
Macintosh Library Modules
Release 2.4.4

Guido van Rossum
Fred L. Drake, Jr., editor

18 October 2006

Python Software Foundation
Email: docs@python.org

Copyright c 2001-2006 Python Software Foundation. All rights reserved.

Copyright c 2000 BeOpen.com. All rights reserved.

Copyright c 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright c 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This library reference manual documents Python’s extensions for the Macintosh. It should be used in conjunction with
the Python Library Reference, which documents the standard library and built-in types.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutorial; the Python Reference Manual remains the highest authority on syntactic and semantic questions.
Finally, the manual entitled Extending and Embedding the Python Interpreter describes how to add new extensions to
Python and how to embed it in other applications.

../lib/lib.html
../tut/tut.html
../ref/ref.html
../ext/ext.html

CONTENTS

1 Using Python on a Macintosh 1
1.1 Getting and Installing MacPython . 1
1.2 The IDE . 2
1.3 The Package Manager . 3

2 MacPython Modules 5
2.1 macpath — MacOS path manipulation functions . 5
2.2 macfs — Various file system services . 5
2.3 ic — Access to Internet Config . 8
2.4 MacOS — Access to Mac OS interpreter features . 9
2.5 macostools — Convenience routines for file manipulation . 10
2.6 findertools — The finder’s Apple Events interface . 11
2.7 EasyDialogs — Basic Macintosh dialogs . 11
2.8 FrameWork — Interactive application framework . 13
2.9 autoGIL — Global Interpreter Lock handling in event loops . 17

3 MacPython OSA Modules 19
3.1 gensuitemodule — Generate OSA stub packages . 20
3.2 aetools — OSA client support . 21
3.3 aepack — Conversion between Python variables and AppleEvent data containers 22
3.4 aetypes — AppleEvent objects . 23
3.5 MiniAEFrame — Open Scripting Architecture server support . 24

4 MacOS Toolbox Modules 27
4.1 Carbon.AE — Apple Events . 28
4.2 Carbon.AH — Apple Help . 28
4.3 Carbon.App — Appearance Manager . 28
4.4 Carbon.CF — Core Foundation . 28
4.5 Carbon.CG — Core Graphics . 29
4.6 Carbon.CarbonEvt — Carbon Event Manager . 29
4.7 Carbon.Cm — Component Manager . 29
4.8 Carbon.Ctl — Control Manager . 29
4.9 Carbon.Dlg — Dialog Manager . 29
4.10 Carbon.Evt — Event Manager . 29
4.11 Carbon.Fm — Font Manager . 29
4.12 Carbon.Folder — Folder Manager . 29
4.13 Carbon.Help — Help Manager . 29
4.14 Carbon.List — List Manager . 29
4.15 Carbon.Menu — Menu Manager . 29

i

4.16 Carbon.Mlte — MultiLingual Text Editor . 29
4.17 Carbon.Qd — QuickDraw . 29
4.18 Carbon.Qdoffs — QuickDraw Offscreen . 29
4.19 Carbon.Qt — QuickTime . 29
4.20 Carbon.Res — Resource Manager and Handles . 29
4.21 Carbon.Scrap — Scrap Manager . 29
4.22 Carbon.Snd — Sound Manager . 29
4.23 Carbon.TE — TextEdit . 29
4.24 Carbon.Win — Window Manager . 29
4.25 ColorPicker — Color selection dialog . 29

5 Undocumented Modules 31
5.1 applesingle — AppleSingle decoder . 31
5.2 buildtools — Helper module for BuildApplet and Friends . 31
5.3 cfmfile — Code Fragment Resource module . 31
5.4 icopen — Internet Config replacement for open() . 31
5.5 macerrors — Mac OS Errors . 31
5.6 macresource — Locate script resources . 32
5.7 Nav — NavServices calls . 32
5.8 PixMapWrapper — Wrapper for PixMap objects . 32
5.9 videoreader — Read QuickTime movies . 32
5.10 W — Widgets built on FrameWork . 32
5.11 waste — non-Apple TextEdit replacement . 32

A History and License 33
A.1 History of the software . 33
A.2 Terms and conditions for accessing or otherwise using Python . 34
A.3 Licenses and Acknowledgements for Incorporated Software . 37

Module Index 45

Index 47

ii

CHAPTER

ONE

Using Python on a Macintosh

Python on a Macintosh running Mac OS X is in principle very similar to Python on any other UNIXplatform, but there
are a number of additional features such as the IDE and the Package Manager that are worth pointing out.

Python on Mac OS 9 or earlier can be quite different from Python on Unix or Windows, but is beyond the scope of
this manual, as that platform is no longer supported, starting with Python 2.4. See http://www.cwi.nl/˜jack/macpython
for installers for the latest 2.3 release for Mac OS 9 and related documentation.

1.1 Getting and Installing MacPython

Mac OS X 10.3 comes with Python 2.3 pre-installed by Apple. This installation does not come with the IDE and other
additions, however, so to get these you need to install the MacPython for Panther additions from the MacPython
website, http://www.cwi.nl/˜jack/macpython.

For MacPython 2.4, or for any MacPython on earlier releases of Mac OS X, you need to install a full distribution from
the same website.

What you get after installing is a number of things:

� A ‘MacPython-2.3’ folder in your ‘Applications’ folder. In here you find the PythonIDE Integrated Development
Environment; PythonLauncher, which handles double-clicking Python scripts from the Finder; and the Package
Manager.

� A fairly standard UNIX commandline Python interpreter in ‘/usr/local/bin/python’, but without the usual
‘/usr/local/lib/python’.

� A framework ‘/Library/Frameworks/Python.framework’, where all the action really is, but which you usually do
not have to be aware of.

To uninstall MacPython you can simply remove these three things.

If you use the “additions” installer to install on top of an existing Apple-Python you will not get
the framework and the commandline interpreter, as they have been installed by Apple already, in
‘/System/Library/Frameworks/Python.framework’ and ‘/usr/bin/python’, respectively. You should in principle never
modify or delete these, as they are Apple-controlled and may be used by Apple- or third-party software.

PythonIDE contains an Apple Help Viewer book called ”MacPython Help” which you can access through its help
menu. If you are completely new to Python you should start reading the IDE introduction in that document.

If you are familiar with Python on other UNIX platforms you should read the section on running Python scripts from
the UNIX shell.

1

http://www.cwi.nl/global let OT1	extasciitilde unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {global mathchardef accent@spacefactor spacefactor }accent 126 egroup spacefactor accent@spacefactor OT1	extasciitilde jack/macpython
http://www.cwi.nl/unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {global mathchardef accent@spacefactor spacefactor }accent 126 egroup spacefactor accent@spacefactor jack/macpython

1.1.1 How to run a Python script

Your best way to get started with Python on Mac OS X is through the PythonIDE integrated development environment,
see section 1.2 and use the Help menu when the IDE is running.

If you want to run Python scripts from the Terminal window command line or from the Finder you first need an
editor to create your script. Mac OS X comes with a number of standard UNIX command line editors, vim and
emacs among them. If you want a more Mac-like editor BBEdit or TextWrangler from Bare Bones Software (see
http://www.barebones.com/products/bbedit/index.shtml) are good choices. AppleWorks or any other word processor
that can save files in ASCII is also a possibility, including TextEdit which is included with OS X.

To run your script from the Terminal window you must make sure that ‘/usr/local/bin’ is in your shell search path.

To run your script from the Finder you have two options:

� Drag it to PythonLauncher

� Select PythonLauncher as the default application to open your script (or any .py script) through the finder Info
window and double-click it.

PythonLauncher has various preferences to control how your script is launched. Option-dragging allows you to change
these for one invocation, or use its Preferences menu to change things globally.

1.1.2 Running scripts with a GUI

There is one Mac OS X quirk that you need to be aware of: programs that talk to the Aqua window manager (in other
words, anything that has a GUI) need to be run in a special way. Use pythonw instead of python to start such scripts.

1.1.3 configuration

MacPython honours all standard UNIX environment variables such as PYTHONPATH, but setting these variables for
programs started from the Finder is non-standard as the Finder does not read your ‘.profile’ or ‘.cshrc’ at startup. You
need to create a file ‘˜/.MacOSX/environment.plist’. See Apple’s Technical Document QA1067 for details.

Installing additional Python packages is most easily done through the Package Manager, see the MacPython Help
Book for details.

1.2 The IDE

The Python IDE (Integrated Development Environment) is a separate application that acts as a text editor for your
Python code, a class browser, a graphical debugger, and more.

The online Python Help contains a quick walkthrough of the IDE that shows the major features and how to use them.

1.2.1 Using the “Python Interactive” window

Use this window like you would use a normal UNIX command line interpreter.

1.2.2 Writing a Python Script

In addition to using the Python IDE interactively, you can also type out a complete Python program, saving it incre-
mentally, and execute it or smaller selections of it.

2 Chapter 1. Using Python on a Macintosh

http://www.barebones.com/products/bbedit/index.shtml

You can create a new script, open a previously saved script, and save your currently open script by selecting the
appropriate item in the “File” menu. Dropping a Python script onto the Python IDE will open it for editing.

When the Python IDE saves a script, it uses the creator code settings which are available by clicking on the small
black triangle on the top right of the document window, and selecting “save options”. The default is to save the file
with the Python IDE as the creator, this means that you can open the file for editing by simply double-clicking on its
icon. You might want to change this behaviour so that it will be opened by the PythonLauncher, and run. To do this
simply choose “PythonLauncher” from the “save options”. Note that these options are associated with the file not the
application.

1.2.3 Executing a script from within the IDE

You can run the script in the frontmost window of the Python IDE by hitting the run all button. You should be
aware, however that if you use the Python convention ‘if name == " main ":’ the script will not be
“ main ” by default. To get that behaviour you must select the “Run as main ” option from the small black
triangle on the top right of the document window. Note that this option is associated with the file not the application.
It will stay active after a save, however; to shut this feature off simply select it again.

1.2.4 “Save as” versus “Save as Applet”

When you are done writing your Python script you have the option of saving it as an “applet” (by selecting “Save as
applet” from the “File” menu). This has a significant advantage in that you can drop files or folders onto it, to pass
them to the applet the way command-line users would type them onto the command-line to pass them as arguments
to the script. However, you should make sure to save the applet as a separate file, do not overwrite the script you are
writing, because you will not be able to edit it again.

Accessing the items passed to the applet via “drag-and-drop” is done using the standard sys.argv mechanism. See
the general documentation for more

Note that saving a script as an applet will not make it runnable on a system without a Python installation.

1.3 The Package Manager

Historically MacPython came with a number of useful extension packages included, because most Macintosh users do
not have access to a development environment and C compiler. For Mac OS X that bundling is no longer done, but a
new mechanism has been made available to allow easy access to extension packages.

The Python Package Manager helps you installing additional packages that enhance Python. It determines the exact
MacOS version and Python version you have and uses that information to download a database that has packages that
are tested and tried on that combination. In other words: if something is in your Package Manager window but does
not work you are free to blame the database maintainer.

PackageManager then checks which of the packages you have installed and which ones are not. This should also
work when you have installed packages outside of PackageManager. You can select packages and install them, and
PackageManager will work out the requirements and install these too.

Often PackageManager will list a package in two flavors: binary and source. Binary should always work, source will
only work if you have installed the Apple Developer Tools. PackageManager will warn you about this, and also about
other external dependencies.

PackageManager is available as a separate application and also as a function of the IDE, through the File-¿Package
Manager menu entry.

1.3. The Package Manager 3

4

CHAPTER

TWO

MacPython Modules

The following modules are only available on the Macintosh, and are documented here:

macpath MacOS path manipulation functions.
macfs Support for FSSpec, the Alias Manager, finder aliases, and the Standard File package.
ic Access to Internet Config.
MacOS Access to Mac OS-specific interpreter features.
macostools Convenience routines for file manipulation.
findertools Wrappers around the finder’s Apple Events interface.
EasyDialogs Basic Macintosh dialogs.
FrameWork Interactive application framework.
autoGIL Global Interpreter Lock handling in event loops.

2.1 macpath — MacOS path manipulation functions

This module is the Mac OS 9 (and earlier) implementation of the os.path module. It can be used to manipulate
old-style Macintosh pathnames on Mac OS X (or any other platform). Refer to the Python Library Reference for
documentation of os.path.

The following functions are available in this module: normcase(), normpath(), isabs(), join(),
split(), isdir(), isfile(), walk(), exists(). For other functions available in os.path dummy coun-
terparts are available.

2.2 macfs — Various file system services

Deprecated since release 2.3. The macfs module should be considered obsolete. For FSSpec, FSRef and Alias
handling use the Carbon.File or Carbon.Folder module. For file dialogs use the EasyDialogs module.
Also, this module is known to not work correctly with UFS partitions.

This module provides access to Macintosh FSSpec handling, the Alias Manager, finder aliases and the Standard File
package.

Whenever a function or method expects a file argument, this argument can be one of three things: (1) a full or partial
Macintosh pathname, (2) an FSSpec object or (3) a 3-tuple (wdRefNum, parID, name) as described in Inside
Macintosh: Files. An FSSpec can point to a non-existing file, as long as the folder containing the file exists. Under
MacPython the same is true for a pathname, but not under unix-Pyton because of the way pathnames and FSRefs
works. See Apple’s documentation for details.

A description of aliases and the Standard File package can also be found there.

FSSpec(file)

5

../lib/lib.html

Create an FSSpec object for the specified file.

RawFSSpec(data)
Create an FSSpec object given the raw data for the C structure for the FSSpec as a string. This is mainly
useful if you have obtained an FSSpec structure over a network.

RawAlias(data)
Create an Alias object given the raw data for the C structure for the alias as a string. This is mainly useful if
you have obtained an FSSpec structure over a network.

FInfo()
Create a zero-filled FInfo object.

ResolveAliasFile(file)
Resolve an alias file. Returns a 3-tuple (fsspec, isfolder, aliased) where fsspec is the resulting FSSpec
object, isfolder is true if fsspec points to a folder and aliased is true if the file was an alias in the first place
(otherwise the FSSpec object for the file itself is returned).

StandardGetFile([type, ...])
Present the user with a standard “open input file” dialog. Optionally, you can pass up to four 4-character file
types to limit the files the user can choose from. The function returns an FSSpec object and a flag indicating
that the user completed the dialog without cancelling.

PromptGetFile(prompt[, type, ...])
Similar to StandardGetFile() but allows you to specify a prompt which will be displayed at the top of the
dialog.

StandardPutFile(prompt[, default])
Present the user with a standard “open output file” dialog. prompt is the prompt string, and the optional default
argument initializes the output file name. The function returns an FSSpec object and a flag indicating that the
user completed the dialog without cancelling.

GetDirectory([prompt])
Present the user with a non-standard “select a directory” dialog. You have to first open the directory before
clicking on the “select current directory” button. prompt is the prompt string which will be displayed at the top
of the dialog. Return an FSSpec object and a success-indicator.

SetFolder([fsspec])
Set the folder that is initially presented to the user when one of the file selection dialogs is presented. fsspec
should point to a file in the folder, not the folder itself (the file need not exist, though). If no argument is passed
the folder will be set to the current directory, i.e. what os.getcwd() returns.

Note that starting with System 7.5 the user can change Standard File behaviour with the “general controls”
control panel, thereby making this call inoperative.

FindFolder(where, which, create)
Locates one of the “special” folders that Mac OS knows about, such as the trash or the Preferences folder. where
is the disk to search, which is the 4-character string specifying which folder to locate. Setting create causes the
folder to be created if it does not exist. Returns a (vrefnum, dirid) tuple.

The constants for where and which can be obtained from the standard module Carbon.Folders.

NewAliasMinimalFromFullPath(pathname)
Return a minimal alias object that points to the given file, which must be specified as a full pathname. This
is the only way to create an Alias pointing to a non-existing file.

FindApplication(creator)
Locate the application with 4-character creator code creator. The function returns an FSSpec object pointing
to the application.

6 Chapter 2. MacPython Modules

2.2.1 FSSpec Objects

data
The raw data from the FSSpec object, suitable for passing to other applications, for instance.

as pathname()
Return the full pathname of the file described by the FSSpec object.

as tuple()
Return the (wdRefNum, parID, name) tuple of the file described by the FSSpec object.

NewAlias([file])
Create an Alias object pointing to the file described by this FSSpec. If the optional file parameter is present the
alias will be relative to that file, otherwise it will be absolute.

NewAliasMinimal()
Create a minimal alias pointing to this file.

GetCreatorType()
Return the 4-character creator and type of the file.

SetCreatorType(creator, type)
Set the 4-character creator and type of the file.

GetFInfo()
Return a FInfo object describing the finder info for the file.

SetFInfo(finfo)
Set the finder info for the file to the values given as finfo (an FInfo object).

GetDates()
Return a tuple with three floating point values representing the creation date, modification date and backup date
of the file.

SetDates(crdate, moddate, backupdate)
Set the creation, modification and backup date of the file. The values are in the standard floating point format
used for times throughout Python.

2.2.2 Alias Objects

data
The raw data for the Alias record, suitable for storing in a resource or transmitting to other programs.

Resolve([file])
Resolve the alias. If the alias was created as a relative alias you should pass the file relative to which it is. Return
the FSSpec for the file pointed to and a flag indicating whether the Alias object itself was modified during the
search process. If the file does not exist but the path leading up to it does exist a valid fsspec is returned.

GetInfo(num)
An interface to the C routine GetAliasInfo().

Update(file[, file2])
Update the alias to point to the file given. If file2 is present a relative alias will be created.

Note that it is currently not possible to directly manipulate a resource as an Alias object. Hence, after calling
Update() or after Resolve() indicates that the alias has changed the Python program is responsible for getting
the data value from the Alias object and modifying the resource.

2.2. macfs — Various file system services 7

2.2.3 FInfo Objects

See Inside Macintosh: Files for a complete description of what the various fields mean.

Creator
The 4-character creator code of the file.

Type
The 4-character type code of the file.

Flags
The finder flags for the file as 16-bit integer. The bit values in Flags are defined in standard module MACFS.

Location
A Point giving the position of the file’s icon in its folder.

Fldr
The folder the file is in (as an integer).

2.3 ic — Access to Internet Config

This module provides access to various internet-related preferences set through System Preferences or the Finder.

There is a low-level companion module icglue which provides the basic Internet Config access functionality. This
low-level module is not documented, but the docstrings of the routines document the parameters and the routine names
are the same as for the Pascal or C API to Internet Config, so the standard IC programmers’ documentation can be
used if this module is needed.

The ic module defines the error exception and symbolic names for all error codes Internet Config can produce; see
the source for details.

exception error
Exception raised on errors in the ic module.

The ic module defines the following class and function:

class IC([signature[, ic]])
Create an Internet Config object. The signature is a 4-character creator code of the current application
(default ’Pyth’) which may influence some of ICs settings. The optional ic argument is a low-level
icglue.icinstance created beforehand, this may be useful if you want to get preferences from a different
config file, etc.

launchurl(url[, hint])
parseurl(data[, start[, end[, hint]]])
mapfile(file)
maptypecreator(type, creator[, filename])
settypecreator(file)

These functions are “shortcuts” to the methods of the same name, described below.

2.3.1 IC Objects

IC objects have a mapping interface, hence to obtain the mail address you simply get ic[’MailAddress’]. As-
signment also works, and changes the option in the configuration file.

The module knows about various datatypes, and converts the internal IC representation to a “logical” Python data
structure. Running the ic module standalone will run a test program that lists all keys and values in your IC database,
this will have to serve as documentation.

8 Chapter 2. MacPython Modules

If the module does not know how to represent the data it returns an instance of the ICOpaqueData type, with the
raw data in its data attribute. Objects of this type are also acceptable values for assignment.

Besides the dictionary interface, IC objects have the following methods:

launchurl(url[, hint])
Parse the given URL, launch the correct application and pass it the URL. The optional hint can be a scheme
name such as ’mailto:’, in which case incomplete URLs are completed with this scheme. If hint is not
provided, incomplete URLs are invalid.

parseurl(data[, start[, end[, hint]]])
Find an URL somewhere in data and return start position, end position and the URL. The optional start and end
can be used to limit the search, so for instance if a user clicks in a long text field you can pass the whole text
field and the click-position in start and this routine will return the whole URL in which the user clicked. As
above, hint is an optional scheme used to complete incomplete URLs.

mapfile(file)
Return the mapping entry for the given file, which can be passed as either a filename or an FSSpec() result,
and which need not exist.

The mapping entry is returned as a tuple (version, type, creator, postcreator, flags, extension, app-
name, postappname, mimetype, entryname), where version is the entry version number, type is the 4-
character filetype, creator is the 4-character creator type, postcreator is the 4-character creator code of an
optional application to post-process the file after downloading, flags are various bits specifying whether to trans-
fer in binary or ascii and such, extension is the filename extension for this file type, appname is the printable
name of the application to which this file belongs, postappname is the name of the postprocessing application,
mimetype is the MIME type of this file and entryname is the name of this entry.

maptypecreator(type, creator[, filename])
Return the mapping entry for files with given 4-character type and creator codes. The optional filename may be
specified to further help finding the correct entry (if the creator code is ’????’, for instance).

The mapping entry is returned in the same format as for mapfile.

settypecreator(file)
Given an existing file, specified either as a filename or as an FSSpec() result, set its creator and type correctly
based on its extension. The finder is told about the change, so the finder icon will be updated quickly.

2.4 MacOS — Access to Mac OS interpreter features

This module provides access to MacOS specific functionality in the Python interpreter, such as how the interpreter
eventloop functions and the like. Use with care.

Note the capitalization of the module name; this is a historical artifact.

runtimemodel
Always ’macho’, from Python 2.4 on. In earlier versions of Python the value could also be ’ppc’ for the
classic Mac OS 8 runtime model or ’carbon’ for the Mac OS 9 runtime model.

linkmodel
The way the interpreter has been linked. As extension modules may be incompatible between linking models,
packages could use this information to give more decent error messages. The value is one of ’static’ for
a statically linked Python, ’framework’ for Python in a Mac OS X framework, ’shared’ for Python in a
standard unix shared library. Older Pythons could also have the value ’cfm’ for Mac OS 9-compatible Python.

exception Error
This exception is raised on MacOS generated errors, either from functions in this module or from other mac-
specific modules like the toolbox interfaces. The arguments are the integer error code (the OSErr value) and
a textual description of the error code. Symbolic names for all known error codes are defined in the standard

2.4. MacOS — Access to Mac OS interpreter features 9

module macerrors.

GetErrorString(errno)
Return the textual description of MacOS error code errno.

DebugStr(message [, object])
On Mac OS X the string is simply printed to stderr (on older Mac OS systems more elaborate functionality was
available), but it provides a convenient location to attach a breakpoint in a low-level debugger like gdb.

SysBeep()
Ring the bell.

GetTicks()
Get the number of clock ticks (1/60th of a second) since system boot.

GetCreatorAndType(file)
Return the file creator and file type as two four-character strings. The file parameter can be a pathname or an
FSSpec or FSRef object.

SetCreatorAndType(file, creator, type)
Set the file creator and file type. The file parameter can be a pathname or an FSSpec or FSRef object. creator
and type must be four character strings.

openrf(name [, mode])
Open the resource fork of a file. Arguments are the same as for the built-in function open(). The object
returned has file-like semantics, but it is not a Python file object, so there may be subtle differences.

WMAvailable()
Checks whether the current process has access to the window manager. The method will return False if
the window manager is not available, for instance when running on Mac OS X Server or when logged in via
ssh, or when the current interpreter is not running from a fullblown application bundle. A script runs from
an application bundle either when it has been started with pythonw instead of python or when running as an
applet.

2.5 macostools — Convenience routines for file manipulation

This module contains some convenience routines for file-manipulation on the Macintosh. All file parameters can be
specified as pathnames, FSRef or FSSpec objects. This module expects a filesystem which supports forked files, so
it should not be used on UFS partitions.

The macostools module defines the following functions:

copy(src, dst[, createpath[, copytimes]])
Copy file src to dst. If createpath is non-zero the folders leading to dst are created if necessary. The method
copies data and resource fork and some finder information (creator, type, flags) and optionally the creation,
modification and backup times (default is to copy them). Custom icons, comments and icon position are not
copied.

copytree(src, dst)
Recursively copy a file tree from src to dst, creating folders as needed. src and dst should be specified as
pathnames.

mkalias(src, dst)
Create a finder alias dst pointing to src.

touched(dst)
Tell the finder that some bits of finder-information such as creator or type for file dst has changed. The file can
be specified by pathname or fsspec. This call should tell the finder to redraw the files icon.

BUFSIZ

10 Chapter 2. MacPython Modules

The buffer size for copy, default 1 megabyte.

Note that the process of creating finder aliases is not specified in the Apple documentation. Hence, aliases created
with mkalias() could conceivably have incompatible behaviour in some cases.

2.6 findertools — The finder’s Apple Events interface

This module contains routines that give Python programs access to some functionality provided by the finder. They
are implemented as wrappers around the AppleEvent interface to the finder.

All file and folder parameters can be specified either as full pathnames, or as FSRef or FSSpec objects.

The findertools module defines the following functions:

launch(file)
Tell the finder to launch file. What launching means depends on the file: applications are started, folders are
opened and documents are opened in the correct application.

Print(file)
Tell the finder to print a file. The behaviour is identical to selecting the file and using the print command in the
finder’s file menu.

copy(file, destdir)
Tell the finder to copy a file or folder file to folder destdir. The function returns an Alias object pointing to
the new file.

move(file, destdir)
Tell the finder to move a file or folder file to folder destdir. The function returns an Alias object pointing to
the new file.

sleep()
Tell the finder to put the Macintosh to sleep, if your machine supports it.

restart()
Tell the finder to perform an orderly restart of the machine.

shutdown()
Tell the finder to perform an orderly shutdown of the machine.

2.7 EasyDialogs — Basic Macintosh dialogs

The EasyDialogs module contains some simple dialogs for the Macintosh. All routines take an optional resource
ID parameter id with which one can override the DLOG resource used for the dialog, provided that the dialog items
correspond (both type and item number) to those in the default DLOG resource. See source code for details.

The EasyDialogs module defines the following functions:

Message(str[, id[, ok]])
Displays a modal dialog with the message text str, which should be at most 255 characters long. The button text
defaults to “OK”, but is set to the string argument ok if the latter is supplied. Control is returned when the user
clicks the “OK” button.

AskString(prompt[, default[, id[, ok[, cancel]]]])
Asks the user to input a string value via a modal dialog. prompt is the prompt message, and the optional default
supplies the initial value for the string (otherwise "" is used). The text of the “OK” and “Cancel” buttons can be
changed with the ok and cancel arguments. All strings can be at most 255 bytes long. AskString() returns
the string entered or None in case the user cancelled.

2.6. findertools — The finder’s Apple Events interface 11

AskPassword(prompt[, default[, id[, ok[, cancel]]]])
Asks the user to input a string value via a modal dialog. Like AskString(), but with the text shown as bullets.
The arguments have the same meaning as for AskString().

AskYesNoCancel(question[, default[, yes[, no[, cancel[, id]]]]])
Presents a dialog with prompt question and three buttons labelled “Yes”, “No”, and “Cancel”. Returns 1 for
“Yes”, 0 for “No” and -1 for “Cancel”. The value of default (or 0 if default is not supplied) is returned when
the RETURN key is pressed. The text of the buttons can be changed with the yes, no, and cancel arguments; to
prevent a button from appearing, supply "" for the corresponding argument.

ProgressBar([title[, maxval[, label[, id]]]])
Displays a modeless progress-bar dialog. This is the constructor for the ProgressBar class described below.
title is the text string displayed (default “Working...”), maxval is the value at which progress is complete (default
0, indicating that an indeterminate amount of work remains to be done), and label is the text that is displayed
above the progress bar itself.

GetArgv([optionlist[commandlist[, addoldfile[, addnewfile[, addfolder[, id]]]]]])
Displays a dialog which aids the user in constructing a command-line argument list. Returns the list in
sys.argv format, suitable for passing as an argument to getopt.getopt(). addoldfile, addnewfile, and
addfolder are boolean arguments. When nonzero, they enable the user to insert into the command line paths to an
existing file, a (possibly) not-yet-existent file, and a folder, respectively. (Note: Option arguments must appear
in the command line before file and folder arguments in order to be recognized by getopt.getopt().) Ar-
guments containing spaces can be specified by enclosing them within single or double quotes. A SystemExit
exception is raised if the user presses the “Cancel” button.

optionlist is a list that determines a popup menu from which the allowed options are selected. Its items can
take one of two forms: optstr or (optstr, descr). When present, descr is a short descriptive string that is
displayed in the dialog while this option is selected in the popup menu. The correspondence between optstrs
and command-line arguments is:

optstr format Command-line format
x -x (short option)
x: or x= -x (short option with value)
xyz --xyz (long option)
xyz: or xyz= --xyz (long option with value)

commandlist is a list of items of the form cmdstr or (cmdstr, descr), where descr is as above. The cmdstrs
will appear in a popup menu. When chosen, the text of cmdstr will be appended to the command line as is,
except that a trailing ‘:’ or ‘=’ (if present) will be trimmed off.

New in version 2.0.

AskFileForOpen([message] [, typeList] [, defaultLocation] [, defaultOptionFlags] [, location] [, client-
Name] [, windowTitle] [, actionButtonLabel] [, cancelButtonLabel] [, preferenceKey] [,
popupExtension] [, eventProc] [, previewProc] [, filterProc] [, wanted])

Post a dialog asking the user for a file to open, and return the file selected or None if the user cancelled. message
is a text message to display, typeList is a list of 4-char filetypes allowable, defaultLocation is the pathname,
FSSpec or FSRef of the folder to show initially, location is the (x, y) position on the screen where the
dialog is shown, actionButtonLabel is a string to show instead of “Open” in the OK button, cancelButtonLabel
is a string to show instead of “Cancel” in the cancel button, wanted is the type of value wanted as a return: str,
unicode, FSSpec, FSRef and subtypes thereof are acceptable.

For a description of the other arguments please see the Apple Navigation Services documentation and the
EasyDialogs source code.

AskFileForSave([message] [, savedFileName] [, defaultLocation] [, defaultOptionFlags] [, location] [,
clientName] [, windowTitle] [, actionButtonLabel] [, cancelButtonLabel] [, preferenceKey
] [, popupExtension] [, fileType] [, fileCreator] [, eventProc] [, wanted])

Post a dialog asking the user for a file to save to, and return the file selected or None if the user cancelled.
savedFileName is the default for the file name to save to (the return value). See AskFileForOpen() for a
description of the other arguments.

12 Chapter 2. MacPython Modules

AskFolder([message] [, defaultLocation] [, defaultOptionFlags] [, location] [, clientName] [, windowTitle]
[, actionButtonLabel] [, cancelButtonLabel] [, preferenceKey] [, popupExtension] [, eventProc] [,
filterProc] [, wanted])

Post a dialog asking the user to select a folder, and return the folder selected or None if the user cancelled. See
AskFileForOpen() for a description of the arguments.

See Also:

Navigation Services Reference
(http://developer.apple.com/documentation/Carbon/Reference/Navigation Services Ref/)

Programmer’s reference documentation for the Navigation Services, a part of the Carbon framework.

2.7.1 ProgressBar Objects

ProgressBar objects provide support for modeless progress-bar dialogs. Both determinate (thermometer style) and
indeterminate (barber-pole style) progress bars are supported. The bar will be determinate if its maximum value is
greater than zero; otherwise it will be indeterminate. Changed in version 2.2: Support for indeterminate-style progress
bars was added.

The dialog is displayed immediately after creation. If the dialog’s “Cancel” button is pressed, or if Cmd-. or ESC is
typed, the dialog window is hidden and KeyboardInterrupt is raised (but note that this response does not occur
until the progress bar is next updated, typically via a call to inc() or set()). Otherwise, the bar remains visible
until the ProgressBar object is discarded.

ProgressBar objects possess the following attributes and methods:

curval
The current value (of type integer or long integer) of the progress bar. The normal access methods coerce
curval between 0 and maxval. This attribute should not be altered directly.

maxval
The maximum value (of type integer or long integer) of the progress bar; the progress bar (thermometer style) is
full when curval equals maxval. If maxval is 0, the bar will be indeterminate (barber-pole). This attribute
should not be altered directly.

title([newstr])
Sets the text in the title bar of the progress dialog to newstr.

label([newstr])
Sets the text in the progress box of the progress dialog to newstr.

set(value[, max])
Sets the progress bar’s curval to value, and also maxval to max if the latter is provided. value is first
coerced between 0 and maxval. The thermometer bar is updated to reflect the changes, including a change
from indeterminate to determinate or vice versa.

inc([n])
Increments the progress bar’s curval by n, or by 1 if n is not provided. (Note that n may be negative, in which
case the effect is a decrement.) The progress bar is updated to reflect the change. If the bar is indeterminate, this
causes one “spin” of the barber pole. The resulting curval is coerced between 0 and maxval if incrementing
causes it to fall outside this range.

2.8 FrameWork — Interactive application framework

The FrameWork module contains classes that together provide a framework for an interactive Macintosh application.
The programmer builds an application by creating subclasses that override various methods of the bases classes,
thereby implementing the functionality wanted. Overriding functionality can often be done on various different levels,

2.8. FrameWork — Interactive application framework 13

http://developer.apple.com/documentation/Carbon/Reference/Navigationprotect unhbox voidb@x kern .06emvbox {hrule width.55em}{}Servicesprotect unhbox voidb@x kern .06emvbox {hrule width.55em}{}Ref/

i.e. to handle clicks in a single dialog window in a non-standard way it is not necessary to override the complete event
handling.

Work on the FrameWork has pretty much stopped, now that PyObjC is available for full Cocoa access from Python,
and the documentation describes only the most important functionality, and not in the most logical manner at that.
Examine the source or the examples for more details. The following are some comments posted on the MacPython
newsgroup about the strengths and limitations of FrameWork:

The strong point of FrameWork is that it allows you to break into the control-flow at many different
places. W, for instance, uses a different way to enable/disable menus and that plugs right in leaving the rest
intact. The weak points of FrameWork are that it has no abstract command interface (but that shouldn’t
be difficult), that it’s dialog support is minimal and that it’s control/toolbar support is non-existent.

The FrameWork module defines the following functions:

Application()
An object representing the complete application. See below for a description of the methods. The default
init () routine creates an empty window dictionary and a menu bar with an apple menu.

MenuBar()
An object representing the menubar. This object is usually not created by the user.

Menu(bar, title[, after])
An object representing a menu. Upon creation you pass the MenuBar the menu appears in, the title string and
a position (1-based) after where the menu should appear (default: at the end).

MenuItem(menu, title[, shortcut, callback])
Create a menu item object. The arguments are the menu to create, the item title string and optionally the
keyboard shortcut and a callback routine. The callback is called with the arguments menu-id, item number
within menu (1-based), current front window and the event record.

Instead of a callable object the callback can also be a string. In this case menu selection causes the lookup of a
method in the topmost window and the application. The method name is the callback string with ’domenu ’
prepended.

Calling the MenuBar fixmenudimstate() method sets the correct dimming for all menu items based on
the current front window.

Separator(menu)
Add a separator to the end of a menu.

SubMenu(menu, label)
Create a submenu named label under menu menu. The menu object is returned.

Window(parent)
Creates a (modeless) window. Parent is the application object to which the window belongs. The window is not
displayed until later.

DialogWindow(parent)
Creates a modeless dialog window.

windowbounds(width, height)
Return a (left, top, right, bottom) tuple suitable for creation of a window of given width and height. The
window will be staggered with respect to previous windows, and an attempt is made to keep the whole window
on-screen. However, the window will however always be the exact size given, so parts may be offscreen.

setwatchcursor()
Set the mouse cursor to a watch.

setarrowcursor()
Set the mouse cursor to an arrow.

14 Chapter 2. MacPython Modules

2.8.1 Application Objects

Application objects have the following methods, among others:

makeusermenus()
Override this method if you need menus in your application. Append the menus to the attribute menubar.

getabouttext()
Override this method to return a text string describing your application. Alternatively, override the
do about() method for more elaborate “about” messages.

mainloop([mask[, wait]])
This routine is the main event loop, call it to set your application rolling. Mask is the mask of events you want
to handle, wait is the number of ticks you want to leave to other concurrent application (default 0, which is
probably not a good idea). While raising self to exit the mainloop is still supported it is not recommended: call
self. quit() instead.

The event loop is split into many small parts, each of which can be overridden. The default methods take
care of dispatching events to windows and dialogs, handling drags and resizes, Apple Events, events for non-
FrameWork windows, etc.

In general, all event handlers should return 1 if the event is fully handled and 0 otherwise (because the front
window was not a FrameWork window, for instance). This is needed so that update events and such can be
passed on to other windows like the Sioux console window. Calling MacOS.HandleEvent() is not allowed
within our dispatch or its callees, since this may result in an infinite loop if the code is called through the
Python inner-loop event handler.

asyncevents(onoff)
Call this method with a nonzero parameter to enable asynchronous event handling. This will tell the inner
interpreter loop to call the application event handler async dispatch whenever events are available. This will
cause FrameWork window updates and the user interface to remain working during long computations, but will
slow the interpreter down and may cause surprising results in non-reentrant code (such as FrameWork itself).
By default async dispatch will immediately call our dispatch but you may override this to handle only certain
events asynchronously. Events you do not handle will be passed to Sioux and such.

The old on/off value is returned.

quit()
Terminate the running mainloop() call at the next convenient moment.

do char(c, event)
The user typed character c. The complete details of the event can be found in the event structure. This method
can also be provided in a Window object, which overrides the application-wide handler if the window is front-
most.

do dialogevent(event)
Called early in the event loop to handle modeless dialog events. The default method simply dispatches the event
to the relevant dialog (not through the DialogWindow object involved). Override if you need special handling
of dialog events (keyboard shortcuts, etc).

idle(event)
Called by the main event loop when no events are available. The null-event is passed (so you can look at mouse
position, etc).

2.8.2 Window Objects

Window objects have the following methods, among others:

open()
Override this method to open a window. Store the MacOS window-id in self.wid and call the

2.8. FrameWork — Interactive application framework 15

do postopen() method to register the window with the parent application.

close()
Override this method to do any special processing on window close. Call the do postclose() method to
cleanup the parent state.

do postresize(width, height, macoswindowid)
Called after the window is resized. Override if more needs to be done than calling InvalRect.

do contentclick(local, modifiers, event)
The user clicked in the content part of a window. The arguments are the coordinates (window-relative), the key
modifiers and the raw event.

do update(macoswindowid, event)
An update event for the window was received. Redraw the window.

do activate(activate, event)
The window was activated (activate == 1) or deactivated (activate == 0). Handle things like focus high-
lighting, etc.

2.8.3 ControlsWindow Object

ControlsWindow objects have the following methods besides those of Window objects:

do controlhit(window, control, pcode, event)
Part pcode of control control was hit by the user. Tracking and such has already been taken care of.

2.8.4 ScrolledWindow Object

ScrolledWindow objects are ControlsWindow objects with the following extra methods:

scrollbars([wantx[, wanty]])
Create (or destroy) horizontal and vertical scrollbars. The arguments specify which you want (default: both).
The scrollbars always have minimum 0 and maximum 32767.

getscrollbarvalues()
You must supply this method. It should return a tuple (x, y) giving the current position of the scrollbars
(between 0 and 32767). You can return None for either to indicate the whole document is visible in that
direction.

updatescrollbars()
Call this method when the document has changed. It will call getscrollbarvalues() and update the
scrollbars.

scrollbar callback(which, what, value)
Supplied by you and called after user interaction. which will be ’x’ or ’y’, what will be ’-’, ’--’, ’set’,
’++’ or ’+’. For ’set’, value will contain the new scrollbar position.

scalebarvalues(absmin, absmax, curmin, curmax)
Auxiliary method to help you calculate values to return from getscrollbarvalues(). You pass document
minimum and maximum value and topmost (leftmost) and bottommost (rightmost) visible values and it returns
the correct number or None.

do activate(onoff, event)
Takes care of dimming/highlighting scrollbars when a window becomes frontmost. If you override this method,
call this one at the end of your method.

do postresize(width, height, window)
Moves scrollbars to the correct position. Call this method initially if you override it.

16 Chapter 2. MacPython Modules

do controlhit(window, control, pcode, event)
Handles scrollbar interaction. If you override it call this method first, a nonzero return value indicates the hit
was in the scrollbars and has been handled.

2.8.5 DialogWindow Objects

DialogWindow objects have the following methods besides those of Window objects:

open(resid)
Create the dialog window, from the DLOG resource with id resid. The dialog object is stored in self.wid.

do itemhit(item, event)
Item number item was hit. You are responsible for redrawing toggle buttons, etc.

2.9 autoGIL — Global Interpreter Lock handling in event loops

The autoGIL module provides a function installAutoGIL that automatically locks and unlocks Python’s Global
Interpreter Lock when running an event loop.

exception AutoGILError
Raised if the observer callback cannot be installed, for example because the current thread does not have a run
loop.

installAutoGIL()
Install an observer callback in the event loop (CFRunLoop) for the current thread, that will lock and unlock the
Global Interpreter Lock (GIL) at appropriate times, allowing other Python threads to run while the event loop is
idle.

Availability: OSX 10.1 or later.

2.9. autoGIL — Global Interpreter Lock handling in event loops 17

18

CHAPTER

THREE

MacPython OSA Modules

This chapter describes the current implementation of the Open Scripting Architecure (OSA, also commonly referred
to as AppleScript) for Python, allowing you to control scriptable applications from your Python program, and with a
fairly pythonic interface. Development on this set of modules has stopped, and a replacement is expected for Python
2.5.

For a description of the various components of AppleScript and OSA, and to get an understanding of the architecture
and terminology, you should read Apple’s documentation. The ”Applescript Language Guide” explains the conceptual
model and the terminology, and documents the standard suite. The ”Open Scripting Architecture” document explains
how to use OSA from an application programmers point of view. In the Apple Help Viewer these books are located in
the Developer Documentation, Core Technologies section.

As an example of scripting an application, the following piece of AppleScript will get the name of the frontmost
Finder window and print it:

tell application "Finder"
get name of window 1

end tell

In Python, the following code fragment will do the same:

import Finder

f = Finder.Finder()
print f.get(f.window(1).name)

As distributed the Python library includes packages that implement the standard suites, plus packages that interface to
a small number of common applications.

To send AppleEvents to an application you must first create the Python package interfacing to the terminology of the
application (what Script Editor calls the ”Dictionary”). This can be done from within the PythonIDE or by running
the ‘gensuitemodule.py’ module as a standalone program from the command line.

The generated output is a package with a number of modules, one for every suite used in the program plus an
init module to glue it all together. The Python inheritance graph follows the AppleScript inheritance graph,

so if a program’s dictionary specifies that it includes support for the Standard Suite, but extends one or two verbs with
extra arguments then the output suite will contain a module Standard Suite that imports and re-exports every-
thing from StdSuites.Standard Suite but overrides the methods that have extra functionality. The output of
gensuitemodule is pretty readable, and contains the documentation that was in the original AppleScript dictionary
in Python docstrings, so reading it is a good source of documentation.

19

The output package implements a main class with the same name as the package which contains all the AppleScript
verbs as methods, with the direct object as the first argument and all optional parameters as keyword arguments.
AppleScript classes are also implemented as Python classes, as are comparisons and all the other thingies.

The main Python class implementing the verbs also allows access to the properties and elements declared in the Ap-
pleScript class ”application”. In the current release that is as far as the object orientation goes, so in the example above
we need to use f.get(f.window(1).name) instead of the more Pythonic f.window(1).name.get().

If an AppleScript identifier is not a Python identifier the name is mangled according to a small number of rules:

� spaces are replaced with underscores

� other non-alphanumeric characters are replaced with xx where xx is the hexadecimal character value

� any Python reserved word gets an underscore appended

Python also has support for creating scriptable applications in Python, but The following modules are relevant to
MacPython AppleScript support:

gensuitemodule Create a stub package from an OSA dictionary
aetools Basic support for sending Apple Events
aepack Conversion between Python variables and AppleEvent data containers.
aetypes Python representation of the Apple Event Object Model.
MiniAEFrame Support to act as an Open Scripting Architecture (OSA) server (“Apple Events”).

In addition, support modules have been pre-generated for Finder, Terminal, Explorer, Netscape,
CodeWarrior, SystemEvents and StdSuites.

3.1 gensuitemodule — Generate OSA stub packages

The gensuitemodule module creates a Python package implementing stub code for the AppleScript suites that are
implemented by a specific application, according to its AppleScript dictionary.

It is usually invoked by the user through the PythonIDE, but it can also be run as a script from the command line (pass -
-help for help on the options) or imported from Python code. For an example of its use see ‘Mac/scripts/genallsuites.py’
in a source distribution, which generates the stub packages that are included in the standard library.

It defines the following public functions:

is scriptable(application)
Returns true if application, which should be passed as a pathname, appears to be scriptable. Take the return
value with a grain of salt: Internet Explorer appears not to be scriptable but definitely is.

processfile(application[, output, basepkgname, edit modnames, creatorsignature, dump, verbose])
Create a stub package for application, which should be passed as a full pathname. For a ‘.app’ bundle this
is the pathname to the bundle, not to the executable inside the bundle; for an unbundled CFM application you
pass the filename of the application binary.

This function asks the application for its OSA terminology resources, decodes these resources and uses the
resultant data to create the Python code for the package implementing the client stubs.

output is the pathname where the resulting package is stored, if not specified a standard ”save file as”
dialog is presented to the user. basepkgname is the base package on which this package will build,
and defaults to StdSuites. Only when generating StdSuites itself do you need to specify this.
edit modnames is a dictionary that can be used to change modulenames that are too ugly after name man-
gling. creator signature can be used to override the 4-char creator code, which is normally obtained
from the ‘PkgInfo’ file in the package or from the CFM file creator signature. When dump is given it should

20 Chapter 3. MacPython OSA Modules

refer to a file object, and processfile will stop after decoding the resources and dump the Python repre-
sentation of the terminology resources to this file. verbose should also be a file object, and specifying it will
cause processfile to tell you what it is doing.

processfile fromresource(application[, output, basepkgname, edit modnames, creatorsignature, dump,
verbose])

This function does the same as processfile, except that it uses a different method to get the terminology
resources. It opens application as a resource file and reads all "aete" and "aeut" resources from this
file.

3.2 aetools — OSA client support

The aetools module contains the basic functionality on which Python AppleScript client support is built. It also
imports and re-exports the core functionality of the aetypes and aepack modules. The stub packages generated
by gensuitemodule import the relevant portions of aetools, so usually you do not need to import it yourself.
The exception to this is when you cannot use a generated suite package and need lower-level access to scripting.

The aetools module itself uses the AppleEvent support provided by the Carbon.AE module. This has one draw-
back: you need access to the window manager, see section 1.1.2 for details. This restriction may be lifted in future
releases.

The aetools module defines the following functions:

packevent(ae, parameters, attributes)
Stores parameters and attributes in a pre-created Carbon.AE.AEDesc object. parameters and
attributes are dictionaries mapping 4-character OSA parameter keys to Python objects. The objects are
packed using aepack.pack().

unpackevent(ae[, formodulename])
Recursively unpacks a Carbon.AE.AEDesc event to Python objects. The function returns the parameter
dictionary and the attribute dictionary. The formodulename argument is used by generated stub packages to
control where AppleScript classes are looked up.

keysubst(arguments, keydict)
Converts a Python keyword argument dictionary arguments to the format required by packevent by replac-
ing the keys, which are Python identifiers, by the four-character OSA keys according to the mapping specified
in keydict. Used by the generated suite packages.

enumsubst(arguments, key, edict)
If the arguments dictionary contains an entry for key convert the value for that entry according to dictionary
edict. This converts human-readable Python enumeration names to the OSA 4-character codes. Used by the
generated suite packages.

The aetools module defines the following class:

class TalkTo([signature=None, start=0, timeout=0])
Base class for the proxy used to talk to an application. signature overrides the class attribute signature
(which is usually set by subclasses) and is the 4-char creator code defining the application to talk to. start
can be set to true to enable running the application on class instantiation. timeout can be specified to change
the default timeout used while waiting for an AppleEvent reply.

start()
Test whether the application is running, and attempt to start it if not.

send(code, subcode[, parameters, attributes])
Create the AppleEvent Carbon.AE.AEDesc for the verb with the OSA designation code, subcode
(which are the usual 4-character strings), pack the parameters and attributes into it, send it to the
target application, wait for the reply, unpack the reply with unpackevent and return the reply appleevent, the

3.2. aetools — OSA client support 21

unpacked return values as a dictionary and the return attributes.

3.3 aepack — Conversion between Python variables and AppleEvent
data containers

The aepack module defines functions for converting (packing) Python variables to AppleEvent descriptors and back
(unpacking). Within Python the AppleEvent descriptor is handled by Python objects of built-in type AEDesc, defined
in module Carbon.AE.

The aepack module defines the following functions:

pack(x[, forcetype])
Returns an AEDesc object containing a conversion of Python value x. If forcetype is provided it specifies the
descriptor type of the result. Otherwise, a default mapping of Python types to Apple Event descriptor types is
used, as follows:

Python type descriptor type
FSSpec typeFSS
FSRef typeFSRef
Alias typeAlias
integer typeLong (32 bit integer)
float typeFloat (64 bit floating point)
string typeText
unicode typeUnicodeText
list typeAEList
dictionary typeAERecord
instance see below

If x is a Python instance then this function attempts to call an aepack () method. This method should
return an AEDesc object.

If the conversion x is not defined above, this function returns the Python string representation of a value (the
repr() function) encoded as a text descriptor.

unpack(x[, formodulename])
x must be an object of type AEDesc. This function returns a Python object representation of the data in the Apple
Event descriptor x. Simple AppleEvent data types (integer, text, float) are returned as their obvious Python coun-
terparts. Apple Event lists are returned as Python lists, and the list elements are recursively unpacked. Object
references (ex. line 3 of document 1) are returned as instances of aetypes.ObjectSpecifier,
unless formodulename is specified. AppleEvent descriptors with descriptor type typeFSS are returned as
FSSpec objects. AppleEvent record descriptors are returned as Python dictionaries, with 4-character string
keys and elements recursively unpacked.

The optional formodulename argument is used by the stub packages generated by gensuitemodule, and
ensures that the OSA classes for object specifiers are looked up in the correct module. This ensures that if, say,
the Finder returns an object specifier for a window you get an instance of Finder.Window and not a generic
aetypes.Window. The former knows about all the properties and elements a window has in the Finder, while
the latter knows no such things.

See Also:

Module Carbon.AE (section 4.1):
Built-in access to Apple Event Manager routines.

Module aetypes (section 3.4):
Python definitions of codes for Apple Event descriptor types.

Inside Macintosh: Interapplication Communication

22 Chapter 3. MacPython OSA Modules

(http://developer.apple.com/techpubs/mac/IAC/IAC-2.html)
Information about inter-process communications on the Macintosh.

3.4 aetypes — AppleEvent objects

The aetypes defines classes used to represent Apple Event data descriptors and Apple Event object specifiers.

Apple Event data is contained in descriptors, and these descriptors are typed. For many descriptors the Python repre-
sentation is simply the corresponding Python type: typeText in OSA is a Python string, typeFloat is a float, etc.
For OSA types that have no direct Python counterpart this module declares classes. Packing and unpacking instances
of these classes is handled automatically by aepack.

An object specifier is essentially an address of an object implemented in a Apple Event server. An Apple Event spec-
ifier is used as the direct object for an Apple Event or as the argument of an optional parameter. The aetypes
module contains the base classes for OSA classes and properties, which are used by the packages generated by
gensuitemodule to populate the classes and properties in a given suite.

For reasons of backward compatibility, and for cases where you need to script an application for which you have not
generated the stub package this module also contains object specifiers for a number of common OSA classes such as
Document, Window, Character, etc.

The AEObjects module defines the following classes to represent Apple Event descriptor data:

class Unknown(type, data)
The representation of OSA descriptor data for which the aepack and aetypes modules have no support, i.e.
anything that is not represented by the other classes here and that is not equivalent to a simple Python value.

class Enum(enum)
An enumeration value with the given 4-character string value.

class InsertionLoc(of, pos)
Position pos in object of.

class Boolean(bool)
A boolean.

class StyledText(style, text)
Text with style information (font, face, etc) included.

class AEText(script, style, text)
Text with script system and style information included.

class IntlText(script, language, text)
Text with script system and language information included.

class IntlWritingCode(script, language)
Script system and language information.

class QDPoint(v, h)
A quickdraw point.

class QDRectangle(v0, h0, v1, h1)
A quickdraw rectangle.

class RGBColor(r, g, b)
A color.

class Type(type)
An OSA type value with the given 4-character name.

class Keyword(name)

3.4. aetypes — AppleEvent objects 23

http://developer.apple.com/techpubs/mac/IAC/IAC-2.html

An OSA keyword with the given 4-character name.

class Range(start, stop)
A range.

class Ordinal(abso)
Non-numeric absolute positions, such as "firs", first, or "midd", middle.

class Logical(logc, term)
The logical expression of applying operator logc to term.

class Comparison(obj1, relo, obj2)
The comparison relo of obj1 to obj2.

The following classes are used as base classes by the generated stub packages to represent AppleScript classes and
properties in Python:

class ComponentItem(which[, fr])
Abstract baseclass for an OSA class. The subclass should set the class attribute want to the 4-character OSA
class code. Instances of subclasses of this class are equivalent to AppleScript Object Specifiers. Upon instanti-
ation you should pass a selector in which, and optionally a parent object in fr.

class NProperty(fr)
Abstract baseclass for an OSA property. The subclass should set the class attributes want and which to
designate which property we are talking about. Instances of subclasses of this class are Object Specifiers.

class ObjectSpecifier(want, form, seld[, fr])
Base class of ComponentItem and NProperty, a general OSA Object Specifier. See the Apple Open
Scripting Architecture documentation for the parameters. Note that this class is not abstract.

3.5 MiniAEFrame — Open Scripting Architecture server support

The module MiniAEFrame provides a framework for an application that can function as an Open Scripting Ar-
chitecture (OSA) server, i.e. receive and process AppleEvents. It can be used in conjunction with FrameWork or
standalone. As an example, it is used in PythonCGISlave.

The MiniAEFrame module defines the following classes:

class AEServer()
A class that handles AppleEvent dispatch. Your application should subclass this class together with ei-
ther MiniApplication or FrameWork.Application. Your init () method should call the
init () method for both classes.

class MiniApplication()
A class that is more or less compatible with FrameWork.Application but with less functionality. Its
event loop supports the apple menu, command-dot and AppleEvents; other events are passed on to the Python
interpreter and/or Sioux. Useful if your application wants to use AEServer but does not provide its own
windows, etc.

3.5.1 AEServer Objects

installaehandler(classe, type, callback)
Installs an AppleEvent handler. classe and type are the four-character OSA Class and Type designators, ’****’
wildcards are allowed. When a matching AppleEvent is received the parameters are decoded and your callback
is invoked.

callback(object, **kwargs)
Your callback is called with the OSA Direct Object as first positional parameter. The other parameters are

24 Chapter 3. MacPython OSA Modules

passed as keyword arguments, with the 4-character designator as name. Three extra keyword parameters are
passed: class and type are the Class and Type designators and attributes is a dictionary with the
AppleEvent attributes.

The return value of your method is packed with aetools.packevent() and sent as reply.

Note that there are some serious problems with the current design. AppleEvents which have non-identifier 4-character
designators for arguments are not implementable, and it is not possible to return an error to the originator. This will
be addressed in a future release.

3.5. MiniAEFrame — Open Scripting Architecture server support 25

26

CHAPTER

FOUR

MacOS Toolbox Modules

There are a set of modules that provide interfaces to various MacOS toolboxes. If applicable the module will define
a number of Python objects for the various structures declared by the toolbox, and operations will be implemented as
methods of the object. Other operations will be implemented as functions in the module. Not all operations possible
in C will also be possible in Python (callbacks are often a problem), and parameters will occasionally be different
in Python (input and output buffers, especially). All methods and functions have a doc string describing their
arguments and return values, and for additional description you are referred to Inside Macintosh or similar works.

These modules all live in a package called Carbon. Despite that name they are not all part of the Carbon framework:
CF is really in the CoreFoundation framework and Qt is in the QuickTime framework. The normal use pattern is

from Carbon import AE

Warning! These modules are not yet documented. If you wish to contribute documentation of any of these modules,
please get in touch with docs@python.org.

Carbon.AE Interface to the Apple Events toolbox.
Carbon.AH Interface to the Apple Help manager.
Carbon.App Interface to the Appearance Manager.
Carbon.CF Interface to the Core Foundation.
Carbon.CG Interface to the Component Manager.
Carbon.CaronEvt Interface to the Carbon Event Manager.
Carbon.Cm Interface to the Component Manager.
Carbon.Ctl Interface to the Control Manager.
Carbon.Dlg Interface to the Dialog Manager.
Carbon.Evt Interface to the classic Event Manager.
Carbon.Fm Interface to the Font Manager.
Carbon.Folder Interface to the Folder Manager.
Carbon.Help Interface to the Carbon Help Manager.
Carbon.List Interface to the List Manager.
Carbon.Menu Interface to the Menu Manager.
Carbon.Mlte Interface to the MultiLingual Text Editor.
Carbon.Qd Interface to the QuickDraw toolbox.
Carbon.Qdoffs Interface to the QuickDraw Offscreen APIs.
Carbon.Qt Interface to the QuickTime toolbox.
Carbon.Res Interface to the Resource Manager and Handles.
Carbon.Scrap Interface to the Carbon Scrap Manager.
Carbon.Snd Interface to the Sound Manager.
Carbon.TE Interface to TextEdit.
Carbon.Win Interface to the Window Manager.
ColorPicker Interface to the standard color selection dialog.

27

http://developer.apple.com/documentation/macos8/mac8.html

4.1 Carbon.AE — Apple Events

4.2 Carbon.AH — Apple Help

4.3 Carbon.App — Appearance Manager

4.4 Carbon.CF — Core Foundation

The CFBase, CFArray, CFData, CFDictionary, CFString and CFURL objects are supported, some only
partially.

28 Chapter 4. MacOS Toolbox Modules

4.5 Carbon.CG — Core Graphics

4.6 Carbon.CarbonEvt — Carbon Event Manager

4.7 Carbon.Cm — Component Manager

4.8 Carbon.Ctl — Control Manager

4.9 Carbon.Dlg — Dialog Manager

4.10 Carbon.Evt — Event Manager

4.11 Carbon.Fm — Font Manager

4.12 Carbon.Folder — Folder Manager

4.13 Carbon.Help — Help Manager

4.14 Carbon.List — List Manager

4.15 Carbon.Menu — Menu Manager

4.16 Carbon.Mlte — MultiLingual Text Editor

4.17 Carbon.Qd — QuickDraw

4.18 Carbon.Qdoffs — QuickDraw Offscreen

4.19 Carbon.Qt — QuickTime

4.20 Carbon.Res — Resource Manager and Handles

4.21 Carbon.Scrap — Scrap Manager

4.22 Carbon.Snd — Sound Manager

4.23 Carbon.TE — TextEdit

4.24 Carbon.Win — Window Manager

4.25 ColorPicker — Color selection dialog
4.5. Carbon.CG — Core Graphics 29

The ColorPicker module provides access to the standard color picker dialog.

GetColor(prompt, rgb)
Show a standard color selection dialog and allow the user to select a color. The user is given instruction by the
prompt string, and the default color is set to rgb. rgb must be a tuple giving the red, green, and blue components
of the color. GetColor() returns a tuple giving the user’s selected color and a flag indicating whether they
accepted the selection of cancelled.

30 Chapter 4. MacOS Toolbox Modules

CHAPTER

FIVE

Undocumented Modules

The modules in this chapter are poorly documented (if at all). If you wish to contribute documentation of any of these
modules, please get in touch with docs@python.org.

applesingle Rudimentary decoder for AppleSingle format files.
buildtools Helper module for BuildApplet, BuildApplication and macfreeze.
cfmfile Code Fragment Resource module.
icopen Internet Config replacement for open().
macerrors Constant definitions for many Mac OS error codes.
macresource Locate script resources.
Nav Interface to Navigation Services.
PixMapWrapper Wrapper for PixMap objects.
videoreader Read QuickTime movies frame by frame for further processing.
W Widgets for the Mac, built on top of FrameWork.
waste Interface to the “WorldScript-Aware Styled Text Engine.”

5.1 applesingle — AppleSingle decoder

5.2 buildtools — Helper module for BuildApplet and Friends

Deprecated since release 2.4.

5.3 cfmfile — Code Fragment Resource module

cfmfile is a module that understands Code Fragments and the accompanying “cfrg” resources. It can parse them
and merge them, and is used by BuildApplication to combine all plugin modules to a single executable.

Deprecated since release 2.4.

5.4 icopen — Internet Config replacement for open()

Importing icopen will replace the builtin open() with a version that uses Internet Config to set file type and creator
for new files.

5.5 macerrors — Mac OS Errors

31

mailto:docs@python.org

macerrors contains constant definitions for many Mac OS error codes.

5.6 macresource — Locate script resources

macresource helps scripts finding their resources, such as dialogs and menus, without requiring special case code
for when the script is run under MacPython, as a MacPython applet or under OSX Python.

5.7 Nav — NavServices calls

A low-level interface to Navigation Services.

5.8 PixMapWrapper — Wrapper for PixMap objects

PixMapWrapper wraps a PixMap object with a Python object that allows access to the fields by name. It also has
methods to convert to and from PIL images.

5.9 videoreader — Read QuickTime movies

videoreader reads and decodes QuickTime movies and passes a stream of images to your program. It also provides
some support for audio tracks.

5.10 W — Widgets built on FrameWork

The W widgets are used extensively in the IDE.

5.11 waste — non-Apple TextEdit replacement

See Also:

About WASTE
(http://www.merzwaren.com/waste/)

Information about the WASTE widget and library, including documentation and downloads.

32 Chapter 5. Undocumented Modules

http://www.merzwaren.com/waste/

APPENDIX

A

History and License

A.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see http://www.python.org/psf/) was formed, a
non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

33

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no

1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes

2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes

2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
2.4.4 2.4.3 2006 PSF yes
2.5 2.4 2006 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

A.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.4.4

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 2.4.4 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.4.4 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright c 2001-2006 Python Software
Foundation; All Rights Reserved” are retained in Python 2.4.4 alone or in any derivative version prepared by
Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.4.4 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.4.4.

4. PSF is making Python 2.4.4 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,

34 Appendix A. History and License

PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.4.4 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.4.4 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.4.4, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.4.4, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

A.2. Terms and conditions for accessing or otherwise using Python 35

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright c 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright c 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

36 Appendix A. History and License

http://hdl.handle.net/1895.22/1013

A.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

A.3.1 Mersenne Twister

The random module includes code based on a download from http://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

A.3. Licenses and Acknowledgements for Incorporated Software 37

http://www.math.keio.ac.jp/protect unhbox voidb@x penalty @M {}matumoto/MT2002/emt19937ar.html
http://www.math.keio.ac.jp/protect unhbox voidb@x penalty @M {}matumoto/MT2002/emt19937ar.html

A.3.2 Sockets

The socket module uses the functions, getaddrinfo, and getnameinfo, which are coded in separate source
files from the WIDE Project, http://www.wide.ad.jp/about/index.html.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

A.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

38 Appendix A. History and License

http://www.wide.ad.jp/about/index.html

/ Copyright (c) 1996. \
| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

A.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

A.3. Licenses and Acknowledgements for Incorporated Software 39

Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.

A.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

A.3.6 Cookie management

The Cookie module contains the following notice:

40 Appendix A. History and License

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

A.3.7 Profiling

The profile and pstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the software
to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

A.3. Licenses and Acknowledgements for Incorporated Software 41

A.3.8 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

A.3.9 UUencode and UUdecode functions

The uu module contains the following notice:

42 Appendix A. History and License

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

A.3.10 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

A.3. Licenses and Acknowledgements for Incorporated Software 43

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

44 Appendix A. History and License

MODULE INDEX

A
aepack, 22
aetools, 21
aetypes, 23
applesingle, 31
autoGIL, 17

B
buildtools, 31

C
Carbon.AE, 28
Carbon.AH, 28
Carbon.App, 28
Carbon.CaronEvt, 29
Carbon.CF, 28
Carbon.CG, 29
Carbon.Cm, 29
Carbon.Ctl, 29
Carbon.Dlg, 29
Carbon.Evt, 29
Carbon.Fm, 29
Carbon.Folder, 29
Carbon.Help, 29
Carbon.List, 29
Carbon.Menu, 29
Carbon.Mlte, 29
Carbon.Qd, 29
Carbon.Qdoffs, 29
Carbon.Qt, 29
Carbon.Res, 29
Carbon.Scrap, 29
Carbon.Snd, 29
Carbon.TE, 29
Carbon.Win, 29
cfmfile, 31
ColorPicker, 29

E
EasyDialogs, 11

F
findertools, 11
FrameWork, 13

G
gensuitemodule, 20

I
ic, 8
icopen, 31

M
macerrors, 31
macfs, 5
MacOS, 9
macostools, 10
macpath, 5
macresource, 32
MiniAEFrame, 24

N
Nav, 32

P
PixMapWrapper, 32

V
videoreader, 32

W
W, 32
waste, 32

45

46

INDEX

Symbols
quit() (Application method), 15
start() (TalkTo method), 21

A
aepack (standard module), 22
AEServer (class in MiniAEFrame), 24
AEText (class in aetypes), 23
aetools (standard module), 21
aetypes (standard module), 23
Alias Manager, Macintosh, 5
AppleEvents, 11, 24
applesingle (standard module), 31
Application() (in module FrameWork), 14
as pathname() (FSSpec method), 7
as tuple() (FSSpec method), 7
AskFileForOpen() (in module EasyDialogs), 12
AskFileForSave() (in module EasyDialogs), 12
AskFolder() (in module EasyDialogs), 13
AskPassword() (in module EasyDialogs), 12
AskString() (in module EasyDialogs), 11
AskYesNoCancel() (in module EasyDialogs), 12
asyncevents() (Application method), 15
autoGIL (extension module), 17
AutoGILError (exception in autoGIL), 17

B
Boolean (class in aetypes), 23
BUFSIZ (data in macostools), 10
buildtools (standard module), 31

C
callback() (AEServer method), 24
Carbon.AE (standard module), 28
Carbon.AH (standard module), 28
Carbon.App (standard module), 28
Carbon.CaronEvt (standard module), 29
Carbon.CF (standard module), 28
Carbon.CG (standard module), 29
Carbon.Cm (standard module), 29
Carbon.Ctl (standard module), 29

Carbon.Dlg (standard module), 29
Carbon.Evt (standard module), 29
Carbon.Fm (standard module), 29
Carbon.Folder (standard module), 29
Carbon.Help (standard module), 29
Carbon.List (standard module), 29
Carbon.Menu (standard module), 29
Carbon.Mlte (standard module), 29
Carbon.Qd (built-in module), 29
Carbon.Qdoffs (built-in module), 29
Carbon.Qt (standard module), 29
Carbon.Res (standard module), 29
Carbon.Scrap (standard module), 29
Carbon.Snd (standard module), 29
Carbon.TE (standard module), 29
Carbon.Win (standard module), 29
cfmfile (standard module), 31
close() (Window method), 16
ColorPicker (extension module), 29
Comparison (class in aetypes), 24
ComponentItem (class in aetypes), 24
copy()

in module findertools, 11
in module macostools, 10

copytree() (in module macostools), 10
Creator (FInfo attribute), 8
curval (ProgressBar attribute), 13

D
data

Alias attribute, 7
FSSpec attribute, 7

DebugStr() (in module MacOS), 10
DialogWindow() (in module FrameWork), 14
do activate()

method, 16
ScrolledWindow method, 16

do char() (Application method), 15
do contentclick() (Window method), 16
do controlhit()

ControlsWindow method, 16

47

ScrolledWindow method, 17
do dialogevent() (Application method), 15
do itemhit() (DialogWindow method), 17
do postresize()

ScrolledWindow method, 16
Window method, 16

do update() (Window method), 16

E
EasyDialogs (standard module), 11
Enum (class in aetypes), 23
enumsubst() (in module aetools), 21
environment variables

PYTHONPATH, 2
Error (exception in MacOS), 9
error (exception in ic), 8

F
FindApplication() (in module macfs), 6
findertools (standard module), 11
FindFolder() (in module macfs), 6
FInfo() (in module macfs), 6
Flags (FInfo attribute), 8
Fldr (FInfo attribute), 8
FrameWork (standard module), 13, 24
FSSpec() (in module macfs), 5

G
gensuitemodule (standard module), 20
getabouttext() (Application method), 15
GetArgv() (in module EasyDialogs), 12
GetColor() (in module ColorPicker), 30
GetCreatorAndType() (in module MacOS), 10
GetCreatorType() (FSSpec method), 7
GetDates() (FSSpec method), 7
GetDirectory() (in module macfs), 6
GetErrorString() (in module MacOS), 10
GetFInfo() (FSSpec method), 7
GetInfo() (Alias method), 7
getscrollbarvalues() (ScrolledWindow

method), 16
GetTicks() (in module MacOS), 10

I
IC (class in ic), 8
ic (built-in module), 8
icglue (built-in module), 8
icopen (standard module), 31
idle() (Application method), 15
inc() (ProgressBar method), 13
InsertionLoc (class in aetypes), 23
installaehandler() (AEServer method), 24
installAutoGIL() (in module autoGIL), 17

IntlText (class in aetypes), 23
IntlWritingCode (class in aetypes), 23
is scriptable() (in module gensuitemodule), 20

K
keysubst() (in module aetools), 21
Keyword (class in aetypes), 23

L
label() (ProgressBar method), 13
launch() (in module findertools), 11
launchurl()

IC method, 9
in module ic, 8

linkmodel (data in MacOS), 9
Location (FInfo attribute), 8
Logical (class in aetypes), 24

M
macerrors (standard module), 10, 31
macfs (standard module), 5
Macintosh Alias Manager, 5
MacOS (built-in module), 9
macostools (standard module), 10
macpath (standard module), 5
macresource (standard module), 32
mainloop() (Application method), 15
makeusermenus() (Application method), 15
mapfile()

IC method, 9
in module ic, 8

maptypecreator()
IC method, 9
in module ic, 8

maxval (ProgressBar attribute), 13
Menu() (in module FrameWork), 14
MenuBar() (in module FrameWork), 14
MenuItem() (in module FrameWork), 14
Message() (in module EasyDialogs), 11
MiniAEFrame (standard module), 24
MiniApplication (class in MiniAEFrame), 24
mkalias() (in module macostools), 10
move() (in module findertools), 11

N
Nav (standard module), 32
Navigation Services, 12
NewAlias() (FSSpec method), 7
NewAliasMinimal() (FSSpec method), 7
NewAliasMinimalFromFullPath() (in module

macfs), 6
NProperty (class in aetypes), 24

48 Index

O
ObjectSpecifier (class in aetypes), 24
open()

DialogWindow method, 17
Window method, 15

Open Scripting Architecture, 24
openrf() (in module MacOS), 10
Ordinal (class in aetypes), 24

P
pack() (in module aepack), 22
packevent() (in module aetools), 21
parseurl()

IC method, 9
in module ic, 8

PixMapWrapper (standard module), 32
Print() (in module findertools), 11
processfile() (in module gensuitemodule), 20
processfile fromresource() (in module gen-

suitemodule), 21
ProgressBar() (in module EasyDialogs), 12
PromptGetFile() (in module macfs), 6
PYTHONPATH, 2

Q
QDPoint (class in aetypes), 23
QDRectangle (class in aetypes), 23

R
Range (class in aetypes), 24
RawAlias() (in module macfs), 6
RawFSSpec() (in module macfs), 6
Resolve() (Alias method), 7
ResolveAliasFile() (in module macfs), 6
restart() (in module findertools), 11
RGBColor (class in aetypes), 23
runtimemodel (data in MacOS), 9

S
scalebarvalues() (ScrolledWindow method), 16
scrollbar callback() (ScrolledWindow

method), 16
scrollbars() (ScrolledWindow method), 16
send() (TalkTo method), 21
Separator() (in module FrameWork), 14
set() (ProgressBar method), 13
setarrowcursor() (in module FrameWork), 14
SetCreatorAndType() (in module MacOS), 10
SetCreatorType() (FSSpec method), 7
SetDates() (FSSpec method), 7
SetFInfo() (FSSpec method), 7
SetFolder() (in module macfs), 6
settypecreator()

IC method, 9
in module ic, 8

setwatchcursor() (in module FrameWork), 14
shutdown() (in module findertools), 11
sleep() (in module findertools), 11
Standard File, 5
StandardGetFile() (in module macfs), 6
StandardPutFile() (in module macfs), 6
StyledText (class in aetypes), 23
SubMenu() (in module FrameWork), 14
SysBeep() (in module MacOS), 10

T
TalkTo (class in aetools), 21
title() (ProgressBar method), 13
touched() (in module macostools), 10
Type

class in aetypes, 23
FInfo attribute, 8

U
Unknown (class in aetypes), 23
unpack() (in module aepack), 22
unpackevent() (in module aetools), 21
Update() (Alias method), 7
updatescrollbars() (ScrolledWindow method),

16

V
videoreader (standard module), 32

W
W (standard module), 32
waste (standard module), 32
Window() (in module FrameWork), 14
windowbounds() (in module FrameWork), 14
WMAvailable() (in module MacOS), 10

Index 49

	1 Using Python on a Macintosh
	1.1 Getting and Installing MacPython
	1.1.1 How to run a Python script
	1.1.2 Running scripts with a GUI
	1.1.3 configuration

	1.2 The IDE
	1.2.1 Using the ``Python Interactive'' window
	1.2.2 Writing a Python Script
	1.2.3 Executing a script from within the IDE
	1.2.4 ``Save as'' versus ``Save as Applet''

	1.3 The Package Manager

	2 MacPython Modules
	2.1 macpath --- MacOS path manipulation functions
	2.2 macfs --- Various file system services
	2.2.1 FSSpec Objects
	2.2.2 Alias Objects
	2.2.3 FInfo Objects

	2.3 ic --- Access to Internet Config
	2.3.1 IC Objects

	2.4 MacOS --- Access to Mac OS interpreter features
	2.5 macostools --- Convenience routines for file manipulation
	2.6 findertools --- The finder's Apple Events interface
	2.7 EasyDialogs --- Basic Macintosh dialogs
	2.7.1 ProgressBar Objects

	2.8 FrameWork --- Interactive application framework
	2.8.1 Application Objects
	2.8.2 Window Objects
	2.8.3 ControlsWindow Object
	2.8.4 ScrolledWindow Object
	2.8.5 DialogWindow Objects

	2.9 autoGIL --- Global Interpreter Lock handling in event loops

	3 MacPython OSA Modules
	3.1 gensuitemodule --- Generate OSA stub packages
	3.2 aetools --- OSA client support
	3.3 aepack --- Conversion between Python variables and AppleEvent data containers
	3.4 aetypes --- AppleEvent objects
	3.5 MiniAEFrame --- Open Scripting Architecture server support
	3.5.1 AEServer Objects

	4 MacOS Toolbox Modules
	4.1 Carbon.AE --- Apple Events
	4.2 Carbon.AH --- Apple Help
	4.3 Carbon.App --- Appearance Manager
	4.4 Carbon.CF --- Core Foundation
	4.5 Carbon.CG --- Core Graphics
	4.6 Carbon.CarbonEvt --- Carbon Event Manager
	4.7 Carbon.Cm --- Component Manager
	4.8 Carbon.Ctl --- Control Manager
	4.9 Carbon.Dlg --- Dialog Manager
	4.10 Carbon.Evt --- Event Manager
	4.11 Carbon.Fm --- Font Manager
	4.12 Carbon.Folder --- Folder Manager
	4.13 Carbon.Help --- Help Manager
	4.14 Carbon.List --- List Manager
	4.15 Carbon.Menu --- Menu Manager
	4.16 Carbon.Mlte --- MultiLingual Text Editor
	4.17 Carbon.Qd --- QuickDraw
	4.18 Carbon.Qdoffs --- QuickDraw Offscreen
	4.19 Carbon.Qt --- QuickTime
	4.20 Carbon.Res --- Resource Manager and Handles
	4.21 Carbon.Scrap --- Scrap Manager
	4.22 Carbon.Snd --- Sound Manager
	4.23 Carbon.TE --- TextEdit
	4.24 Carbon.Win --- Window Manager
	4.25 ColorPicker --- Color selection dialog

	5 Undocumented Modules
	5.1 applesingle --- AppleSingle decoder
	5.2 buildtools --- Helper module for BuildApplet and Friends
	5.3 cfmfile --- Code Fragment Resource module
	5.4 icopen --- Internet Config replacement for open()
	5.5 macerrors --- Mac OS Errors
	5.6 macresource --- Locate script resources
	5.7 Nav --- NavServices calls
	5.8 PixMapWrapper --- Wrapper for PixMap objects
	5.9 videoreader --- Read QuickTime movies
	5.10 W --- Widgets built on FrameWork
	5.11 waste --- non-Apple TextEdit replacement

	A History and License
	A.1 History of the software
	A.2 Terms and conditions for accessing or otherwise using Python
	A.3 Licenses and Acknowledgements for Incorporated Software
	A.3.1 Mersenne Twister
	A.3.2 Sockets
	A.3.3 Floating point exception control
	A.3.4 MD5 message digest algorithm
	A.3.5 Asynchronous socket services
	A.3.6 Cookie management
	A.3.7 Profiling
	A.3.8 Execution tracing
	A.3.9 UUencode and UUdecode functions
	A.3.10 XML Remote Procedure Calls

	Module Index
	Index

