

Py- These flags indicate that the contiguity returned buffer must be respectively,

BUF _C_CONTIGUQSntiguous (last dimension varies the fastest), Fortran contiguous (first

Py- dimension varies the fastest) or either one. All of these flags imply Py-

BUF F CONTIGUBUS STRIDES and guarantee that the strides buffer info structure will be

Py- filled in correctly.

BUF ANY CONTIGUOUS

Py- This flag indicates the returned buffer must have suboffsets information (which

BUF_INDIRECT

can be NULL if no suboffsets are needed). This can be used when the consumer

can handle indirect array referencing implied by these suboffsets. This implies
PyBUF _STRIDES.

Py-
BUF_FORMAT

The returned buffer must have true format information if this flag is provided.
This would be used when the consumer is going to be checking for what ‘kind’
of data is actually stored. An exporter should always be able to provide this
information if requested. If format is not explicitly requested then the format
must be returned as NULL (which means 'B', or unsigned bytes)

Py-
BUF_STRIDED

This is equivalent to (PyBUF _STRIDES | PyBUF _WRITABLE).

Py-

This is equivalent to (PyBUF _STRIDES).

BUF_STRIDED_RO

Py- This is equivalent to (PyBUF_STRIDES | PyBUF_ FORMAT | Py

BUF_RECORDS | BUF_WRITABLE).

Py- This is equivalent to (PyBUF _STRIDES | PyBUF FORMAT).

BUF_RECORDS_RO

PyBUF _FULL This is equivalent to (PyBUF INDIRECT | PyBUF FORMAT | Py-
BUF WRITABLE).

Py- This is equivalent to (PyBUF_INDIRECT | PyBUF_FORMAT).

BUF_FULL_RO

Py- This is equivalent to (PyBUF_ND | PyBUF_WRITABLE).

BUF_CONTIG

Py- This is equivalent to (PyBUF _ND).

BUF_CONTIG RO

void PyBuffer _Release(Py _buffer *view)
Release the buffer view. This should be called when the buffer is no longer being used as it may free

memory from it.

86

Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

Py ssize t PyBuffer SizeFromFormat(const char *)
Return the implied itemsize from the struct-stype format.

int PyBuffer IsContiguous(Py buffer *view, char fortran)
Return 1 if the memory defined by the view is C-style (fortran is 'C"') or Fortran-style (fortran is
'F'') contiguous or either one (fortran is 'A'). Return 0 otherwise.

void PyBuffer FillContiguousStrides(int ndims, Py ssize t *shape, Py ssize t *strides, int itemsize,
char fortran)
Fill the strides array with byte-strides of a contiguous (C-style if fortran is 'C' or Fortran-style if
fortran is 'F') array of the given shape with the given number of bytes per element.

int PyBuffer Filllnfo(Py buffer *view, PyObject *obj, void *buf, Py ssize t len, int readonly, int in-
foflags)
Fill in a buffer-info structure, view, correctly for an exporter that can only share a contiguous chunk
of memory of “unsigned bytes” of the given length. Return 0 on success and -1 (with raising an error)
on error.

MemoryView objects

New in version 2.7.

A memoryview object exposes the new C level buffer interface as a Python object which can then be passed
around like any other object.

PyObject *PyMemoryView FromObject(PyObject *obj)
Create a memoryview object from an object that defines the new buffer interface.

PyObject *PyMemoryView FromBuffer(Py buffer *view)
Create a memoryview object wrapping the given buffer-info structure view. The memoryview object
then owns the buffer, which means you shouldn’t try to release it yourself: it will be released on
deallocation of the memoryview object.

PyObject ¥*PyMemoryView GetContiguous(PyObject *obj, int buffertype, char order)
Create a memoryview object to a contiguous chunk of memory (in either ‘C’ or ‘F’ortran order) from
an object that defines the buffer interface. If memory is contiguous, the memoryview object points to
the original memory. Otherwise copy is made and the memoryview points to a new bytes object.

int PyMemoryView Check(PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses
of memoryview.

Py buffer *PyMemoryView GET BUFFER(PyObject *obj)
Return a pointer to the buffer-info structure wrapped by the given object. The object must be a
memoryview instance; this macro doesn’t check its type, you must do it yourself or you will risk
crashes.

Old-style buffer objects

More information on the old buffer interface is provided in the section Buffer Object Structures, under the
description for PyBufferProcs.

A “buffer object” is defined in the bufferobject.h header (included by Python.h). These objects look very
similar to string objects at the Python programming level: they support slicing, indexing, concatenation,
and some other standard string operations. However, their data can come from one of two sources: from a
block of memory, or from another object which exports the buffer interface.

7.3. Sequence Objects 87

The Python/C API, Release 2.7.16rcl

Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a
block of memory, it is possible to expose any data to the Python programmer quite easily. The memory
could be a large, constant array in a C extension, it could be a raw block of memory for manipulation before
passing to an operating system library, or it could be used to pass around structured data in its native,
in-memory format.

PyBufferObject
This subtype of PyObject represents a buffer object.

PyTypeObject PyBuffer Type
The instance of PyTypeObject which represents the Python buffer type; it is the same object as buffer
and types.BufferType in the Python layer. .

int Py END_ OF_ BUFFER
This constant may be passed as the size parameter to PyBuffer FromObject() or Py-
Buffer FromReadWriteObject(). It indicates that the new PyBufferObject should refer to base object
from the specified offset to the end of its exported buffer. Using this enables the caller to avoid querying
the base object for its length.

int PyBuffer Check(PyObject *p)
Return true if the argument has type PyBuffer Type.

PyObject* PyBuffer FromObject(PyObject *base, Py ssize t offset, Py ssize t size)
Return value: New reference. Return a new read-only buffer object. This raises TypeError if base
doesn’t support the read-only buffer protocol or doesn’t provide exactly one buffer segment, or it raises
ValueError if offset is less than zero. The buffer will hold a reference to the base object, and the buffer’s
contents will refer to the base object’s buffer interface, starting as position offset and extending for size
bytes. If size is Py END OF BUFFER, then the new buffer’s contents extend to the length of the
base object’s exported buffer data.

Changed in version 2.5: This function used an int type for offset and size. This might require changes
in your code for properly supporting 64-bit systems.

PyObject* PyBuffer FromReadWriteObject(PyObject *base, Py ssize t offset, Py ssize t size)
Return value: New reference. Return a new writable buffer object. Parameters and exceptions are
similar to those for PyBuffer FromObject(). If the base object does not export the writeable buffer
protocol, then TypeError is raised.

Changed in version 2.5: This function used an int type for offset and size. This might require changes
in your code for properly supporting 64-bit systems.

PyObject® PyBuffer FromMemory(void *ptr, Py ssize t size)
Return value: New reference. Return a new read-only buffer object that reads from a specified location
in memory, with a specified size. The caller is responsible for ensuring that the memory buffer, passed
in as ptr, is not deallocated while the returned buffer object exists. Raises ValueError if size is less
than zero. Note that Py END OF BUFFER may not be passed for the size parameter; ValueError
will be raised in that case.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyBuffer FromRead WriteMemory(void *ptr, Py ssize t size)
Return value: New reference. Similar to PyBuffer FromMemory(), but the returned buffer is writable.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyBuffer New(Py ssize t size)
Return value: New reference. Return a new writable buffer object that maintains its own memory

&8 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

buffer of size bytes. ValueError is returned if size is not zero or positive. Note that the memory buffer
(as returned by PyObject AsWriteBuffer()) is not specifically aligned.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

7.3.5 Tuple Objects

PyTupleObject
This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple Type
This instance of PyTypeObject represents the Python tuple type; it is the same object as tuple and
types.TupleType in the Python layer..

int PyTuple Check(PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type.

Changed in version 2.2: Allowed subtypes to be accepted.

int PyTuple CheckExact(PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type.

New in version 2.2.

PyObject* PyTuple New(Py_ssize t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.

Changed in version 2.5: This function used an int type for len. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyTuple Pack(Py ssize tn, ...)
Return value: New reference. Return a new tuple object of size n, or NULL on failure. The tuple
values are initialized to the subsequent n C arguments pointing to Python objects. PyTuple Pack(2,
a, b) is equivalent to Py BuildValue("(OO)", a, b).

New in version 2.4.

Changed in version 2.5: This function used an int type for n. This might require changes in your code
for properly supporting 64-bit systems.

Py ssize t PyTuple Size(PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.
Changed in version 2.5: This function returned an int type. This might require changes in your code
for properly supporting 64-bit systems.

Py ssize_t PyTuple GET _SIZE(PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is
performed.

Changed in version 2.5: This function returned an int type. This might require changes in your code
for properly supporting 64-bit systems.

PyObject* PyTuple GetItem(PyObject *p, Py ssize t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If
pos is out, of bounds, return NULL and sets an IndexError exception.

Changed in version 2.5: This function used an int type for pos. This might require changes in your
code for properly supporting 64-bit systems.

7.3. Sequence Objects 89

The Python/C API, Release 2.7.16rcl

PyObject* PyTuple GET ITEM(PyObject *p, Py ssize t pos)
Return value: Borrowed reference. Like PyTuple GetItem(), but does no checking of its arguments.
Changed in version 2.5: This function used an int type for pos. This might require changes in your
code for properly supporting 64-bit systems.

PyObject® PyTuple GetSlice(PyObject *p, Py ssize t low, Py ssize t high)
Return value: New reference. Take a slice of the tuple pointed to by p from low to high and return it

as a new tuple.

Changed in version 2.5: This function used an int type for low and high. This might require changes
in your code for properly supporting 64-bit systems.

int PyTuple SetItem(PyObject *p, Py _ssize_t pos, PyObject *o)
Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on success.

Note: This function “steals” a reference to o.

Changed in version 2.5: This function used an int type for pos. This might require changes in your
code for properly supporting 64-bit systems.

void PyTuple SET ITEM(PyObject *p, Py _ssize t pos, PyObject *o)
Like PyTuple Setltem(), but does no error checking, and should only be used to fill in brand new
tuples.

Note: This function “steals” a reference to o.

Changed in version 2.5: This function used an int type for pos. This might require changes in your
code for properly supporting 64-bit systems.

int _PyTuple Resize(PyObject **p, Py ssize t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed
to be immutable, this should only be used if there is only one reference to the object. Do not use this if
the tuple may already be known to some other part of the code. The tuple will always grow or shrink
at the end. Think of this as destroying the old tuple and creating a new one, only more efficiently.
Returns 0 on success. Client code should never assume that the resulting value of *p will be the same
as before calling this function. If the object referenced by *p is replaced, the original *p is destroyed.
On failure, returns -1 and sets *p to NULL, and raises MemoryError or SystemError.

Changed in version 2.2: Removed unused third parameter, last is sticky.

Changed in version 2.5: This function used an int type for newsize. This might require changes in your
code for properly supporting 64-bit systems.

int PyTuple_ ClearFreeList()
Clear the free list. Return the total number of freed items.

New in version 2.6.

7.3.6 List Objects

PyListObject
This subtype of PyObject represents a Python list object.

PyTypeObject PyList _Type
This instance of PyTypeObject represents the Python list type. This is the same object as list in the
Python layer.

90 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

int PyList Check(PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type.

Changed in version 2.2: Allowed subtypes to be accepted.

int PyList CheckExact(PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type.

New in version 2.2.

PyObject* PyList New(Py _ssize t len)
Return value: New reference. Return a new list of length len on success, or NULL on failure.

Note: If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot
use abstract API functions such as PySequence Setltem() or expose the object to Python code before
setting all items to a real object with PyList_ SetItem().

Changed in version 2.5: This function used an int for size. This might require changes in your code
for properly supporting 64-bit systems.

Py ssize t PyList Size(PyObject *list)
Return the length of the list object in list; this is equivalent to len(list) on a list object.

Changed in version 2.5: This function returned an int. This might require changes in your code for
properly supporting 64-bit systems.

Py ssize t PyList GET_SIZE(PyObject *list)
Macro form of PyList_Size() without error checking.

Changed in version 2.5: This macro returned an int. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyList Getltem(PyObject *list, Py ssize t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by list.

The position must be positive, indexing from the end of the list is not supported. If index is out of
bounds, return NULL and set an IndexError exception.

Changed in version 2.5: This function used an int for index. This might require changes in your code
for properly supporting 64-bit systems.

PyObject* PyList GET ITEM(PyObject *list, Py ssize t i)
Return value: Borrowed reference. Macro form of PyList_ GetItem() without error checking.
Changed in version 2.5: This macro used an int for i. This might require changes in your code for
properly supporting 64-bit systems.

int PyList_SetItem(PyObject *list, Py ssize t index, PyObject *item)
Set the item at index index in list to item. Return 0 on success or -1 on failure.

Note: This function “steals” a reference to item and discards a reference to an item already in the list
at the affected position.

Changed in version 2.5: This function used an int for index. This might require changes in your code
for properly supporting 64-bit systems.

void PyList SET ITEM(PyObject *list, Py ssize t i, PyObject *o)
Macro form of PyList SetItem() without error checking. This is normally only used to fill in new lists
where there is no previous content.

7.3. Sequence Objects 91

The Python/C API, Release 2.7.16rcl

Note: This macro “steals” a reference to item, and, unlike PyList SetItem(), does not discard a
reference to any item that it being replaced; any reference in list at position i will be leaked.

Changed in version 2.5: This macro used an int for i. This might require changes in your code for
properly supporting 64-bit systems.

int PyList _Insert(PyObject *list, Py ssize t index, PyObject *item)

Insert the item item into list list in front of index index. Return 0 if successful; return -1 and set an
exception if unsuccessful. Analogous to list.insert(index, item).

Changed in version 2.5: This function used an int for index. This might require changes in your code
for properly supporting 64-bit systems.

int PyList Append(PyObject *list, PyObject *item)

Append the object item at the end of list list. Return 0 if successful; return -1 and set an exception if
unsuccessful. Analogous to list.append(item).

PyObject* PyList _GetSlice(PyObject *list, Py ssize t low, Py ssize t high)

Return value: New reference. Return a list of the objects in list containing the objects between low
and high. Return NULL and set an exception if unsuccessful. Analogous to list[low:high|. Negative
indices, as when slicing from Python, are not supported.

Changed in version 2.5: This function used an int for low and high. This might require changes in
your code for properly supporting 64-bit systems.

int PyList _SetSlice(PyObject *list, Py ssize t low, Py ssize t high, PyObject *itemlist)

Set the slice of list between low and high to the contents of itemlist. Analogous to list[low:high] =
itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return
0 on success, -1 on failure. Negative indices, as when slicing from Python, are not supported.

Changed in version 2.5: This function used an int for low and high. This might require changes in
your code for properly supporting 64-bit systems.

int PyList _Sort(PyObject *list)

Sort the items of list in place. Return 0 on success, -1 on failure. This is equivalent to list.sort().

int PyList _Reverse(PyObject *list)

Reverse the items of list in place. Return 0 on success, -1 on failure. This is the equivalent of list.
reverse().

PyObject™ PyList _AsTuple(PyObject *list)

Return value: New reference. Return a new tuple object containing the contents of list; equivalent to
tuple(list).

7.4 Mapping Objects

7.4.1 Dictionary Objects

PyDictObject

This subtype of PyObject represents a Python dictionary object.

PyTypeObject PyDict _Type

This instance of PyTypeObject represents the Python dictionary type. This is exposed to Python
programs as dict and types.DictType.

92

Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

int PyDict _Check(PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type.

Changed in version 2.2: Allowed subtypes to be accepted.

int PyDict CheckExact(PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type.

New in version 2.4.

PyObject™ PyDict New()
Return value: New reference. Return a new empty dictionary, or NULL on failure.

PyObject* PyDictProxy New(PyObject *dict)
Return value: New reference. Return a proxy object for a mapping which enforces read-only behavior.
This is normally used to create a proxy to prevent modification of the dictionary for non-dynamic class

types.

New in version 2.2.

void PyDict_ Clear(PyObject *p)
Empty an existing dictionary of all key-value pairs.

int PyDict _Contains(PyObject *p, PyObject *key)
Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise return 0.
On error, return -1. This is equivalent to the Python expression key in p.

New in version 2.4.

PyObject* PyDict _Copy(PyObject *p)
Return value: New reference. Return a new dictionary that contains the same key-value pairs as p.
New in version 1.6.

int PyDict _SetItem(PyObject *p, PyObject *key, PyObject *val)
Insert value into the dictionary p with a key of key. key must be hashable; if it isn’t, TypeError will
be raised. Return 0 on success or -1 on failure.

int PyDict_ SetItemString(PyObject *p, const char *key, PyObject *val)
Insert value into the dictionary p using key as a key. key should be a char*. The key object is created
using PyString FromString(key). Return 0 on success or -1 on failure.

int PyDict _Delltem(PyObject *p, PyObject *key)
Remove the entry in dictionary p with key key. key must be hashable; if it isn’t, TypeError is raised.
Return 0 on success or -1 on failure.

int PyDict _DelltemString(PyObject *p, char *key)
Remove the entry in dictionary p which has a key specified by the string key. Return 0 on success or
-1 on failure.

PyObject® PyDict _ Getltem(PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return
NULL if the key key is not present, but without setting an exception.

PyObject* PyDict _GetItemString(PyObject *p, const char *key)
Return value: Borrowed reference. This is the same as PyDict Getltem(), but key is specified as a
char*, rather than a PyObject™.

PyObject* PyDict _Items(PyObject *p)
Return value: New reference. Return a PyListObject containing all the items from the dictionary, as
in the dictionary method dict.items().

7.4. Mapping Objects 93

The Python/C API, Release 2.7.16rcl

PyObject* PyDict Keys(PyObject *p)
Return value: New reference. Return a PyListObject containing all the keys from the dictionary, as in
the dictionary method dict.keys().

PyObject* PyDict _Values(PyObject *p)
Return value: New reference. Return a PyListObject containing all the values from the dictionary p,
as in the dictionary method dict.values().

Py ssize t PyDict_Size(PyObject *p)
Return the number of items in the dictionary. This is equivalent to len(p) on a dictionary.

Changed in version 2.5: This function returned an int type. This might require changes in your code
for properly supporting 64-bit systems.

int PyDict Next(PyObject *p, Py ssize t *ppos, PyObject **pkey, PyObject **pvalue)

Iterate over all key-value pairs in the dictionary p. The Py ssize t referred to by ppos must be
initialized to 0 prior to the first call to this function to start the iteration; the function returns true
for each pair in the dictionary, and false once all pairs have been reported. The parameters pkey
and pvalue should either point to PyObject™ variables that will be filled in with each key and value,
respectively, or may be NULL. Any references returned through them are borrowed. ppos should not
be altered during iteration. Its value represents offsets within the internal dictionary structure, and
since the structure is sparse, the offsets are not consecutive.

For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self- >dict, &pos, &key, &value)) {

/* do something interesting with the values... *

}

The dictionary p should not be mutated during iteration. It is safe (since Python 2.1) to modify the
values of the keys as you iterate over the dictionary, but only so long as the set of keys does not change.
For example:

PyObject *key, *value;
Py ssize_t pos — 0;

while (PyDict_ Next(self- >dict, &pos, &key, &value)) {
int i = PyInt_ AS_LONG(value) + 1;
PyObject *o = PyInt _FromLong(i);
if (o == NULL)
return -1;
if (PyDict_ SetItem(self->dict, key, o) < 0) {
Py DECREF(o);
return -1;

Py DECREF(o);

}

Changed in version 2.5: This function used an int * type for ppos. This might require changes in your
code for properly supporting 64-bit systems.

int PyDict Merge(PyObject *a, PyObject *b, int override)
Iterate over mapping object b adding key-value pairs to dictionary a. b may be a dictionary, or any
object supporting PyMapping Keys() and PyObject Getltem(). If override is true, existing pairs in

94 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

a will be replaced if a matching key is found in b, otherwise pairs will only be added if there is not a
matching key in a. Return 0 on success or -1 if an exception was raised.

New in version 2.2.

int PyDict Update(PyObject *a, PyObject *b)
This is the same as PyDict Merge(a, b, 1) in C, and is similar to a.update(b) in Python except that
PyDict _Update() doesn’t fall back to the iterating over a sequence of key value pairs if the second
argument has no “keys” attribute. Return 0 on success or -1 if an exception was raised.

New in version 2.2.

int PyDict MergeFromSeq2(PyObject *a, PyObject *seq2, int override)
Update or merge into dictionary a, from the key-value pairs in seq2. seq2 must be an iterable object
producing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last wins
if override is true, else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent
Python (except for the return value):

def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:
if override or key not in a:
a[key] = value

New in version 2.2.

7.5 Other Objects

7.5.1 Class and Instance Objects

Note that the class objects described here represent old-style classes, which will go away in Python 3. When
creating new types for extension modules, you will want to work with type objects (section Type Objects).

PyClassObject
The C structure of the objects used to describe built-in classes.
PyObject* PyClass_Type
This is the type object for class objects; it is the same object as types.ClassType in the Python layer.
int PyClass_ Check(PyObject *o)
Return true if the object o is a class object, including instances of types derived from the standard
class object. Return false in all other cases.

int PyClass_IsSubclass(PyObject *klass, PyObject *base)
Return true if klass is a subclass of base. Return false in all other cases.

There are very few functions specific to instance objects.

PyTypeObject Pylnstance Type
Type object for class instances.
int PyInstance Check(PyObject *obj)
Return true if obj is an instance.
PyObject* PyInstance New(PyObject *class, PyObject *arg, PyObject *kw)
Return value: New reference. Create a new instance of a specific class. The parameters arg and kw
are used as the positional and keyword parameters to the object’s constructor.

PyObject* PyInstance NewRaw(PyObject *class, PyObject *dict)
Return value: New reference. Create a new instance of a specific class without calling its constructor.

7.5. Other Objects 95

The Python/C API, Release 2.7.16rcl

class is the class of new object. The dict parameter will be used as the object’s _ dict __ ; if NULL,
a new dictionary will be created for the instance.

7.5.2 Function Objects

There are a few functions specific to Python functions.

PyFunctionObject
The C structure used for functions.

PyTypeObject PyFunction Type
This is an instance of PyTypeObject and represents the Python function type. It is exposed to Python
programmers as types.FunctionType.

int PyFunction Check(PyObject *o)
Return true if o is a function object (has type PyFunction Type). The parameter must not be NULL.
PyObject* PyFunction New(PyObject *code, PyObject *globals)
Return value: New reference. Return a new function object associated with the code object code.
globals must be a dictionary with the global variables accessible to the function.

The function’s docstring, name and __ module
defaults and closure are set to NULL.

PyObject* PyFunction GetCode(PyObject *op)
Return value: Borrowed reference. Return the code object associated with the function object op.
PyObject®* PyFunction GetGlobals(PyObject *op)
Return value: Borrowed reference. Return the globals dictionary associated with the function object
op.
PyObject* PyFunction GetModule(PyObject *op)
Return value: Borrowed reference. Return the = module attribute of the function object op. This
is normally a string containing the module name, but can be set to any other object by Python code.

PyObject* PyFunction GetDefaults(PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This
can be a tuple of arguments or NULL.

are retrieved from the code object, the argument

int PyFunction SetDefaults(PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py None or a tuple.

Raises SystemError and returns -1 on failure.

PyObject* PyFunction GetClosure(PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This
can be NULL or a tuple of cell objects.

int PyFunction _SetClosure(PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py None or a tuple of cell
objects.

Raises SystemError and returns -1 on failure.

7.5.3 Method Objects

There are some useful functions that are useful for working with method objects.

96 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

PyTypeObject PyMethod Type
This instance of PyTypeObject represents the Python method type. This is exposed to Python pro-
grams as types.MethodType.
int PyMethod Check(PyObject *o)
Return true if o is a method object (has type PyMethod Type). The parameter must not be NULL.
PyObject* PyMethod New(PyObject *func, PyObject *self, PyObject *class)
Return value: New reference. Return a new method object, with func being any callable object; this
is the function that will be called when the method is called. If this method should be bound to an
instance, self should be the instance and class should be the class of self, otherwise self should be
NULL and class should be the class which provides the unbound method..
PyObject* PyMethod Class(PyObject *meth)
Return value: Borrowed reference. Return the class object from which the method meth was created;
if this was created from an instance, it will be the class of the instance.
PyObject* PyMethod GET CLASS(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod Class() which avoids error checking.
PyObject* PyMethod Function(PyObject *meth)
Return value: Borrowed reference. Return the function object associated with the method meth.
PyObject* PyMethod GET FUNCTION(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod Function() which avoids error check-
ing.
PyObject* PyMethod Self(PyObject *meth)
Return value: Borrowed reference. Return the instance associated with the method meth if it is bound,
otherwise return NULL.
PyObject* PyMethod GET SELF(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod Self() which avoids error checking.

int PyMethod ClearFreeList()
Clear the free list. Return the total number of freed items.

New in version 2.6.

7.5.4 File Objects

Python’s built-in file objects are implemented entirely on the FILE* support from the C standard library.
This is an implementation detail and may change in future releases of Python.

PyFileObject
This subtype of PyObject represents a Python file object.

PyTypeObject PyFile Type
This instance of PyTypeObject represents the Python file type. This is exposed to Python programs
as file and types.FileType.

int PyFile Check(PyObject *p)
Return true if its argument is a PyFileObject or a subtype of PyFileObject.

Changed in version 2.2: Allowed subtypes to be accepted.

int PyFile CheckExact(PyObject *p)
Return true if its argument is a PyFileObject, but not a subtype of PyFileObject.

New in version 2.2.

7.5. Other Objects 97

The Python/C API, Release 2.7.16rcl

PyObject* PyFile FromString(char *filename, char *mode)
Return value: New reference. On success, return a new file object that is opened on the file given
by filename, with a file mode given by mode, where mode has the same semantics as the standard C
routine fopen(). On failure, return NULL.

PyObject* PyFile FromFile(FILE *fp, char *name, char *mode, int (*close)(FILE*))
Return value: New reference. Create a new PyFileObject from the already-open standard C file pointer,
fp. The function close will be called when the file should be closed. Return NULL and close the file
using close on failure. close is optional and can be set to NULL.

FILE* PyFile AsFile(PyObject *p)
Return the file object associated with p as a FILE*.

If the caller will ever use the returned FILE* object while the GIL is released it must also call the
PyFile IncUseCount() and PyFile DecUseCount() functions described below as appropriate.

void PyFile IncUseCount(PyFileObject *p)
Increments the PyFileObject’s internal use count to indicate that the underlying FILE* is being used.
This prevents Python from calling f close() on it from another thread. Callers of this must call
PyFile DecUseCount() when they are finished with the FILE*. Otherwise the file object will never
be closed by Python.

The GIL must be held while calling this function.
The suggested use is to call this after PyFile AsFile() and before you release the GIL:

FILE *fp = PyFile AsFile(p);
PyFile IncUseCount(p);

Py BEGIN ALLOW_THREADS
do_something(fp);

Py END_ ALLOW_THREADS
T

x

PyFile DecUseCount(p);

New in version 2.6.

void PyFile DecUseCount(PyFileObject *p)
Decrements the PyFileObject’s internal unlocked count member to indicate that the caller is done
with its own use of the FILE*. This may only be called to undo a prior call to PyFile IncUseCount().

The GIL must be held while calling this function (see the example above).
New in version 2.6.

PyObject* PyFile GetLine(PyObject *p, int n)
Return value: New reference. Equivalent to p.readline([n]), this function reads one line from the object
p- p may be a file object or any object with a readline() method. If n is 0, exactly one line is read,
regardless of the length of the line. If n is greater than 0, no more than n bytes will be read from the
file; a partial line can be returned. In both cases, an empty string is returned if the end of the file is
reached immediately. If n is less than 0, however, one line is read regardless of length, but EOFError
is raised if the end of the file is reached immediately.

PyObject* PyFile Name(PyObject *p)
Return value: Borrowed reference. Return the name of the file specified by p as a string object.
void PyFile SetBufSize(PyFileObject *p, int n)

Available on systems with setvbuf() only. This should only be called immediately after file object
creation.

98 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

int PyFile SetEncoding(PyFileObject *p, const char *enc)
Set the file’s encoding for Unicode output to enc. Return 1 on success and 0 on failure.

New in version 2.3.

int PyFile SetEncodingAndErrors(PyFileObject *p, const char *enc, *errors)
Set the file’s encoding for Unicode output to enc, and its error mode to err. Return 1 on success and
0 on failure.

New in version 2.6.

int PyFile SoftSpace(PyObject *p, int newflag)
This function exists for internal use by the interpreter. Set the softspace attribute of p to newflag and
return the previous value. p does not have to be a file object for this function to work properly; any
object is supported (thought its only interesting if the softspace attribute can be set). This function
clears any errors, and will return 0 as the previous value if the attribute either does not exist or if there
were errors in retrieving it. There is no way to detect errors from this function, but doing so should
not be needed.

int PyFile WriteObject(PyObject *obj, PyObject *p, int flags)
Write object obj to file object p. The only supported flag for flags is Py PRINT RAW; if given, the
str() of the object is written instead of the repr(). Return 0 on success or -1 on failure; the appropriate
exception will be set.

int PyFile WriteString(const char *s, PyObject *p)
Write string s to file object p. Return 0 on success or -1 on failure; the appropriate exception will be
set.

7.5.5 Module Objects

There are only a few functions special to module objects.

PyTypeObject PyModule Type
This instance of PyTypeObject represents the Python module type. This is exposed to Python pro-
grams as types.ModuleType.

int PyModule Check(PyObject *p)
Return true if p is a module object, or a subtype of a module object.

Changed in version 2.2: Allowed subtypes to be accepted.

int PyModule CheckExact(PyObject *p)
Return true if p is a module object, but not a subtype of PyModule Type.

New in version 2.2.

PyObject* PyModule New(const char *name)
Return value: New reference. Return a new module object with the = name _ attribute set to
name. Only the module’s ~ doc_ and _ name attributes are filled in; the caller is responsible
for providing a __file_ attribute.

PyObject* PyModule GetDict(PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’s namespace;
this object is the same as the __dict__ attribute of the module object. This function never fails. It
is recommended extensions use other PyModule *() and PyObject *() functions rather than directly

manipulate a module’s __ dict
char* PyModule GetName(PyObject *module)
Return module’s ~ name _ value. If the module does not provide one, or if it is not a string,

SystemError is raised and NULL is returned.

7.5. Other Objects 99

The Python/C API, Release 2.7.16rcl

char* PyModule GetFilename(PyObject *module)
Return the name of the file from which module was loaded using module’s file attribute. If this
is not defined, or if it is not a string, raise SystemError and return NULL.

int PyModule AddObject(PyObject *module, const char *name, PyObject *value)
Add an object to module as name. This is a convenience function which can be used from the module’s
initialization function. This steals a reference to value. Return -1 on error, 0 on success.

New in version 2.0.

int PyModule AddIntConstant(PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’s
initialization function. Return -1 on error, 0 on success.

New in version 2.0.

int PyModule AddStringConstant(PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’s
initialization function. The string value must be null-terminated. Return -1 on error, 0 on success.

New in version 2.0.

int PyModule AddIntMacro(PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule AddIntMacro(module, AF INET) adds the int constant AF INET with the value of
AF INET to module. Return -1 on error, 0 on success.

New in version 2.6.
int PyModule AddStringMacro(PyObject *module, macro)
Add a string constant to module.

New in version 2.6.

7.5.6 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary
sequence supporting the getitem () method. The second works with a callable object and a sentinel
value, calling the callable for each item in the sequence, and ending the iteration when the sentinel value is
returned.

PyTypeObject PySeqlter Type
Type object for iterator objects returned by PySeqlter New() and the one-argument form of the iter()
built-in function for built-in sequence types.

New in version 2.2.

int PySeqlter Check(op)
Return true if the type of op is PySeqlter Type.
New in version 2.2.

PyObject* PySeqlter New(PyObject *seq)

Return value: New reference. Return an iterator that works with a general sequence object, seq. The
iteration ends when the sequence raises IndexError for the subscripting operation.

New in version 2.2.

PyTypeObject PyCalllter Type
Type object for iterator objects returned by PyCalllter New() and the two-argument form of the iter()
built-in function.

100 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

New in version 2.2.

int PyCalllter Check(op)
Return true if the type of op is PyCalllter Type.

New in version 2.2.

PyObject* PyCalllter New(PyObject *callable, PyObject *sentinel)
Return value: New reference. Return a new iterator. The first parameter, callable, can be any Python
callable object that can be called with no parameters; each call to it should return the next item in
the iteration. When callable returns a value equal to sentinel, the iteration will be terminated.

New in version 2.2.

7.5.7 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type
objects.

PyTypeObject PyProperty Type
The type object for the built-in descriptor types.

New in version 2.2.

PyObject* PyDescr NewGetSet(PyTypeObject *type, struct PyGetSetDef *getset)
Return value: New reference. New in version 2.2.

PyObject® PyDescr NewMember(PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference. New in version 2.2.

PyObject* PyDescr NewMethod(PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference. New in version 2.2.

PyObject® PyDescr NewWrapper(PyTypeObject — *type, struct wrapperbase *wrapper,
void *wrapped)
Return value: New reference. New in version 2.2.

PyObject® PyDescr NewClassMethod(PyTypeObject *type, PyMethodDef *method)
Return value: New reference. New in version 2.3.

int PyDescr IsData(PyObject *descr)
Return true if the descriptor objects descr describes a data attribute, or false if it describes a method.
descr must be a descriptor object; there is no error checking.

New in version 2.2.

PyObject* PyWrapper New(PyObject *, PyObject *)
Return value: New reference. New in version 2.2.

7.5.8 Slice Objects

PyTypeObject PySlice Type
The type object for slice objects. This is the same as slice and types.SliceType.
int PySlice Check(PyObject *ob)
Return true if ob is a slice object; ob must not be NULL.
PyObject™ PySlice New(PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference. Return a new slice object with the given values. The start, stop, and
step parameters are used as the values of the slice object attributes of the same names. Any of the

7.5. Other Objects 101

The Python/C API, Release 2.7.16rcl

values may be NULL, in which case the None will be used for the corresponding attribute. Return
NULL if the new object could not be allocated.

int PySlice GetIndices(PySliceObject *slice, Py ssize t length, Py ssize t *start,
Py ssize t *stop, Py ssize t *step)
Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of length
length. Treats indices greater than length as errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and
failed to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function. If you want to use slice objects in versions of Python
prior to 2.3, you would probably do well to incorporate the source of PySlice GetIndicesEx(), suitably
renamed, in the source of your extension.

Changed in version 2.5: This function used an int type for length and an int * type for start, stop, and
step. This might require changes in your code for properly supporting 64-bit systems.

int PySlice GetIndicesEx(PySliceObject *slice, Py ssize_t length, Py ssize t *start,
Py ssize t *stop, Py_ssize t *step, Py ssize t *slicelength)
Usable replacement for PySlice GetIndices(). Retrieve the start, stop, and step indices from the slice
object slice assuming a sequence of length length, and store the length of the slice in slicelength. Out
of bounds indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and -1 on error with exception set.
New in version 2.3.

Changed in version 2.5: This function used an int type for length and an int * type for start, stop,
step, and slicelength. This might require changes in your code for properly supporting 64-bit systems.

7.5.9 Ellipsis Object

PyObject *Py _Ellipsis
The Python Ellipsis object. This object has no methods. It needs to be treated just like any other
object with respect to reference counts. Like Py None it is a singleton object.

7.5.10 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly
implement weak references. The first is a simple reference object, and the second acts as a proxy for the
original object as much as it can.

int PyWeakref Check(ob)
Return true if ob is either a reference or proxy object.

New in version 2.2.

int PyWeakref CheckRef(ob)
Return true if ob is a reference object.

New in version 2.2.

int PyWeakref CheckProxy(ob)
Return true if ob is a proxy object.

New in version 2.2.

102 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

PyObject® PyWeakref NewRef(PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference object for the object ob. This will always
return a new reference, but is not guaranteed to create a new object; an existing reference object may
be returned. The second parameter, callback, can be a callable object that receives notification when
ob is garbage collected; it should accept a single parameter, which will be the weak reference object
itself. callback may also be None or NULL. If ob is not a weakly-referencable object, or if callback is
not callable, None, or NULL, this will return NULL and raise TypeError.

New in version 2.2.

PyObject* PyWeakref NewProxy(PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference proxy object for the object ob. This will always
return a new reference, but is not guaranteed to create a new object; an existing proxy object may
be returned. The second parameter, callback, can be a callable object that receives notification when
ob is garbage collected; it should accept a single parameter, which will be the weak reference object
itself. callback may also be None or NULL. If ob is not a weakly-referencable object, or if callback is
not callable, None, or NULL, this will return NULL and raise TypeError.

New in version 2.2.

PyObject* PyWeakref GetObject(PyObject *ref)
Return value: Borrowed reference. Return the referenced object from a weak reference, ref. If the
referent is no longer live, returns Py None.

New in version 2.2.

Warning: This function returns a borrowed reference to the referenced object. This means that
you should always call Py INCREF() on the object except if you know that it cannot be destroyed
while you are still using it.

PyObject* PyWeakref GET _OBJECT(PyObject *ref)
Return value: Borrowed reference. Similar to PyWeakref GetObject(), but implemented as a macro
that does no error checking.

New in version 2.2.

7.5.11 Capsules

Refer to using-capsules for more information on using these objects.
New in version 2.7.

PyCapsule
This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass
an opaque value (as a void* pointer) through Python code to other C code. It is often used to make a
C function pointer defined in one module available to other modules, so the regular import mechanism
can be used to access C APIs defined in dynamically loaded modules.

PyCapsule Destructor
The type of a destructor callback for a capsule. Defined as:

typedef void (*PyCapsule Destructor)(PyObject *);

See PyCapsule New() for the semantics of PyCapsule Destructor callbacks.

int PyCapsule CheckExact(PyObject *p)
Return true if its argument is a PyCapsule.

7.5. Other Objects 103

The Python/C API, Release 2.7.16rcl

PyObject® PyCapsule New(void *pointer, const char *name, PyCapsule Destructor destructor)
Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument
may not be NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must
outlive the capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is
destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule Tmport().

void* PyCapsule GetPointer(PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.

The name parameter must compare exactly to the name stored in the capsule. If the name stored in
the capsule is NULL, the name passed in must also be NULL. Python uses the C function stremp() to
compare capsule names.

PyCapsule Destructor PyCapsule GetDestructor(PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat
ambiguous; use PyCapsule IsValid() or PyErr_Occurred() to disambiguate.

void* PyCapsule GetContext(PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous;
use PyCapsule IsValid() or PyErr _ Occurred() to disambiguate.

const char* PyCapsule GetName(PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous;
use PyCapsule IsValid() or PyErr Occurred() to disambiguate.

void* PyCapsule Import(const char *name, int no_ block)
Import a pointer to a C object from a capsule attribute in a module. The name parameter should
specify the full name to the attribute, as in module.attribute. The name stored in the capsule must
match this string exactly. If no_ block is true, import the module without blocking (using Pylm-
port_ImportModuleNoBlock()). If no_block is false, import the module conventionally (using PyIm-
port_ImportModule()).

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule IsValid(PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes PyCap-
sule CheckExact(), has a non-NULL pointer stored in it, and its internal name matches the name
parameter. (See PyCapsule GetPointer() for information on how capsule names are compared.)

In other words, if PyCapsule IsValid() returns a true value, calls to any of the accessors (any function
starting with PyCapsule_ Get()) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise.
This function will not fail.

int PyCapsule SetContext(PyObject *capsule, void *context)
Set the context pointer inside capsule to context.

104 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule SetDestructor(PyObject *capsule, PyCapsule Destructor destructor)
Set the destructor inside capsule to destructor.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule SetName(PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous
name stored in the capsule was not NULL, no attempt is made to free it.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule SetPointer(PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

7.5.12 CObjects

Warning: The CObject APT is deprecated as of Python 2.7. Please switch to the new Capsules API.

PyCObject
This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass
an opaque value (as a void* pointer) through Python code to other C code. It is often used to make a
C function pointer defined in one module available to other modules, so the regular import mechanism
can be used to access C APIs defined in dynamically loaded modules.

int PyCObject Check(PyObject *p)
Return true if its argument is a PyCObject.

PyObject* PyCObject_FromVoidPtr(void* cobj, void (*destr)(void *))
Return value: New reference. Create a PyCObject from the void * cobj. The destr function will be
called when the object is reclaimed, unless it is NULL.

PyObject* PyCObject FromVoidPtrAndDesc(void* cobj, void* desc, void (*destr)(void *, void *))
Return value: New reference. Create a PyCObject from the void * cobj. The destr function will be
called when the object is reclaimed. The desc argument can be used to pass extra callback data for
the destructor function.

void* PyCObject AsVoidPtr(PyObject* self)
Return the object void * that the PyCObject self was created with.
void* PyCObject GetDesc(PyObject* self)
Return the description void * that the PyCObject self was created with.
int PyCObject SetVoidPtr(PyObject* self, void* cobj)
Set the void pointer inside self to cobj. The PyCObject must not have an associated destructor.
Return true on success, false on failure.

7.5.13 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell
object is created to store the value; the local variables of each stack frame that references the value contains
a reference to the cells from outer scopes which also use that variable. When the value is accessed, the value
contained in the cell is used instead of the cell object itself. This de-referencing of the cell object requires

7.5. Other Objects 105

The Python/C API, Release 2.7.16rcl

support from the generated byte-code; these are not automatically de-referenced when accessed. Cell objects
are not likely to be useful elsewhere.

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell Type
The type object corresponding to cell objects.

int PyCell Check(ob)
Return true if ob is a cell object; ob must not be NULL.

PyObject* PyCell New(PyObject *ob)
Return value: New reference. Create and return a new cell object containing the value ob. The
parameter may be NULL.

PyObject* PyCell Get(PyObject *cell)
Return value: New reference. Return the contents of the cell cell.

PyObject* PyCell GET(PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell
is non-NULL and a cell object.

int PyCell _Set(PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of
the cell. value may be NULL. cell must be non-NULL; if it is not a cell object, -1 will be returned. On
success, 0 will be returned.

void PyCell SET(PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made
for safety; cell must be non-NULL and must be a cell object.

7.5.14 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by
iterating over a function that yields values, rather than explicitly calling PyGen New().

PyGenObject

The C structure used for generator objects.
PyTypeObject PyGen Type

The type object corresponding to generator objects.

int PyGen_ Check(ob)
Return true if ob is a generator object; ob must not be NULL.

int PyGen__CheckExact(ob)
Return true if ob’s type is PyGen_Type is a generator object; ob must not be NULL.

PyObject* PyGen New(PyFrameObject *frame)
Return value: New reference. Create and return a new generator object based on the frame object. A
reference to frame is stolen by this function. The parameter must not be NULL.

7.5.15 DateTime Objects

Various date and time objects are supplied by the datetime module. Before using any of these functions, the
header file datetime.h must be included in your source (note that this is not included by Python.h), and the
macro PyDateTime IMPORT must be invoked, usually as part of the module initialisation function. The

106 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

macro puts a pointer to a C structure into a static variable, PyDateTimeAPI, that is used by the following
macros.

Type-check macros:

int PyDate Check(PyObject *ob)
Return true if ob is of type PyDateTime DateType or a subtype of PyDateTime DateType. ob must
not be NULL.

New in version 2.4.

int PyDate CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime DateType. ob must not be NULL.

New in version 2.4.

int PyDateTime Check(PyObject *ob)
Return true if ob is of type PyDateTime DateTimeType or a subtype of PyDate-
Time DateTimeType. ob must not be NULL.

New in version 2.4.

int PyDateTime CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime DateTimeType. ob must not be NULL.

New in version 2.4.

int PyTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime TimeType or a subtype of PyDateTime TimeType. ob
must not be NULL.

New in version 2.4.

int PyTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime TimeType. ob must not be NULL.

New in version 2.4.

int PyDelta Check(PyObject *ob)
Return true if ob is of type PyDateTime DeltaType or a subtype of PyDateTime DeltaType. ob
must not be NULL.

New in version 2.4.

int PyDelta CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime DeltaType. ob must not be NULL.

New in version 2.4.

int PyTZInfo Check(PyObject *ob)
Return true if ob is of type PyDateTime TZInfoType or a subtype of PyDateTime TZInfoType. ob
must not be NULL.

New in version 2.4.

int PyTZInfo CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime TZInfoType. ob must not be NULL.

New in version 2.4.
Macros to create objects:

PyObject* PyDate FromDate(int year, int month, int day)
Return value: New reference. Return a datetime.date object with the specified year, month and day.

New in version 2.4.

7.5. Other Objects 107

The Python/C API, Release 2.7.16rcl

PyObject* PyDateTime FromDateAndTime(int year, int month, int day, int hour, int minute, int sec-
ond, int usecond)
Return value: New reference. Return a datetime.datetime object with the specified year, month, day,
hour, minute, second and microsecond.

New in version 2.4.

PyObject* PyTime FromTime(int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second
and microsecond.

New in version 2.4.

PyObject* PyDelta_FromDSU(int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of
days, seconds and microseconds. Normalization is performed so that the resulting number of microsec-
onds and seconds lie in the ranges documented for datetime.timedelta objects.

New in version 2.4.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime Date,
including subclasses (such as PyDateTime DateTime). The argument must not be NULL, and the type is
not checked:

int PyDateTime GET _ YEAR(PyDateTime Date *o)
Return the year, as a positive int.

New in version 2.4.

int PyDateTime GET _MONTH(PyDateTime Date *o0)
Return the month, as an int from 1 through 12.

New in version 2.4.

int PyDateTime GET DAY (PyDateTime Date *o)
Return the day, as an int from 1 through 31.

New in version 2.4.

Macros to extract fields from datetime objects. The argument must be an instance of PyDate-
Time DateTime, including subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime DATE GET _ HOUR(PyDateTime DateTime *o)
Return the hour, as an int from 0 through 23.

New in version 2.4.

int PyDateTime DATE GET MINUTE(PyDateTime DateTime *o)
Return the minute, as an int from 0 through 59.

New in version 2.4.

int PyDateTime DATE GET SECOND(PyDateTime DateTime *o)
Return the second, as an int from 0 through 59.

New in version 2.4.

int PyDateTime DATE GET MICROSECOND(PyDateTime DateTime *o)
Return the microsecond, as an int from 0 through 999999.

New in version 2.4.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime Time,
including subclasses. The argument must not be NULL, and the type is not checked:

108 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

int PyDateTime TIME GET HOUR(PyDateTime Time *o)
Return the hour, as an int from 0 through 23.

New in version 2.4.

int PyDateTime TIME GET_ MINUTE(PyDateTime Time *o)
Return the minute, as an int from 0 through 59.

New in version 2.4.

int PyDateTime TIME GET SECOND(PyDateTime Time *o)
Return the second, as an int from 0 through 59.

New in version 2.4.

int PyDateTime TIME GET_ MICROSECOND(PyDateTime Time *o)
Return the microsecond, as an int from 0 through 999999.

New in version 2.4.
Macros for the convenience of modules implementing the DB API:

PyObject* PyDateTime FromTimestamp(PyObject *args)
Return value: New reference. Create and return a new datetime.datetime object given an argument
tuple suitable for passing to datetime.datetime.fromtimestamp().

New in version 2.4.

PyObject* PyDate FromTimestamp(PyObject *args)
Return value: New reference. Create and return a new datetime.date object given an argument tuple
suitable for passing to datetime.date.fromtimestamp().

New in version 2.4.

7.5.16 Set Objects

New in version 2.5.

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using the either the abstract object protocol (including PyObject CallMethod(),
PyObject RichCompareBool(), PyObject Hash(), PyObject Repr(), PyObject IsTrue(), PyOb-
ject Print(), and PyObject Getlter()) or the abstract number protocol (including PyNumber And(),
PyNumber_Subtract(), PyNumber Or(), PyNumber Xor(), PyNumber InPlaceAnd(), PyNum-
ber InPlaceSubtract(), PyNumber InPlaceOr(), and PyNumber InPlaceXor()).

PySetObject
This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is
like a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to
a separate, variable sized block of memory for medium and large sized sets (much like list storage).
Nomne of the fields of this structure should be considered public and are subject to change. All access
should be done through the documented API rather than by manipulating the values in the structure.

PyTypeObject PySet Type
This is an instance of PyTypeObject representing the Python set type.

PyTypeObject PyFrozenSet Type
This is an instance of PyTypeObject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions
work with any iterable Python object.

7.5. Other Objects 109

The Python/C API, Release 2.7.16rcl

int PySet_ Check(PyObject *p)
Return true if p is a set object or an instance of a subtype.

New in version 2.6.

int PyFrozenSet Check(PyObject *p)
Return true if p is a frozenset object or an instance of a subtype.

New in version 2.6.

int PyAnySet Check(PyObject *p)
Return true if p is a set object, a frozenset object, or an instance of a subtype.

int PyAnySet CheckExact(PyObject *p)
Return true if p is a set object or a frozenset object but not an instance of a subtype.

int PyFrozenSet CheckExact(PyObject *p)
Return true if p is a frozenset object but not an instance of a subtype.

PyObject® PySet New(PyObject *iterable)
Return value: New reference. Return a new set containing objects returned by the iterable. The
iterable may be NULL to create a new empty set. Return the new set on success or NULL on failure.
Raise TypeError if iterable is not actually iterable. The constructor is also useful for copying a set

(c=set(s)).

PyObject™ PyFrozenSet New(PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The
iterable may be NULL to create a new empty frozenset. Return the new set on success or NULL on
failure. Raise TypeError if iterable is not actually iterable.

Changed in version 2.6: Now guaranteed to return a brand-new frozenset. Formerly, frozensets of
zero-length were a singleton. This got in the way of building-up new frozensets with PySet Add().

The following functions and macros are available for instances of set or frozenset or instances of their
subtypes.

Py ssize t PySet_Size(PyObject *anyset)
Return the length of a set or frozenset object. Equivalent to len(anyset). Raises a PyExc SystemError
if anyset is not a set, frozenset, or an instance of a subtype.

Changed in version 2.5: This function returned an int. This might require changes in your code for
properly supporting 64-bit systems.

Py ssize t PySet GET SIZE(PyObject *anyset)
Macro form of PySet _Size() without error checking.

int PySet Contains(PyObject *anyset, PyObject *key)
Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python _ contains ()
method, this function does not automatically convert unhashable sets into temporary frozensets. Raise
a TypeError if the key is unhashable. Raise PyExc_SystemError if anyset is not a set, frozenset, or
an instance of a subtype.

int PySet Add(PyObject *set, PyObject *key)
Add key to a set instance. Does not apply to frozenset instances. Return 0 on success or -1 on failure.
Raise a TypeError if the key is unhashable. Raise a MemoryError if there is no room to grow. Raise
a SystemError if set is not an instance of set or its subtype.

Changed in version 2.6: Now works with instances of frozenset or its subtypes. Like PyTuple SetItem()
in that it can be used to fill-in the values of brand new frozensets before they are exposed to other
code.

110 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.7.16rcl

The following functions are available for instances of set or its subtypes but not for instances of frozenset or
its subtypes.

int PySet_Discard(PyObject *set, PyObject *key)
Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error is encountered.
Does not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike the
Python discard() method, this function does not automatically convert unhashable sets into temporary
frozensets. Raise PyExc SystemError if set is not an instance of set or its subtype.

PyObject* PySet Pop(PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the set, and removes the
object from the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError
if set is not an instance of set or its subtype.

int PySet_ Clear(PyObject *set)
Empty an existing set of all elements.

7.5.17 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable
code that hasn’t yet been bound into a function.

PyCodeObject
The C structure of the objects used to describe code objects. The fields of this type are subject to
change at any time.

PyTypeObject PyCode Type
This is an instance of PyTypeObject representing the Python code type.

int PyCode Check(PyObject *co)
Return true if co is a code object.

int PyCode GetNumFree(PyObject *co)
Return the number of free variables in co.

PyCodeObject ¥*PyCode New(int argcount, int nlocals, int stacksize, int flags, PyObject *code, PyOb-
ject *consts, PyObject *names, PyObject *varnames, PyObject *free-
vars, PyObject *cellvars, PyObject *filename, PyObject *name,
int firstlineno, PyObject *Inotab)
Return a new code object. If you need a dummy code object to create a frame, use Py-
Code NewEmpty() instead. Calling PyCode New() directly can bind you to a precise Python version
since the definition of the bytecode changes often.

int PyCode NewEmpty(const char *filename, const char *funcname, int firstlineno)
Return a new empty code object with the specified filename, function name, and first line number. It
is illegal to exec or eval() the resulting code object.

7.5. Other Objects 111

The Python/C API, Release 2.7.16rcl

112 Chapter 7. Concrete Objects Layer

CHAPTER

EIGHT

INITIALIZATION, FINALIZATION, AND THREADS

8.1 Initializing and finalizing the interpreter

void Py Initialize()

Initialize the Python interpreter. In an application embedding Python, this should be called
before using any other Python/C API functions; with the exception of Py SetProgramName(),
Py SetPythonHome(), PyEval InitThreads(), PyEval ReleaseLock(), and PyEval AcquireLock().
This initializes the table of loaded modules (sys.modules), and creates the fundamental modules
__builtin__, main__ and sys. It also initializes the module search path (sys.path). It does
not set sys.argv; use PySys SetArgvEx() for that. This is a no-op when called for a second time
(without calling Py Finalize() first). There is no return value; it is a fatal error if the initialization
fails.

void Py InitializeEx(int initsigs)
This function works like Py Initialize() if initsigs is 1. If initsigs is 0, it skips initialization registration
of signal handlers, which might be useful when Python is embedded.

New in version 2.4.

int Py _IsInitialized()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py _Finalize() is called, this returns false until Py Initialize() is called again.

void Py _Finalize()
Undo all initializations made by Py Initialize() and subsequent use of Python/C API functions, and
destroy all sub-interpreters (see Py Newlnterpreter() below) that were created and not yet destroyed
since the last call to Py Initialize(). Ideally, this frees all memory allocated by the Python interpreter.
This is a no-op when called for a second time (without calling Py Initialize() again first). There is no
return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart
Python without having to restart the application itself. An application that has loaded the Python
interpreter from a dynamically loadable library (or DLL) might want to free all memory allocated by
Python before unloading the DLL. During a hunt for memory leaks in an application a developer might
want to free all memory allocated by Python before exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order;
this may cause destructors (__del () methods) to fail when they depend on other objects (even
functions) or modules. Dynamically loaded extension modules loaded by Python are not unloaded.
Small amounts of memory allocated by the Python interpreter may not be freed (if you find a leak,
please report it). Memory tied up in circular references between objects is not freed. Some memory
allocated by extension modules may not be freed. Some extensions may not work properly if their
initialization routine is called more than once; this can happen if an application calls Py Initialize()
and Py Finalize() more than once.

113

The Python/C API, Release 2.7.16rcl

8.2 Process-wide parameters

void Py _ SetProgramName(char *name)

This function should be called before Py Initialize() is called for the first time, if it is called at all. It
tells the interpreter the value of the argv|0] argument to the main() function of the program. This is
used by Py GetPath() and some other functions below to find the Python run-time libraries relative
to the interpreter executable. The default value is 'python'. The argument should point to a zero-
terminated character string in static storage whose contents will not change for the duration of the
program’s execution. No code in the Python interpreter will change the contents of this storage.

char* Py_ GetProgramName()

Return the program name set with Py SetProgramName(), or the default. The returned string points
into static storage; the caller should not modify its value.

char* Py_ GetPrefix()

Return the prefix for installed platform-independent files. This is derived through a number of compli-
cated rules from the program name set with Py SetProgramName() and some environment variables;
for example, if the program name is ' /usr/local/bin/python ', the prefix is ' /usr/local'. The returned
string points into static storage; the caller should not modify its value. This corresponds to the prefix
variable in the top-level Makefile and the --prefix argument to the configure script at build time. The
value is available to Python code as sys.prefix. It is only useful on Unix. See also the next function.

char* Py_ GetExecPrefix()

Return the exec-prefix for installed platform-dependent files. This is derived through a number of
complicated rules from the program name set with Py SetProgramName() and some environment
variables; for example, if the program name is '/usr/local/bin/python', the exec-prefix is '/usr/
local'. The returned string points into static storage; the caller should not modify its value. This
corresponds to the exec_ prefix variable in the top-level Makefile and the --exec-prefix argument to the
configure script at build time. The value is available to Python code as sys.exec prefix. It is only
useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables
and shared libraries) are installed in a different directory tree. In a typical installation, platform
dependent files may be installed in the /usr/local/plat subtree while platform independent may be
installed in /usr/local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines
running the Solaris 2.x operating system are considered the same platform, but Intel machines running
Solaris 2.x are another platform, and Intel machines running Linux are yet another platform. Different
major revisions of the same operating system generally also form different platforms. Non-Unix op-
erating systems are a different story; the installation strategies on those systems are so different that
the prefix and exec-prefix are meaningless, and set to the empty string. Note that compiled Python
bytecode files are platform independent (but not independent from the Python version by which they
were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/
local between platforms while having /usr/local/plat be a different filesystem for each platform.

char* Py GetProgramFullPath()

Return the full program name of the Python executable; this is computed as a side-effect of deriving
the default module search path from the program name (set by Py _ SetProgramName() above). The
returned string points into static storage; the caller should not modify its value. The value is available
to Python code as sys.executable.

char* Py GetPath()

Return the default module search path; this is computed from the program name (set by
Py_SetProgramName() above) and some environment variables. The returned string consists of a

114

Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.7.16rcl

const

series of directory names separated by a platform dependent delimiter character. The delimiter char-
acter is ':' on Unix and Mac OS X, ';' on Windows. The returned string points into static storage;
the caller should not modify its value. The list sys.path is initialized with this value on interpreter
startup; it can be (and usually is) modified later to change the search path for loading modules.

char* Py_ GetVersion()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"

const

const

const

The first word (up to the first space character) is the current Python version; the first three characters
are the major and minor version separated by a period. The returned string points into static storage;
the caller should not modify its value. The value is available to Python code as sys.version.

char* Py _ GetPlatform()

Return the platform identifier for the current platform. On Unix, this is formed from the “official”
name of the operating system, converted to lower case, followed by the major revision number; e.g., for
Solaris 2.x, which is also known as SunOS 5.x, the value is 'sunos5'. On Mac OS X, it is 'darwin"'.
On Windows, it is 'win'. The returned string points into static storage; the caller should not modify
its value. The value is available to Python code as sys.platform.

char* Py GetCopyright()
Return the official copyright string for the current Python version, for example

' Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as sys.copyright.

char* Py GetCompiler()
Return an indication of the compiler used to build the current Python version, in square brackets, for
example:

"GCC 2.7.2.2]"

const

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as part of the variable sys.version.

char* Py GetBuildInfo()
Return information about the sequence number and build date and time of the current Python inter-
preter instance, for example

"#67, Aug 11997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as part of the variable sys.version.

void PySys SetArgvEx(int argc, char **argv, int updatepath)

Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s
main() function with the difference that the first entry should refer to the script file to be executed
rather than the executable hosting the Python interpreter. If there isn’t a script that will be run, the
first entry in argv can be an empty string. If this function fails to initialize sys.argv, a fatal condition
is signalled using Py FatalError().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies
sys.path according to the following algorithm:

* If the name of an existing script is passed in argv[0], the absolute path of the directory where the
script is located is prepended to sys.path.

8.2. Process-wide parameters 115

The Python/C API, Release 2.7.16rcl

e Otherwise (that is, if argc is 0 or argv|[0] doesn’t point to an existing file name), an empty string
is prepended to sys.path, which is the same as prepending the current working directory (".").

Note: It is recommended that applications embedding the Python interpreter for purposes other
than executing a single script pass 0 as updatepath, and update sys.path themselves if desired. See
CVE-2008-5983.

On versions before 2.6.6, you can achieve the same effect by manually popping the first sys.path element
after having called PySys SetArgv(), for example using:

PyRun_ SimpleString("import sys; sys.path.pop(0)\n");

New in version 2.6.6.

void PySys _SetArgv(int argc, char **argv)
This function works like PySys SetArgvEx() with updatepath set to 1.

void Py _SetPythonHome(char *home)
Set the default “home” directory, that is, the location of the standard Python libraries. See PYTHON-
HOME for the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will
not change for the duration of the program’s execution. No code in the Python interpreter will change
the contents of this storage.

char* Py_ GetPythonHome()
Return the default “home”, that is, the value set by a previous call to Py SetPythonHome(), or the
value of the PYTHONHOME environment variable if it is set.

8.3 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s
a global lock, called the global interpreter lock or GIL, that must be held by the current thread before it
can safely access Python objects. Without the lock, even the simplest operations could cause problems in
a multi-threaded program: for example, when two threads simultaneously increment the reference count of
the same object, the reference count could end up being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects
or call Python/C API functions. In order to emulate concurrency of execution, the interpreter regularly
tries to switch threads (see sys.setcheckinterval()). The lock is also released around potentially blocking I/O
operations like reading or writing a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_ Get().

8.3.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
... Do some blocking I/O operation ...

(continues on next page)

116 Chapter 8. Initialization, Finalization, and Threads

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, Release 2.7.16rcl

continued from previous page
g

Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py BEGIN_ ALLOW _THREADS
... Do some blocking I/O operation ...
Py END ALLOW_THREADS

The Py BEGIN ALLOW THREADS macro opens a new block and declares a hidden local variable; the
Py END ALLOW THREADS macro closes the block. These two macros are still available when Python
is compiled without thread support (they simply have an empty expansion).

When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval SaveThread();
...Do some blocking I/O operation...
PyEval RestoreThread(save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current
thread state. When releasing the lock and saving the thread state, the current thread state pointer must be
retrieved before the lock is released (since another thread could immediately acquire the lock and store its
own thread state in the global variable). Conversely, when acquiring the lock and restoring the thread state,
the lock must be acquired before storing the thread state pointer.

Note: Calling system I/O functions is the most common use case for releasing the GIL, but it can also
be useful before calling long-running computations which don’t need access to Python objects, such as
compression or cryptographic functions operating over memory buffers. For example, the standard zlib and
hashlib modules release the GIL when compressing or hashing data.

8.3.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state
is automatically associated to them and the code showed above is therefore correct. However, when threads
are created from C (for example by a third-party library with its own thread management), they don’t hold
the GIL, nor is there a thread state structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the
aforementioned third-party library), you must first register these threads with the interpreter by creating a
thread state data structure, then acquiring the GIL, and finally storing their thread state pointer, before you
can start using the Python/C API. When you are done, you should reset the thread state pointer, release
the GIL, and finally free the thread state data structure.

The PyGILState Ensure() and PyGILState Release() functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

PyGILStateSTATE gstate;

gstate = PyGILState_ Ensure();
* Perform Python actions here. *

result = CallSomeFunction();

(continues on next page)

8.3. Thread State and the Global Interpreter Lock 117

The Python/C API, Release 2.7.16rcl

continued from previous page
g

/* evaluate result or handle exception *

* Release the thread. No Python API allowed beyond this point. *
PyGILState Release(gstate);

Note that the PyGILState *() functions assume there is only one global interpreter (created automatically
by Py Initialize()). Python supports the creation of additional interpreters (using Py NewlInterpreter()),
but mixing multiple interpreters and the PyGILState *() API is unsupported.

Another important thing to note about threads is their behaviour in the face of the C fork() call. On most
systems with fork(), after a process forks only the thread that issued the fork will exist. That also means any
locks held by other threads will never be released. Python solves this for os.fork() by acquiring the locks it
uses internally before the fork, and releasing them afterwards. In addition, it resets any lock-objects in the
child. When extending or embedding Python, there is no way to inform Python of additional (non-Python)
locks that need to be acquired before or reset after a fork. OS facilities such as pthread_atfork() would need
to be used to accomplish the same thing. Additionally, when extending or embedding Python, calling fork()
directly rather than through os.fork() (and returning to or calling into Python) may result in a deadlock by
one of Python’s internal locks being held by a thread that is defunct after the fork. PyOS AfterFork() tries
to reset the necessary locks, but is not always able to.

8.3.3 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding
the Python interpreter:

PylInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging
to the same interpreter share their module administration and a few other internal items. There are
no public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available
memory, open file descriptors and such. The global interpreter lock is also shared by all threads,
regardless of to which interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is Pylnter-
preterState *interp, which points to this thread’s interpreter state.

void PyEval InitThreads()
Initialize and acquire the global interpreter lock. It should be called in the main thread before cre-
ating a second thread or engaging in any other thread operations such as PyEval ReleaseLock()
or PyEval_ReleaseThread(tstate). It is not needed before calling PyEval SaveThread() or PyE-
val _RestoreThread().

This is a no-op when called for a second time. It is safe to call this function before calling
Py _Initialize().

Note: When only the main thread exists, no GIL operations are needed. This is a common situation
(most Python programs do not use threads), and the lock operations slow the interpreter down a bit.
Therefore, the lock is not created initially. This situation is equivalent to having acquired the lock:
when there is only a single thread, all object accesses are safe. Therefore, when this function initializes
the global interpreter lock, it also acquires it. Before the Python _thread module creates a new thread,
knowing that either it has the lock or the lock hasn’t been created yet, it calls PyEval InitThreads().
When this call returns, it is guaranteed that the lock has been created and that the calling thread has
acquired it.

118 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.7.16rcl

It is not safe to call this function when it is unknown which thread (if any) currently has the global
interpreter lock.

This function is not available when thread support is disabled at compile time.

int PyEval Threadslnitialized()
Returns a non-zero value if PyEval InitThreads() has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-
threaded. This function is not available when thread support is disabled at compile time.

New in version 2.4.

PyThreadState* PyEval SaveThread()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset
the thread state to NULL, returning the previous thread state (which is not NULL). If the lock has
been created, the current thread must have acquired it. (This function is available even when thread
support is disabled at compile time.)

void PyEval RestoreThread(PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the
thread state to tstate, which must not be NULL. If the lock has been created, the current thread must
not have acquired it, otherwise deadlock ensues. (This function is available even when thread support
is disabled at compile time.)

PyThreadState* PyThreadState Get()
Return the current thread state. The global interpreter lock must be held. When the current thread
state is NULL, this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState Swap(PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument tstate, which may be NULL.
The global interpreter lock must be held and is not released.

void PyEval RelnitThreads()
This function is called from PyOS AfterFork() to ensure that newly created child processes don’t hold
locks referring to threads which are not running in the child process.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState STATE PyGILState Ensure()
Ensure that the current thread is ready to call the Python C API regardless of the current state of
Python, or of the global interpreter lock. This may be called as many times as desired by a thread
as long as each call is matched with a call to PyGILState Release(). In general, other thread-related
APIs may be used between PyGILState Ensure() and PyGILState Release() calls as long as the
thread state is restored to its previous state before the Release(). For example, normal usage of the
Py BEGIN ALLOW THREADS and Py END ALLOW THREADS macros is acceptable.

The return value is an opaque “handle” to the thread state when PyGILState Ensure() was called,
and must be passed to PyGILState Release() to ensure Python is left in the same state. Even though
recursive calls are allowed, these handles cannot be shared - each unique call to PyGILState Ensure()
must save the handle for its call to PyGILState Release().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python
code. Failure is a fatal error.

New in version 2.3.

void PyGILState Release(PyGILState STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was
prior to the corresponding PyGILState Ensure() call (but generally this state will be unknown to the
caller, hence the use of the GILState API).

8.3. Thread State and the Global Interpreter Lock 119

The Python/C API, Release 2.7.16rcl

Every call to PyGILState_Ensure() must be matched by a call to PyGILState_ Release() on the same
thread.

New in version 2.3.

PyThreadState* PyGILState_GetThisThreadState()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the
current thread. Note that the main thread always has such a thread-state, even if no auto-thread-state
call has been made on the main thread. This is mainly a helper/diagnostic function.

New in version 2.3.

The following macros are normally used without a trailing semicolon; look for example usage in the Python
source distribution.

Py BEGIN ALLOW _ THREADS
This macro expands to { PyThreadState * save; save — PyEval SaveThread();. Note that it con-
tains an opening brace; it must be matched with a following Py END ALLOW THREADS macro.
See above for further discussion of this macro. It is a no-op when thread support is disabled at compile
time.

Py END ALLOW _ THREADS
This macro expands to PyEval RestoreThread(_save); }. Note that it contains a closing brace; it
must be matched with an earlier Py BEGIN ALLOW _ THREADS macro. See above for further
discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py BLOCK THREADS
This macro expands to PyEval RestoreThread(save);: it is equivalent to
Py END ALLOW THREADS without the closing brace. It is a no-op when thread support
is disabled at compile time.

Py UNBLOCK_ THREADS
This macro expands to _save = PyEval SaveThread();: it is equivalent to
Py BEGIN ALLOW THREADS without the opening brace and variable declaration. It is a
no-op when thread support is disabled at compile time.

8.3.4 Low-level API

All of the following functions are only available when thread support is enabled at compile time, and must
be called only when the global interpreter lock has been created.

PyInterpreterState® PyInterpreterState New()
Create a new interpreter state object. The global interpreter lock need not be held, but may be held
if it is necessary to serialize calls to this function.

void PyInterpreterState Clear(PyInterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState Delete(PylInterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state
must have been reset with a previous call to PylInterpreterState Clear().

PyThreadState* PyThreadState New(PyInterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock
need not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_ Clear(PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

120 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.7.16rcl

void PyThreadState_ Delete(PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must
have been reset with a previous call to PyThreadState Clear().

PyObject* PyThreadState GetDict()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific
state information. Each extension should use a unique key to use to store state in the dictionary. It is
okay to call this function when no current thread state is available. If this function returns NULL, no
exception has been raised and the caller should assume no current thread state is available.

Changed in version 2.3: Previously this could only be called when a current thread is active, and NULL
meant that an exception was raised.

int PyThreadState SetAsyncExc(long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread;
exc is the exception object to be raised. This function does not steal any references to exc. To prevent
naive misuse, you must write your own C extension to call this. Must be called with the GIL held.
Returns the number of thread states modified; this is normally one, but will be zero if the thread id
isn’t found. If exc is NULL, the pending exception (if any) for the thread is cleared. This raises no
exceptions.

New in version 2.3.

void PyEval AcquireThread(PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to tstate, which should not be
NULL. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.

PyEval RestoreThread() is a higher-level function which is always available (even when thread support
isn’t enabled or when threads have not been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have
been created earlier and must be held by the current thread. The tstate argument, which must not
be NULL, is only used to check that it represents the current thread state — if it isn’t, a fatal error is
reported.

PyEval SaveThread() is a higher-level function which is always available (even when thread support
isn’t enabled or when threads have not been initialized).

void PyEval _AcquireLock()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already
has the lock, a deadlock ensues.

Warning: This function does not change the current thread state. Please use PyE-
val RestoreThread() or PyEval AcquireThread() instead.

void PyEval _ReleaseLock()
Release the global interpreter lock. The lock must have been created earlier.

Warning: This function does not change the current thread state. Please use PyEval SaveThread()
or PyEval ReleaseThread() instead.

8.3. Thread State and the Global Interpreter Lock 121

The Python/C API, Release 2.7.16rcl

8.4 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create
several independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters
allow you to do that. You can switch between sub-interpreters using the PyThreadState Swap() function.
You can create and destroy them using the following functions:

PyThreadState* Py NewlInterpreter()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of
Python code. In particular, the new interpreter has separate, independent versions of all imported
modules, including the fundamental modules builtins, ~_main _ and sys. The table of loaded mod-
ules (sys.modules) and the module search path (sys.path) are also separate. The new environment has
no sys.argv variable. It has new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr
(however these refer to the same underlying file descriptors).

The return value points to the first thread state created in the new sub-interpreter. This thread state
is made in the current thread state. Note that no actual thread is created; see the discussion of thread
states below. If creation of the new interpreter is unsuccessful, NULL is returned; no exception is set
since the exception state is stored in the current thread state and there may not be a current thread
state. (Like all other Python/C API functions, the global interpreter lock must be held before calling
this function and is still held when it returns; however, unlike most other Python/C API functions,
there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension
is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away.
When the same extension is imported by another (sub-)interpreter, a new module is initialized and
filled with the contents of this copy; the extension’s init function is not called. Note that this is
different from what happens when an extension is imported after the interpreter has been completely
re-initialized by calling Py Finalize() and Py Initialize(); in that case, the extension’s initmodule
function is called again.

void Py EndInterpreter(PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must
be the current thread state. See the discussion of thread states below. When the call returns, the
current thread state is NULL. All thread states associated with this interpreter are destroyed. (The
global interpreter lock must be held before calling this function and is still held when it returns.)
Py Finalize() will destroy all sub-interpreters that haven’t been explicitly destroyed at that point.

8.4.1 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them
isn’t perfect — for example, using low-level file operations like os.close() they can (accidentally or maliciously)
affect each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some
extensions may not work properly; this is especially likely when the extension makes use of (static) global
variables, or when the extension manipulates its module’s dictionary after its initialization. It is possible
to insert objects created in one sub-interpreter into a namespace of another sub-interpreter; this should
be done with great care to avoid sharing user-defined functions, methods, instances or classes between
sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s
dictionary of loaded modules.

Also note that combining this functionality with PyGILState *() APIs is delicate, because these APIs
assume a bijection between Python thread states and OS-level threads, an assumption broken by the presence
of sub-interpreters. It is highly recommended that you don’t switch sub-interpreters between a pair of
matching PyGILState_Ensure() and PyGILState_Release() calls. Furthermore, extensions (such as ctypes)

122 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.7.16rcl

using these APIs to allow calling of Python code from non-Python created threads will probably be broken
when using sub-interpreters.

8.5 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifi-
cations take the form of a function pointer and a void pointer argument.

int Py _ AddPendingCall(int (*func)(void *), void *arg)
Schedule a function to be called from the main interpreter thread. On success, 0 is returned and func
is queued for being called in the main thread. On failure, -1 is returned without setting any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the
argument arg. It will be called asynchronously with respect to normally running Python code, but
with both these conditions met:

e on a bytecode boundary;
* with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or -1 on failure with an exception set. func won’t be interrupted to
perform another asynchronous notification recursively, but it can still be interrupted to switch threads
if the global interpreter lock is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter
lock.

Warning: This is a low-level function, only useful for very special cases. There is no guarantee
that func will be called as quick as possible. If the main thread is busy executing a system call, func
won’t be called before the system call returns. This function is generally not suitable for calling
Python code from arbitrary C threads. Instead, use the PyGILState API.

New in version 2.7.

8.6 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities.
These are used for profiling, debugging, and coverage analysis tools.

Starting with Python 2.2, the implementation of this facility was substantially revised, and an interface
from C was added. This C interface allows the profiling or tracing code to avoid the overhead of calling
through Python-level callable objects, making a direct C function call instead. The essential attributes of
the facility have not changed; the interface allows trace functions to be installed per-thread, and the basic
events reported to the trace function are the same as had been reported to the Python-level trace functions
in previous versions.

int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval _SetProfile() and PyEval _SetTrace(). The first
parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace CALL, PyTrace EXCEPTION, PyTrace LINE,
PyTrace RETURN, PyTrace_ C_CALL, PyTrace_ C_EXCEPTION, or PyTrace_ C_RETURN, and
arg depends on the value of what:

8.5. Asynchronous Notifications 123

The Python/C API, Release 2.7.16rcl

Value of what Meaning of arg

PyTrace CALL Always Py _None.

PyTrace_ EXCEPTION Exception information as returned by sys.exc _info().

PyTrace LINE Always Py _None.

PyTrace RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace C_ CALL Function object being called.

Py- Function object being called.

Trace C_EXCEPTION

PyTrace C_RETURN Function object being called.

int PyTrace CALL
The value of the what parameter to a Py _tracefunc function when a new call to a function or method
is being reported, or a new entry into a generator. Note that the creation of the iterator for a generator
function is not reported as there is no control transfer to the Python bytecode in the corresponding
frame.

int PyTrace EXCEPTION
The value of the what parameter to a Py _tracefunc function when an exception has been raised. The
callback function is called with this value for what when after any bytecode is processed after which
the exception becomes set within the frame being executed. The effect of this is that as exception
propagation causes the Python stack to unwind, the callback is called upon return to each frame as the
exception propagates. Only trace functions receives these events; they are not needed by the profiler.

int PyTrace LINE
The value passed as the what parameter to a trace function (but not a profiling function) when a
line-number event is being reported.

int PyTrace. RETURN
The value for the what parameter to Py tracefunc functions when a call is about to return.

int PyTrace C_CALL
The value for the what parameter to Py tracefunc functions when a C function is about to be called.

int PyTrace C_EXCEPTION
The value for the what parameter to Py _tracefunc functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py tracefunc functions when a C function has returned.

void PyEval SetProfile(Py tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter,
and may be any Python object, or NULL. If the profile function needs to maintain state, using a
different value for obj for each thread provides a convenient and thread-safe place to store it. The
profile function is called for all monitored events except PyTrace LINE and PyTrace EXCEPTION.

void PyEval SetTrace(Py tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval SetProfile(), except the tracing function
does receive line-number events and does not receive any event related to C function objects being
called. Any trace function registered using PyEval SetTrace() will not receive PyTrace C_CALL,
PyTrace C_ EXCEPTION or PyTrace C RETURN as a value for the what parameter.

PyObject* PyEval GetCallStats(PyObject *self)
Return a tuple of function call counts. There are constants defined for the positions within the tuple:

124 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.7.16rcl

Name Value
PCALL_ALL

PCALL_ FUNCTION
PCALL_FAST FUNCTION
PCALL_ FASTER_FUNCTION
PCALL _METHOD

PCALL BOUND_ METHOD
PCALL_CFUNCTION

PCALL TYPE

PCALL GENERATOR

PCALL OTHER

PCALL_POP

OO | DU x| WO

—_
o

PCALL FAST FUNCTION means no argument tuple needs to be created.
PCALL FASTER FUNCTION means that the fast-path frame setup code is used.

If there is a method call where the call can be optimized by changing the argument tuple and calling
the function directly, it gets recorded twice.

This function is only present if Python is compiled with CALL _PROFILE defined.

8.7 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PyInterpreterState® PyInterpreterState Head()
Return the interpreter state object at the head of the list of all such objects.

New in version 2.2.

PyInterpreterState® PyInterpreterState Next(PyInterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

New in version 2.2.

PyThreadState * PylInterpreterState ThreadHead(PyInterpreterState *interp)
Return the pointer to the first PyThreadState object in the list of threads associated with the inter-
preter interp.

New in version 2.2.

PyThreadState* PyThreadState Next(PyThreadState *tstate)
Return the next thread state object after tstate from the list of all such objects belonging to the same
PylInterpreterState object.

New in version 2.2.

8.7. Advanced Debugger Support 125

The Python/C API, Release 2.7.16rcl

126 Chapter 8. Initialization, Finalization, and Threads

CHAPTER

NINE

MEMORY MANAGEMENT

9.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures.
The management of this private heap is ensured internally by the Python memory manager. The Python
memory manager has different components which deal with various dynamic storage management aspects,
like sharing, segmentation, preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing
all Python-related data by interacting with the memory manager of the operating system. On top of the
raw memory allocator, several object-specific allocators operate on the same heap and implement distinct
memory management, policies adapted to the peculiarities of every object type. For example, integer objects
are managed differently within the heap than strings, tuples or dictionaries because integers imply different
storage requirements and speed/space tradeoffs. The Python memory manager thus delegates some of the
work to the object-specific allocators, but ensures that the latter operate within the bounds of the private
heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself
and that the user has no control over it, even if they regularly manipulate object pointers to memory blocks
inside that heap. The allocation of heap space for Python objects and other internal buffers is performed on
demand by the Python memory manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the
functions exported by the C library: malloc(), calloc(), realloc() and free(). This will result in mixed calls
between the C allocator and the Python memory manager with fatal consequences, because they implement
different algorithms and operate on different heaps. However, one may safely allocate and release memory
blocks with the C library allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O *

if (buf == NULL)

return PyErr_ NoMemory();
...Do some I/O operation involving buf...
res = PyString FromString(buf);
free(buf); /* malloc 'ed *
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python
memory manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because
the latter is under control of the Python memory manager. For example, this is required when the interpreter
is extended with new object types written in C. Another reason for using the Python heap is the desire to

127

The Python/C API, Release 2.7.16rcl

inform the Python memory manager about the memory needs of the extension module. Even when the
requested memory is used exclusively for internal, highly-specific purposes, delegating all memory requests
to the Python memory manager causes the interpreter to have a more accurate image of its memory footprint
as a whole. Consequently, under certain circumstances, the Python memory manager may or may not trigger
appropriate actions, like garbage collection, memory compaction or other preventive procedures. Note that
by using the C library allocator as shown in the previous example, the allocated memory for the I/O buffer
escapes completely the Python memory manager.

9.2 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting
zero bytes, are available for allocating and releasing memory from the Python heap:

void* PyMem _Malloc(size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request
fails. Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem Malloc(1)
had been called instead. The memory will not have been initialized in any way.

void* PyMem Realloc(void *p, size _t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum
of the old and the new sizes. If p is NULL, the call is equivalent to PyMem Malloc(n); else if n is equal
to zero, the memory block is resized but is not freed, and the returned pointer is non-NULL. Unless
p is NULL, it must have been returned by a previous call to PyMem Malloc() or PyMem Realloc().
If the request fails, PyMem Realloc() returns NULL and p remains a valid pointer to the previous
memory area.

void PyMem _Free(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem Malloc() or PyMem Realloc(). Otherwise, or if PyMem Free(p) has been called before,
undefined behavior occurs. If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

TYPE* PyMem New(TYPE, size_t n)
Same as PyMem_Malloc(), but allocates (n * sizeof(TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem _Resize(void *p, TYPE, size t n)
Same as PyMem Realloc(), but the memory block is resized to (n * sizeof(TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event
of failure. This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid
losing memory when handling errors.

void PyMem _Del(void *p)
Same as PyMem _ Free().

In addition, the following macro sets are provided for calling the Python memory allocator directly, with-
out involving the C API functions listed above. However, note that their use does not preserve binary
compatibility across Python versions and is therefore deprecated in extension modules.

PyMem MALLOC(), PyMem REALLOC(), PyMem FREE().
PyMem NEW(), PyMem RESIZE(), PyMem DEL().

128 Chapter 9. Memory Management

The Python/C API, Release 2.7.16rcl

9.3

Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting
zero bytes, are available for allocating and releasing memory from the Python heap.

By default, these functions use pymalloc memory allocator.

Warning: The GIL must be held when using these functions.

void* PyObject Malloc(size t n)

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request
fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject Malloc(1) had
been called instead. The memory will not have been initialized in any way.

void* PyObject _Realloc(void *p, size_t n)

Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum
of the old and the new sizes.

If p is NULL, the call is equivalent to PyObject Malloc(n); else if n is equal to zero, the memory
block is resized but is not freed, and the returned pointer is non-NULL.

Uunless p is NULL, it must have been returned by a previous call to PyObject Malloc(), PyOb-
jectRealloc() or PyObject Calloc().

If the request fails, PyObject Realloc() returns NULL and p remains a valid pointer to the previous
memory area.

void PyObject Free(void *p)

Frees the memory block pointed to by p, which must have been returned by a previous call to PyOb-
jectMalloc(), PyObject Realloc() or PyObject Calloc(). Otherwise, or if PyObject Free(p) has
been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

In addition, the following macro sets are provided:

9.4

PyObject_ MALLOC(): alias to PyObject _Malloc()

PyObject REALLOC(): alias to PyObject Realloc()

PyObject FREE(): alias to PyObject Free()

PyObject Del(): alias to PyObject Free()

PyObject _DEL(): alias to PyObject_ FREE() (so finally an alias to PyObject _Free())

The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short
lifetime. It uses memory mappings called “arenas” with a fixed size of 256 KiB. It falls back to malloc() and
realloc() for allocations larger than 512 bytes.

pymalloc is the default allocator of PyObject Malloc().

The arena allocator uses the following functions:

mmap() and munmap() if available,

9.3. Object allocators 129

The Python/C API, Release 2.7.16rcl

 malloc() and free() otherwise.

Changed in version 2.7.7: The threshold changed from 256 to 512 bytes. The arena allocator now uses
mmap() if available.

9.5 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python
heap by using the first function set:

PyObject *res;
char *buf = (char *) PyMem Malloc(BUFSIZ); /* for I/O ¥,

if (buf —— NULL)
return PyErr NoMemory();
* _..Do some I/O operation involving buf... */
res = PyString FromString(buf);
PyMem _Free(buf); /* allocated with PyMem Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem New(char, BUFSIZ); /* for I/O *

if (buf — NULL)
return PyErr NoMemory();
/* ...Do some I/O operation involving buf... *
res — PyString FromString(buf);
PyMem _Del(buf); /* allocated with PyMem New *
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same
set. Indeed, it is required to use the same memory API family for a given memory block, so that the risk of
mixing different allocators is reduced to a minimum. The following code sequence contains two errors, one
of which is labeled as fatal because it mixes two different allocators operating on different heaps.

char *bufl = PyMem New/(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 — (char *) PyMem Malloc(BUFSIZ);

PyMem_Del(buf3); /* Wrong -- should be PyMem Free() ¥,
free(buf2); /* Right -- allocated via malloc() *
free(bufl); /* Fatal -- should be PyMem _Del() *

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python
are allocated and released with PyObject New(), PyObject NewVar() and PyObject Del().

These will be explained in the next chapter on defining and implementing new object types in C.

130 Chapter 9. Memory Management

CHAPTER

TEN

OBJECT IMPLEMENTATION SUPPORT

This chapter describes the functions, types, and macros used when defining new object types.

10.1 Allocating Objects on the Heap

PyObject* PyObject New(PyTypeObject *type)
Return value: New reference.

PyVarObject* PyObject NewVar(PyTypeObject *type, Py ssize t size)
Return value: New reference. Changed in version 2.5: This function used an int type for size. This
might require changes in your code for properly supporting 64-bit systems.

void _PyObject Del(PyObject *op)

PyObject* PyObject Init(PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. Initialize a newly-allocated object op with its type and initial
reference. Returns the initialized object. If type indicates that the object participates in the cyclic
garbage detector, it is added to the detector’s set of observed objects. Other fields of the object are
not affected.

PyVarObject* PyObject InitVar(PyVarObject *op, PyTypeObject *type, Py ssize t size)
Return value: Borrowed reference. This does everything PyObject Init() does, and also initializes the
length information for a variable-size object.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

TYPE* PyObject New(TYPE, PyTypeObject *type)
Return value: New reference. Allocate a new Python object using the C structure type TYPE and
the Python type object type. Fields not defined by the Python object header are not initialized;
the object’s reference count will be one. The size of the memory allocation is determined from the
tp_ basicsize field of the type object.

TYPE* PyObject NewVar(TYPE, PyTypeObject *type, Py ssize t size)
Return value: New reference. Allocate a new Python object using the C structure type TYPE and
the Python type object type. Fields not defined by the Python object header are not initialized. The
allocated memory allows for the TYPE structure plus size fields of the size given by the tp itemsize
field of type. This is useful for implementing objects like tuples, which are able to determine their size
at construction time. Embedding the array of fields into the same allocation decreases the number of
allocations, improving the memory management efficiency.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

131

The Python/C API, Release 2.7.16rcl

void PyObject Del(PyObject *op)
Releases memory allocated to an object using PyObject New() or PyObject NewVar(). This is
normally called from the tp dealloc handler specified in the object’s type. The fields of the object
should not be accessed after this call as the memory is no longer a valid Python object.

PyObject* Py InitModule(char *name, PyMethodDef *methods)
Return value: Borrowed reference. Create a new module object based on a name and table of functions,
returning the new module object.

Changed in version 2.3: Older versions of Python did not support NULL as the value for the methods
argument.

PyObject* Py InitModule3(char *name, PyMethodDef *methods, char *doc)
Return value: Borrowed reference. Create a new module object based on a name and table of functions,
returning the new module object. If doc is non-NULL, it will be used to define the docstring for the
module.

Changed in version 2.3: Older versions of Python did not support NULL as the value for the methods
argument.

PyObject* Py InitModule4(char *name, PyMethodDef *methods, char *doc, PyObject *self,
int apiver)

Return value: Borrowed reference. Create a new module object based on a name and table of functions,
returning the new module object. If doc is non-NULL, it will be used to define the docstring for the
module. If self is non-NULL, it will be passed to the functions of the module as their (otherwise
NULL) first parameter. (This was added as an experimental feature, and there are no known uses in
the current version of Python.) For apiver, the only value which should be passed is defined by the
constant PYTHON API_VERSION.

Note: Most uses of this function should probably be using the Py InitModule3() instead; only use
this if you are sure you need it.

Changed in version 2.3: Older versions of Python did not support NULL as the value for the methods
argument.

PyObject _Py_NoneStruct
Object which is visible in Python as None. This should only be accessed using the Py None macro,
which evaluates to a pointer to this object.

10.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This
section describes these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’s representation
in memory. These are represented by the PyObject and PyVarObject types, which are defined, in turn, by
the expansions of some macros also used, whether directly or indirectly, in the definition of all other Python
objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python
needs to treat a pointer to an object as an object. In a normal “release” build, it contains only the
object’s reference count and a pointer to the corresponding type object. It corresponds to the fields
defined by the expansion of the PyObject HEAD macro.

132 Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

PyVarObject
This is an extension of PyObject that adds the ob _size field. This is only used for objects that have
some notion of length. This type does not often appear in the Python/C APIL It corresponds to the
fields defined by the expansion of the PyObject VAR HEAD macro.

These macros are used in the definition of PyObject and PyVarObject:

PyObject HEAD
This is a macro which expands to the declarations of the fields of the PyObject type; it is used
when declaring new types which represent objects without a varying length. The specific fields it
expands to depend on the definition of Py TRACE REFS. By default, that macro is not defined,
and PyObject HEAD expands to:

Py ssize_t ob_refcnt;
PyTypeObject *ob_type;

When Py TRACE_REFS is defined, it expands to:

PyObject * ob_next, * ob_ prev;
Py _ssize_t ob_ refcnt;
PyTypeObject *ob_type;

PyObject VAR_HEAD
This is a macro which expands to the declarations of the fields of the PyVarObject type; it is used
when declaring new types which represent objects with a length that varies from instance to instance.
This macro always expands to:

PyObject HEAD
Py ssize_t ob_ size;

Note that PyObject HEAD is part of the expansion, and that its own expansion varies depending on
the definition of Py TRACE _REFS.

Py TYPE(o)
This macro is used to access the ob_type member of a Python object. It expands to:

| ((PyObject*)(0))- ~ob_type)

New in version 2.6.

Py REFCNT(o)
This macro is used to access the ob _refcnt member of a Python object. It expands to:

’ (((PyObject*)(0))-ob_ refent)

New in version 2.6.

Py SIZE(o)
This macro is used to access the ob_size member of a Python object. It expands to:

’(((PyVarObject*)(o))— ob_size)

New in version 2.6.

PyObject HEAD INIT(type)
This is a macro which expands to initialization values for a new PyObject type. This macro expands
to:

10.2. Common Object Structures 133

The Python/C API, Release 2.7.16rcl

_PyObject EXTRA INIT
1, type,

PyVarObject HEAD INIT(type, size)
This is a macro which expands to initialization values for a new PyVarObject type, including the
ob_size field. This macro expands to:

_PyObject EXTRA INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two
PyObject* parameters and return one such value. If the return value is NULL, an exception shall have
been set. If not NULL, the return value is interpreted as the return value of the function as exposed
in Python. The function must return a new reference.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field C Type Meaning

ml _name | char * name of the method

ml meth | PyCFunction | pointer to the C implementation

ml flags | int flag bits indicating how the call should be constructed
ml _doc char * points to the contents of the docstring

The ml _meth is a C function pointer. The functions may be of different types, but they always return
PyObject*. If the function is not of the PyCFunction, the compiler will require a cast in the method
table. Even though PyCFunction defines the first parameter as PyObject®, it is common that the method
implementation uses the specific C type of the self object.

The ml_flags field is a bitfield which can include the following flags. The individual flags indicate either a
calling convention or a binding convention. Of the calling convention flags, only METH VARARGS and
METH KEYWORDS can be combined. Any of the calling convention flags can be combined with a binding
flag.

METH VARARGS
This is the typical calling convention, where the methods have the type PyCFunction. The function
expects two PyObject® values. The first one is the self object for methods; for module functions, it is the
module object. The second parameter (often called args) is a tuple object representing all arguments.
This parameter is typically processed using PyArg ParseTuple() or PyArg UnpackTuple().

METH KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects
three parameters: self, args, and a dictionary of all the keyword arguments. The flag is
typically combined with METH VARARGS, and the parameters are typically processed using
PyArg ParseTupleAndKeywords().

METH NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with
the METH NOARGS flag. They need to be of type PyCFunction. The first parameter is typically
named self and will hold a reference to the module or object instance. In all cases the second parameter
will be NULL.

METH O
Methods with a single object argument can be listed with the METH O flag, instead of invoking

134 Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

PyArg ParseTuple() with a "O" argument. They have the type PyCFunction, with the self parameter,
and a PyObject* parameter representing the single argument.

METH OLDARGS
This calling convention is deprecated. The method must be of type PyCFunction. The second argument
is NULL if no arguments are given, a single object if exactly one argument is given, and a tuple of
objects if more than one argument is given. There is no way for a function using this convention to
distinguish between a call with multiple arguments and a call with a tuple as the only argument.

These two constants are not used to indicate the calling convention but the binding when use with methods
of classes. These may not be used for functions defined for modules. At most one of these flags may be set
for any given method.

METH CLASS
The method will be passed the type object as the first parameter rather than an instance of the type.
This is used to create class methods, similar to what is created when using the classmethod() built-in
function.

New in version 2.3.

METH STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This
is used to create static methods, similar to what is created when using the staticmethod() built-in
function.

New in version 2.3.

One other constant controls whether a method is loaded in place of another definition with the same method
name.

METH COEXIST
The method will be loaded in place of existing definitions. Without METH COEXIST, the default
is to skip repeated definitions. Since slot wrappers are loaded before the method table, the existence
of a sq_ contains slot, for example, would generate a wrapped method named contains () and
preclude the loading of a corresponding PyCFunction with the same name. With the flag defined, the
PyCFunction will be loaded in place of the wrapper object and will co-exist with the slot. This is
helpful because calls to PyCFunctions are optimized more than wrapper object calls.

New in version 2.4.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields
are:
Field | C Type Meaning
name | char * name of the member
type | int the type of the member in the C struct
offset | Py ssize t | the offset in bytes that the member is located on the type’s object struct
flags | int flag bits indicating if the field should be read-only or writable
doc char * points to the contents of the docstring

type can be one of many T _ macros corresponding to various C types. When the member is accessed
in Python, it will be converted to the equivalent Python type.

10.2. Common Object Structures 135

The Python/C API, Release 2.7.16rcl

Macro name C type

T SHORT short

T INT int

T LONG long

T FLOAT float

T DOUBLE double

T STRING char *

T OBJECT PyObject *

T OBJECT EX | PyObject *

T CHAR char

T BYTE char

T UBYTE unsigned char
T UINT unsigned int
T USHORT unsigned short
T ULONG unsigned long
T BOOL char

T LONGLONG long long

T ULONGLONG | unsigned long long
T PYSSIZET Py ssize t

T OBJECT and T _OBJECT EX differ in that T OBJECT returns None if the member is NULL

and T OBJECT EX raises an AttributeError.

Try to use T OBJECT EX over T OBJECT

because T OBJECT EX handles use of the del statement on that attribute more correctly than
T OBJECT.

flags can be 0 for write and read access or READONLY for read-only access. Using T STRING for
type implies READONLY. Ounly T OBJECT and T _OBJECT _EX members can be deleted. (They

are set to NULL).

PyGetSetDef
Structure to define property-like access for a type. See also description of the PyTypeObject.tp getset
slot.
Field C Meaning
Type
name | char * | attribute name
get getter C Function to get the attribute
set setter optional C function to set or delete the attribute, if omitted the attribute is
readonly
doc char * | optional docstring
clo- void * | optional function pointer, providing additional data for getter and setter
sure

The get function takes one PyObject™ parameter (the instance) and a function pointer (the associated

closure):

typedef PyObject *(*getter)(PyObject *, void *);

It should return a new reference on success or NULL with a set exception on failure.

set functions take two PyObject™ parameters (the instance and the value to be set) and a function
pointer (the associated closure):

136

Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

typedef int (*setter)(PyObject *, PyObject *, void *);

In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or
-1 with a set exception on failure.

PyObject* Py FindMethod(PyMethodDef table[], PyObject *ob, char *name)
Return value: New reference. Return a bound method object for an extension type implemented in
C. This can be useful in the implementation of a tp _getattro or tp _getattr handler that does not use
the PyObject GenericGetAttr() function.

10.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a
new type: the PyTypeObject structure. Type objects can be handled using any of the PyObject *() or
PyType_*() functions, but do not offer much that’s interesting to most Python applications. These objects
are fundamental to how objects behave, so they are very important to the interpreter itself and to any
extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each
type object stores a large number of values, mostly C function pointers, each of which implements a small
part of the type’s functionality. The fields of the type object are examined in detail in this section. The
fields will be described in the order in which they occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc,
intintobjargproc, objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, se-
tattrofunc, cmpfunc, reprfunc, hashfunc

The structure definition for PyTypeObject can be found in Include/object.h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name
int tp_basicsize, tp _itemsize; /* For allocation *

"ok

/* Methods to implement standard operations *

destructor tp _dealloc;
printfunc tp_print;
getattrfunc tp _getattr;
setattrfunc tp _setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

* Method suites for standard classes *

PyNumberMethods *tp _as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp _as mapping;

* More standard operations (here for binary compatibility) *,
hashfunc tp_hash;

ternaryfunc tp _call;
reprfunc tp_str;

(continues on next page)

10.3. Type Objects 137

The Python/C API, Release 2.7.16rcl

continued from previous page
g

getattrofunc tp _getattro;
setattrofunc tp _setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp__as_buffer;

/* Flags to define presence of optional /expanded features */
long tp_flags;

char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */

/* call function for all accessible objects */
traverseproc tp_traverse;

/%
/

delete references to contained objects */

inquiry tp_ clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_ weaklistoffset;

/* Added in release 2.2 */
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp _iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp _methods;

struct PyMemberDef *tp members;

struct PyGetSetDef *tp _getset;

struct _typeobject *tp_base;

PyObject *tp _dict;

descrgetfunc tp_descr _get;

descrsetfunc tp_ descr _set;

long tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject IS GC */
PyObject *tp _bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp _subclasses;

PyObject *tp_weaklist;

} PyTypeObject;

The type object structure extends the PyVarObject structure. The ob _size field is used for dynamic types
(created by type new(), usually called from a class statement). Note that PyType Type (the metatype)
initializes tp itemsize, which means that its instances (i.e. type objects) must have the ob _size field.

PyObject* PyObject. ob mnext

138 Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

PyObject* PyObject. _ob_prev
These fields are only present when the macro Py TRACE_ REFS is defined. Their initialization to
NULL is taken care of by the PyObject HEAD INIT macro. For statically allocated objects, these
fields always remain NULL. For dynamically allocated objects, these two fields are used to link the
object into a doubly-linked list of all live objects on the heap. This could be used for various debugging
purposes; currently the only use is to print the objects that are still alive at the end of a run when the
environment variable PYTHONDUMPREFS is set.

These fields are not inherited by subtypes.

Py ssize t PyObject.ob refent
This is the type object’s reference count, initialized to 1 by the PyObject HEAD INIT macro. Note
that for statically allocated type objects, the type’s instances (objects whose ob _type points back to
the type) do not count as references. But for dynamically allocated type objects, the instances do
count as references.

This field is not inherited by subtypes.

Changed in version 2.5: This field used to be an int type. This might require changes in your code for
properly supporting 64-bit systems.

PyTypeObject* PyObject.ob_type
This is the type’s type, in other words its metatype. It is initialized by the argument to the Py-
Object HEAD INIT macro, and its value should normally be &PyType Type. However, for dy-
namically loadable extension modules that must be usable on Windows (at least), the compiler com-
plains that this is not a valid initializer. Therefore, the convention is to pass NULL to the PyOb-
ject_ HEAD INIT macro and to initialize this field explicitly at the start of the module’s initialization
function, before doing anything else. This is typically done like this:

Foo_Type.ob_type = &PyType Type;

This should be done before any instances of the type are created. PyType Ready() checks if ob_type
is NULL, and if so, initializes it: in Python 2.2, it is set to &PyType_Type; in Python 2.2.1 and later
it is initialized to the ob_type field of the base class. PyType Ready() will not change this field if it
is non-zero.

In Python 2.2, this field is not inherited by subtypes. In 2.2.1, and in 2.3 and beyond, it is inherited
by subtypes.

Py ssize t PyVarObject.ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type
objects, this field has a special internal meaning.

This field is not inherited by subtypes.

char* PyTypeObject.tp _name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as
module globals, the string should be the full module name, followed by a dot, followed by the type
name; for built-in types, it should be just the type name. If the module is a submodule of a package,
the full package name is part of the full module name. For example, a type named T defined in module
M in subpackage Q in package P should have the tp name initializer "P.Q.M.T".

For dynamically allocated type objects, this should just be the type name, and the module name
explicitly stored in the type dict as the value for key ' module '.

For statically allocated type objects, the tp _name field should contain a dot. Everything before the
last dot is made accessible as the __module _ attribute, and everything after the last dot is made
accessible as the ~_name _ attribute.

10.3. Type Objects 139

The Python/C API, Release 2.7.16rcl

If no dot is present, the entire tp name field is made accessible as the ~ name attribute, and
the ~ module _ attribute is undefined (unless explicitly set in the dictionary, as explained above).
This means your type will be impossible to pickle. Additionally, it will not be listed in module
documentations created with pydoc.

This field is not inherited by subtypes.

Py ssize _t PyTypeObject.tp basicsize
Py ssize t PyTypeObject.tp itemsize

These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp _itemsize field, types with
variable-length instances have a non-zero tp _itemsize field. For a type with fixed-length instances, all
instances have the same size, given in tp basicsize.

For a type with variable-length instances, the instances must have an ob _size field, and the instance
size is tp_basicsize plus N times tp itemsize, where N is the “length” of the object. The value of N
is typically stored in the instance’s ob _size field. There are exceptions: for example, long ints use a
negative ob_size to indicate a negative number, and N is abs(ob_size) there. Also, the presence of
an ob_size field in the instance layout doesn’t mean that the instance structure is variable-length (for
example, the structure for the list type has fixed-length instances, yet those instances have a meaningful
ob_size field).

The basic size includes the fields in the instance declared by the macro PyObject HEAD or PyOb-
ject_ VAR _HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and ob_next fields if they are present. This means that the only correct way to get an
initializer for the tp basicsize is to use the sizeof operator on the struct used to declare the instance
layout. The basic size does not include the GC header size (this is new in Python 2.2; in 2.1 and 2.0,
the GC header size was included in tp basicsize).

These fields are inherited separately by subtypes. If the base type has a non-zero tp itemsize, it is
generally not safe to set tp itemsize to a different non-zero value in a subtype (though this depends
on the implementation of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care
of by the value of tp basicsize. Example: suppose a type implements an array of double. tp itemsize
is sizeof(double). It is the programmer’s responsibility that tp basicsize is a multiple of sizeof(double)
(assuming this is the alignment requirement for double).

destructor PyTypeObject.tp _dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees
that its instances will never be deallocated (as is the case for the singletons None and Ellipsis).

The destructor function is called by the Py DECREF() and Py XDECREF() macros when the new
reference count is zero. At this point, the instance is still in existence, but there are no references
to it. The destructor function should free all references which the instance owns, free all memory
buffers owned by the instance (using the freeing function corresponding to the allocation function
used to allocate the buffer), and finally (as its last action) call the type’s tp free function. If the
type is not subtypable (doesn’t have the Py TPFLAGS BASETYPE flag bit set), it is permissible
to call the object deallocator directly instead of via tp free. The object deallocator should be the
one used to allocate the instance; this is normally PyObject Del() if the instance was allocated using
PyObject_New() or PyObject_ VarNew(), or PyObject_GC_Del() if the instance was allocated using
PyObject GC_New() or PyObject GC_NewVar().

This field is inherited by subtypes.

printfunc PyTypeObject.tp print

An optional pointer to the instance print function.

140

Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

The print function is only called when the instance is printed to a real file; when it is printed to a
pseudo-file (like a StringlO instance), the instance’s tp repr or tp str function is called to convert
it to a string. These are also called when the type’s tp print field is NULL. A type should never
implement tp print in a way that produces different output than tp repr or tp _str would.

The print function is called with the same signature as PyObject Print(): int tp print(PyObject
*self, FILE *file, int flags). The self argument is the instance to be printed. The file argument is
the stdio file to which it is to be printed. The flags argument is composed of flag bits. The only flag
bit currently defined is Py PRINT RAW. When the Py PRINT RAW flag bit is set, the instance
should be printed the same way as tp_str would format it; when the Py PRINT RAW flag bit is
clear, the instance should be printed the same was as tp_repr would format it. It should return -1 and
set an exception condition when an error occurred during the comparison.

It is possible that the tp print field will be deprecated. In any case, it is recommended not to define
tp_print, but instead to rely on tp repr and tp _str for printing.

This field is inherited by subtypes.

getattrfunc PyTypeObject.tp _getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_getattro function, but taking a C string instead of a Python string object to give the attribute
name. The signature is

PyObject * tp_getattr(PyObject *o, char *attr _name);

This field is inherited by subtypes together with tp getattro: a subtype inherits both tp getattr and
tp_getattro from its base type when the subtype’s tp getattr and tp getattro are both NULL.

setattrfunc PyTypeObject.tp_setattr
An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_setattro function, but taking a C string instead of a Python string object to give the attribute
name. The signature is

PyObject * tp_setattr(PyObject *o, char *attr _name, PyObject *v);

The v argument is set to NULL to delete the attribute. This field is inherited by subtypes together
with tp setattro: a subtype inherits both tp setattr and tp setattro from its base type when the
subtype’s tp_setattr and tp setattro are both NULL.

cmpfunc PyTypeObject.tp compare
An optional pointer to the three-way comparison function.

The signature is the same as for PyObject Compare(). The function should return 1 if self greater
than other, 0 if self is equal to other, and -1 if self less than other. It should return -1 and set an
exception condition when an error occurred during the comparison.

This field is inherited by subtypes together with tp richcompare and tp hash: a subtypes inherits all
three of tp__compare, tp_richcompare, and tp__hash when the subtype’s tp__compare, tp_richcompare,
and tp_hash are all NULL.

reprfunc PyTypeObject.tp _repr
An optional pointer to a function that implements the built-in function repr().

The signature is the same as for PyObject Repr(); it must return a string or a Unicode object. Ideally,
this function should return a string that, when passed to eval(), given a suitable environment, returns
an object with the same value. If this is not feasible, it should return a string starting with '<' and
ending with '>" from which both the type and the value of the object can be deduced.

10.3. Type Objects 141

The Python/C API, Release 2.7.16rcl

When this field is not set, a string of the form <%s object at %p> is returned, where %s is replaced
by the type name, and %p by the object’s memory address.

This field is inherited by subtypes.

PyNumberMethods* tp _as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the
number protocol. These fields are documented in Number Object Structures.

The tp _as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the
sequence protocol. These fields are documented in Sequence Object Structures.

The tp _as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as _mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the
mapping protocol. These fields are documented in Mapping Object Structures.

The tp _as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject.tp hash
An optional pointer to a function that implements the built-in function hash().

The signature is the same as for PyObject Hash(); it must return a C long. The value -1 should not
be returned as a normal return value; when an error occurs during the computation of the hash value,
the function should set an exception and return -1.

This field can be set explicitly to PyObject HashNotImplemented() to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash = None at the Python
level, causing isinstance(o, collections.Hashable) to correctly return False. Note that the converse is
also true - setting _hash = None on a class at the Python level will result in the tp hash slot
being set to PyObject HashNotImplemented().

When this field is not set, two possibilities exist: if the tp compare and tp richcompare fields are
both NULL, a default hash value based on the object’s address is returned; otherwise, a TypeError is
raised.

This field is inherited by subtypes together with tp richcompare and tp compare: a subtypes in-
herits all three of tp compare, tp richcompare, and tp hash, when the subtype’s tp compare,
tp_richcompare and tp hash are all NULL.

ternaryfunc PyTypeObject.tp call
An optional pointer to a function that implements calling the object. This should be NULL if the
object is not callable. The signature is the same as for PyObject Call().

This field is inherited by subtypes.

reprfunc PyTypeObject.tp _str
An optional pointer to a function that implements the built-in operation str(). (Note that str is a type
now, and str() calls the constructor for that type. This constructor calls PyObject Str() to do the
actual work, and PyObject Str() will call this handler.)

The signature is the same as for PyObject Str(); it must return a string or a Unicode object. This
function should return a “friendly” string representation of the object, as this is the representation that
will be used by the print statement.

When this field is not set, PyObject Repr() is called to return a string representation.

This field is inherited by subtypes.

142 Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

getattrofunc PyTypeObject.tp getattro
An optional pointer to the get-attribute function.

The signature is the same as for PyObject GetAttr(). It is usually convenient to set this field to
PyObject GenericGetAttr(), which implements the normal way of looking for object attributes.

This field is inherited by subtypes together with tp getattr: a subtype inherits both tp getattr and
tp_ getattro from its base type when the subtype’s tp _getattr and tp _getattro are both NULL.

setattrofunc PyTypeObject.tp _setattro
An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject SetAttr(), but setting v to NULL to delete an attribute
must be supported. It is usually convenient to set this field to PyObject GenericSetAttr(), which
implements the normal way of setting object attributes.

This field is inherited by subtypes together with tp setattr: a subtype inherits both tp setattr and
tp_setattro from its base type when the subtype’s tp_setattr and tp_setattro are both NULL.

PyBufferProcs* PyTypeObject.tp as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the
buffer interface. These fields are documented in Buffer Object Structures.

The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

long PyTypeObject.tp _flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations;
others are used to indicate that certain fields in the type object (or in the extension structures referenced
via tp_as_number, tp_as_sequence, tp_as mapping, and tp _as_buffer) that were historically not
always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and
must be considered to have a zero or NULL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base
type has a flag bit set, the subtype inherits this flag bit. The flag bits that pertain to extension
structures are strictly inherited if the extension structure is inherited, i.e. the base type’s value
of the flag bit is copied into the subtype together with a pointer to the extension structure. The
Py TPFLAGS HAVE GC flag bit is inherited together with the tp traverse and tp clear fields,
i.e. if the Py TPFLAGS HAVE GC flag bit is clear in the subtype and the tp _traverse and tp _clear
fields in the subtype exist (as indicated by the Py TPFLAGS HAVE RICHCOMPARE flag bit) and
have NULL values.

The following bit masks are currently defined; these can be ORed together using the | operator to form
the value of the tp flags field. The macro PyType HasFeature() takes a type and a flags value, tp
and f, and checks whether tp->tp flags & f is non-zero.

Py TPFLAGS HAVE GETCHARBUFFER
If this bit is set, the PyBufferProcs struct referenced by tp as_buffer has the bf _getcharbuffer
field.

Py TPFLAGS HAVE SEQUENCE_IN
If this bit is set, the PySequenceMethods struct referenced by tp as sequence has the
sq__contains field.

Py TPFLAGS GC
This bit is obsolete. The bit it used to name is no longer in use. The symbol is now defined as
7ero.

Py TPFLAGS HAVE INPLACEOPS
If this bit is set, the PySequenceMethods struct referenced by tp _as_sequence and the PyNum-
berMethods structure referenced by tp _as number contain the fields for in-place operators. In
particular, this means that the PyNumberMethods structure has the fields nb_inplace add,

10.3. Type Objects 143

The Python/C API, Release 2.7.16rcl

nb_inplace subtract, nb _inplace multiply, nb _inplace divide, nb _inplace remainder,
nb_inplace power, nb_inplace Ishift, nb_inplace rshift, nb_inplace and, nb_inplace xor,
and nb_inplace or; and the PySequenceMethods struct has the fields sq_inplace concat and
sq_inplace repeat.

Py TPFLAGS CHECKTYPES
If this bit is set, the binary and ternary operations in the PyNumberMethods structure referenced
by tp_as_ number accept arguments of arbitrary object types, and do their own type conver-
sions if needed. If this bit is clear, those operations require that all arguments have the current
type as their type, and the caller is supposed to perform a coercion operation first. This ap-
plies to nb__add, nb_subtract, nb_multiply, nb_divide, nb_remainder, nb_divmod, nb_ power,
nb_lIshift, nb_rshift, nb_and, nb_xor, and nb_or.

Py TPFLAGS HAVE RICHCOMPARE
If this bit is set, the type object has the tp richcompare field, as well as the tp _traverse and the
tp_ clear fields.

Py TPFLAGS HAVE WEAKREFS
If this bit is set, the tp _weaklistoffset field is defined. Instances of a type are weakly referenceable
if the type’s tp_weaklistoffset field has a value greater than zero.

Py TPFLAGS_ HAVE ITER
If this bit is set, the type object has the tp iter and tp _iternext fields.

Py TPFLAGS_ HAVE_ CLASS
If this bit is set, the type object has several new fields defined starting in Python 2.2: tp _methods,
tp__members, tp _getset, tp_base, tp_dict, tp_descr _get, tp_descr_set, tp_dictoffset, tp _init,
tp_alloc, tp_new, tp_ free, tp_is_gc, tp_bases, tp_mro, tp_ cache, tp_subclasses, and
tp_weaklist.

Py TPFLAGS_ HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, the ob_type field
of its instances is considered a reference to the type, and the type object is INCREF’ed when
a new instance is created, and DECREF’ed when an instance is destroyed (this does not apply
to instances of subtypes; only the type referenced by the instance’s ob_type gets INCREF’ed or
DECREF’ed).

Py TPFLAGS BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the
type cannot be subtyped (similar to a “final” class in Java).

Py TPFLAGS READY
This bit is set when the type object has been fully initialized by PyType Ready/().

Py TPFLAGS READYING
This bit is set while PyType Ready() is in the process of initializing the type object.

Py TPFLAGS HAVE GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be
created using PyObject GC_New() and destroyed using PyObject GC_Del(). More informa-
tion in section Supporting Cyclic Garbage Collection. This bit also implies that the GC-related
fields tp_traverse and tp_clear are present in the type object; but those fields also exist when
Py TPFLAGS HAVE GC is clear but Py TPFLAGS HAVE RICHCOMPARE is set.

Py TPFLAGS DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in the

type object and its extension structures. Currently, it includes the following bits:
Py TPFLAGS HAVE GETCHARBUFFER, Py TPFLAGS HAVE SEQUENCE _IN,
Py TPFLAGS HAVE INPLACEOPS, Py TPFLAGS HAVE RICHCOMPARE,

144

Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

Py TPFLAGS HAVE WEAKREFS, Py TPFLAGS HAVE ITER, and
Py TPFLAGS HAVE CLASS.

char* PyTypeObject.tp _doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is
exposed as the _ doc_ _ attribute on the type and instances of the type.

This field is not inherited by subtypes.
The following three fields only exist if the Py TPFLAGS HAVE RICHCOMPARE flag bit is set.

traverseproc PyTypeObject.tp _traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py TPFLAGS HAVE GC flag bit is set. More information about Python’s garbage collection
scheme can be found in section Supporting Cyclic Garbage Collection.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical imple-
mentation of a tp traverse function simply calls Py VISIT() on each of the instance’s members that
are Python objects. For example, this is function local _traverse() from the thread extension module:

static int

local _traverse(localobject *self, visitproc visit, void *arg)

{
Py VISIT(self->args);
Py VISIT(self->kw);
Py_ VISIT(self- - dict);
return 0;

}

Note that Py VISIT() is called only on those members that can participate in reference cycles. Al-
though there is also a self->key member, it can only be NULL or a Python string and therefore cannot
be part of a reference cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you
may want to visit it anyway just so the gc module’s get referents() function will include it.

Note that Py VISIT() requires the visit and arg parameters to local _traverse() to have these specific
names; don’t name them just anything.

This field is inherited by subtypes together with tp clear and the Py TPFLAGS HAVE GC flag
bit: the flag bit, tp traverse, and tp clear are all inherited from the base type if they are all zero in
the subtype and the subtype has the Py TPFLAGS HAVE RICHCOMPARE flag bit set.

inquiry PyTypeObject.tp clear
An optional pointer to a clear function for the garbage collector. This is only used if the
Py TPFLAGS HAVE GC flag bit is set.

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the
garbage collector. Taken together, all tp clear functions in the system must combine to break all
reference cycles. This is subtle, and if in any doubt supply a tp _clear function. For example, the tuple
type does not implement a tp clear function, because it’s possible to prove that no reference cycle can
be composed entirely of tuples. Therefore the tp clear functions of other types must be sufficient to
break any cycle containing a tuple. This isn’t immediately obvious, and there’s rarely a good reason
to avoid implementing tp clear.

Implementations of tp clear should drop the instance’s references to those of its members that may
be Python objects, and set its pointers to those members to NULL, as in the following example:

static int
local _clear(localobject *self)

(continues on next page)

10.3. Type Objects 145

The Python/C API, Release 2.7.16rcl

continued from previous page
g

{
Py CLEAR(self->key);
Py CLEAR(self->args);
Py CLEAR(self- ~kw);
Py CLEAR(self->dict);
return 0;

}

The Py CLEAR() macro should be used, because clearing references is delicate: the reference to the
contained object must not be decremented until after the pointer to the contained object is set to
NULL. This is because decrementing the reference count may cause the contained object to become
trash, triggering a chain of reclamation activity that may include invoking arbitrary Python code (due
to finalizers, or weakref callbacks, associated with the contained object). If it’s possible for such code
to reference self again, it’s important that the pointer to the contained object be NULL at that time,
so that self knows the contained object can no longer be used. The Py CLEAR() macro performs the
operations in a safe order.

Because the goal of tp _clear functions is to break reference cycles, it’s not necessary to clear contained
objects like Python strings or Python integers, which can’t participate in reference cycles. On the
other hand, it may be convenient to clear all contained Python objects, and write the type’s tp _dealloc
function to invoke tp clear.

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic
Garbage Collection.

This field is inherited by subtypes together with tp traverse and the Py TPFLAGS HAVE GC flag
bit: the flag bit, tp traverse, and tp clear are all inherited from the base type if they are all zero in
the subtype and the subtype has the Py TPFLAGS HAVE RICHCOMPARE flag bit set.

richcmpfunc PyTypeObject.tp _richcompare

An optional pointer to the rich comparison function, whose signature is PyObject
*tp_richcompare(PyObject *a, PyObject *b, int op).

The function should return the result of the comparison (usually Py True or Py False). If the
comparison is undefined, it must return Py NotImplemented, if another error occurred it must return
NULL and set an exception condition.

Note: If you want to implement a type for which only a limited set of comparisons makes sense (e.g.
== and !=, but not < and friends), directly raise TypeError in the rich comparison function.

This field is inherited by subtypes together with tp compare and tp_hash: a subtype inherits all three
of tp__compare, tp _richcompare, and tp _hash, when the subtype’s tp _compare, tp _richcompare, and
tp_hash are all NULL.

The following constants are defined to be used as the third argument for tp richcompare and for
PyObject RichCompare():

Constant | Comparison
Py LT <

Py LE <=

Py EQ ==

Py NE I=

Py GT >

Py GE | >=

146

Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

The next field only exists if the Py TPFLAGS HAVE WEAKREFS flag bit is set.

long PyTypeObject.tp _weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the
offset in the instance structure of the weak reference list head (ignoring the GC header, if present);
this offset is used by PyObject_ClearWeakRefs() and the PyWeakref *() functions. The instance
structure needs to include a field of type PyObject* which is initialized to NULL.

Do not confuse this field with tp weaklist; that is the list head for weak references to the type object
itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset;
this means that the subtype uses a different weak reference list head than the base type. Since the list
head is always found via tp weaklistoffset, this should not be a problem.

When a type defined by a class statement has no __slots _ declaration, and none of its base types
are weakly referenceable, the type is made weakly referenceable by adding a weak reference list head
slot to the instance layout and setting the tp weaklistoffset of that slot’s offset.

When a type’s _ slots__ declaration contains a slot named _ weakref | that slot becomes
the weak reference list head for instances of the type, and the slot’s offset is stored in the type’s
tp_ weaklistoffset.

When a type’s slots declaration does not contain a slot named weakref | the type inherits
its tp__ weaklistoffset from its base type.

The next two fields only exist if the Py TPFLAGS HAVE ITER flag bit is set.

getiterfunc PyTypeObject.tp _iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals
that the instances of this type are iterable (although sequences may be iterable without this function,
and classic instances always have this function, even if they don’t define an __iter () method).

This function has the same signature as PyObject GetIter().
This field is inherited by subtypes.

iternextfunc PyTypeObject.tp _iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is
exhausted, it must return NULL; a Stoplteration exception may or may not be set. When another
error occurs, it must return NULL too. Its presence normally signals that the instances of this type
are iterators (although classic instances always have this function, even if they don’t define a next()
method).

Iterator types should also define the tp iter function, and that function should return the iterator
instance itself (not a new iterator instance).

This function has the same signature as Pylter Next().
This field is inherited by subtypes.

The next fields, up to and including tp _weaklist, only exist if the Py TPFLAGS HAVE CLASS flag bit
is set.

struct PyMethodDef* PyTypeObject.tp _methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular
methods of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp dict below) containing
a method descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

10.3. Type Objects 147

The Python/C API, Release 2.7.16rcl

struct PyMemberDef* PyTypeObject.tp _members

An optional pointer to a static NULL-terminated array of PyMemberDef structures, declaring regular
data members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp dict below) containing
a member descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* PyTypeObject.tp getset

An optional pointer to a static NULL-terminated array of PyGetSetDef structures, declaring computed
attributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp dict below) containing
a getset descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mecha-
nism).

PyTypeObject* PyTypeObject.tp base

An optional pointer to a base type from which type properties are inherited. At this level, only single
inheritance is supported; multiple inheritance require dynamically creating a type object by calling the
metatype.

This field is not inherited by subtypes (obviously), but it defaults to &PyBaseObject Type (which to
Python programmers is known as the type object).

PyObject* PyTypeObject.tp _dict

The type’s dictionary is stored here by PyType Ready().

This field should normally be initialized to NULL before PyType Ready is called; it may also be ini-
tialized to a dictionary containing initial attributes for the type. Once PyType Ready() has initialized
the type, extra attributes for the type may be added to this dictionary only if they don’t correspond
to overloaded operations (like add__ ()).

This field is not inherited by subtypes (though the attributes defined in here are inherited through a
different mechanism).

descrgetfunc PyTypeObject.tp _descr _get

An optional pointer to a “descriptor get” function.

The function signature is

PyObject * tp_descr _get(PyObject *self, PyObject *obj, PyObject *type);

This field is inherited by subtypes.

descrsetfunc PyTypeObject.tp descr_set

An optional pointer to a function for setting and deleting a descriptor’s value.

The function signature is

int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value. This field is inherited by subtypes.

long PyTypeObject.tp _dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject GenericGetAttr().

Do not confuse this field with tp dict; that is the dictionary for attributes of the type object itself.

148

Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

If the value of this field is greater than zero, it specifies the offset from the start of the instance
structure. If the value is less than zero, it specifies the offset from the end of the instance structure. A
negative offset is more expensive to use, and should only be used when the instance structure contains
a variable-length part. This is used for example to add an instance variable dictionary to subtypes of
str or tuple. Note that the tp basicsize field should account for the dictionary added to the end in
that case, even though the dictionary is not included in the basic object layout. On a system with a
pointer size of 4 bytes, tp _dictoffset should be set to -4 to indicate that the dictionary is at the very
end of the structure.

The real dictionary offset in an instance can be computed from a negative tp _dictoffset as follows:

dictoffset — tp _basicsize + abs(ob_size)*tp itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof (void*):
round up to sizeof (void*)

where tp basicsize, tp _itemsize and tp dictoffset are taken from the type object, and ob _size is
taken from the instance. The absolute value is taken because long ints use the sign of ob _size to store
the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
PyObject GetDictPtr().)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset;
this means that the subtype instances store the dictionary at a difference offset than the base type.
Since the dictionary is always found via tp _dictoffset, this should not be a problem.

When a type defined by a class statement hasno __slots__ declaration, and none of its base types has
an instance variable dictionary, a dictionary slot is added to the instance layout and the tp dictoffset
is set to that slot’s offset.

When a type defined by a class statement has a
tp_ dictoffset from its base type.

_slots declaration, the type inherits its

(Adding a slot named _ dict _ to the slots_ declaration does not have the expected effect, it

just causes confusion. Maybe this should be added as a feature just like weakref _ though.)
initproc Py TypeObject.tp _init

An optional pointer to an instance initialization function.

This function corresponds to the init () method of classes. Like init (), it is possible to

create an instance without calling init (), and it is possible to reinitialize an instance by calling
its __init__ () method again.

The function signature is

int tp_init(PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; the args and kwds arguments represent positional
and keyword arguments of the call to __init ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type,
after the type’s tp_new function has returned an instance of the type. If the tp _new function returns
an instance of some other type that is not a subtype of the original type, no tp init function is
called; if tp_new returns an instance of a subtype of the original type, the subtype’s tp _init is called.
(VERSION NOTE: described here is what is implemented in Python 2.2.1 and later. In Python 2.2,
the tp init of the type of the object returned by tp new was always called, if not NULL.)

This field is inherited by subtypes.

allocfunc PyTypeObject.tp alloc
An optional pointer to an instance allocation function.

The function signature is

10.3. Type Objects 149

The Python/C API, Release 2.7.16rcl

’PyObject *tp_alloc(PyTypeObject *self, Py ssize t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should
return a pointer to a block of memory of adequate length for the instance, suitably aligned, and
initialized to zeros, but with ob_refcnt set to 1 and ob__type set to the type argument. If the type’s
tp_itemsize is non-zero, the object’s ob_size field should be initialized to nitems and the length of
the allocated memory block should be tp basicsize + nitems*tp _itemsize, rounded up to a multiple
of sizeof(void*); otherwise, nitems is not used and the length of the block should be tp basicsize.

Do not use this function to do any other instance initialization, not even to allocate additional memory;
that should be done by tp new.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class
statement); in the latter, this field is always set to PyType GenericAlloc(), to force a standard heap
allocation strategy. That is also the recommended value for statically defined types.

newfunc PyTypeObject.tp _new
An optional pointer to an instance creation function.

If this function is NULL for a particular type, that type cannot be called to create new instances;
presumably there is some other way to create instances, like a factory function.

The function signature is

PyObject *tp new(PyTypeObject *subtype, PyObject *args, PyObject *kwds) ‘

The subtype argument is the type of the object being created; the args and kwds arguments represent
positional and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the
type whose tp new function is called; it may be a subtype of that type (but not an unrelated type).

The tp _new function should call subtype->tp alloc(subtype, nitems) to allocate space for the object,
and then do only as much further initialization as is absolutely necessary. Initialization that can
safely be ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that
for immutable types, all initialization should take place in tp new, while for mutable types, most
initialization should be deferred to tp _init.

This field is inherited by subtypes, except it is not inherited by static types whose tp _base is NULL or
&PyBaseObject Type. The latter exception is a precaution so that old extension types don’t become
callable simply by being linked with Python 2.2.

destructor PyTypeObject.tp free
An optional pointer to an instance deallocation function.

The signature of this function has changed slightly: in Python 2.2 and 2.2.1, its signature is destructor:

void tp_ free(PyObject *) ‘

In Python 2.3 and beyond, its signature is freefunc:

void tp_ free(void *) ‘

The only initializer that is compatible with both versions is _PyObject Del, whose definition has
suitably adapted in Python 2.3.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class
statement); in the latter, this field is set to a deallocator suitable to match PyType GenericAlloc()
and the value of the Py TPFLAGS HAVE GC flag bit.

inquiry PyTypeObject.tp_is_gc
An optional pointer to a function called by the garbage collector.

150 Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is
sufficient to look at the object’s type’s tp flags field, and check the Py TPFLAGS HAVE GC flag
bit. But some types have a mixture of statically and dynamically allocated instances, and the statically
allocated instances are not collectible. Such types should define this function; it should return 1 for a
collectible instance, and 0 for a non-collectible instance. The signature is

int tp_is_gc(PyObject *self)

(The only example of this are types themselves. The metatype, PyType Type, defines this function
to distinguish between statically and dynamically allocated types.)

This field is inherited by subtypes. (VERSION NOTE: in Python 2.2, it was not inherited. It is
inherited in 2.2.1 and later versions.)

PyObject* PyTypeObject.tp bases
Tuple of base types.

This is set for types created by a class statement. It should be NULL for statically defined types.
This field is not inherited.

PyObject* PyTypeObject.tp _mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object,
in Method Resolution Order.

This field is not inherited; it is calculated fresh by PyType Ready().

PyObject* PyTypeObject.tp cache
Unused. Not inherited. Internal use only.

PyObject* PyTypeObject.tp subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* PyTypeObject.tp _weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macro COUNT _ALLOCS is defined, and are for
internal use only. They are documented here for completeness. None of these fields are inherited by subtypes.
See the PYTHONSHOWALLOCCOUNT environment variable.

Py ssize t PyTypeObject.tp allocs
Number of allocations.

Py ssize _t PyTypeObject.tp frees
Number of frees.

Py ssize t PyTypeObject.tp maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* PyTypeObject.tp next
Pointer to the next type object with a non-zero tp _allocs field.

Also, note that, in a garbage collected Python, tp _dealloc may be called from any Python thread, not just
the thread which created the object (if the object becomes part of a refcount cycle, that cycle might be
collected by a garbage collection on any thread). This is not a problem for Python API calls, since the
thread on which tp dealloc is called will own the Global Interpreter Lock (GIL). However, if the object
being destroyed in turn destroys objects from some other C or C++ library, care should be taken to ensure
that destroying those objects on the thread which called tp _dealloc will not violate any assumptions of the
library.

10.3. Type Objects 151

The Python/C API, Release 2.7.16rcl

10.4 Number Object Structures

PyNumberMethods

This structure holds pointers to the functions which an object uses to implement the number protocol.
Almost every function below is used by the function of similar name documented in the Number

Protocol section.

Here is the structure definition:

typedef struct {
binaryfunc nb__add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_ divide;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_ power;
unaryfunc nb_ negative;
unaryfunc nb_ positive;
unaryfunc nb__absolute;
inquiry nb_nonzero;
unaryfunc nb_invert;
binaryfunc nb_ Ishift;
binaryfunc nb_ rshift;
binaryfunc nb_and;
binaryfunc nb_ xor;
binaryfunc nb_or;
coercion nb_ coerce;
unaryfunc nb__int;
unaryfunc nb_ long;
unaryfunc nb_ float;
unaryfunc nb_oct;
unaryfunc nb_hex;

* Added in release 2.0 *
binaryfunc nb_inplace add;
binaryfunc nb_inplace subtract;
binaryfunc nb_inplace multiply;
binaryfunc nb_inplace divide;
binaryfunc nb_inplace remainder;
ternaryfunc nb_inplace power;
binaryfunc nb_inplace Ishift;
binaryfunc nb_inplace rshift;
binaryfunc nb_inplace and;
binaryfunc nb_inplace _xor;
binaryfunc nb_inplace or;

/* Added in release 2.2 *

binaryfunc nb_floor divide;
binaryfunc nb_true divide;
binaryfunc nb_inplace floor divide;
binaryfunc nb_inplace true divide;

/* Added in release 2.5 *
unaryfunc nb_index;
} PyNumberMethods;

* Used by PyObject IsTrue *

* Used by the coerce() function *

Binary and ternary functions may receive different

kinds of arguments, depending on the flag bit

152

Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

Py_TPFLAGS_CHECKTYPES:

o If Py TPFLAGS CHECKTYPES is not set, the function arguments are guaranteed to be of the
object’s type; the caller is responsible for calling the coercion method specified by the nb_coerce
member to convert the arguments:

coercion PyNumberMethods.nb _coerce
This function is used by PyNumber CoerceEx() and has the same signature. The first argument
is always a pointer to an object of the defined type. If the conversion to a common “larger” type
is possible, the function replaces the pointers with new references to the converted objects and
returns 0. If the conversion is not possible, the function returns 1. If an error condition is set, it
will return -1.

o If the Py TPFLAGS CHECKTYPES flag is set, binary and ternary functions must check the type of
all their operands, and implement the necessary conversions (at least one of the operands is an instance
of the defined type). This is the recommended way; with Python 3 coercion will disappear completely.

If the operation is not defined for the given operands, binary and ternary functions must return
Py Notlmplemented, if another error occurred they must return NULL and set an exception.

10.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol.
It has three members:

lenfunc PyMappingMethods.mp _length
This function is used by PyMapping Length() and PyObject Size(), and has the same signature.
This slot may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods.mp _subscript
This function is used by PyObject Getltem() and has the same signature. This slot must be filled for
the PyMapping Check() function to return 1, it can be NULL otherwise.

objobjargproc PyMappingMethods.mp ass_subscript
This function is used by PyObject Setltem() and PyObject Delltem(). It has the same signature as
PyObject Setltem(), but v can also be set to NULL to delete an item. If this slot is NULL, the object
does not support item assignment and deletion.

10.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence Size() and PyObject Size(), and has the same signature.

binaryfunc PySequenceMethods.sq concat
This function is used by PySequence Concat() and has the same signature. It is also used by the +
operator, after trying the numeric addition via the nb__add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence Repeat() and has the same signature. It is also used by the *
operator, after trying numeric multiplication via the nb__multiply slot.

10.5. Mapping Object Structures 153

The Python/C API, Release 2.7.16rcl

ssizeargfunc PySequenceMethods.sq _item
This function is used by PySequence Getltem() and has the same signature. This slot must be filled
for the PySequence Check() function to return 1, it can be NULL otherwise.

Negative indexes are handled as follows: if the sq_length slot is filled, it is called and the sequence
length is used to compute a positive index which is passed to sq_item. If sq_length is NULL, the
index is passed as is to the function.

ssizeobjargproc PySequenceMethods.sq ass_item
This function is used by PySequence Setltem() and has the same signature. This slot may be left to
NULL if the object does not support item assignment and deletion.

objobjproc PySequenceMethods.sq__contains
This function may be used by PySequence Contains() and has the same signature. This slot may be
left to NULL, in this case PySequence Contains() simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq__inplace concat
This function is used by PySequence InPlaceConcat() and has the same signature. It should modify
its first operand, and return it.

ssizeargfunc PySequenceMethods.sq inplace repeat
This function is used by PySequence InPlaceRepeat() and has the same signature. It should modify
its first operand, and return it.

10.7 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of data,
where each chunk is specified as a pointer/length pair. These chunks are called segments and are presumed
to be non-contiguous in memory.

If an object does not export the buffer interface, then its tp as buffer member in the PyTypeObject
structure should be NULL. Otherwise, the tp _as_buffer will point to a PyBufferProcs structure.

Note: It is very important that your Py TypeObject structure uses Py TPFLAGS DEFAULT for the value
of the tp flags member rather than 0. This tells the Python runtime that your PyBufferProcs structure
contains the bf getcharbuffer slot. Older versions of Python did not have this member, so a new Python
interpreter using an old extension needs to be able to test for its presence before using it.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.

The first slot is bf _getreadbuffer, of type readbufferproc. If this slot is NULL, then the object does
not support reading from the internal data. This is non-sensical, so implementors should fill this in,
but callers should test that the slot contains a non-NULL value.

The next slot is bf _getwritebuffer having type writebufferproc. This slot may be NULL if the object
does not allow writing into its returned buffers.

The third slot is bf _getsegcount, with type segcountproc. This slot must not be NULL and is used to
inform the caller how many segments the object contains. Simple objects such as PyString Type and
PyBuffer Type objects contain a single segment.

The last slot is bf getcharbuffer, of type charbufferproc. This slot will only be present if the
Py TPFLAGS HAVE GETCHARBUFFER flag is present in the tp flags field of the object’s Py-
TypeObject. Before using this slot, the caller should test whether it is present by using the Py-
Type HasFeature() function. If the flag is present, bf getcharbuffer may be NULL, indicating that

154 Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

the object’s contents cannot be used as 8-bit characters. The slot function may also raise an error if
the object’s contents cannot be interpreted as 8-bit characters. For example, if the object is an array
which is configured to hold floating point values, an exception may be raised if a caller attempts to
use bf getcharbuffer to fetch a sequence of 8-bit characters. This notion of exporting the internal
buffers as “text” is used to distinguish between objects that are binary in nature, and those which have
character-based content.

Note: The current policy seems to state that these characters may be multi-byte characters. This
implies that a buffer size of N does not mean there are N characters present.

Py TPFLAGS HAVE GETCHARBUFFER
Flag bit set in the type structure to indicate that the bf getcharbuffer slot is known. This being set
does not indicate that the object supports the buffer interface or that the bf getcharbuffer slot is
non-NULL.

Py ssize t (*readbufferproc)(PyObject *self, Py ssize t segment, void **ptrptr)
Return a pointer to a readable segment of the buffer in *ptrptr. This function is allowed to raise an
exception, in which case it must return -1. The segment which is specified must be zero or positive, and
strictly less than the number of segments returned by the bf getsegcount slot function. On success, it
returns the length of the segment, and sets *ptrptr to a pointer to that memory.

Py ssize t (*writebufferproc)(PyObject *self, Py ssize t segment, void **ptrptr)
Return a pointer to a writable memory buffer in *ptrptr, and the length of that segment as the function
return value. The memory buffer must correspond to buffer segment segment. Must return -1 and set
an exception on error. TypeError should be raised if the object only supports read-only buffers, and
SystemError should be raised when segment specifies a segment that doesn’t exist.

Py ssize t (*segcountproc)(PyObject *self, Py ssize t *lenp)
Return the number of memory segments which comprise the buffer. If lenp is not NULL, the imple-
mentation must report the sum of the sizes (in bytes) of all segments in *lenp. The function cannot
fail.

Py ssize t (*charbufferproc)(PyObject *self, Py ssize t segment, char **ptrptr)
Return the size of the segment segment that ptrptr is set to. *ptrptr is set to the memory buffer.
Returns -1 on error.

10.8 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support
from object types which are “containers” for other objects which may also be containers. Types which do
not store references to other objects, or which only store references to atomic types (such as numbers or
strings), do not need to provide any explicit support for garbage collection.

To create a container type, the tp flags field of the type object must include the Py TPFLAGS HAVE GC
and provide an implementation of the tp traverse handler. If instances of the type are mutable, a tp clear
implementation must also be provided.

Py TPFLAGS_ HAVE GC
Objects with a type with this flag set must conform with the rules documented here. For convenience
these objects will be referred to as container objects.

Constructors for container types must conform to two rules:

1. The memory for the object must be allocated using PyObject GC New() or PyOb-
ject GC_NewVar().

10.8. Supporting Cyclic Garbage Collection 155

The Python/C API, Release 2.7.16rcl

2. Once all the fields which may contain references to other containers are initialized, it must call PyOb-
ject GC_Track().
TYPE* PyObject GC_New(TYPE, PyTypeObject *type)

Analogous to PyObject New() but for container objects with the Py TPFLAGS HAVE GC flag
set.

TYPE* PyObject GC_NewVar(TYPE, PyTypeObject *type, Py ssize t size)
Analogous to PyObject NewVar() but for container objects with the Py TPFLAGS HAVE GC flag
set.

Changed in version 2.5: This function used an int type for size. This might require changes in your
code for properly supporting 64-bit systems.

TYPE* PyObject GC_Resize(TYPE, PyVarObject *op, Py ssize t newsize)
Resize an object allocated by PyObject NewVar(). Returns the resized object or NULL on failure.
op must not be tracked by the collector yet.

Changed in version 2.5: This function used an int type for newsize. This might require changes in your
code for properly supporting 64-bit systems.

void PyObject GC _Track(PyObject *op)
Adds the object op to the set of container objects tracked by the collector. The collector can run at
unexpected times so objects must be valid while being tracked. This should be called once all the fields
followed by the tp traverse handler become valid, usually near the end of the constructor.

void PyObject GC_TRACK(PyObject *op)
A macro version of PyObject GC_Track(). It should not be used for extension modules.

Similarly, the deallocator for the object must conform to a similar pair of rules:
1. Before fields which refer to other containers are invalidated, PyObject GC_UnTrack() must be called.
2. The object’s memory must be deallocated using PyObject GC _Del().

void PyObject GC _Del(void *op)
Releases memory allocated to an object using PyObject GC_New() or PyObject GC_NewVar().

void PyObject GC_UnTrack(void *op)
Remove the object op from the set of container objects tracked by the collector. Note that PyOb-
ject GC_Track() can be called again on this object to add it back to the set of tracked objects. The
deallocator (tp dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

void _PyObject GC_UNTRACK(PyObject *op)
A macro version of PyObject GC_UnTrack(). It should not be used for extension modules.

The tp_traverse handler accepts a function parameter of this type:

int (*visitproc)(PyObject *object, void *arg)
Type of the visitor function passed to the tp traverse handler. The function should be called with an
object to traverse as object and the third parameter to the tp traverse handler as arg. The Python
core uses several visitor functions to implement cyclic garbage detection; it’s not expected that users
will need to write their own visitor functions.

The tp_traverse handler must have the following type:

int (*traverseproc)(PyObject *self, visitproc visit, void *arg)
Traversal function for a container object. Implementations must call the visit function for each object
directly contained by self, with the parameters to visit being the contained object and the arg value
passed to the handler. The visit function must not be called with a NULL object argument. If visit
returns a non-zero value that value should be returned immediately.

156 Chapter 10. Object Implementation Support

The Python/C API, Release 2.7.16rcl

To simplify writing tp traverse handlers, a Py VISIT() macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:
void Py VISIT(PyObject *o)
If o is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value,
then return it. Using this macro, tp traverse handlers look like:

static int
my _traverse(Noddy *self, visitproc visit, void *arg)

Py VISIT(self- ~foo);
Py VISIT(self->bar);
return 0;

}

New in version 2.4.

The tp_clear handler must be of the inquiry type, or NULL if the object is immutable.

int (*inquiry)(PyObject *self)
Drop references that may have created reference cycles. Immutable objects do not have to define this
method since they can never directly create reference cycles. Note that the object must still be valid
after calling this method (don’t just call Py DECREF() on a reference). The collector will call this
method if it detects that this object is involved in a reference cycle.

10.8. Supporting Cyclic Garbage Collection 157

The Python/C API, Release 2.7.16rcl

158 Chapter 10. Object Implementation Support

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be
executed interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block, when
within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple
quotes), or after specifying a decorator.

2t03 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/
scripts/2t03. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces
when other techniques like hasattr() would be clumsy or subtly wrong (for example with magic meth-
ods). ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still
recognized by isinstance() and issubclass(); see the abc module documentation. Python comes with
many built-in ABCs for data structures (in the collections module), numbers (in the numbers module),
and streams (in the io module). You can create your own ABCs with the abc module.

argument A value passed to a function (or method) when calling the function. There are two types of
arguments:

* keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed
as a value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in
the following calls to complex():

complex(real—=3, imag—>5)
complex(**{'real': 3, 'imag': 5})

¢ positional argument: an argument that is not a keyword argument. Positional arguments can
appear at the beginning of an argument list and/or be passed as elements of an iterable preceded
by *. For example, 3 and 5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the
rules governing this assignment. Syntactically, any expression can be used to represent an argument;
the evaluated value is assigned to the local variable.

See also the parameter glossary entry and the FAQ question on the difference between arguments and
parameters.

attribute A value associated with an object which is referenced by name using dotted expressions. For
example, if an object o has an attribute a it would be referenced as o.a.

159

The Python/C API, Release 2.7.16rcl

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

bytes-like object An object that supports the buffer protocol, like str, bytearray or memoryview. Bytes-like
objects can be used for various operations that expect binary data, such as compression, saving to a
binary file or sending over a socket. Some operations need the binary data to be mutable, in which
case not all bytes-like objects can apply.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in
the CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same
file is faster the second time (recompilation from source to bytecode can be avoided). This “intermediate
language” is said to run on a virtual machine that executes the machine code corresponding to each
bytecode. Do note that bytecodes are not expected to work between different Python virtual machines,
nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions
which operate on instances of the class.

classic class Any class which does not inherit from object. See new-style class. Classic classes have been
removed in Python 3.

coercion The implicit conversion of an instance of one type to another during an operation which involves
two arguments of the same type. For example, int(3.15) converts the floating point number to the
integer 3, but in 3+4.5, each argument is of a different type (one int, one float), and both must be
converted to the same type before they can be added or it will raise a TypeError. Coercion between
two operands can be performed with the coerce built-in function; thus, 3+4.5 is equivalent to calling
operator.add(*coerce(3, 4.5)) and results in operator.add(3.0, 4.5). Without coercion, all arguments
of even compatible types would have to be normalized to the same value by the programmer, e.g.,
float(3)+4.5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a
sum of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit
(the square root of -1), often written i in mathematics or j in engineering. Python has built-in support
for complex numbers, which are written with this latter notation; the imaginary part is written with
a j suffix, e.g., 3+1j. To get access to complex equivalents of the math module, use cmath. Use of
complex numbers is a fairly advanced mathematical feature. If you’re not aware of a need for them,
it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining en-
ter () and __exit () methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org.
The term “CPython” is used when necessary to distinguish this implementation from others such as
Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def £(...):
f = staticmethod(f)

@staticmethod
def f(...):

160 Appendix A. Glossary

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

The Python/C API, Release 2.7.16rcl

The same concept exists for classes, but is less commonly used there. See the documentation for
function definitions and class definitions for more about decorators.

descriptor Any new-style object which defines the methods get (), set (), or _ delete ().
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup.
Normally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary
for a, but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors
is a key to a deep understanding of Python because they are the basis for many features including
functions, methods, properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object
with _hash () and __eq () methods. Called a hash in Perl.

dictionary view The objects returned from dict.viewkeys(), dict.viewvalues(), and dict.viewitems() are called
dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when
the dictionary changes, the view reflects these changes. To force the dictionary view to become a full
list use list(dictview). See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored
when the suite is executed, it is recognized by the compiler and put into the _ doc__ attribute of
the enclosing class, function or module. Since it is available via introspection, it is the canonical place
for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right
interface; instead, the method or attribute is simply called or used (“If it looks like a duck and quacks
like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code
improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type()
or isinstance(). (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employs hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast
style is characterized by the presence of many try and except statements. The technique contrasts
with the LBYL style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is
an accumulation of expression elements like literals, names, attribute access, operators or function
calls which all return a value. In contrast to many other languages, not all language constructs are
expressions. There are also statements which cannot be used as expressions, such as print or if.
Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with
user code.

file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or
to another type of storage or communication device (for example standard input/output, in-memory
buffers, sockets, pipes, etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files.
Their interfaces are defined in the io module. The canonical way to create a file object is by using the
open() function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module. It must implement a method named
find_module(). See PEP 302 for details.

161

https://www.python.org/dev/peps/pep-0302

The Python/C API, Release 2.7.16rcl

floor division Mathematical division that rounds down to nearest integer. The floor division operator is
//. For example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true
division. Note that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more
arguments which may be used in the execution of the body. See also parameter, method, and the
function section.

__future_ A pseudo-module which programmers can use to enable new language features which are not
compatible with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If
the module in which it is executed had enabled true division by executing:

from future _ import division

the expression 11/4 would evaluate to 2.75. By importing the ~_ future module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the
default:

import __ future
__future__ .division
_ Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference
cycles.

generator A function which returns an iterator. It looks like a normal function except that it contains
yield statements for producing a series of values usable in a for-loop or that can be retrieved one at a
time with the next() function. Each yield temporarily suspends processing, remembering the location
execution state (including local variables and pending try-statements). When the generator resumes,
it picks up where it left off (in contrast to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optional if expression. The combined expression
generates values for an enclosing function:

sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread
executes Python bytecode at a time. This simplifies the CPython implementation by making the
object model (including critical built-in types such as dict) implicitly safe against concurrent access.
Locking the entire interpreter makes it easier for the interpreter to be multi-threaded, at the expense
of much of the parallelism afforded by multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL
when doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always
released when doing I/0.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer gran-
ularity) have not been successful because performance suffered in the common single-processor case.
It is believed that overcoming this performance issue would make the implementation much more
complicated and therefore costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash () method), and can be compared to other objects (it needsan __eq _(Jor __cmp ()
method). Hashable objects which compare equal must have the same hash value.

162 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0238

The Python/C API, Release 2.7.16rcl

Hashability makes an object usable as a dictionary key and a set member, because these data structures
use the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or
dictionaries) are. Objects which are instances of user-defined classes are hashable by default; they all
compare unequal (except with themselves), and their hash value is derived from their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environ-
ment which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an
object cannot be altered. A new object has to be created if a different value has to be stored. They
play an important role in places where a constant hash value is needed, for example as a key in a
dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently
evaluates to 2 in contrast to the 2.75 returned by float division. Also called floor division. When
dividing two integers the outcome will always be another integer (having the floor function applied to
it). However, if one of the operands is another numeric type (such as a float), the result will be coerced
(see coercion) to a common type. For example, an integer divided by a float will result in a float value,
possibly with a decimal fraction. Integer division can be forced by using the // operator instead of the
/ operator. See also future

importing The process by which Python code in one module is made available to Python code in another
module.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at
the interpreter prompt, immediately execute them and see their results. Just launch python with no
arguments (possibly by selecting it from your computer’s main menu). It is a very powerful way to
test out new ideas or inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can
be blurry because of the presence of the bytecode compiler. This means that source files can be run
directly without explicitly creating an executable which is then run. Interpreted languages typically
have a shorter development /debug cycle than compiled ones, though their programs generally also run
more slowly. See also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict and file and objects of any
classes you define with an __iter () or __getitem () method. Iterables can be used in a for loop
and in many other places where a sequence is needed (zip(), map(), ...). When an iterable object
is passed as an argument to the built-in function iter(), it returns an iterator for the object. This
iterator is good for one pass over the set of values. When using iterables, it is usually not necessary
to call iter() or deal with iterator objects yourself. The for statement does that automatically for you,
creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also
iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s next() method return
successive items in the stream. When no more data are available a Stoplteration exception is raised
instead. At this point, the iterator object is exhausted and any further calls to its next() method
just raise Stoplteration again. Iterators are required to have an __iter () method that returns the
iterator object itself so every iterator is also iterable and may be used in most places where other
iterables are accepted. One notable exception is code which attempts multiple iteration passes. A
container object (such as a list) produces a fresh new iterator each time you pass it to the iter()
function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

163

The Python/C API, Release 2.7.16rcl

More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or
ordering. For example, locale.strxfrm() is used to produce a sort key that is aware of locale specific
sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They
include min(), max(), sorted(), list.sort(), heapq.nsmallest(), heapq.nlargest(), and itertools.groupby/().

There are several ways to create a key function. For example. the str.lower() method can serve
as a key function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a
lambda expression such as lambda r: (r[0], r[2]). Also, the operator module provides three key function
constructors: attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples
of how to create and use key functions.

keyword argument See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function
is called. The syntax to create a lambda function is lambda [parameters|: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or
lookups. This style contrasts with the EAFP approach and is characterized by the presence of many
if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between
“the looking” and “the leaping”. For example, the code, if key in mapping: return mappinglkey| can
fail if another thread removes key from mapping after the test, but before the lookup. This issue can
be solved with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a
linked list since access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list
with the results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of strings
containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted,
all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load module(). A loader is typically
returned by a finder. See PEP 302 for details.

mapping A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base
classes. The metaclass is responsible for taking those three arguments and creating the class. Most
object oriented programming languages provide a default implementation. What makes Python special
is that it is possible to create custom metaclasses. Most users never need this tool, but when the need
arises, metaclasses can provide powerful, elegant solutions. They have been used for logging attribute
access, adding thread-safety, tracking object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class,
the method will get the instance object as its first argument (which is usually called self). See function
and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a
member during lookup. See The Python 2.3 Method Resolution Order for details of the algorithm
used by the Python interpreter since the 2.3 release.

164 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

The Python/C API, Release 2.7.16rcl

module An object that serves as an organizational unit of Python code. Modules have a namespace con-
taining arbitrary Python objects. Modules are loaded into Python by the process of importing.

See also package.
MRO See method resolution order.
mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time.localtime() returns a tuple-like object where the year is accessible either with an index
such as t[0] or with a named attribute like t.tm_ year).

A named tuple can be a built-in type such as time.struct _time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple(). The latter approach automatically provides extra features such as a self-documenting
representation like Employee(name—"jones', title="'programmer").

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functions __ builtin__ .open()
and os.open() are distinguished by their namespaces. Namespaces also aid readability and maintain-
ability by making it clear which module implements a function. For instance, writing random.seed()
or itertools.izip() makes it clear that those functions are implemented by the random and itertools
modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined
inside another function can refer to variables in the outer function. Note that nested scopes work only
for reference and not for assignment which will always write to the innermost scope. In contrast, local
variables both read and write in the innermost scope. Likewise, global variables read and write to the
global namespace.

new-style class Any class which inherits from object. This includes all built-in types like list and dict. Only
new-style classes can use Python’s newer, versatile features like _ slots | descriptors, properties,
and __ getattribute ().

More information can be found in newstyle.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base
class of any new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package
is a Python module with an __path _ attribute.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases,
arguments) that the function can accept. There are four types of parameters:

¢ positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword
argument. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

* positional-only: specifies an argument that can be supplied only by position. Python has no
syntax for defining positional-only parameters. However, some built-in functions have positional-
only parameters (e.g. abs()).

* var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in
addition to any positional arguments already accepted by other parameters). Such a parameter
can be defined by prepending the parameter name with *, for example args in the following:

165

The Python/C API, Release 2.7.16rcl

def func(*args, **kwargs): ...

* var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to
any keyword arguments already accepted by other parameters). Such a parameter can be defined
by prepending the parameter name with ** for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some
optional arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and
parameters, and the function section.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python
community, or describing a new feature for Python or its processes or environment. PEPs should
provide a concise technical specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting com-
munity input on an issue, and for documenting the design decisions that have gone into Python. The
PEP author is responsible for building consensus within the community and documenting dissenting
opinions.

See PEP 1.
positional argument See argument.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common
idiom in Python is to loop over all elements of an iterable using a for statement. Many other languages
don’t have this type of construct, so people unfamiliar with Python sometimes use a numerical counter
instead:

for i in range(len(food)):
print food][i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of
the CPython implementation. The sys module defines a getrefcount() function that programmers can
call to return the reference count for a particular object.

__slots_ A declaration inside a new-style class that saves memory by pre-declaring space for instance
attributes and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to
get right and is best reserved for rare cases where there are large numbers of instances in a memory-
critical application.

sequence An iterable which supports efficient element access using integer indices via the _ getitem ()
special method and defines a len() method that returns the length of the sequence. Some built-in
sequence types are list, str, tuple, and unicode. Note that dict also supports getitem () and
_ _len_ (), but is considered a mapping rather than a sequence because the lookups use arbitrary
immutable keys rather than integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript nota-
tion, [] with colons between numbers when several are given, such as in variable name[1:3:5]. The

166 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0001

The Python/C API, Release 2.7.16rcl

bracket (subscript) notation uses slice objects internally (or in older versions, getslice () and
__setslice_ ().

special method A method that is called implicitly by Python to execute a certain operation on a type, such
as addition. Such methods have names starting and ending with double underscores. Special methods
are documented in specialnames.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one of
several constructs with a keyword, such as if, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple
in that elements can be accessed either by index or as an attribute. However, they do not have any of the
named tuple methods like make() or _asdict(). Examples of struct sequences include sys.float info
and the return value of os.stat().

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostro-
phe (‘). While they don’t provide any functionality not available with single-quoted strings, they are
useful for a number of reasons. They allow you to include unescaped single and double quotes within
a string and they can span multiple lines without the use of the continuation character, making them
especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s
type is accessible as its __class _ attribute or can be retrieved with type(obj).

universal newlines A manner of interpreting text streams in which all of the following are recognized as
ending a line: the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old
Macintosh convention '"\r'. See PEP 278 and PEP 3116, as well as str.splitlines() for an additional
use.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications
to install and upgrade Python distribution packages without interfering with the behaviour of other
Python applications running on the same system.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode
emitted by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and
using the language. The listing can be found by typing “import this” at the interactive prompt.

167

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

The Python/C API, Release 2.7.16rcl

168 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically
written for the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If
you want to contribute, please take a look at the reporting-bugs page for information on how to do so. New
volunteers are always welcome!

Many thanks go to:

e Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

¢ the Docutils project for creating reStructuredText and the Docutils suite;

¢ Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python docu-
mentation. See Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful
documentation — Thank You!

169

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

The Python/C API, Release 2.7.16rcl

170 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
https://www.cwinl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s
principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI,
see https://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen
PythonLabs team. In October of the same year, the PythonLabs team moved to Digital Creations (now
Zope Corporation; see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see https:
//www.python.org/psf/) was formed, a non-profit organization created specifically to own Python-related
Intellectual Property. Zope Corporation is a sponsoring member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Histor-
ically, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the
various releases.

Release Derived from | Year Owner GPL compatible?
0.9.0 thru 1.2 | n/a 1991-1995 | CWI yes
1.3 thru 1.5.2 | 1.2 1995-1999 | CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.14+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above | 2.1.1 2001-now | PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses,
unlike the GPL, let you distribute a modified version without making your changes open source. The GPL-
compatible licenses make it possible to combine Python with other software that is released under the GPL;
the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases
possible.

171

https://www.cwi.nl/
https://www.cnri.reston.va.us/
http://www.zope.com/
https://www.python.org/psf/
https://www.python.org/psf/
https://opensource.org/

The Python/C API, Release 2.7.16rcl

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 2.7.16rcl

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and
the Individual or Organization ("Licensee") accessing and otherwise using Python
2.7.16rcl software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.16rcl alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF 's notice of
copyright, i.e., "Copyright © 2001-2019 Python Software Foundation; All Rights
Reserved" are retained in Python 2.7.16rcl alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.16rcl or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python
2.7.16rcl.

4. PSF is making Python 2.7.16rcl available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY_
—~REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR_
—THAT THE

USE OF PYTHON 2.7.16rc1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.16rcl

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT_
~OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.16rcl, OR ANY_
~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between PSF and Licensee. This License
Agreement does not grant permission to use PSF trademarks or trade name in a
trademark sense to endorse or promote products or services of Licensee, or any
third party.

8. By copying, installing or otherwise using Python 2.7.16rcl, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

172 Appendix C. History and License

The Python/C API, Release 2.7.16rcl

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION_
<4»OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 173

The Python/C API, Release 2.7.16rcl

continued from previous page
g

provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,

Licensee may substitute the following text (omitting the quotes): "Python 1.6.1

is made available subject to the terms and conditions in CNRI's License

Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOQOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third

party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

(continues on next page)

174 Appendix C. History and License

The Python/C API, Release 2.7.16rcl

continued from previous page
g

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright

notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written

prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software
incorporated in the Python distribution.

C.3.1 Mersenne Twister

The random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/
“m-mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init _genrand(seed)
or init by _array(init_key, key length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 175

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, Release 2.7.16rcl

continued from previous page
g

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http: //www.math.sci.hiroshima-u.ac.jp/” m-mat/MT /emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate source
files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " *ASIS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

(continues on next page)

176 Appendix C. History and License

http://www.wide.ad.jp/

The Python/C API, Release 2.7.16rcl

continued from previous page
g

| The Regents of the University of California. |

| All rights reserved. |

| |

| Permission to use, copy, modify, and distribute this software for |

| any purpose without fee is hereby granted, provided that this en- |

| tire notice is included in all copies of any software which is or |

| includes a copy or modification of this software and in all |

| copies of the supporting documentation for such software. |

| |

| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |

| |

| DISCLAIMER |

| |

| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |

| ployees, makes any warranty, express or implied, or assumes any |

| liability or responsibility for the accuracy, completeness, or |

| usefulness of any information, apparatus, product, or process |

| disclosed, or represents that its use would not infringe |

| privately-owned rights. Reference herein to any specific commer- |

| cial products, process, or service by trade name, trademark, |

| manufacturer, or otherwise, does not necessarily constitute or |

| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |

| reflect those of the United States Government or the University |

| of California, and shall not be used for advertising or product |

\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software

177

The Python/C API, Release 2.7.16rcl

continued from previous page
g

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http:/ /www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com™>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 Ipd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.
1999-11-04 1pd Edited comments slightly for automatic TOC extraction.
1999-10-18 1pd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
1999-05-03 1pd Original version.

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

178 Appendix C. History and License

The Python/C API, Release 2.7.16rcl

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O 'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby

granted, provided that the above copyright notice appears in all copies,

and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3. Licenses and Acknowledgements for Incorporated Software

179

The Python/C API, Release 2.7.16rcl

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

(continues on next page)

180 Appendix C. History and License

The Python/C API, Release 2.7.16rcl

continued from previous page
g

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test epoll

The test__epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " "ASIS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 181

The Python/C API, Release 2.7.16rcl

continued from previous page
g

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and
from strings, is derived from the file of the same name by David M. Gay, currently available from http:
//www.netlib.org/fp/. The original file, as retrieved on March 16, 2009, contains the following copyright
and licensing notice:

JEERRRR RO R R R R R
*

* The author of this software is David M. Gay.
*

* Copyright (¢) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice

* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR, ANY PARTICULAR PURPOSE.

*
*******************>I<****>I<****>I<****>I<****************************/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy
of the OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/*-

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions

(continues on next page)

182 Appendix C. History and License

http://www.netlib.org/fp/
http://www.netlib.org/fp/

The Python/C API, Release 2.7.16rcl

continued from previous page
g

* are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

¥ OX K K K K K XK X X X K K K K K K K K K X X X X X X ¥

*

* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " ~ASIS'' AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

*

—

*
* This product includes cryptographic software written by Eric Young

* (eay@cryptsoft.com). This product includes software written by Tim

* Hudson (tjh@cryptsoft.com).
*

*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.
*

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 183

The Python/C API, Release 2.7.16rcl

continued from previous page
g

*
*
*
*
*
*
*

¥ K K K K X X X X X K K K K K K K X XK X K K K K K K K KK XK K K X K K K KKK XX X X

*

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,

lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "ASIS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]

*/

184

Appendix C. History and License

The Python/C API, Release 2.7.16rcl

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the

> Software' '), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS' ', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 185

The Python/C API, Release 2.7.16rcl

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system

is too old to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
186 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2019 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

187

The Python/C API, Release 2.7.16rcl

188 Appendix D. Copyright

Symbols
.oy 159
_ PyImport_FindExtension (C function), 29
_ PyImport_Fini (C function), 29
_ PyImport FixupExtension (C function), 29
_ PyImport_Init (C function), 28
_ PyObject _Del (C function), 131
_PyObject GC_TRACK (C function), 156
__PyObject GC_UNTRACK (C function), 156
_PyObject New (C function), 131
_PyObject NewVar (C function), 131
_ PyString Resize (C function), 68
_ PyTuple Resize (C function), 90
_ Py _NoneStruct (C variable), 132
_ Py _c_diff (C function), 64
Py _c_neg (C function), 64
Py c¢_pow (C function), 64
Py c¢_prod (C function), 64
Py _c_quot (C function), 64
Py _c_sum (C function), 64
__all _ (package variable), 27
__builtin__
module, 9, 113
__dict__ (module attribute), 99
__doc__ (module attribute), 99
__file (module attribute), 99, 100
_ future | 162
__import
built-in function, 27
__main
module, 9, 113, 122
__name__ (module attribute), 99
__slots_, 166
_frozen (C type), 29
__inittab (C type), 29
>>>, 159
203, 159

A

abort(), 26
abs
built-in function, 48

abstract base class, 159
apply

built-in function, 45, 46
argument, 159
argv (in module sys), 115
attribute, 159

B

BDFL, 160
buffer
object, 83
buffer interface, 83
BufferType (in module types), 838
built-in function
__import__, 27
abs, 48
apply, 45, 46
bytes, 45
classmethod, 135
cmp, 44
coerce, 50
compile, 28
divmod, 48
float, 50
hash, 46, 142
int, 50
len, 47, 51, 53, 91, 94, 110
long, 50
pow, 48, 49
reload, 28
repr, 44, 141
staticmethod, 135
str, 45
tuple, 52, 92
type, 46
unicode, 45
builtins
module, 122
bytearray
object, 65
bytecode, 160
bytes

INDEX

189

The Python/C API, Release 2.7.16rcl

built-in function, 45
bytes-like object, 160

C

calloc(), 127
Capsule

object, 103
charbufferproc (C type), 155
class, 160
class

object, 95
classic class, 160
classmethod

built-in function, 135

ClassType (in module types), 95

cleanup functions, 26
close() (in module os), 122
cmp

built-in function, 44

CO_FUTURE_DIVISION (C variable), 14

CObject

object, 105
code object, 111
coerce

built-in function, 50
coercion, 160
compile

built-in function, 28
complex number, 160
complex number

object, 64
context manager, 160
copyright (in module sys), 115
CPython, 160

D

decorator, 160
descriptor, 161
dictionary, 161
dictionary

object, 92
dictionary view, 161

DictionaryType (in module types), 92

DictType (in module types), 92
divmod

built-in function, 48
docstring, 161
duck-typing, 161

E

EAFP, 161

environment variable
exec prefix, 3, 4
PATH, 9

prefix, 3, 4

PYTHONDUMPREFS, 139

PYTHONHOME, 10, 116
PYTHONPATH, 10

PYTHONSHOWALLOCCOUNT, 151
EOFError (built-in exception), 98

exc_info() (in module sys), 8

exc_traceback (in module sys), 8, 17
exc_type (in module sys), 8, 17
exc_ value (in module sys), 8, 17

exceptions
module, 9
exec_prefix, 3, 4

executable (in module sys), 114

exit(), 26
expression, 161
extension module, 161

F

file
object, 97
file object, 161
file-like object, 161
FileType (in module types), 97
finder, 161
float
built-in function, 50
floating point
object, 63

FloatType (in modules types), 63

floor division, 162
fopen(), 98
free(), 127
freeze utility, 29
frozenset

object, 109
function, 162
function

object, 96

G

garbage collection, 162
generator, 162

generator, 162

generator expression, 162
generator expression, 162
GIL, 162

GIL, 116

global interpreter lock, 162
global interpreter lock, 116

H

hash
built-in function, 46, 142

190

Index

The Python/C API, Release 2.7.16rcl

hashable, 162

I

IDLE, 163
ihooks

module, 27
immutable, 163
importer, 163
importing, 163
incr_item(), 8, 9
inquiry (C type), 157
instance

object, 95
int

built-in function, 50
integer

object, 58
integer division, 163
interactive, 163
interpreted, 163
interpreter lock, 116
IntType (in modules types), 59
iterable, 163
iterator, 163

K

key function, 164
KeyboardInterrupt (built-in exception), 20
keyword argument, 164

L

lambda, 164
LBYL, 164
len
built-in function, 47, 51, 53, 91, 94, 110
list, 164
list
object, 90
list comprehension, 164
loader, 164
lock, interpreter, 116
long
built-in function, 50
long integer
object, 60
LONG_MAX, 60, 62
LongType (in modules types), 60

M

main(), 114, 115
malloc(), 127
mapping, 164
mapping
object, 92

metaclass, 164
METH _CLASS (built-in variable), 135
METH _COEXIST (built-in variable), 135
METH_KEYWORDS (built-in variable), 134
METH_NOARGS (built-in variable), 134
METH _ O (built-in variable), 134
METH _ OLDARGS (built-in variable), 135
METH _STATIC (built-in variable), 135
METH VARARGS (built-in variable), 134
method, 164
method

object, 96
method resolution order, 164
MethodType (in module types), 96, 97
module, 165
module

__builtin _, 9, 113

__main__, 9, 113, 122

builtins, 122

exceptions, 9

ihooks, 27

object, 99

rexec, 27

search path, 9, 113, 114

signal, 20

sys, 9, 113, 122

thread, 118
modules (in module sys), 27, 113
ModuleType (in module types), 99
MRO, 165
mutable, 165

N

named tuple, 165
namespace, 165
nested scope, 165
new-style class, 165
None

object, 58
numeric

object, 58

O

object, 165

object
buffer, 83
bytearray, 65
Capsule, 103
class, 95
CObject, 105
code, 111
complex number, 64
dictionary, 92
file, 97

Index

191

The Python/C API, Release 2.7.16rcl

floating point, 63

frozenset, 109

function, 96

instance, 95

integer, 58

list, 90

long integer, 60

mapping, 92

method, 96

module, 99

None, 58

numeric, 58

sequence, 65

set, 109

string, 66

tuple, 89

type, 4, 57
OverflowError (built-in exception), 62

P
package, 165
package variable
_all 27
parameter, 165
PATH, 9
path
module search, 9, 113, 114
path (in module sys), 9, 113, 114
PEP, 166
platform (in module sys), 115
positional argument, 166
pow
built-in function, 48, 49
prefix, 3, 4
Py AddPendingCall (C function), 123
Py AddPendingCall(), 123
Py_ AtExit (C function), 26
Py BEGIN ALLOW_ THREADS, 117
Py_BEGIN_ ALLOW_THREADS (C macro), 120
Py_BLOCK_THREADS (C macro), 120
Py buffer (C type), 84
Py_ buffer.buf (C member), 84
Py_ buffer.internal (C member), 84
Py_ buffer.itemsize (C member), 84
Py _Dbuffer.ndim (C member), 84
Py buffer.readonly (C member), 84
Py buffer.shape (C member), 84
Py_ buffer.strides (C member), 84
Py_ buffer.suboffsets (C member), 84
Py BuildValue (C function), 36
Py_CLEAR (C function), 15
Py CompileString (C function), 13
Py CompileString(), 14
Py CompileStringFlags (C function), 13

Py complex (C type), 64
Py_DECREF (C function), 15
Py_DECREF(), 4

Py Ellipsis (C variable), 102

Py _END_ALLOW_THREADS, 117
Py END ALLOW_ THREADS (C macro), 120
Py_END_OF BUFFER (C variable), 88
Py _EndInterpreter (C function), 122
Py EnterRecursiveCall (C function), 22
Py eval input (C variable), 14
Py_Exit (C function), 26

Py False (C variable), 60

Py _FatalError (C function), 26

Py _FatalError(), 115

Py_ FdIsInteractive (C function), 25

Py file input (C variable), 14

Py_ Finalize (C function), 113
Py_Finalize(), 26, 113, 122

Py FindMethod (C function), 137

Py_ GetBuildInfo (C function), 115

Py GetCompiler (C function), 115

Py GetCopyright (C function), 115

Py _GetExecPrefix (C function), 114
Py _GetExecPrefix(), 10

Py GetPath (C function), 114

Py GetPath(), 10, 114

Py_ GetPlatform (C function), 115

Py _GetPrefix (C function), 114

Py GetPrefix(), 10

Py GetProgramFullPath (C function), 114
Py_ GetProgramFullPath(), 10

Py_ GetProgramName (C function), 114
Py GetPythonHome (C function), 116
Py GetVersion (C function), 115
Py_INCREF (C function), 15
Py_INCREF(), 4

Py_ Initialize (C function), 113

Py _Initialize(), 9, 114, 118, 122

Py _InitializeEx (C function), 113

Py _InitModule (C function), 132

Py InitModule3 (C function), 132
Py_InitModule4 (C function), 132

Py _ IsInitialized (C function), 113
Py_IsInitialized(), 10

Py LeaveRecursiveCall (C function), 22
Py Main (C function), 11

Py NewlInterpreter (C function), 122
Py_None (C variable), 58
Py_PRINT_RAW, 99

Py _REFCNT (C macro), 133

Py RETURN_FALSE (C macro), 60
Py RETURN_ NONE (C macro), 58
Py RETURN_ TRUE (C macro), 60
Py_ SetProgramName (C function), 114

192

Index

The Python/C API, Release 2.7.16rcl

Py SetProgramName(), 10, 113, 114

Py SetPythonHome (C function), 116

Py _single input (C variable), 14

Py_SIZE (C macro), 133

PY_SSIZE_T_ MAX, 62

Py_TPFLAGS_BASETYPE (built-in variable), 144

Py TPFLAGS CHECKTYPES (built-in variable),
144

Py _TPFLAGS_DEFAULT (built-in variable), 144

Py TPFLAGS_GC (built-in variable), 143

Py TPFLAGS HAVE CLASS (built-in variable),
144

Py TPFLAGS_ HAVE GC (built-in variable), 144

Py TPFLAGS HAVE GETCHARBUFFER
(built-in variable), 143, 155

Py_TPFLAGS_HAVE_INPLACEOPS
variable), 143

Py TPFLAGS_HAVE_ITER (builtin variable),
144

Py_TPFLAGS_HAVE_RICHCOMPARE (built-in
variable), 144

Py_TPFLAGS_HAVE_SEQUENCE_IN (built-in
variable), 143

Py TPFLAGS_HAVE WEAKREFS
variable), 144

Py_TPFLAGS_HEAPTYPE
144

Py_TPFLAGS_READY (built-in variable), 144

Py TPFLAGS_READYING (built-in variable), 144

Py tracefunc (C type), 123

Py_ True (C variable), 60

Py_TYPE (C macro), 133

Py_UNBLOCK_THREADS (C macro), 120

Py UNICODE (C type), 70

Py _UNICODE_ISALNUM (C function), 72

Py_UNICODE_ISALPHA (C function), 71

Py_UNICODE_ISDECIMAL (C function), 71

Py_UNICODE_ISDIGIT (C function), 71

Py _UNICODE_ISLINEBREAK (C function), 71

Py UNICODE_ISLOWER (C function), 71

Py UNICODE_ISNUMERIC (C function), 71

Py UNICODE_ISSPACE (C function), 71

Py_UNICODE_ISTITLE (C function), 71

Py_UNICODE_ISUPPER (C function), 71

Py _UNICODE_TODECIMAL (C function), 72

Py_UNICODE_TODIGIT (C function), 72

Py UNICODE_ TOLOWER (C function), 72

Py_UNICODE_TONUMERIC (C function), 72

Py_UNICODE_TOTITLE (C function), 72

Py UNICODE_TOUPPER (C function), 72

Py VaBuildValue (C function), 37

Py_VISIT (C function), 157

Py_XDECREF (C function), 15

Py_XDECREF(), 9

(built-in

(built-in

(built-in variable),

Py_XINCREF (C function), 15

PyAnySet Check (C function), 110

PyAnySet CheckExact (C function), 110
PyArg_Parse (C function), 35

PyArg ParseTuple (C function), 35

PyArg ParseTupleAndKeywords (C function), 35
PyArg UnpackTuple (C function), 35

PyArg VaParse (C function), 35

PyArg VaParseTupleAndKeywords (C function), 35
PyBool_Check (C function), 60
PyBool_FromLong (C function), 60

PyBuffer Check (C function), 88

PyBuffer FillContiguousStrides (C function), 87
PyBuffer Filllnfo (C function), 87

PyBuffer FromMemory (C function), 88
PyBuffer FromObject (C function), 88
PyBuffer FromReadWriteMemory (C function), 88
PyBuffer FromReadWriteObject (C function), 88
PyBuffer IsContiguous (C function), 87
PyBuffer _New (C function), 838

PyBuffer _Release (C function), 86

PyBuffer SizeFromFormat (C function), 86
PyBuffer Type (C variable), 88

PyBufferObject (C type), 88

PyBufferProcs, 87

PyBufferProcs (C type), 154
PyByteArray AS STRING (C function), 66
PyByteArray AsString (C function), 66
PyByteArray Check (C function), 66
PyByteArray CheckExact (C function), 66
PyByteArray Concat (C function), 66
PyByteArray FromObject (C function), 66
PyByteArray FromStringAndSize (C function), 66
PyByteArray GET_SIZE (C function), 66
PyByteArray Resize (C function), 66
PyByteArray Size (C function), 66
PyByteArray Type (C variable), 65
PyByteArrayObject (C type), 65

PyCallable Check (C function), 45

PyCalllter Check (C function), 101
PyCalllter New (C function), 101

PyCalllter Type (C variable), 100

PyCapsule (C type), 103

PyCapsule CheckExact (C function), 103
PyCapsule Destructor (C type), 103

PyCapsule GetContext (C function), 104
PyCapsule GetDestructor (C function), 104
PyCapsule GetName (C function), 104
PyCapsule GetPointer (C function), 104
PyCapsule Import (C function), 104

PyCapsule IsValid (C function), 104
PyCapsule New (C function), 103

PyCapsule SetContext (C function), 104
PyCapsule__SetDestructor (C function), 105

Index

193

The Python/C API, Release 2.7.16rcl

PyCapsule SetName (C function), 105

PyCapsule SetPointer (C function), 105

PyCell Check (C function), 106

PyCell_GET (C function), 106

PyCell _Get (C function), 106

PyCell_New (C function), 106

PyCell SET (C function), 106

PyCell Set (C function), 106

PyCell Type (C variable), 106

PyCellObject (C type), 106

PyCFunction (C type), 134

PyClass _Check (C function), 95

PyClass_IsSubclass (C function), 95

PyClass _Type (C variable), 95

PyClassObject (C type), 95

PyCObject (C type), 105

PyCObject AsVoidPtr (C function), 105

PyCObject Check (C function), 105

PyCObject FromVoidPtr (C function), 105

PyCObject FromVoidPtrAndDesc (C function), 105

PyCObject GetDesc (C function), 105

PyCObject _SetVoidPtr (C function), 105

PyCode_Check (C function), 111

PyCode GetNumFree (C function), 111

PyCode New (C function), 111

PyCode NewEmpty (C function), 111

PyCode Type (C variable), 111

PyCodec_BackslashReplaceErrors (C function), 41

PyCodec_Decode (C function), 40

PyCodec_Decoder (C function), 41

PyCodec_Encode (C function), 40

PyCodec_Encoder (C function), 40

PyCodec_IgnoreErrors (C function), 41

PyCodec_IncrementalDecoder (C function), 41

PyCodec_IncrementalEncoder (C function), 41

PyCodec_KnownEncoding (C function), 40

PyCodec_LookupError (C function), 41

PyCodec_ Register (C function), 40

PyCodec_ RegisterError (C function), 41

PyCodec_ReplaceErrors (C function), 41

PyCodec_StreamReader (C function), 41

PyCodec_ StreamWriter (C function), 41

PyCodec_ StrictErrors (C function), 41

PyCodec_ XMLCharRefReplaceErrors (C function),
41

PyCodeObject (C type), 111

PyCompilerFlags (C type), 14

PyComplex AsCComplex (C function), 65

PyComplex Check (C function), 65

PyComplex CheckExact (C function), 65

PyComplex FromCComplex (C function), 65

PyComplex FromDoubles (C function), 65

PyComplex ImagAsDouble (C function), 65

PyComplex RealAsDouble (C function), 65

PyComplex Type (C variable), 65

PyComplexObject (C type), 65

PyDate Check (C function), 107

PyDate_ CheckExact (C function), 107

PyDate_FromDate (C function), 107

PyDate FromTimestamp (C function), 109

PyDateTime Check (C function), 107

PyDateTime CheckExact (C function), 107

PyDateTime DATE GET_ HOUR (C function),
108

PyDateTime DATE_GET_MICROSECOND (C
function), 108

PyDateTime DATE_GET_MINUTE (C function),
108

PyDateTime DATE GET_SECOND (C function),
108

PyDateTime _FromDateAndTime (C function), 107

PyDateTime FromTimestamp (C function), 109

PyDateTime GET DAY (C function), 108

PyDateTime GET MONTH (C function), 108

PyDateTime GET YEAR (C function), 108

PyDateTime TIME GET HOUR (C function),
108

PyDateTime_TIME GET_MICROSECOND (C
function), 109

PyDateTime TIME GET MINUTE (C function),
109

PyDateTime_TIME _GET_SECOND (C function),
109

PyDelta_Check (C function), 107

PyDelta_ CheckExact (C function), 107

PyDelta_FromDSU (C function), 108

PyDescr_IsData (C function), 101

PyDescr NewClassMethod (C function), 101

PyDescr NewGetSet (C function), 101

PyDescr_NewMember (C function), 101

PyDescr_NewMethod (C function), 101

PyDescr NewWrapper (C function), 101

PyDict_Check (C function), 92

PyDict_ CheckExact (C function), 93

PyDict_ Clear (C function), 93

PyDict_Contains (C function), 93

PyDict_ Copy (C function), 93

PyDict_Delltem (C function), 93

PyDict_ DelltemString (C function), 93

PyDict_ GetItem (C function), 93

PyDict_ GetItemString (C function), 93

PyDict_Items (C function), 93

PyDict_Keys (C function), 93

PyDict_Merge (C function), 94

PyDict_MergeFromSeq2 (C function), 95

PyDict_New (C function), 93

PyDict_Next (C function), 94

PyDict_SetItem (C function), 93

194

Index

The Python/C API, Release 2.7.16rcl

PyDict_SetItemString (C function), 93

PyDict_Size (C function), 94

PyDict_Type (C variable), 92

PyDict_Update (C function), 95

PyDict_ Values (C function), 94

PyDictObject (C type), 92

PyDictProxy New (C function), 93

PyErr BadArgument (C function), 18

PyErr BadInternalCall (C function), 19

PyErr_ CheckSignals (C function), 20

PyErr_Clear (C function), 18

PyErr_Clear(), 7, 9

PyErr_ExceptionMatches (C function), 17

PyErr ExceptionMatches(), 9

PyErr_Fetch (C function), 18

PyErr_Format (C function), 18

PyErr GivenExceptionMatches (C function), 17

PyErr_NewException (C function), 21

PyErr NewExceptionWithDoc (C function), 21

PyErr NoMemory (C function), 18

PyErr NormalizeException (C function), 18

PyErr_Occurred (C function), 17

PyErr_ Occurred(), 7

PyErr_Print (C function), 17

PyErr PrintEx (C function), 17

PyErr_Restore (C function), 18

PyErr_SetExcFromWindowsErr (C function), 19

PyErr SetExcFromWindowsErrWithFilename
function), 19

PyErr SetExcFromWindowsErrWithFilenameObject
(C function), 19

PyErr_SetFromErrno (C function), 19

PyErr_SetFromErrnoWithFilename (C function), 19

PyErr_SetFromErrnoWithFilenameObject (C func-
tion), 19

PyErr_SetFromWindowsErr (C function), 19

PyErr_SetFromWindowsErrWithFilename (C func-
tion), 19

PyErr SetFromWindowsErrWithFilenameObject
(C function), 19

PyErr_SetInterrupt (C function), 20

PyErr_SetNone (C function), 18

PyErr_ SetObject (C function), 18

PyErr_SetString (C function), 18

PyErr_SetString(), 7

PyErr Warn (C function), 20

PyErr_WarnEx (C function), 20

PyErr WarnExplicit (C function), 20

PyErr WarnPy3k (C function), 20

PyErr_ WriteUnraisable (C function), 21

PyEval AcquireLock (C function), 121

PyEval AcquireLock(), 113

PyEval AcquireThread (C function), 121

PyEval _EvalCode (C function), 13

(C

PyEval _EvalCodeEx (C function), 13
PyEval EvalFrame (C function), 13
PyEval EvalFrameEx (C function), 13
PyEval _GetBuiltins (C function), 39
PyEval _GetCallStats (C function), 124
PyEval _GetFrame (C function), 40
PyEval _GetFuncDesc (C function), 40
PyEval GetFuncName (C function), 40
PyEval GetGlobals (C function), 40
PyEval _GetLocals (C function), 39
PyEval GetRestricted (C function), 40
PyEval InitThreads (C function), 118
PyEval InitThreads(), 113

PyEval MergeCompilerFlags (C function), 14
PyEval _RelnitThreads (C function), 119
PyEval _ReleaseLock (C function), 121
PyEval ReleaseLock(), 113, 118
PyEval ReleaseThread (C function), 121
PyEval ReleaseThread(), 118

PyEval _RestoreThread (C function), 119
PyEval RestoreThread(), 117, 118
PyEval _SaveThread (C function), 119
PyEval SaveThread(), 117, 118

PyEval _SetProfile (C function), 124
PyEval SetTrace (C function), 124
PyEval _ThreadsInitialized (C function), 119
PyExc__ArithmeticError, 23

PyExc_ AssertionError, 23
PyExc_AttributeError, 23

PyExc BaseException, 23
PyExc_BufferError, 23
PyExc_BytesWarning, 24
PyExc_DeprecationWarning, 24
PyExc_EnvironmentError, 23

PyExc EOFError, 23
PyExc_Exception, 23
PyExc_FloatingPointError, 23

PyExc FutureWarning, 24

PyExc GeneratorExit, 23
PyExc_ImportError, 23

PyExc ImportWarning, 24

PyExc _IndentationError, 23
PyExc_IndexError, 23

PyExc IOError, 23
PyExc_KeyboardInterrupt, 23

PyExc KeyError, 23
PyExc_LookupError, 23
PyExc_MemoryError, 23
PyExc_NameError, 23

PyExc NotImplementedError, 23
PyExc OSError, 23

PyExc_ OverflowError, 23

PyExc PendingDeprecationWarning, 24
PyExc_ReferenceError, 23

Index

195

The Python/C API, Release 2.7.16rcl

PyExc_RuntimeError, 23

PyExc RuntimeWarning, 24

PyExc StandardError, 23
PyExc_Stoplteration, 23
PyExc_SyntaxError, 23
PyExc_SyntaxWarning, 24
PyExc_SystemError, 23
PyExc_SystemExit, 23

PyExc TabError, 23
PyExc_TypeError, 23
PyExc_UnboundLocalError, 23
PyExc UnicodeDecodeError, 23
PyExc UnicodeEncodeError, 23
PyExc UnicodeError, 23
PyExc_UnicodeTranslateError, 23
PyExc UnicodeWarning, 24

PyExc UserWarning, 24

PyExc ValueError, 23

PyExc VMSError, 23
PyExc_Warning, 24
PyExc_WindowsError, 23
PyExc_ZeroDivisionError, 23

PyFile AsFile (C function), 98
PyFile Check (C function), 97

PyFile CheckExact (C function), 97
PyFile DecUseCount (C function), 98
PyFile_FromFile (C function), 98
PyFile FromString (C function), 97
PyFile GetLine (C function), 98
PyFile IncUseCount (C function), 98
PyFile_Name (C function), 98

PyFile SetBufSize (C function), 98
PyFile SetEncoding (C function), 98
PyFile SetEncodingAndErrors (C function), 99
PyFile SoftSpace (C function), 99
PyFile Type (C variable), 97

PyFile WriteObject (C function), 99
PyFile WriteString (C function), 99
PyFileObject (C type), 97
PyFloat AS DOUBLE (C function), 63
PyFloat _AsDouble (C function), 63
PyFloat AsReprString (C function), 64
PyFloat_ AsString (C function), 63
PyFloat _Check (C function), 63
PyFloat CheckExact (C function), 63
PyFloat ClearFreeList (C function), 63
PyFloat_ FromDouble (C function), 63
PyFloat FromString (C function), 63
PyFloat_ GetInfo (C function), 63
PyFloat GetMax (C function), 63
PyFloat GetMin (C function), 63
PyFloat _Type (C variable), 63
PyFloatObject (C type), 63

PyFrame GetLineNumber (C function), 40

PyFrozenSet _Check (C function), 110
PyFrozenSet CheckExact (C function), 110
PyFrozenSet New (C function), 110
PyFrozenSet Type (C variable), 109
PyFunction_ Check (C function), 96
PyFunction GetClosure (C function), 96
PyFunction GetCode (C function), 96
PyFunction GetDefaults (C function), 96
PyFunction GetGlobals (C function), 96
PyFunction GetModule (C function), 96
PyFunction_New (C function), 96

PyFunction _SetClosure (C function), 96
PyFunction _SetDefaults (C function), 96
PyFunction Type (C variable), 96
PyFunctionObject (C type), 96

PyGen_ Check (C function), 106

PyGen_ CheckExact (C function), 106
PyGen_New (C function), 106

PyGen_Type (C variable), 106

PyGenObject (C type), 106

PyGetSetDef (C type), 136

PyGILState_ Ensure (C function), 119
PyGILState_ GetThisThreadState (C function), 120
PyGILState Release (C function), 119
PyImport AddModule (C function), 28
PyImport _AppendlInittab (C function), 29
PyImport _Cleanup (C function), 29

PyImport ExecCodeModule (C function), 28
PyImport _ExecCodeModuleEx (C function), 28
PyImport ExtendInittab (C function), 29
PyImport _FrozenModules (C variable), 29
PyImport_ GetImporter (C function), 28
PyImport GetMagicNumber (C function), 28
PyImport _GetModuleDict (C function), 28
PyImport Import (C function), 27

PyImport _ImportFrozenModule (C function), 29
PyImport ImportModule (C function), 27
PyImport ImportModuleEx (C function), 27
PyImport_ImportModuleLevel (C function), 27
PyImport ImportModuleNoBlock (C function), 27
PyImport ReloadModule (C function), 27
PyIndex_ Check (C function), 51

PyInstance Check (C function), 95
PyInstanceNew (C function), 95

PyInstance NewRaw (C function), 95
PyInstance Type (C variable), 95
PyInt_ AS LONG (C function), 59
PyInt_AsLong (C function), 59

PyInt_ AsSsize_t (C function), 60
PyInt_AsUnsignedLongLongMask (C function), 59
PyInt AsUnsignedLongMask (C function), 59
PyInt_ Check (C function), 59

PyInt_ CheckExact (C function), 59

PyInt_ ClearFreeList (C function), 60

196

Index

The Python/C API, Release 2.7.16rcl

PyInt_FromLong (C function), 59

PyInt_FromSize t (C function), 59

PyInt FromSsize t (C function), 59

PyInt_FromString (C function), 59

PyInt_GetMax (C function), 60

PyInt Type (C variable), 58

PyInterpreterState (C type), 118

PyInterpreterState Clear (C function), 120

PylInterpreterState Delete (C function), 120

PyInterpreterState Head (C function), 125

PylInterpreterState_ New (C function), 120

PyInterpreterState Next (C function), 125

PyInterpreterStateThreadHead (C function), 125

PyIntObject (C type), 58

PylIter_ Check (C function), 54

Pylter_Next (C function), 54

PyList Append (C function), 92

PyList_AsTuple (C function), 92

PyList Check (C function), 91

PyList_ CheckExact (C function), 91

PyList_ GET_ITEM (C function), 91

PyList_ GET _SIZE (C function), 91

PyList Getltem (C function), 91

PyList _Getltem(), 6

PyList _GetSlice (C function), 92

PyList_Insert (C function), 92

PyList_New (C function), 91

PyList _Reverse (C function), 92

PyList_SET ITEM (C function), 91

PyList_SetItem (C function), 91

PyList_SetItem(), 5

PyList _SetSlice (C function), 92

PyList_Size (C function), 91

PyList_Sort (C function), 92

PyList Type (C variable), 90

PyListObject (C type), 90

PyLong_AsDouble (C function), 62

PyLong AsLong (C function), 62

PyLong_AsLongAndOverflow (C function), 62

PyLong AsLongLong (C function), 62

PyLong AsLongLongAndOverflow (C function), 62

PyLong AsSsize t (C function), 62

PyLong AsUnsignedLong (C function), 62

PyLong_AsUnsignedLongLong (C function), 62

PyLong AsUnsignedLongLongMask (C function),
62

PyLong AsUnsignedLongMask (C function), 62

PyLong_AsVoidPtr (C function), 62

PyLong_Check (C function), 60

PyLong_CheckExact (C function), 61

PyLong_FromDouble (C function), 61

PyLong FromLong (C function), 61

PyLong FromLongLong (C function), 61

PyLong FromSize t (C function), 61

PyLong FromSsize t (C function), 61

PyLong FromString (C function), 61

PyLong_FromUnicode (C function), 61

PyLong FromUnsignedLong (C function), 61

PyLong FromUnsignedLongLong (C function), 61

PyLong_FromVoidPtr (C function), 61

PyLong_Type (C variable), 60

PyLongObject (C type), 60

PyMapping Check (C function), 53

PyMapping Delltem (C function), 53

PyMapping DelltemString (C function), 53

PyMapping GetltemString (C function), 54

PyMapping HasKey (C function), 54

PyMapping HasKeyString (C function), 54

PyMapping Items (C function), 54

PyMapping Keys (C function), 54

PyMapping Length (C function), 53

PyMapping _SetltemString (C function), 54

PyMapping_Size (C function), 53

PyMapping Values (C function), 54

PyMappingMethods (C type), 153

PyMappingMethods.mp ass_subscript
ber), 153

PyMappingMethods.mp length (C member), 153

PyMappingMethods.mp _subscript (C member), 153

PyMarshal ReadLastObjectFromFile (C function),
30

PyMarshal ReadLongFromFile (C function), 30

PyMarshal ReadObjectFromFile (C function), 30

PyMarshal ReadObjectFromString (C function), 30

PyMarshal ReadShortFromFile (C function), 30

PyMarshal WriteLongToFile (C function), 30

PyMarshal WriteObjectToFile (C function), 30

PyMarshal WriteObjectToString (C function), 30

PyMem Del (C function), 128

PyMem _ Free (C function), 128

PyMem_Malloc (C function), 128

PyMem_New (C function), 128

PyMem _Realloc (C function), 128

PyMem Resize (C function), 128

PyMemberDef (C type), 135

PyMemoryView Check (C function), 87

PyMemoryView FromBuffer (C function), 87

PyMemoryView FromObject (C function), 87

PyMemoryView GET BUFFER (C function), 87

PyMemoryView GetContiguous (C function), 87

PyMethod_Check (C function), 97

PyMethod_ Class (C function), 97

PyMethod _ ClearFreeList (C function), 97

PyMethod Function (C function), 97

PyMethod GET CLASS (C function), 97

PyMethod GET_ FUNCTION (C function), 97

PyMethod GET_ SELF (C function), 97

PyMethod_New (C function), 97

(C mem-

Index

197

The Python/C API, Release 2.7.16rcl

PyMethod _Self (C function), 97
PyMethod Type (C variable), 96
PyMethodDef (C type), 134

PyModule_ AddIntConstant (C function), 100
PyModule_ AddIntMacro (C function), 100

PyModule AddObject (C function), 100

PyModule AddStringConstant (C function), 100
PyModule AddStringMacro (C function), 100

PyModule Check (C function), 99
PyModule CheckExact (C function), 99
PyModule GetDict (C function), 99
PyModule GetFilename (C function), 99
PyModule GetName (C function), 99
PyModule New (C function), 99
PyModule Type (C variable), 99
PyNumber Absolute (C function), 48
PyNumber_ Add (C function), 47
PyNumber And (C function), 48
PyNumber AsSsize t (C function), 50
PyNumber_ Check (C function), 47
PyNumber Coerce (C function), 50
PyNumber CoerceEx (C function), 50
PyNumber Divide (C function), 47
PyNumber Divmod (C function), 48
PyNumber Float (C function), 50
PyNumber_ FloorDivide (C function), 48
PyNumber_Index (C function), 50
PyNumber InPlaceAdd (C function), 49
PyNumber InPlaceAnd (C function), 50

PyNumber InPlaceDivide (C function), 49
PyNumber_ InPlaceFloorDivide (C function), 49

PyNumber_ InPlaceLshift (C function), 49

PyNumber InPlaceMultiply (C function), 49

PyNumber InPlaceOr (C function), 50
PyNumber InPlacePower (C function), 49

PyNumber_ InPlaceRemainder (C function), 49

PyNumber_ InPlaceRshift (C function), 49

PyNumber_ InPlaceSubtract (C function), 49
PyNumber InPlaceTrueDivide (C function), 49

PyNumber InPlaceXor (C function), 50
PyNumber Int (C function), 50
PyNumber_Invert (C function), 48
PyNumber Long (C function), 50
PyNumber_Lshift (C function), 48
PyNumber Multiply (C function), 47
PyNumber Negative (C function), 48
PyNumber_ Or (C function), 49
PyNumber_ Positive (C function), 48
PyNumber_ Power (C function), 48
PyNumber Remainder (C function), 48
PyNumber Rshift (C function), 48
PyNumber_ Subtract (C function), 47
PyNumber_ ToBase (C function), 50
PyNumber_ TrueDivide (C function), 48

PyNumber_ Xor (C function), 48
PyNumberMethods (C type), 152

PyNumberMethods.nb_coerce (C member), 153

PyObject (C type), 132

PyObject. ob_next (C member), 138
PyObject. ob_prev (C member), 138
PyObject.ob_refent (C member), 139
PyObject.ob_type (C member), 139
PyObject AsCharBuffer (C function), 55

PyObject AsFileDescriptor (C function), 47

PyObject AsReadBuffer (C function), 55
PyObject AsWriteBuffer (C function), 55
PyObject Bytes (C function), 45
PyObject Call (C function), 45
PyObject CallFunction (C function), 46

PyObject _CallFunctionObjArgs (C function), 46

PyObject CallMethod (C function), 46

PyObject CallMethodObjArgs (C function), 46

PyObject CallObject (C function), 45
PyObject CheckBuffer (C function), 85

PyObject _CheckReadBuffer (C function), 55

PyObject Cmp (C function), 44
PyObject Compare (C function), 44
PyObject Del (C function), 131
PyObject DelAttr (C function), 44
PyObject DelAttrString (C function), 44
PyObject Delltem (C function), 47
PyObject Dir (C function), 47

PyObject Free (C function), 129
PyObject GC _Del (C function), 156
PyObject GC_New (C function), 156
PyObject GC_NewVar (C function), 156
PyObject GC_Resize (C function), 156
PyObject GC_Track (C function), 156

PyObject GC_UnTrack (C function), 156
PyObject _ GenericGetAttr (C function), 43
PyObject GenericSetAttr (C function), 44

PyObject GetAttr (C function), 43
PyObject GetAttrString (C function), 43
PyObject GetBuffer (C function), 85
PyObject Getltem (C function), 47
PyObject Getlter (C function), 47
PyObject HasAttr (C function), 43
PyObject HasAttrString (C function), 43
PyObject Hash (C function), 46

PyObject HashNotImplemented (C function), 46

PyObject HEAD (C macro), 133
PyObject HEAD INIT (C macro), 133
PyObject Init (C function), 131
PyObject InitVar (C function), 131
PyObject IsInstance (C function), 45
PyObject IsSubclass (C function), 45
PyObject IsTrue (C function), 46
PyObject Length (C function), 47

198

Index

The Python/C API, Release 2.7.16rcl

PyObject Malloc (C function), 129

PyObject New (C function), 131

PyObject NewVar (C function), 131

PyObject Not (C function), 46

PyObject Print (C function), 43

PyObject Realloc (C function), 129

PyObject Repr (C function), 44

PyObject RichCompare (C function), 44

PyObject RichCompareBool (C function), 44

PyObject SetAttr (C function), 43

PyObject SetAttrString (C function), 44

PyObject SetItem (C function), 47

PyObject Size (C function), 47

PyObject Str (C function), 44

PyObject Type (C function), 46

PyObject TypeCheck (C function), 46

PyObject Unicode (C function), 45

PyObject VAR _HEAD (C macro), 133

PyOS_AfterFork (C function), 25

PyOS _ascii_atof (C function), 39

PyOS _ascii_formatd (C function), 38

PyOS _ascii_strtod (C function), 38

PyOS_CheckStack (C function), 25

PyOS double to_string (C function), 39

PyOS _getsig (C function), 25

PyOS _setsig (C function), 25

PyOS_snprintf (C function), 37

PyOS _stricmp (C function), 39

PyOS _string to_double (C function), 38

PyOS _strnicmp (C function), 39

PyOS_ vsnprintf (C function), 37

PyParser SimpleParseFile (C function), 12

PyParser SimpleParseFileFlags (C function), 12

PyParser SimpleParseString (C function), 12

PyParser SimpleParseStringFlags (C function), 12

PyParser SimpleParseStringFlagsFilename (C func-
tion), 12

PyProperty Type (C variable), 101

PyRun_ AnyFile (C function), 11

PyRun_AnyFileEx (C function), 11

PyRun_AnyFileExFlags (C function), 11

PyRun_AnyFileFlags (C function), 11

PyRun_File (C function), 13

PyRun_FileEx (C function), 13

PyRun_FileExFlags (C function), 13

PyRun_FileFlags (C function), 13

PyRun_InteractiveLoop (C function), 12

PyRun_InteractiveLoopFlags (C function), 12

PyRun_ InteractiveOne (C function), 12

PyRun_InteractiveOneFlags (C function), 12

PyRun_ SimpleFile (C function), 12

PyRun_SimpleFileEx (C function), 12

PyRun_SimpleFileExFlags (C function), 12

PyRun_SimpleFileFlags (C function), 12

PyRun_SimpleString (C function), 11

PyRun_SimpleStringFlags (C function), 11

PyRun_ String (C function), 12

PyRun_ StringFlags (C function), 13

PySeqlter Check (C function), 100

PySeqlter New (C function), 100

PySeqlter Type (C variable), 100

PySequence Check (C function), 51

PySequence Concat (C function), 51

PySequence Contains (C function), 52

PySequence Count (C function), 52

PySequence Delltem (C function), 52

PySequence DelSlice (C function), 52

PySequence Fast (C function), 53

PySequence Fast GET ITEM (C function), 53

PySequence Fast GET _SIZE (C function), 53

PySequence Fast ITEMS (C function), 53

PySequence Getltem (C function), 51

PySequence Getltem(), 6

PySequence GetSlice (C function), 51

PySequence Index (C function), 52

PySequence InPlaceConcat (C function), 51

PySequence InPlaceRepeat (C function), 51

PySequence ITEM (C function), 53

PySequence Length (C function), 51

PySequence List (C function), 52

PySequence Repeat (C function), 51

PySequence SetItem (C function), 52

PySequence _SetSlice (C function), 52

PySequence _Size (C function), 51

PySequence Tuple (C function), 52

PySequenceMethods (C type), 153

PySequenceMethods.sq _ass_item (C member), 154

PySequenceMethods.sq_concat (C member), 153

PySequenceMethods.sq_ contains (C member), 154

PySequenceMethods.sq inplace concat (C mem-
ber), 154

PySequenceMethods.sq _inplace repeat
ber), 154

PySequenceMethods.sq _item (C member), 153

PySequenceMethods.sq_length (C member), 153

PySequenceMethods.sq_repeat (C member), 153

PySet_Add (C function), 110

PySet_Check (C function), 109

PySet _Clear (C function), 111

PySet Contains (C function), 110

PySet_ Discard (C function), 111

PySet _GET _SIZE (C function), 110

PySet_New (C function), 110

PySet Pop (C function), 111

PySet_Size (C function), 110

PySet Type (C variable), 109

PySetObject (C type), 109

PySignal SetWakeupFd (C function), 20

(C mem-

Index

199

The Python/C API, Release 2.7.16rcl

PySlice_ Check (C function), 101
PySlice GetIndices (C function), 102
PySlice GetIndicesEx (C function), 102
PySlice_ New (C function), 101
PySlice_ Type (C variable), 101
PyString AS STRING (C function), 68
PyString_ AsDecodedObject (C function), 69
PyString AsEncodedObject (C function), 70
PyString AsString (C function), 68
PyString AsStringAndSize (C function), 68
PyString Check (C function), 66
PyString CheckExact (C function), 67
PyString_ Concat (C function), 68
PyString ConcatAndDel (C function), 68
PyString_Decode (C function), 69
PyString_Encode (C function), 70
PyString _Format (C function), 69
PyString_ FromFormat (C function), 67
PyString FromFormatV (C function), 68
PyString FromString (C function), 67
PyString FromString(), 93
PyString FromStringAndSize (C function), 67
PyString GET_SIZE (C function), 68
PyString InternFromString (C function), 69
PyString InternInPlace (C function), 69
PyString_Size (C function), 68
PyString Type (C variable), 66
PyStringObject (C type), 66
PySys AddWarnOption (C function), 26
PySys_GetFile (C function), 26
PySys_GetObject (C function), 25
PySys_ResetWarnOptions (C function), 26
PySys_SetArgv (C function), 116
PySys_SetArgv(), 113
PySys_SetArgvEx (C function), 115
PySys_SetArgvEx(), 9, 113
PySys_SetObject (C function), 26
PySys_SetPath (C function), 26
PySys_WriteStderr (C function), 26
PySys WriteStdout (C function), 26
Python 3000, 166
Python Enhancement Proposals

PEP 1, 166

PEP 238, 14, 162

PEP 278, 167

PEP 302, 161, 164

PEP 3116, 167

PEP 343, 160
PYTHONDUMPREFS, 139
PYTHONHOME, 10, 116
Pythonic, 166
PYTHONPATH, 10
PYTHONSHOWALLOCCOUNT, 151
PyThreadState, 116

PyThreadState (C type), 118
PyThreadState Clear (C function), 120
PyThreadState Delete (C function), 120
PyThreadState Get (C function), 119
PyThreadState_ GetDict (C function), 121
PyThreadState New (C function), 120
PyThreadState Next (C function), 125
PyThreadState SetAsyncExc (C function), 121
PyThreadState Swap (C function), 119
PyTime_ Check (C function), 107
PyTime_ CheckExact (C function), 107
PyTime FromTime (C function), 108
PyTrace C_CALL (C variable), 124
PyTrace C_EXCEPTION (C variable), 124
PyTrace_C_RETURN (C variable), 124
PyTrace_ CALL (C variable), 124
PyTrace_ EXCEPTION (C variable), 124
PyTrace LINE (C variable), 124
PyTrace. RETURN (C variable), 124
PyTuple Check (C function), 89
PyTuple CheckExact (C function), 89
PyTuple _ ClearFreeList (C function), 90
PyTuple GET_ITEM (C function), 89
PyTuple GET _SIZE (C function), 89
PyTuple Getltem (C function), 89
PyTuple GetSlice (C function), 90
PyTuple New (C function), 89

PyTuple Pack (C function), 89
PyTuple SET ITEM (C function), 90
PyTuple Setltem (C function), 90
PyTuple Setltem(), 5

PyTuple Size (C function), 89

PyTuple Type (C variable), 89
PyTupleObject (C type), 89

PyType Check (C function), 57
PyType_CheckExact (C function), 57
PyType_ClearCache (C function), 57
PyType_GenericAlloc (C function), 58
PyType_GenericNew (C function), 58
PyType HasFeature (C function), 58
PyType HasFeature(), 154
PyType IS _GC (C function), 58
PyType_IsSubtype (C function), 58
PyType Modified (C function), 57
PyType Ready (C function), 58

PyType Type (C variable), 57
PyTypeObject (C type), 57
PyTypeObject.tp alloc (C member), 149
PyTypeObject.tp allocs (C member), 151
PyTypeObject.tp _as buffer (C member), 143
PyTypeObject.tp base (C member), 148
PyTypeObject.tp _bases (C member), 151
PyTypeObject.tp basicsize (C member), 140
PyTypeObject.tp cache (C member), 151

200

Index

The Python/C API, Release 2.7.16rcl

PyTypeObject.tp call (C member), 142
PyTypeObject.tp_clear (C member), 145
PyTypeObject.tp _compare (C member), 141
PyTypeObject.tp dealloc (C member), 140
PyTypeObject.tp descr get (C member), 148
PyTypeObject.tp _descr _set (C member), 148
PyTypeObject.tp _dict (C member), 148
PyTypeObject.tp dictoffset (C member), 148
PyTypeObject.tp _doc (C member), 145
PyTypeObject.tp _flags (C member), 143
PyTypeObject.tp free (C member), 150
PyTypeObject.tp _frees (C member), 151
PyTypeObject.tp _getattr (C member), 141
PyTypeObject.tp _getattro (C member), 142
PyTypeObject.tp getset (C member), 148
PyTypeObject.tp hash (C member), 142
PyTypeObject.tp init (C member), 149
PyTypeObject.tp_is_gc (C member), 150
PyTypeObject.tp itemsize (C member), 140
PyTypeObject.tp iter (C member), 147
PyTypeObject.tp iternext (C member), 147
PyTypeObject.tp maxalloc (C member), 151
PyTypeObject.tp _members (C member), 147
PyTypeObject.tp _methods (C member), 147
PyTypeObject.tp _mro (C member), 151
PyTypeObject.tp _name (C member), 139
PyTypeObject.tp _new (C member), 150
PyTypeObject.tp _next (C member), 151
PyTypeObject.tp_print (C member), 140
PyTypeObject.tp repr (C member), 141
PyTypeObject.tp richcompare (C member), 146
PyTypeObject.tp_setattr (C member), 141
PyTypeObject.tp _setattro (C member), 143
PyTypeObject.tp _str (C member), 142
PyTypeObject.tp _subclasses (C member), 151
PyTypeObject.tp traverse (C member), 145
PyTypeObject.tp weaklist (C member), 151
PyTypeObject.tp weaklistoffset (C member), 147
PyTZInfo Check (C function), 107
PyTZInfo CheckExact (C function), 107
PyUnicode AS DATA (C function), 71
PyUnicode AS UNICODE (C function), 71
PyUnicode_ AsASCIIString (C function), 80
PyUnicode AsCharmapString (C function), 80
PyUnicode AsEncodedString (C function), 75
PyUnicode AsLatin1String (C function), 79
PyUnicode_ AsMBCSString (C function), 81
PyUnicode AsRawUnicodeEscapeString (C func-
tion), 79
PyUnicode AsUnicode (C function), 73
PyUnicode AsUnicodeEscapeString (C function),
78
PyUnicode_ AsUTF16String (C function), 78
PyUnicode_ AsUTF32String (C function), 76

PyUnicode AsUTF8String (C function), 75
PyUnicode AsWideChar (C function), 74
PyUnicode Check (C function), 70
PyUnicode_ CheckExact (C function), 71
PyUnicode_ ClearFreeList (C function), 71
PyUnicode Compare (C function), 83
PyUnicode Concat (C function), 81
PyUnicode Contains (C function), 83
PyUnicode Count (C function), 82
PyUnicode _Decode (C function), 74
PyUnicode DecodeASCII (C function), 79
PyUnicode DecodeCharmap (C function), 80
PyUnicode DecodeLatinl (C function), 79
PyUnicode DecodeMBCS (C function), 81
PyUnicode DecodeMBCSStateful (C function), 81
PyUnicode DecodeRawUnicodeEscape (C func-
tion), 79
PyUnicode DecodeUnicodeEscape (C function), 78
PyUnicode DecodeUTF16 (C function), 77
PyUnicode DecodeUTF16Stateful (C function), 77
PyUnicode DecodeUTF32 (C function), 76
PyUnicode DecodeUTF32Stateful (C function), 76
PyUnicode DecodeUTF7 (C function), 78
PyUnicode DecodeUTF7Stateful (C function), 78
PyUnicode DecodeUTF8 (C function), 75
PyUnicode DecodeUTF8Stateful (C function), 75
PyUnicode _Encode (C function), 75
PyUnicode EncodeASCII (C function), 79
PyUnicode EncodeCharmap (C function), 80
PyUnicode EncodeLatinl (C function), 79
PyUnicode EncodeMBCS (C function), 81
PyUnicode EncodeRawUnicodeEscape (C
tion), 79
PyUnicode EncodeUnicodeEscape (C function), 78
PyUnicode EncodeUTF16 (C function), 77
PyUnicode EncodeUTF32 (C function), 7
PyUnicode EncodeUTF7 (C function), 7
PyUnicode EncodeUTF8 (C function), 75
PyUnicode Find (C function), 82
PyUnicode Format (C function), 83
PyUnicode FromEuncodedObject (C function), 73
PyUnicode _FromFormat (C function), 72
PyUnicode _FromFormatV (C function), 73
PyUnicode FromObject (C function), 74
PyUnicode FromString (C function), 72
PyUnicode FromStringAndSize (C function), 72
PyUnicode_FromUnicode (C function), 72
PyUnicode_ FromWideChar (C function), 74
PyUnicode GET DATA SIZE (C function), 71
PyUnicode GET _SIZE (C function), 71
PyUnicode GetSize (C function), 73
PyUnicode_Join (C function), 82
PyUnicode Replace (C function), 82
PyUnicode RichCompare (C function), 83

func-

Index

201

The Python/C API, Release 2.7.16rcl

PyUnicode Split (C function), 82
PyUnicode Splitlines (C function), 82
PyUnicode Tailmatch (C function), 82
PyUnicode_ Translate (C function), 82
PyUnicode TranslateCharmap (C function), 80
PyUnicode Type (C variable), 70
PyUnicodeDecodeError _Create (C function), 21
PyUnicodeDecodeError GetEncoding (C function),
21
PyUnicodeDecodeError _GetEnd (C function), 22
PyUnicodeDecodeError GetObject (C function), 21
PyUnicodeDecodeError _GetReason (C function), 22
PyUnicodeDecodeError _GetStart (C function), 21
PyUnicodeDecodeError SetEnd (C function), 22
PyUnicodeDecodeError _SetReason (C function), 22
PyUnicodeDecodeError _SetStart (C function), 22
PyUnicodeEncodeError_ Create (C function), 21
PyUnicodeEncodeError _GetEncoding (C function),
21
PyUnicodeEncodeError _GetEnd (C function), 22
PyUnicodeEncodeError GetObject (C function), 21
PyUnicodeEncodeError _GetReason (C function), 22
PyUnicodeEncodeError _GetStart (C function), 21
PyUnicodeEncodeError _SetEnd (C function), 22
PyUnicodeEncodeError _SetReason (C function), 22
PyUnicodeEncodeError_SetStart (C function), 22
PyUnicodeObject (C type), 70
PyUnicodeTranslateError _Create (C function), 21
PyUnicodeTranslateError _GetEnd (C function), 22
PyUnicodeTranslateError _GetObject (C function),
21
PyUnicodeTranslateError _GetReason (C function),
22
PyUnicodeTranslateError _GetStart (C function), 21
PyUnicodeTranslateError _SetEnd (C function), 22
PyUnicodeTranslateError _SetReason (C function),
22
PyUnicodeTranslateError_SetStart (C function), 22
PyVarObject (C type), 132
PyVarObject.ob _size (C member), 139
PyVarObject HEAD INIT (C macro), 134
PyWeakref Check (C function), 102
PyWeakref CheckProxy (C function), 102
PyWeakref CheckRef (C function), 102
PyWeakref GET OBJECT (C function), 103
PyWeakref GetObject (C function), 103
PyWeakref NewProxy (C function), 103
PyWeakref NewRef (C function), 102
PyWrapper New (C function), 101

R

readbufferproc (C type), 155
realloc(), 127
reference count, 166

reload

built-in function, 28
repr

built-in function, 44, 141
rexec

module, 27

S

search

path, module, 9, 113, 114
segcountproc (C type), 155
sequence, 166
sequence

object, 65
set

object, 109
set_all(), 6
setcheckinterval() (in module sys), 116
setvbuf(), 98
SIGINT, 20
signal

module, 20
slice, 166
SliceType (in module types), 101
softspace (file attribute), 99
special method, 167
statement, 167
staticmethod

built-in function, 135
stderr (in module sys), 122
stdin (in module sys), 122
stdout (in module sys), 122
str

built-in function, 45
strerror(), 19
string

object, 66
StringType (in module types), 66
struct sequence, 167
sum_list(), 7
sum_sequence(), 7, 8
sys

module, 9, 113, 122
SystemError (built-in exception), 99, 100

T

thread

module, 118
tp_as_mapping (C member), 142
tp_as_number (C member), 142
tp_as_sequence (C member), 142
traverseproc (C type), 156
triple-quoted string, 167
tuple

202

Index

The Python/C API, Release 2.7.16rcl

built-in function, 52, 92

object, 89
TupleType (in module types), 89
type, 167
type

built-in function, 46

object, 4, 57

TypeType (in module types), 57

U

ULONG_MAX, 62
unicode

built-in function, 45
universal newlines, 167

V

version (in module sys), 115
virtual environment, 167
virtual machine, 167
visitproc (C type), 156

W

writebufferproc (C type), 155

Z
Zen of Python, 167

Index 203

	Introduction
	Include Files
	Objects, Types and Reference Counts
	Exceptions
	Embedding Python
	Debugging Builds

	The Very High Level Layer
	Reference Counting
	Exception Handling
	Unicode Exception Objects
	Recursion Control
	Standard Exceptions
	Standard Warning Categories
	String Exceptions

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	String conversion and formatting
	Reflection
	Codec registry and support functions

	Abstract Objects Layer
	Object Protocol
	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Numeric Objects
	Sequence Objects
	Mapping Objects
	Other Objects

	Initialization, Finalization, and Threads
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Sub-interpreter support
	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support

	Memory Management
	Overview
	Memory Interface
	Object allocators
	The pymalloc allocator
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Type Objects
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Supporting Cyclic Garbage Collection

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

