Python Library Reference
Release 2.2.2

Guido van Rossum

Fred L. Drake, Jr., editor

October 14, 2002

PythonLabs
Email: python-docs@python.org

Copyright(© 2001 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive Web browsers.

While thePPython Reference Manudescribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file /O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-in Functions, Types, and Exceptions 3
2.1 Built-in FUNCLiONS e e e e 3
2.2 BUIlt-INTYPES . . . o e e 12
2.3 BUIlt-in EXCEPLIONS e e e e 27

3 Python Runtime Services 33
3.1 sys — System-specific parameters and functions. oL oL 33
3.2 gc — Garbage Collectorinterface. e 38
3.3 weakref —Weakreferences. e 40
3.4 fpectl —Floating pointexceptioncontrol 43
3.5 atexit —Exithandlers. 45
3.6 types —Namesforallbuilt-intypes. 46
3.7 UserDict — Class wrapper for dictionaryobjects 47
3.8 UserList —Classwrapperforlistobjects 48
3.9 UserString — Class wrapper for stringobjects 48
3.10 operator — Standard operatorsasfunctions.. L oL 49
3.11 inspect —Inspectliveobjects. 53
3.12 traceback — Printorretrieve a stacktraceback. oo oL 57
3.13 linecache —Randomaccesstotextlines. 59
3.14 pickle — Python objectserialization 59
3.15 cPickle —Afasterpickle 68
3.16 copy _reg — Registempickle supportfunctions. 68
3.17 shelve — Python object persistence. 69
3.18 copy — Shallow and deep copy operations e 70
3.19 marshal — Internal Python object serialization. 71
3.20 warnings —Warningcontrol. e e e 72
3.21 imp — Accessthémport internals. 74
3.22 code — Interpreterbase classes e 77
3.23 codeop — Compile Pythoncode e 78
3.24 pprint —Dataprettyprinter e e e e e e e e 80
3.25 repr — Alternaterepr() implementation. 82
3.26 new — Creation of runtime internal objects. oo 83
3.27 site — Site-specific configurationhook L 84
3.28 user — User-specific configurationhook o Lo 85
3.29 __builtin __—Built-infunctions. 85
3.30 __main __ — Top-level scriptenvironment. e 85

4 String Services 87

4.1 string —Commonstringoperations e e e e 87
4.2 re —Regular expression operations e 90
4.3 struct — Interpretstrings as packed binarydata L 100
4.4 difflib — Helpers forcomputingdeltas 102
4.5 fpformat — Floating pointconversions. i e 108
4.6 Stringl0 — Read and write stringsasfiles., 109
4.7 cStringlO — Faster version oBtringlO 109
4.8 codecs — Codecregistryandbaseclasses.o 110
4.9 unicodedata —Unicode Database. 114
Miscellaneous Services 117
5.1 pydoc — Documentation generator and online help system. 117
5.2 doctest — Testdocstringsrepresentreality 0 0. 118
5.3 unittest —Unittestingframework. e 124
5.4 math — Mathematical functions. 133
5.5 cmath — Mathematical functions for complexnumbers 135
5.6 random — Generate pseudo-randomnumbers. 136
5.7 whrandom — Pseudo-random numbergenerator. oo 139
5.8 bisect — Array bisection algorithm 140
5.9 array — Efficientarraysofnumericvalues., 140
5.10 ConfigParser = — Configurationfileparser. 143
5.11 fileinput — Iterate over lines from multiple input streams 145
5.12 xreadlines — Efficientiterationoverafile. oo oo Lo 147
5.13 calendar — General calendar-related functions. 147
5.14 cmd— Support for line-oriented command interpretets. oL 148
5.15 shlex — Simple lexicalanalysis e 150
Generic Operating System Services 153
6.1 o0s — Miscellaneous operating systeminterfaces., 153
6.2 os.path — Common pathname manipulations. 166
6.3 dircache —Cacheddirectorylistings. 168
6.4 stat — Interpretingstat() results. 169
6.5 statcache — Anoptimization ofos.stat() 171
6.6 statvfs — Constants used withs.statvfs() 171
6.7 fileemp — File and Directory Comparisons v v i e e 172
6.8 popen2 — Subprocesses with accessible l/Ostreams. 173
6.9 time —Timeaccessand ConversSionS o i i it 175
6.10 sched — Eventscheduler. L 179
6.11 mutex — Mutual exclusion support. e e e e e 180
6.12 getpass — Portable passwordinput. 181
6.13 curses — Terminal handling for character-cell displays. 181
6.14 curses.textpad — Text input widget for curses programs 196
6.15 curses.wrapper — Terminal handler for cursesprograms 197
6.16 curses.ascii — Utilities for ASCll characters 197
6.17 curses.panel — A panelstack extensionforcurses.., 200
6.18 getopt — Parser forcommand lineoptions. o 201
6.19 tempfile — Generate temporaryfilenames. L. 202
6.20 errno — Standard errnosystemsymbols. o L 203
6.21 glob — UNIx style pathname patternexpansion. 209
6.22 fnmatch — UNiIx filename patternmatching 209
6.23 shutii — High-levelfile operations 210
6.24 locale — Internationalizationservices e 211
6.25 gettext — Multilingual internationalization services. 216

7

10

11

Optional Operating System Services 225
7.1 signal — Sethandlersforasynchronousevents. 225
7.2 socket — Low-level networkinginterface. L 227
7.3 select — Waiting for I/O completion. 235
7.4 thread — Multiple threadsofcontrol. 236
7.5 threading — Higher-level threadinginterface. 237
7.6 Queue —Asynchronizedqueueclass. e 244
7.7 mmap— Memory-mapped file support 245
7.8 anydbm — Generic access to DBM-styledatabases oL 247
7.9 dumbdbm— Portable DBM implementation L 248
7.10 dbhash — DBM-style interface to the BSD database libraty. 248
7.11 whichdb — Guess which DBM module created adatabase. 249
7.12 bsddb — Interface to Berkeley DB library 249
7.13 zlib — Compression compatible withzip 251
7.14 gzip — Support forgzipfiles L 253
7.15 zipfile — Work with ZIP archives. e 254
7.16 readline —GNUreadlineinterface. e 257
7.17 rlcompleter ~ — Completion function for GNU readline. 258
Unix Specific Services 261
8.1 posix — The most common POSIXsystemcalls. 261
8.2 pwd—Thepassworddatabase. 262
8.3 grp —Thegroupdatabase e 263
8.4 crypt —Functiontocheck MiX passwords. oo 263
8.5 dl —CallCfunctionsinsharedobjects, 264
8.6 dbm— Simple “database” interface. 265
8.7 gdbm— GNU'sreinterpretationofdbm.o 266
8.8 termios —POSIXstylettycontrol. 267
8.9 TERMIOS— Constants used with thermios module 268
8.10 tty — Terminal controlfunctions. e 268
8.11 pty — Pseudo-terminal utilities e 269
8.12 fentl — Thefentl() andioctl() systemcalls. 269
8.13 pipes — Interface to shell pipelines 271
8.14 posixfile — File-like objects with locking support L. 272
8.15 resource — Resource usage information. oL oo 274
8.16 nis — Interfaceto Sun’s NIS (YellowPages), 276
8.17 syslog — UNix sysloglibraryroutines 276
8.18 commands— Utilities for runningcommands L 277
The Python Debugger 279
9.1 DebuggerCommands e e e 280
9.2 How ItWOrks o e 282
The Python Profiler 285
10.1 Introductiontothe profiler 285
10.2 How Is This Profiler Different From The Old Profiler?. 285
10.3 InstantUsers Manual. e e 286
10.4 What Is Deterministic Profiling?. e 287
10.5 Reference Manual 288
10.6 Limitations. . . . o o o v e e e e 291
10.7 Calibration. e e 291
10.8 Extensions — Deriving Better Profilers. oo 292
Internet Protocols and Support 293
11.1 webbrowser — Convenient Web-browser controller. 293

12

13

11.2 cgi — Common Gateway Interface support.. e 295

11.3 cgitb — Traceback managerfor CGlscripts. 302
11.4 urlib — Openarbitrary resourcesby URL o o 302
11.5 urllib2 — extensible library foropeningURLS 306
11.6 httplib —HTTP protocolclient. e 312
11.7 ftplib —FTPprotocolclient. e 315
11.8 gopherlib — Gopher protocolclient 318
11.9 poplib —POP3protocolclient. 319
11.10imaplib — IMAP4 protocol client e 320
11.12nntplib —NNTP protocolclient. 324
11.12smtplib — SMTP protocolclient. e 327
11.13telnetlib — Telnetclient e 330
11.14urlparse — Parse URLsintocomponents. o o i i i i i i 333
11.15SocketServer — A framework for network servers. oL oL 334
11.16BaseHTTPServer —BasicHTTP server i et 336
11.17SimpleHTTPServer — Simple HTTP requesthandler 338
11.18CGIHTTPServer — CGl-capable HTTPrequesthandler 339
11.19Cookie — HTTP state management. o i i i e e e 340
11.20xmlrpclib — XML-RPCclientaccess i i 343
11.21SimpleXMLRPCServer —Basic XML-RPCserver. 346
11.22asyncore — Asynchronous sockethandler. 347
Internet Data Handling 351
12.1 formatter = — Generic output formatting Lo 351
12.2 email — Anemailand MIME handlingpackage 355
12.3 mailcap — Mailcap file handling.. e 381
12.4 mailbox — Read various mailbox formats o oo 382
12.5 mhlib — Accessto MH mailboxes 384
12.6 mimetools — Tools for parsing MIME messages 386
12.7 mimetypes — Map filenamesto MIME types. 387
12.8 MimeWriter — Generic MIME filewriter 389
12.9 mimify — MIME processing of mailmessages. e 390
12.10multifile — Support for files containing distinctparts. o oL 391
12.11rfc822 —Parse RFC 2822 mailheaders. 393
12.12base64 — Encode and decode MIME base64 data. 396
12.13binascii — Convert between binaryamdsCil 397
12.14binhex — Encode and decode binhex4files o oo 399
12.15quopri — Encode and decode MIME quoted-printabledata 399
12.16uu — Encode and decode uuencodefiles 400
12.17xdrlib —Encode and decode XDRdata. o e 401
12.18netrc —netrcfile processing. L e e 403
12.19robotparser ~— Parserforrobots.txt 404
Structured Markup Processing Tools 407
13.1 HTMLParser — Simple HTML and XHTML parser. v i v v v v 407
13.2 sgmllib — Simple SGML parser. o 0 i e e e 409
13.3 htmllib — AparserforHTMLdocuments it 411
13.4 htmlentitydefs — Definitions of HTML general entities 412
13.5 xml.parsers.expat — Fast XML parsingusingExpat 413
13.6 xml.dom — The Document Object Model APL. 419
13.7 xml.dom.minidom — Lightweight DOM implementation. 429
13.8 xml.dom.pulldom — Support for building partial DOMtrees 433
13.9 xml.sax — Supportfor SAX2 parsers. o o 433
13.10xml.sax.handler — BaseclassesforSAXhandlers L. 435

14

15

16

17

18

19

13.11xml.sax.saxutils — SAXUtilities e 439

13.12xml.sax.xmlreader — Interface for XML parsers.o 440
13.13xmllib — A parserfor XML documents. 444
Multimedia Services 449
14.1 audioop — Manipulateraw audiodata 449
14.2 imageop — Manipulaterawimagedata.o 452
14.3 aifc — Read and write AIFFand AIFCfiles. oo 453
14.4 sunau — Read and write Sun AUfiles 455
145 wave — Read and write WAV files. e 457
14.6 chunk —Read IFFchunkeddata. 459
14.7 colorsys — Conversions between colorsystems 460
14.8 rghimg — Read and write “SGIRGB"files 461
14.9 imghdr — Determinethetypeofanimage, 462
14.10sndhdr — Determinetype of soundfile o 462
Cryptographic Services 465
15.1 hmac — Keyed-Hashing for Message Authentication. 465
15.2 md5— MD5 message digestalgorithm. L 466
15.3 sha — SHA message digestalgorithm. 467
15.4 mpz— GNU arbitrary magnitude integers 467
15.5 rotor — Enigma-like encryption anddecryption o oo 469
Graphical User Interfaces with Tk 471
16.1 Tkinter — Pythoninterfaceto Tcl/TK. o 471
16.2 Tix —Extensionwidgetsfor TK. 481
16.3 ScrolledText — Scrolled TextWidget. e 486
16.4 turtle —TurtlegraphicsforTK e 486
16.5 Idle e 488
16.6 Other Graphical User Interface Packages i 492
Restricted Execution 495
17.1 rexec — Restricted execution framework L 496
17.2 Bastion — Restrictingaccesstoobjects o L 499
Python Language Services 501
18.1 parser — Access Pythonparsetrees. e 501
18.2 symbol — Constants used with Python parsetrees 510
18.3 token — Constants used with Python parsetrees 510
18.4 keyword — Testing for Pythonkeywords, 510
18.5 tokenize — Tokenizer for Pythonsource. e 511
18.6 tabnanny — Detection of ambiguousindentation 511
18.7 pyclbr — Python class browser support L L 512
18.8 py_compile — Compile Pythonsourcefiles. 513
18.9 compileall — Byte-compile Python libraries, 513
18.10dis — Disassembler for Pythonbytecode., 513
18.11 distutils — Building and installing Python modules. 521
Python compiler package 523
19.1 Thebasicinterface 523
19.2 LimitationS. . . . o o o e 524
19.3 Python Abstract Syntax. e 524
19.4 Using Visitors to Walk ASTS o 529
19.5 Bytecode Generation. e e e e e 529

20 SGI IRIX Specific Services 531

20.1 al —Audiofunctionsonthe SGI 531
20.2 AL —Constants used withthed module 533
20.3 cd — CD-ROM access on SGISYStems i ittt e e e 533
20.4 fl — FORMS library for graphical userinterfaces. 536
20.5 FL — Constantsused withtife module 541
20.6 flp — Functions for loading stored FORMS designs. 542
20.7 fm — Font Managefinterface. e 542
20.8 gl — Graphics Libraryinterface 543
20.9 DEVICE— Constantsused withttgd module 545
20.10GL— Constants used withtlg module, 545
20.11limgfile — Support for SGlimglibfiles 545
20.12jpeg — Read andwrite JPEGfiles. 545
21 SunOS Specific Services 547
21.1 sunaudiodev — AccesstoSunaudiohardware. 547
21.2 SUNAUDIODEW- Constants used witbunaudiodev 548
22 MS Windows Specific Services 549
22.1 msvert — Useful routines from the MS VC++runtime 549
22.2 _winreg —WIiNdOWS regiStry 8CCESS+« v v v i i i e e e e e 550
22.3 winsound — Sound-playing interface for Windows. oL 555
A Undocumented Modules 557
Al Frameworks e e 557
A.2 Miscellaneous useful utilities. e 557
A.3 Platform specificmodules e 557
A4 Multimedia. e 558
A5 Obsolete 558
A.6 SGl-specific Extension modules. 559
B Reporting Bugs 561
C History and License 563
C.1 Historyofthesoftware e 563
C.2 Terms and conditions for accessing or otherwise using Python 563
Module Index 567
Index 571

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Functions, Types, and Exceptions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy referénce.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

__import __(name[, globals{, Iocals[, fromlist]]])
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghe statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_owmport __()
function.

For example, the statemenimport spam ' results in the following call: __import __('spam’,

globals(), locals(), []) ; the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’) ' Note that even though
locals() and['eggs’] are passed in as arguments, thamport __() function does not set the local
variable nameaggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitals argument at all, and uses @fobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named hyame However, when a non-empigomlistargument is given, the
module named bpameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagepam must be
placed in the importing namespace, but when usfngni spam.ham import eggs ’, the spam.ham
subpackage must be used to find dggs variable. As a workaround for this behavior, ugstattr() to
extract the desired components. For example, you could define the following helper:

import string

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

def my_import(name):
mod = __import__(name)
components = string.split(name, .")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, arg{, keyword§)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence. Tinectionis called withargs as the argument list; the number
of arguments is the length of the tuple. If the optiokeywordsargument is present, it must be a dictionary
whose keys are strings. It specifies keyword arguments to be added to the end of the the argument list. Calling
apply() is different from just callingunctior(args) , since in that case there is always exactly one argument.
The use ofipply() is equivalent tdunction* args ** keyword¥. Use ofapply() is not necessary since
the “extended call syntax,” as used in the last example, is completely equivalent.

buffer (objec{, offse[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdb@gctargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by theizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whosgcil code is the integer. For examplechr(97) returns the string

'a’ . Thisis the inverse aobrd() . The argument must be in the range [0..255], inclusiedueError will
be raised ifi is outside that range.

cmp(x,y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X <y, zeroifx == yand strictly positive ifx > .

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, kin[i ﬂage[, donLinherit]])
Compile thestringinto a code object. Code objects can be executed Bxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; pass some recognizable
value if it wasn't read from a file'€string>’ is commonly used). Thkind argument specifies what kind of
code must be compiled; it can bexec’ if string consists of a sequence of statemetggal’ if it consists
of a single expression, &ingle’ if it consists of a single interactive statement (in the latter case, expression
statements that evaluate to something else Mame will printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single newline
character 'fn’), and the input must be terminated by at least one newline character. If line endings are
represented br\n’ | use the stringeplace() = method to change them into’

The optional argumenttagsanddont_inherit (which are new in Python 2.2) control which future statements
(see PEP 236) affect the compilationstfing. If neither is present (or both are zero) the code is compiled with
those future statements that are in effect in the code that is calling compile. flagfsargument is given and
dont_inherit is not (or is zero) then the future statements specified bfldgeargument are used in addition to

4 Chapter 2. Built-in Functions, Types, and Exceptions

those that would be used anywaydiint_inherit is a non-zero integer then tiflagsargument is it — the future
statements in effect around the call to compile are ignored.

Future statemants are specified by bits which can be bitwise or-ed together to specify multiple statements. The
bitfield required to specify a given feature can be found astmapiler _flag attribute on the_Feature
instance in the__future __ module.

complex (real[, imag])
Create a complex number with the valal + imagtj or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). Ifimagis omitted, it defaults to zero and the function serves as a numeric conversion
function likeint() ,long() andfloat()

delattr (object, namg
This is a relative oetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ' foobar) is equivalenttalel x. foobar.

dict ([mapping-or-sequende)
Return a new dictionary initialized from the optional argument. If an argument is not specified, return a new
empty dictionary. If the argument is a mapping object, return a dictionary mapping the same keys to the same
values as does the mapping object. Else the argument must be a sequence, a container that supports iteration,
or an iterator object. The elements of the argument must each also be of one of those kinds, and each must in
turn contain exactly two objects. The first is used as a key in the new dictionary, and the second as the key’s
value. If a given key is seen more than once, the last value associated with it is retained in the new dictionary.
For example, these all return a dictionary equdllto 2, 2: 3}

edict({l: 2, 2: 3}

edict({1: 2, 2: 3}.items())
edict({1: 2, 2. 3l.iteritems())
edict(zip((1, 2), (2, 3))
edict([[2, 3], [1, 2]])
edict([(i-1, i) for i in (2, 3)])

New in version 2.2.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts to
return a list of valid attributes for that object. This information is gleaned from the objectfict __ attribute,
if defined, and from the class or type object. The list is not necessarily complete. If the object is a module object,
the list contains the names of the module’s attributes. If the object is a type or class object, the list contains the
names of its attributes, and recursively of the attributes of its bases. Otherwise, the list contains the object’s
attributes’ names, the names of its class’s attributes, and recursively of the attributes of its class’s base classes.
The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir()

[__builtins__’, *__doc__’, '__name__’, ’'struct]

>>> dir(struct)

[__doc_', '__name__’, ’calcsize’, 'error’, 'pack’, 'unpack’]

Note: Becausalir() is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases.

2.1. Built-in Functions 5

divmod (a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same(as/ b, a % b). For floating point numbers the result(ig, a %
b) , whereq is usuallymath.floor(a / b) butmaybe 1lessthanthat. Inanycas¢ b + a % bis
very close ta, if a % bis non-zero it has the same signtagand0 <= abs(a % b) < abs(b).

Changed in version 2.3: Usirdivmod() with complex humbers is deprecated.

eval (expressio[1, gIobaIs[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usinglthtealsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wéneaie is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval(x+1’)
2

This function can also be used to execute arbitrary code objects (such as those creatagdit®()). In this
case pass a code object instead of a string. The code object must have been compiledgva$singas the
kind argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from

a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile (file[, globals[, Iocals]])
This function is similar to theexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local names-

pace. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted, the
expression is executed in the environment whestecfile() is called. The return value ISone.

Warning: The defaultocalsact as described for functidacals() below: modifications to the defauticals
dictionary should not be attempted. Pass an expbcitls dictionary if you need to see effects of the code on
locals after functionexecfile() returns. execfile() cannot be used reliably to modify a function’s
locals.

file (filenamg, modd, bufsizd])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio 'sfopen() : filenameis the file name to be openemhodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), arild’ opens it for appending (which @aomeUnix
systems means thall writes append to the end of the file, regardless of the current seek position).

Modes’r+' ,'w+’ and’'a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error is raised.

If modeis omitted, it defaults t&r . When opening a binary file, you should appélnd to themodevalue

for improved portability. (It's useful even on systems which don't treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A

2|t is used relatively rarely so does not warrant being made into a statement.

6 Chapter 2. Built-in Functions, Types, and Exceptions

negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is ued.

Thefile() constructor is new in Python 2.2. The previous spelloggn() , is retained for compatibility,
and is an alias fofile()

filter (function, lis)
Construct a list from those elementslidt for which functionreturns true.list may be either a sequence, a
container which supports iteration, or an iteratorlidf is a string or a tuple, the result also has that type;
otherwise it is always a list. functionis None, the identity function is assumed, that is, all elementisbthat
are false (zero or empty) are removed.

float (X)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensittal goatof(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr (object, namE, default])
Return the value of the named attributedadject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examplattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exiggfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The resultis 1 if the string is the name of one of the object’s attributes,
0 if not. (This is implemented by callingetattr(object namg and seeing whether it raises an exception
or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated. New in
version 2.2.

hex (X)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal. For example, on a 32-bit mache;1) yields Oxffffffff’
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it
may turn up as a large positive number or rais®amrflowError exception.

id (objec)

3Specifying a buffer size currently has no effect on systems that don'tsetveuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.1. Built-in Functions 7

Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have thé&gpme
value. (Implementation note: this is the address of the object.)

input ([prompt])

Equivalent toeval(raw _input(prompd) . Warning: This function is not safe from user errors! It expects

a valid Python expression as input; if the input is not syntactically val8yrsaxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly
what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and history
features.

Consider using theaw _input() function for general input from users.

int (x[, radix])

intern

Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical to
string.atoi(x[, radix]) . Theradix parameter gives the base for the conversion and may be any integer

in the range [2, 36], or zero. Hadix is zero, the proper radix is guessed based on the contents of string; the
interpretation is the same as for integer literalsatfix is specified andt is not a stringTypeError is raised.
Otherwise, the argument may be a plain or long integer or a floating point number. Conversion of floating point
numbers to integers truncates (towards zero).

('string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(never get garbage collected).

isinstance (object, classinfp

Return true if theobjectargument is an instance of tlelassinfoargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassinfois a type object andbjectis an object of that type. kbbjectis not a class
instance or a object of the given type, the function always returns falsgad$infois neither a class object

nor a type object, it may be a tuple of class or type objects, or may recursively contain other such tuples (other
sequence types are not acceptedkldtsinfois not a class, type, or tuple of classes, types, and such tuples, a
TypeError exception is raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass (classl, classp

Return true ifclasslis a subclass (direct or indirect) ofass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError exception is raised.

iter (o[, sentineﬂ)

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumenitust be a collection object which supports the iteration protocol
(the __iter __() method), or it must support the sequence protocol (thgetitem __() method with

integer arguments starting @). If it does not support either of those protocolgjpeError is raised. If

the second argumensentine] is given, theno must be a callable object. The iterator created in this case
will call o with no arguments for each call to itext() method; if the value returned is equalgentine]
Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len (9

Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list ([sequenc}a)
Return a list whose items are the same and in the same ordeigasncs items. sequencenay be either a
sequence, a container that supports iteration, or an iterator objeetqufncés already a list, a copy is made
8 Chapter 2. Built-in Functions, Types, and Exceptions

and returned, similar teequende] . Forinstanceljst(’abc’) returng’a’, 'b’, 'c’] andlist(
1, 2, 3)) returns[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol tAligning: The contents of this dictionary should
not be modified; changes may not affect the values of local variables used by the interpreter.

long ([, radix])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace; this behaves identistinmg.atol(X) . Theradix
argument is interpreted in the same way asifitf) , and may only be given whexis a string. Otherwise,
the argument may be a plain or long integer or a floating point number, and a long integer with the same value
is returned. Conversion of floating point numbers to integers truncates (towards zero).

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioniét arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended wWittne items. Iffunctionis None, the identity function is assumed; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (a kind of transpose operation). Tl arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single argumerg, return the largest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (X)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note: this
always yields an unsigned literal. For example, on a 32-bit macbicté;1) yields'037777777777
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it
may turn up as a large positive number or rais®©aerflowError exception.

open (filename{, mode{, bufsize]])
An alias for thefile() function above.

ord (¢
Return theascii value of a string of one character or a Unicode character. &@df’a’) returns the integer
97, ord(u’
u2020’) returns8224. This is the inverse ofhr() for strings and ofinichr() for Unicode characters.
pow(x, Y, z])

Returnx to the powery; if zis present, returx to the powery, moduloz (computed more efficiently than

pow(x, Yy) % 2). The arguments must have numeric types. With mixed operand types, the coercion rules for
binary arithmetic operators apply. For int and long int operands, the result has the same type as the operands
(after coercion) unless the second argument is negative; in that case, all arguments are converted to float and
a float result is delivered. For examplE)**2 returns100, but 10**-2 returns0.01 . (This last feature

was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second
argument was negative, an exception was raised.) If the second argument is negative, the third argument must
be omitted. Ifzis presentx andy must be of integer types, arydnust be non-negative. (This restriction was
added in Python 2.2. In Python 2.1 and before, floating 3-argupmf) returned platform-dependent results
depending on floating-point rounding accidents.)

range ([start,] stor{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often fmedlaops.
The arguments must be plain integers. If Htepargument is omitted, it defaults th. If the start argument

2.1. Built-in Functions 9

is omitted, it defaults t®. The full form returns a list of plain integefsstart, start + step start + 2

* step ..] . If stepis positive, the last element is the largetdrt + i * stepless tharstop if stepis
negative, the last element is the largetrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4,5, 6,7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4,5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

>>> range(1, 0)

I

raw _input ([prompt])

If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &¥diresmread,
EOFError israised. Example:

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus”

If the readline module was loaded, theraw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequen({einitializer])

Apply functionof two arguments cumulatively to the items sfquencefrom left to right, so as to reduce
the sequence to a single value. For exampdeluce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateq(((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is emitiglizér is not given and
sequenceontains only one item, the first item is returned.

reload (modulg

Re-parse and re-initialize an already imponteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (the same as tmeoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsiport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — with atatement it can test

for the table’s presence and skip its initialization if desired.

10

Chapter 2. Built-in Functions, Types, and Exceptions

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepsfor

__main __and__builtin __. In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.
If a module imports objects from another module usiram ... import ..., callingreload() for the

other module does not redefine the objects imported from it — one way around this is to re-exefumthe
statement, another is to useport and qualified namesr(odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed t@val()

round (x[, n])
Return the floating point valuerounded ton digits after the decimal point. Hi is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powenminus
if two multiples are equally close, rounding is done away from 0 (so. for examqied(0.5) is1.0 and
round(-0.5) is-1.0).

setattr (object, name, valye
This is the counterpart @fetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(%, ' foobar, 123) is equivalent tox. foobar = 123.

slice ([start,] stop{, step])
Return a slice object representing the set of indices specifiedrnye(start, stop step. Thestartand
steparguments default to None. Slice objects have read-only data attrittas , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used. For examplafstart:stop:step] "or ‘a[start:stop, i] ’

str (objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ;its goal is to return a printable string.

tuple ([sequenc}a)
Return a tuple whose items are the same and in the same oslEEENCS items.sequencenay be a sequence,
a container that supports iteration, or an iterator objecedfuencés already a tuple, it is returned unchanged.
For instancetuple(abc’) returns returnga’, ’'b’, 'c) andtuple([1, 2, 3]) returns(l,
2, 3) .

type (objec)
Return the type of anbject The return value is a type object. The standard motiydes defines names for
all built-in types. For instance:

>>> jmport types
>>> if type(x) == types.StringType: print "It's a string"

unichr (i)
Return the Unicode string of one character whose Unicode code is the intdgarexampleunichr(97)
returns the string'a’ . This is the inverse oérd() for Unicode strings. The argument must be in the range
[0..65535], inclusiveValueError s raised otherwise. New in version 2.0.

2.1. Built-in Functions 11

unicode (objec{, encodini, errors]])
Return the Unicode string version albjectusing one of the following modes:

If encodingand/orerrors are given,unicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding The encodingparameter is a string giving the name of an
encoding; if the encoding is not knowbhgokupError s raised. Error handling is done accordingetoors;
this specifies the treatment of characters which are invalid in the input encodiegons is 'strict’ (the
default), avalueError s raised on errors, while a value ‘@jnore’ causes errors to be silently ignored,
and a value ofreplace’ causes the official Unicode replacement charatteEFFD to be used to replace
input characters which cannot be decoded. See alsmtiecs module.

If no optional parameters are givempicode() will mimic the behaviour ofstr() except that it returns
Unicode strings instead of 8-bit strings. More preciselglfectis a Unicode string or subclass it will return
that Unicode string without any additional decoding applied.

For objects which provide a_unicode __() method, it will call this method without arguments to create a
Unicode string. For all other objects, the 8-bit string version or representation is requested and then converted
to a Unicode string using the codec for the default encodirigtiict’ mode.

New in version 2.0. Changed in version 2.2: Support faunicode __() added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefifted.

xrange ([start,] stop{, step])
This function is very similar teange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all simul-
taneously. The advantage xfange() overrange() is minimal (sincexrange() still has to create the
values when asked for them) except when a very large range is used on a memory-starved machine or when all
of the range’s elements are never used (such as when the loop is usually terminataeakth).

zip (seql,.)
This function returns a list of tuples, where thth tuple contains théth element from each of the argument
sequences. At least one sequence is required, otherWiggekrror is raised. The returned list is truncated
in length to the length of the shortest argument sequence. When there are multiple argument sequences which
are all of the same lengthip() is similar tomap() with an initial argument oNone. With a single sequence
argument, it returns a list of 1-tuples. New in version 2.0.

2.2 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint statement.

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

12 Chapter 2. Built-in Functions, Types, and Exceptions

2.2.1 Truth Value Testing

Any object can be tested for truth value, for use irifanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e False

e zero of any numeric type, for exampl&,OL, 0.0 , 0] .

e any empty sequence, for examgle,,) ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when that

method returns the integer zerotmol valueFalse .°

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retionfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

2.2.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex 1)

x and vy | if xis false, therx, elsey (1)

not x if xis false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operatorsned a == bis interpreted agot (a == b), and
a == not bisasyntax error.

2.2.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for exampley <= zis equivalenttx < y and

y <= z, except thay is evaluated only once (but in both cases not evaluated at all whex < y is found to be

false).

This table summarizes the comparison operations:

5Additional information on these special methods may be found ithieon Reference Manual

2.2. Built-in Types 13

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal Q)
<> not equal (1)
is object identity
is not negated object identity
Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’'t choose betwgeeand C! :-) != is the

preferred spellings> is obsolescent.

Obijects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (for example,
file objects) support only a degenerate notion of comparison where any two objects of that type are unequal. Again,
such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class definesrtipe _() method. Refer to the
Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

2.2.4 Numeric Types

There are four numeric typeglain integers long integers floating point numbersand complex numbersPlain
integers (also just calleditegers are implemented usingng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediasislg in C. To extract these
parts from a complex numbeyrusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendirjg ‘or ‘J’ to a humeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the $ame rule.
The functiongnt() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in the
same box have the same priority; all numeric operations have a higher priority than comparison operations):

6As a consequence, the Ijgt, 2] is considered equal {d.0, 2.0] , and similar for tuples.

14 Chapter 2. Built-in Functions, Types, and Exceptions

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y quotient ofx andy Q)
X %y remainderok / vy (4)
- X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(X) x converted to long integer (2)
float(x) x converted to floating point
complex(re, im) | a complex number with real pas, imaginary partm. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(X, V) thepair(x / 'y, X %Y) 3)(4)
pow(X, Y) x to the powely
X ¥y x to the powery
Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftdian(s
andceil() inthemath module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, aidmnod()
Deprecated since release 2.3stead convert to float usirabs() if appropriate.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofl * has the same priority as the other unary numeric operatieiisiid ‘-).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
X|y bitwiseor of x andy
X"y bitwise exclusive oof x andy
X &Yy bitwiseandof x andy
X << n | xshifted left byn bits 1), (2)
x >> n | xshifted right byn bits 1), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.

2.2. Built-in Types 15

(2) A left shift by n bits is equivalent to multiplication bgow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.2.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter __()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method correspond#to fter slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together fivemattie
protocot

__iter __()
Return the iterator object itself. This is required to allow both containers and iterators to be used \dth the
andin statements. This method corresponds tottheiter slot of the type structure for Python objects in
the Python/C API.

next ()
Return the next item from the container. If there are no further items, raissttipdteration exception.
This method corresponds to the _iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratoext() method raiseStoplteration , it will continue to
do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint was
added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

2.2.6 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quoteyzzy’ |, "frobozz" . See chapter 2 of theython Reference
Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using
a preceedingu’ character:u’abc’ , u"def" . Lists are constructed with square brackets, separating items with
commasija, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parenthesesbe.g., or() . A single item

tuple must have a trailing comma, e.@,)

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They support concatenation and repetition, but the result is a new string object rather than a new buffer
object.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using the

16 Chapter 2. Built-in Functions, Types, and Exceptions

xrange() function. They don’t support slicing or concatenation, but do support repetition, andinsjimgt in ,
min() ormax() onthem is inefficient.

Most sequence types support the following operations. Thé and ‘not in ' operations have the same priori-
ties as the comparison operations. Thédnd *’ operations have the same priority as the corresponding numeric
operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tax, else0
X not in s | Oifanitem ofsis equal tax, elsel
s+t the concatenation afandt
s * n, n * s | nshallow copies o§concatenated | (1)
9 i] i'th item of s, origin O (2)
g i:] slice ofsfromitoj 2), (3)
len() length ofs
min(s) smallest item of
max(s) largest item of

Notes:

(1) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typ®.dsote also that the
copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

>>> lists = [[]] * 3
>>> ists

M 0 m

>>> |ists[0].append(3)
>>> ists

(3], 3], [31

What has happened is tHestts is a list containing three copies of the [[§} (a one-element list containing
an empty list), but the contained list is shared by each copy. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> |ists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

(3], 18], [71

(2) If i orjis negative, the index is relative to the end of the strieg(s) + iorlen(s) + |jis substituted. But
note thatO is still 0.

(3) The slice ofsfromi toj is defined as the sequence of items with inkexich that <= k < j. If i orj is greater
thanlen(s), uselen(s). If i is omitted, usé. If j is omitted, usden(s). If i is greater than or equal {p
the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

"They must have since the parser can't tell the type of the operands.

2.2. Built-in Types 17

capitalize 0
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of lengthdth. Padding is done using spaces.

count (sut{, starl{, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart andend
are interpreted as in slice notation.

decode ([encodingi, errors]])
Decodes the string using the codec registeredefaroding encodingdefaults to the default string encoding.
errors may be given to set a different error handling scheme. The defdstti’ , meaning that encoding
errors raisé/alueError . Other possible values atignore’ andreplace’ . New in version 2.2.

encode ([encodingi,errors]])
Return an encoded version of the string. Default encoding is the current default string encarding may
be given to set a different error handling scheme. The defaudtrfors is 'strict’ , meaning that encoding
errors raise &alueError . Other possible values alignore’ and’replace’ . New inversion 2.0.

endswith (suffi>{, starl{, end]])
Return true if the string ends with the specifidfix otherwise return false. With optionsiart, test beginning
at that position. With optionand stop comparing at that position.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are expanded using spéatesizés not given, a tab size
of 8 characters is assumed.

find (sut{, starl{, end]])
Return the lowest index in the string where substgngis found, such thatubis contained in the rangstart,
end). Optional argumentstartandendare interpreted as in slice notation. Retttnif subis not found.

index (sut{, starl{, end]])
Like find() , but raiseValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdigit ()

Return true if there are only digit characters, false otherwise.
islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

isspace ()
Return true if there are only whitespace characters in the string and the string is not empty, false otherwise.

istitle 0
Return true if the string is a titlecased string: uppercase characters may only follow uncased characters and
lowercase characters only cased ones. Return false otherwise.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

join (seq
Return a string which is the concatenation of the strings in the seqseqcéhe separator between elements is
the string providing this method.

18 Chapter 2. Built-in Functions, Types, and Exceptions

ljust (width)
Return the string left justified in a string of lengtfidth. Padding is done using spaces. The original string is
returned ifwidthis less tharden(s) .

lower ()
Return a copy of the string converted to lowercase.

Istrip ([chars])
Return a copy of the string with leading characters removethdfsis omitted ofNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the beginning of the string this method is called on.

replace (old, nevs[, maxsplit])
Return a copy of the string with all occurrences of substoityreplaced bynew If the optional argument
maxsplitis given, only the firsmaxsplitoccurrences are replaced.

rfind (sub[,start [,end]])
Return the highest index in the string where substsimgis found, such thatubis contained within s[start,end].
Optional argumentstartandendare interpreted as in slice notation. Retttnon failure.

rindex (sut{, starl{, end]])
Like rfind() but raises/alueError when the substringubis not found.

rjust (width)
Return the string right justified in a string of lengtldth. Padding is done using spaces. The original string is
returned ifwidthis less tharden(s).

rstrip ([chars])
Return a copy of the string with trailing characters removedh#rsis omitted orNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the end of the string this method is called on.

split ([sep[,maxsplit]])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mosmaxsplit
splits are done. Iepis not specified oNone, any whitespace string is a separator.

splitlines ([keepend]s)
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependss given and true.

startswith (prefix[, starl{, end]])
Return true if string starts with therefix otherwise return false. With optionstart, test string beginning at
that position. With optionaénd stop comparing string at that position.

strip ([chars])
Return a copy of the string with leading and trailing characters removetaitis omitted oNone, whitespace
characters are removed. If given and haine, chars must be a string; the characters in the string will be
stripped from the both ends of the string this method is called on.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

titte ()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased characters
are lowercase.

translate (table[, deletechari)
Return a copy of the string where all characters occurring in the optional argutaletecharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

upper ()

2.2. Built-in Types 19

Return a copy of the string converted to uppercase.

zfill (width)
Return the numeric string left filled with zeros in a string of lengttth. The original string is returned ¥fidth
is less tharken().

String Formatting Operations

String and Unicode objects have one unique built-in operation%bperator (modulo). This is also known as the
string formatting or interpolation operator. Giverformat %values(whereformatis a string or Unicode object¥o
conversion specifications iformat are replaced with zero or more elementsvafues The effect is similar to the
usingsprintf() in the C language. fiormatis a Unicode object, or if any of the objects being converted using the
%sconversion are Unicode objects, the result will be a Unicode object as well.

If formatrequires a single argumentaluesmay be a single non-tuple obje&. Otherwise valuesmust be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The % character, which marks the start of the specifier.

2. Mapping key value (optional), consisting of an identifier in parentheses (for exaismeename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4.

Minimum field width (optional). If specified as ah’(asterisk), the actual width is read from the next element
of the tuple invalues and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a’‘ (dot) followed by the precision. If specified a&’*(an asterisk), the actual
width is read from the next element of the tuplevadues and the value to convert comes after the precision.

6. Length modifier (optional).

7. Conversion type.

If the right argument is a dictionary (or any kind of mapping), then the formats in the sttiisthave a parenthesized
key into that dictionary inserted immediately after tB&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> language = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘# | The value conversion will use the “alternate form” (where defined below).

‘0’ | The conversion will be zero padded.

‘-’ | The converted value is left adjusted (overridey.'

‘' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+’ | Asign character ¢ or ‘-) will precede the conversion (overrides a "space” flag).

8A tuple object in this case should be a singleton.

20 Chapter 2. Built-in Functions, Types, and Exceptions

The length modifier may bk, | , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

Conversion | Meaning
‘d’ Signed integer decimal.
i’ Signed integer decimal.
‘0’ Unsigned octal.
‘u’ Unsigned decimal.
‘X’ Unsigned hexidecimal (lowercase).
‘X Unsigned hexidecimal (uppercase).
‘e’ Floating point exponential format (lowercase).
‘E Floating point exponential format (uppercase).
‘“fr Floating point decimal format.
‘F Floating point decimal format.
‘g’ Same ase’ if exponent is greater than -4 or less than precisibnptherwise.
‘G Same asE'’ if exponent is greater than -4 or less than precisiéhptherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object usirepr()).
‘s’ String (converts any python object usisty()).
‘0% No argument is converted, results in% tharacter in the result. (The complete specificatiovh)

(The%r conversion was added in Python 2.0.)
Since Python strings have an explicit lendg¥s conversions do not assume tA@t is the end of the string.

For safety reasons, floating point precisions are clipped t&/&G;onversions for numbers whose absolute value is
over 1e25 are replaced Bggconversions. All other errors raise exceptions.

Additional string operations are defined in standard modstlésy andre .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type is
that an xrange object will always take the same amount of memory, no matter the size of the range it represents. There
are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing anietife function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexas an arbitrary object):

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

2.2. Built-in Types 21

Operation Result Notes
gi] = x itemi of sis replaced by
gi:j] = t slice ofsfromi to is replaced by
del di:j] sameas i: j] = []
s.append(x) same ag{len(s)ylen(9] = [X N}
s.extend(X) same agllen(s)len(9] = X (2)
scount(X) return number of's for whichg[i] == x
sindex(X) return smallest such thaq i] == x 3)
sinsert(i, X) sameasi:i] = [x] ifi >= 0 4)
s.pop([i]) sameax = di]; del g i]; return X (5)
s.remove(X) same aslel ¢ sindex(X)] 3
s.reverse() reverses the items afin place (6)
s.sort([cmpfund) sort the items o§in place (6), (7)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(2) Raises an exception whenis not a list object. Thextend() method is experimental and not supported by
mutable sequence types other than lists.

(3) RaisesvalueError whenxis not found ins.

(4) When a negative index is passed as the first parameter ingbe() method, the new element is prepended
to the sequence.

(5) Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so that
by default the last item is removed and returned.

(6) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don't return the sorted or reversed list.

(7) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should return a negative, zero or positive number depending on whether the first argument is considered
smaller than, equal to, or larger than the second argument. Note that this slows the sorting process down
considerably; e.g. to sort a list in reverse order it is much faster to use calls to the mstint{jis and
reverse() than to use the built-in functiosort() with a comparison function that reverses the ordering of
the elements.

2.2.7 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thietionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types